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Abstract

There has been increasing attention to the fine structure of abilities un-

derlying task performance (Haertel and Wiley (in press)). One of the useful

approaches for this is by use of graphical models to represent relationships

among abilities and test items. Building a large graphical model is always

an issue. Restrictions upon experiments and data collection, among others,

may result in parts of the large model. Or it may be convenient for us to

build parts of the large models first, and then try to combine those parts into

a larger model. This paper derives, confined to categorical variables only, a

theory which may be useful in combining conditional graphical models into a

larger one. The main result of the paper is that. we can see partial information

about a true log-linear structure (LLS) from its conditional LLSs and use the

information in trying to guess the true LLS, assuming that the true LLS is

graphical. An application of the result is illustrated using a simulated data

set.

Key words: log-linear model, strong hierarchy assumption, hyperodel,

traceability, influence diagram.

1



1 Introduction and Problem

During the last two decades, psychological research has beeli focused on

tasks that better approximate the meaningful learning and problem-solving

activities that engage people in real life. There has been increasing attention

to the fine structure of abilities underlying task performance (Haertel and

Wiley (in press)). As Haertel and Wiley (in press) note, current test theory

may not be sufficient to characterize the fine structure of the ability pattern

and hence to build upon this structure to more clearly represent the acquisition

and the structure of aggregate abilities. One of the appropriate approaches in

dealing with this kind of issues is by use of graphical models by which we can

represent relationships among ,,bi lities and test items.

In this paper, "graphical models" includes graphical log-linear models, in-

fluence diagrams and Bayes Networks. One of the problems that we face when

we try to build graphical models of task abilities and test items is described

below. Consider the test items which can be solved in several different ways.

Problem-solving strategies may vary across a group of individuals. For exam-

ple, in dealing with mixtures of whole numbers and fractions, a student may

prefer dealing with those numbers in a fraction form, while another in a mixed

form (Tatsuoka (1990)). Skills used in solving a problem may vary accord-
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ing to the strategies selected by test-takers. Some skills used in one strategy

may not be used in another. This is one of the reasons why it. is desirable

to build models in two steps when there are more than one strategy available

first, we build graphical models for each problem-solving strategy; second,

we combine them into a graphical model where a categorical variable for the

problem-solving strategies is included as a new variable.

The main goal of this paper is to derive a rule which is useful when com-

bining graphical models, where the same set of variables are involved in each

of the graphical models. The above-mentioned three types of graphical models

share a common ground (sec Lauritzen and Spiegelhalt.er (1988), Pearl (1988).

Smith (1989)). That is, Bayes networks and influence diagrams are inter-

pretable in terms of graphical log-linear model under a positivity condition

that, every configuration of the variables involved in the model has positive

probability. Hence in our derivation of the combining rule our discussion will

be in the context of graphical log-linear model.

We will define by log-linear struc cure (LLS) the generating class of a log-

linear model. If the log-linear model is graphical, then its LLS can be repre-

sented in the form of a graph. Suppose that a categorical variable X has I

levels, and i,hat we have I conditional LLSs for a. set of variables, corresponding

to the 1 possible outcomes of X In these circumstances it seems desirable to

3
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Figure 1.1: Hybrid tree/log-linear structure representation

LLS1 LLS2 LLS1-1 LLS!

develop hybrid tree/log-linear structure representations. Such a hybrid rep-

resentation is given Figure 1.1. We will simply call such a representation

a hybrid. A hybrid can be described in terms of log-linear structures only,

instead of a graph. For example, Figure 1.1 can be expressed by

(LLS1, LLS2, ,LLS,),

where the subscripts indicate the values of X.

There are only finitely many possible log-linear structures corresponding

to a hybrid, if the hybrid involves only a finite number of random variables.

We will call the log-linear structure of a log-linear model which gives rise to

the hybrid h, say, by a hypermodel corresponding to (abbreviated to "c.t.") h.

There may be many hypermodels corresponding to a hybrid.

This paper consists of 7 sections. In sections 2 through 5, we derive a rule

for obtaining hypermodels from a given hybrid. Section 2 deals in detail with

a conditional log-linear model. The possible conditional log-linear structures
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of a given log linear structure are discussed in section 3. In section 1. we

derive basic rules of obtaining the set of the possible graphical hypermodels

corresponding to a given hybrid. Section 5 shows that we can find the true

graphical hypermodel with some uncertainty by applying the rules derived iu

section 4. Section 6 illustrates combining two graphical models by applying

the main results of this paper. Section 7 concludes the paper.

In the rest of this paper, we will use abbreviations (in the parenthesis) as

follows if confusion is not likely: log-linear model (LLM), log-linear structure

(LLS). conditional log-linear model (CLLIV1), conditional log-linear structure

(CLLS).

2 A General Expression for the CLLM and

the Strong Hierarchy Assumption

Suppose there are n categorical variables X1V2, ,X, for which we will

consider LLMs under the hierarchy assumption. We will borrow most of t he

notations from Bishop, Fienberg, and Holland (1980). In this paper. we will

:onsider conditional probabilities of a set of variables given an outcome of

variable, and assume that Xj takes on 11 values I r, . Let 01.0.2.
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be distinct subsets of {1,2, ,n}. Consider a LLM whose generating class is

given by {01,02, , namely,

lOgP12...n(X1, X2, Xn)

uoi( Ted + u82( + + tiek( Teo + R(xi, x2, , xk), (2.1)

where R(x1,x2, ,sk) is a constant u-term plus the summation of the tie-

terms each of whose subscript sets, 8's, is a strict subset of some Oi.

We denote by P23..kii(x2, x3, , skis].) the conditional probability that

X2 = X2, X3 = X3, , Xk = xk, given X1 = x1. Then we have that

log p23...ki1 (x2, x3, , skixi )

k

= E ue,( + R(xi , x2, , log pi (xi). (2.2)
i=i

For notational convenience, we will omit the argument of the subscript set 0

when confusion is not likely. For 0 such that 0 n {1} = 0( the empty set), we

let

(xi)
Ito( To) = r1.0( + u(1}ur9(21, :17 e). (2.3)

Then, we can re-express equation (2.2) in terms of the usual u-terms and the

u()-terms. At this point, we need to know pi (..r1 ). Assume that

U in equation (2.1).

6
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Let

c(xl) = TL + ul(1i) log pi (xi ).

In (2.2), we may rearrange, without loss of generality, 0's so that 01, , Or.

for 1 < r < k, contain the singleton {1} as a subset, while the other 0's do not .

Under this rearrangement, let 0: = Oi \ {1}, for i = 1,2, r. Let ue = 0,

while u symbolizes a constant term in a LLM. Then we have, from (2.2) and

(2.5), that

log p2...7,11(x2, , x7,1x1)

where

)= c- Ufi(xitt p E up,(1:0,)+

17(r ' )(x2 -,x,t) u ((xi). (2.61

R(r1)(X2, Xn) = An..(371,3:2, , xn) Eue:( To,).
i=1

(2.7)

Note that Ey tte((I)T. = 0, where the summation goes over all the possible

value y's of Xi for each j E .

A hierarchical LLM for a joint probability of a set of variables does not ive-

essarily imply a hierarchical LLM for any of its conditional probabilities. Fur

example, consider a LLM whose generating class is given by 111. 21, .

Then from equation (2.6) we have

log P23411(2, =

12



(1t)
Zi

(xi) (xi) (3-1) _i_ (r') +I(.3,4}tX, 3.4) {2}(S2) 1{3}(X3)
'4{4}(1'4) 11(xi) log (xi ))

In this expression, 1/{(x3')) or 2L({4 }) may be equal to 0, while u({x314)) may not.

However, we will confine ourselves, in this paper, to the cases where the

hierarchy principle holds in the LLMs for the joint probability and for the con-

ditional probabilities. We will refer to this restriction t he strong hierarchy

assumption (SHA).

We denote a CUM of a set of variables given Xi = xi( by CA, 1 =

1, ,Il, and the LLS of C MI by CSi. In expression (2.6), there may be some

0: such that. 0 C () C Op for some j, r 1 < j < k. Under the SHA, we don't

care about such ir('.")-terins in expressing CSI, and throw such uo( ")-ternis

into Mx")-term. In this sense, we may efer to those terms as the disappearing

a"-terms, the rest of them, a.: the remaining u-terms. Suppose there are s

disappearing it-terms, and r s remaining u(")- terms, for 0 < s < r, in the

r.h.s. of equation (2.6). Without loss of generality, we may then rearrange the

't)- terms, so that ito(f"), i = 1, 2, , s, disappear into Mr")-term. We now

i V('

log P2,11(3'2, ,:rnixii) =

,(x 12(1. ii)
1.41 " 00 E Ito,( ,J.Ti)

i=r+1

8
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where

R(+1.")(372, , x,,) = 4:00
i=1 ' i=s+1

(2.8)

From (2.7) and (2.8), we can see that fif")(x2, ,x,) is a linear combination

of the u-terms each of whose subscript sets is a strict subset. of some set in

Vs+7 , OT, Or+i, , 00. Actually f(.if") is composed of the following :3 t yPes

of u or u"-terms:

(a) the u(8f,")-terms, for i = 1,2, ,s, with 0 C 0" C

(b) the u(of,")-terms, with 0 C 0" C 0:, for i = s+ 1, .7., excluding the terms

in (a),

(c) the u-terms of R.(xit, , x) u ui(2.0) except. those terms in (a) and

(b).

Rewriting log p2...0 (x2, , x,,Ix1i) gives

(x2).log P2- n11

E o ( oo + su mm of (a) term
: T

i=r+1

-4-sum of (b) terms -- sum of (c) terms -I- c(x1t) (2.9)

This result is true whether {1} is one of {0,}1/=1 in (2.1) or not. L.. whet lieu

9
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R(xi, x2, ,x,) has urterm in its summation or not. Note that c(xii) is the

constant term in expression (2.9).

Before concluding this section, we need to note that the u-terms in the

second summation in expression (2.9) are all non-zero since they remain the

same as they are in the original model (2.1). On the other hand, some u"-

term in the first. summation can be zero, in which case some (b) term may

affect the CLLS.

In this section, we examined CLLM's and derived a generalized expression

(2.9). Under the SIIA, the CLLS CS1, / = 1, ,11, is determined by u and

uH-terms in

(i) the first two summations in (2.9), if none of the terms is zero;

(ii) the first, second and fourth summations in (2.9), if some uH-term in the

first summation is zero.

3 The CLLSs in a Hybrid Given a Hyper-

model

In Section 2, we have seen that the two CLLSs can he different. From the

CLLSs, we can guess the possible hypermodels. The relationship between the

10



CLLSs and the hypermodel is examined in this section. The following lemma

plays our important role in searching for the possible CLLSs.

Lemma 3.1 Let 0 fl {1 } = 0. Then, no = umue = 0, i UV") = 0, for all

I= 1,...,11.

Proof: Suppose that u(o(19) = 0, V :F9, for all I = 1, , Il. Then, it. follows

that, for l= 1, ,

tl{1 }uo(211, To) = tie( To), V T. e (3.1)

Since EP umtmx,,, = 0, we have, by equation (3.1), 11e = 0. Hence, the

"if part" is proved.

The proof of the other direction is straightforward. 0

The following example illustrates what CLLSs are possible by applying

Lemma 3.1.

Example 3.2 Suppose that 11 = 2, and that tile LLS S for a 6-dimensional

contingency table is given by

11 = {{1,2,3},{1,3,4},{1,3,6},{3,1,5},{3,5,6} }; (3.2)

it is given in graphical form. as in Pigure 3.1.

11
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Figure 3.1:

Following the same argument as in Section 2, we have, for 1 = 1,2.

1°gP2...611(S2 37613:11)

1C(Xi()

(sit)
1/3(xii) + 1/(x11) (4+ 215 + U6xii) u(2+ 3ni) + 1:(ix411)

(-C11)
+T135 +35 -T" U36 U45 + U56 + U345 + 1L3561

where some u(')-term may be zero.

(3.)

Denote the element sets in (3.2) by 0i, ,05, in that order. Under the

SHA, our interest is on the u(23 ")-term in (.9.3). If 71(23 ") 0, then the CLLS

CSI is given by Si = {0,04,05). Otherwise, if 11(21.") 0, then CSI is given by

82 = { {2 },04,05 }; if u(2r") = 0, then CS, is given by S3 = 104,051.

The LLSs Sl, 82 and 83 are depicted by the graphs (a), (b) and

Figure 3.2, respectively.

12
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(a)

Figure 3.2:

2'

(b) (c)

The point here is that both u(23 ") and ti(23'2) cannot be zero. If both were

equal to zero, then by Lemma 3.1,

21123 = U23 =

which contradicts the LLS S. The same argument applits to u21. Table 3.1

shows the set of all the possible pairs of CLLSs.

0

We note that the union of the element. sets appearing in CSi or CS2 is

{2, 3, 4, 5, 6 }, which is equal to UeEsO\ {I}. Generalization of this result follows.

For a I.LM M, denote by g(m) the generating class of Al.

Theorem 3.3 Let Ilybrid(CSI, ,C4) be a hybrid from a LLM AI. Thu n.

under condition (12.4) and the SHA, we have

U 0= Mu( U 0).
OEC(M) OECSI uLICSt,

13
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Table 3.1: The possible pairs of the CLLSs

xi = x12

Si

S2

53

Xi = xli

Si S2 S3

Os 0 0

0 x* x

0 x x

*Note: (1) means that the corresponding pair of CLLSs are possible; x impossibly.

Proof: Let Z = U,fLICSi. For 0 E 0\{1} E Z by Lemma 3.1.. if {1} C 0:

if {Ono = 0, then the u-terms in the second summation of (2.9) implies 0 E Z.

Thus

U o c u (U 0).
OE Z

On the other hand, for 0 E Z, we can see, from expression (2.9) and by

Lemma 3.1, that the true hypermodel involves at least the X-variables with

subscripts in 0. Thus, by assumption (2.4), we have

U o i} u (U o).
19E9(M) BE Z

Q.E.D. 0

Now we have seen that we don't have to worry about the categorical vari-

ables not involved in a hybrid, when we try to guess the true hypermodel

14
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corresponding to the hybrid.

By comparing (2.1) with (2.9) of Section 2, and by applying Lemma :i.l.

we can summarize the possible CLLSs from a given LLS as in the Iheorem

below, whose proof is briefly outlined.

Theorem 3.4 Consider a LLS S = {0i, ,00. Suppose, for 1 < s < r < k

the following three conditions hold:

(i) E 0,, for' < j <r; 1 0, foi r < < k.

(ii) For 1 < j < s, there exists 1, r < 1 < k such that 0, \ {I} C 01.

(iii) For s < j < r, 01\ {I} 01 for every 1, r < 1 < k.

Then. under the SHA, we have the following results:

(i') For 1 < j < s, \ I) does not show up in any (US of S.

(ii') Fora < j < r, 0,\{1} shows up in at !east one CLLS of S.

(iii') For r < 1 < k, 01 shows up in all the (TLS's of S.

Proof: Results (i) and (iii') ate immediate. from (2.1) and 2.9). Result (ii*)

follows from (2.1), (2.9), and Lemma 3.1. Q.E.D. 0

5
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In this section, we hi.../e seen the possible CLLSs of a LLS. It is also shown

that only the categorical variables involved in the CLLSs are involved in the

corresponding LLS. In Theorem 3 4, we have seen that some components in a

LLS are kept or shrunk, or disappear in a corresponding hybrid. A careful look

at Theorem 3.4 may help us in guessing the unknown LLS (or true hypermodel)

from the given hybrid.

4 Basic Results for Hypermodels correspond-

ing to a Hybrid

In the expression of the CLLMs, we must be careful in using u-terms

and ?L }- terms. We will use v(9.) in the CLLMs to denote either u0 or u(01, for

0 0. v(0.) = uo when ito 0 0 and u{i}ue = 0; voH = rte} when tio # 0 and

umuo 0 0. In this section, we use u-terms only for the log-linear expression of

the hypermodel. In other words, we will use u-terms for a LLM and 1,H-terms

for a CLLM.

Theorem 4.1 Consider the hybrid Hybrid(CSi, ,CS1,), and suppose that

a set 0 is common in all the C ?Ss and that the true hypermodel is graphical.

Then, under condition (2.4) and the S/IA, the true graphical hypermodel c.t

16
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Hyfirid(C Si, , CSI,) contains one of the followings:

Proof: Let

and

O U { 1 } , { 0 , 1 1 1 for (11 g c O. (.1.11

1,

7= UCS;,

D U
PEz

By Theorem 3.3, it is necessary and sufficient to use only the variables whose

subindices are in the set D.

For X1 = 1 = 1, , /I, we express the LLM for CS, by

log ppii 1st') E c(11) ui(rit)
pC D

Since all of the CLLSs contain 0,

r(ox') 0, for .r1 xli, 'xi/J.

From expression (.2), we have

logPpu{i}(xv, :.r.D) E + c(xit) + log Pi 0.11)
pC D

pC D

The candidacy for the true hypermodel is determined by whether ri(;) iii ( )

zero or not. From t lie condition of the theorem, we know that 0 fl { I } = 0. For

each 1 E { 1, , /1}, r' ©'") 0 implit's, under the Sill, one of the followings:

17
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(i) u{i}uo(r,i, x8) =-0 and U9( 9) 0.

(ii) umue(xli, :Eo) 0 and u(41i4.)e) 0 0.

Hence, there are 211 possible combinations of cases (i) and (ii) for (v(ex"), ,

v(esui)). However, if case (ii) holds for at least one 1 in {1,2, , II}, then

{1} U 0 is contained in the true hypermodel, H, say. (4.5)

By Lemma 3.1, any set that contains {I} U0 as a subset can not be contained

in H, since such a set doesn't show up in any of the CLLSs.

On the other hand, if case (i) holds for all 1 = 1,2, , /15 then we can

see that 0 is in H but not {l} U 0. In this case, we must not. forget about

the possibility of the disappearing u(')-terms in some CLLS. Under the premise

that the true hypermodel is graphical, the consideration of the disappearing

u(*)-terms gives rise to one of the followings as a subset of H:

{0, cp U {1}}, for 0 C cp c 0. (1.6)

(4.5) and (4.6) are combined into (4.1). Q.E.D. 0

An alternative situation of the condition of Theorem 4.1 is considered in

the. theorem below.

Theorem 4.2 For the hybrid Hybrid /CC, , CS/, ), SlIppOSC that 0 is an

elemt-4 set of some CS, and not common in all the CSs, and that there is 110

18
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set in Uli'L 1LLSi \0- that contains 0. Then, {1} U 0 is in the true hypemod(1.

Proof: The condition of the theorem says that 0 is contained in at least ow.

CS. Without loss of generality, let one of such CSs be CS1. It is easy to see

that there are three disjoint and exhaustive sets A and B such that,

A { j; CS; contains 0},

B {1,2, , \ A.

For CS1, vex") = u(or") or no. That v(or") = no means, for i = 1,

X9) = 0 and :170 0, V To. (1.7)

And that v(9x11) n(or") means, for i = 1,

zi{l),0(x, 4.0) 0 and T1(41'4) 0.

Recall that all the CLLMs for a UM are given by the same format as in (2.))

and that the variation among the CLLSs is due to whether 0.) is zero or not

Or

For j E B, either

u{i}u0(x),, :re) = 14( .r) = 0, V (4.0)

{i :r0) 0 awl 11 {i}u0(3-1,, To) + 110( .) = 0,

19 0 ,
44-



If A = {1}, either (4.7) or (4.8) is possible. If {1,2, D A D {1}

(note that B 0 by the condition of the theorem), one or both of (4.7) and

(4.8) are possible. It is worth noting that one and only one of (4.9) and (4.10)

holds for all j E B, since tie = 0 in (4.9) while u9 0 in (4.10). Thus, one and

only one of (4.9) and (4.10) is possible for all j E B. Considering all of these

situations, we have the following 10 cases we can think of from the condition

of the theorem:

(Case-1) A = {1 }; (4.7) for CSI, and (4.9) for CS,, j E B.

(Case-2) A= {1}; (4.7) for CSI, and (4.10) for CS,. j E B.

(Case-3) A= {1}; (4.8) for CSI, and (4.9) for CS,. j E B.

(Case-4) A = {1}; (4.8) for CSI, and (4.10) for CS;, j E B.

(Case-5) A D {1}; (4.7) for C. i E A, and (4.9) for CS,, j E B.

(Case-6) A D {1}; (4.7) for CS i E A, and (4.10) for CS,, j E B.

(Case-7) A-3 { 1}; (4.8) for CS i E A, and (4.9) for CS,, j E B.

(Case-8) A D 111; (4.8) for CS i E A, and (4.10) for CS, j E B.

(Case-9) A D {1}: (4.7) and (4.8) each at least once for CS i E A, and

.9) for CSC, j E B.

20



(Case-10) A j {1}; (4.7) and (4.8) each at least, once for CS,, i E A, and

(4.10) for CSi, j E B

Only 3 of these 10 -.aces are possible. They are cases 4, 8 and 10. Now we

will investigate why the other. are impossible.

For Cases 1, 5 and 9: (4.7) and (4.9) are not compatible (see the to terni).

For Case-2: From (4.10), it follows that,

ufou8(T1,. xo) ue( o), V TO

If (4.7) and (4.10) hold together and if A = {1}, then

lt{i}uo(ri, To) 07/0( To) # 0
T1

which is a violation of the constraint.

V :I: p.

E }uo(x,, = 0. (.1.12)
x,

For Cases 3 and 7: (4.8) and (4.9) are incompatible (note ihat by t he

hierarchy assumption (4.8) implies uo 0).

For Case-6: Denote the number of the elements ii' A by #(A). Expression

(4.11) now becomes

E"{I}uo(ri, :E0) = #(A))uo( 0, V
T,

which is again a violation of the constraint (4.12). (Note that 11 #(..1) >

by the condition of the theorem.)
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We now turn to the 3 possible cases.

For Cases 4 and 8: It is possible that (4.8) and (4.10) hold under the

constraint (4.12).

For Case 10: For ./1 > 3, it is possible that such {1/{i}u9} exist that satisfy

the conditions of this case under the constraint (4.12).

In each of the above three possible cases, it is obvious that 111 U 0 is

contained in the true hypermodel. By the condition of the theorem, at least

one of the three possible cases must occur. Therefore, we have the desired

result . 0.

The conditions of Theorems 4.1 and 4.2 do not. seem to cover all the possible

situations for each element set in U1 CS,. The only situation not considered

yet is that a set 0 is in some CLLS and riot common in all the CLLSs and that

t here is a set in some CLLS which contains 0 as a strict subset. But we don't

have to worry about the situation. If there is a set. (t, in some CLLS which

is. not a strict subset. of any other set. in the union of all the CLLSs, and if

0 C p, t hen under the SHA we can see, in the light of expression (2.9), that

t he 0 corresponds to a (b)-type term and cp corresponds to a 710'0-term in the

first summation of (2.9). Thus we don't have to worry about. the 0 in search

of t he true hypermodel (since the 0 does not affect a LLS under the hierarchy

principle). Instead we have to concern ourselves with (7.9 and apply Theorem
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4.2. Therefore, we have essentially considered all the necessary situat ions of

the relationship between the sets in U,I.1 CS; in search of the true hypermo(lel.

Now the question is if the rules derived in Theorems 4.1 and 4.2 lead us

towards the true hypermodel from a given hybrid.

5 Traceability of True Hypermodel

Consider a hybrid of . In the searching process for the true hyper-

model, we basically have to pay attention to all the element sets of Ufl 1 CS,.

However, as indicated at. the end -if the preceeding section, we have only to

concern ourselves, under the SHA, with those element sets each of which sat-

isfies either the condition of Theorems 4.1 or the condition of 4.2. This point

is well noted in the process described below.

Suppose there are L element sets, 7,1,1, , in Utill CS,. If does not

satisfy the condition of Theorem 4.1 nor the condition of Theorem 1.2. let

7', = 0; otherwise, apply either Theorem 4.1 or Theorem 4.2 to accordingly.

If Theorem 4.1 is applied, let.

l'i= 7;',U{1},{t,',{1}Uv} , for0C(pC
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if Theorem 4.2 is applied, let

T, = {{1} U

Then we can obtain a collection C of the sets, where each set. is composed

of the element sets from the Ti's, one element set from each T1. For each set.

C in the collection C, if there is an element set c in C which is a subset of

another element set in C, then we remove the element set c from C. Note that

we don't need such an element set c under the hierarchy principle. We will

call this removing process by Subset-Removing process. When the subsets are

removed from all the sets in C, we denote the new, subset-removed collection

by C*.

For example, we consider a hybrid of {{2}, {3,4} 11 and {{2, 3}, {3, 4} 12.

2

CSi { {2}, {2, 3} , {3, 4} }.

Let 01 = {2 }, ti)2 = {2, 3} and 03 = {3,4}. Then, Ti = 0, 72 = 0,2,31, and

T3 = { {1,3,4 }, { {3,4 }, {1 } }, { {3,4 }, (1,3} },{{3,4},{1,4}}}

By selecting one element set from each T1, we have

C = {{{1,2,3}, {3,4 }, {1 } }, {{1,2,3},{3,4},{1,3}},

{ {1, 2,3}, {3, 4}, {l, 4} 1, {{1, 2, 3}, {1, 3, 4} )1
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After subset-removing, we have

C* = 1{11,2,31, {3,4} 1,1{1,2,3}, {3,4}, {1,4}},

{ {1,2,3 }, {1,3,4 } } }.

We will call the process from hybrid to C* the hyperinodelling process.

Now our question is whether we can find the true hypermodel in C'. The

theorem below addresses this issue.

Theorem 5.1 (Traceability Theorem) Suppose that the true hype model

is graphical. Then under condition (2.4) and the. SHA, the subset-removed

collection C* which is obtained through the hypermodclling process contains the

true graphical hypermodel.

Proof: Denote the true hypermodel by H. Without. loss of generality. we may

take

H = {01, ,0k}, for some subscript sets 0i, i = 1, k.

Suppose that we regroup the element sets of H according to whether an

element set. contains "1" an whether, for 0 E H, 0\ {1} C 0' for some 0' E fl

which does not contain "1". (Note that., by condition (2.4) and the hierarchy

principle, there exists at least one element set. which contains "1".) Then II

25
30

BEST COPY AVAILABLE



is divided into 3 exhaustive and mutually exclusive subgroups where some

subgroups may be empty. If satisfy the conditions (i), (ii) and (iii) of

Theorem 3.4, then the three subgroups are

{01,,Os}, {08+1,,07.} and {O+i, ,Ok}.

(Note that s can/Ix/equal to 0 or r and that r can be equal to 1 or k.)

(5.1)

0i, r 1 < j < k, appear in all the CLLSs (by (iii') of Theorem 3.4). By

Lemma 3.1, each 0i, s 1 < j < r, appears in at least one of the CLLSs.

None of {MI appears in any CLLS, whose corresponding u(s1)-terms have

been dubbed "disappearing" terms in section 2. Thus WI' GS, is composed of

lie sets, Oi, j = s 1, , k, and some subsets of some j' = s + 1, , r.

We will use Ti for the same meaning as previously described. As indicated

in the above paragraph, 0; j = s +1, , k, are in uf' C'S, (note that.

for j = r -I- 1, , k, 0;\ {1} = For any set in

(ocsi) \(6(0i\{1 })),
5+1

(5.2)

there exists,if s > 1, j' E {s + 1, , r} such that the set. is a subset of Of. As

shown at the end of the previous section, the sets in (5.2) do not affect the LLS

of a hypermodel under the hierarchy principle. Tints the sets may be ignored

in the hypermodelling process. In other words, we may concern ourselves only

26

31



with the sets 0 \ {1}, j = s 1, , k, in (111' CSi in the hypermodelling

process. For i = + 1, , k, let Ti correspond to \ {1} in

Assuming H as the true hypermodel, with its element sets regrouped as in

expression (5.1), we will prove that H E C.

For j E {r I,. , we apply Theorem 4.1 and get

{0; u {1}, {0j, {1} u p}, for 0 C c Oil. (5.3)

For Ois+1 < j < r, we apply either Theorem 4.1 or Theorem 4.2 according

as whether Oi is common in all the CLLSs or not If 0, is common in all the

CLLSs, 7; is given by (5.3). Otherwise,

= 1°) (5.1)

For each 0i, j = r 1 , , k, there is at most one j' in { 1 , . s} such t hat

(0,, \ {1}) C 0,,

since the true hypermodel is graphical. Without loss of generality. we may

suppose that.

(0; \ {1}) C Or+i, for i 1, s.

(Note that under the graphicality assumpt ion .s < k r.)

Therefore, we have:

27

32



(i) For O. s +1 < j < 1%0, E T,. (See (5.3) and (5.4).)

(ii) For j E { 1, , s }, {03,03+,} E (See (5.3).)

(iii) For Oi, r + s < j < k, {0i, {1}} E T,. (Note that (2.4) is assumed and

that if r > 1, then {1} will not show up in the expression of a LLS under

the hierarchy principle.) (See (5.3).)

The results, (i), (ii), and (iii), mean that. H is in C. S`o far we have

considered the cases where 1 < s < r < k. But the result also holds for s = 0

by (i) and (iii). This completes the proof.

We will illustrate the Traceability Theorem for the hypermodel given in

Example 3.2. Before the illustration, we introduce a subset -removing operator

( ) on a set. For example.

({1,2},{2,3},{2,:3.4}) = U1,4 {2,3.4}}.

Example 5.2 For the hypermodcl .i' in expression (3.2), the possible pairs of

( LLSs are shown in Table 3.1. We will use the sa MC notation as in Example

3(1) For the hybrid Ilybrid(S151);

{({1} .{1} wp,i,o4,111 y)5, Jo;

for 0C Pi C 0'1,0 C c,94 C 04,0 C C 051. (5.6)
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(2) For the hybrids Hybrid(Si, 82) and Hybrid(S1, S3);

C* = {( {1} U {1} Wp4,04, {1} U

for 0 C cp4 C04, C (p5 C05 }. (5.7)

We can see that the true hypermodel S is included in each of (5.6) and (.5. 7).

0

6 An Illustration

Consider an educational test which consists of items that can be solved

by one of two problem-solving strategies. In this section, we will illustrate au

application of the main result of this paper supposing that we are given t wo

influence diagrams (Oliver and Smith (1990)) of item responses and abilities

for two problem-solving strategies each. Both influcne diagrams (Ws) have

the same structure as in Figure 6.1. In the figure, "A" stands for ability and

"X" stands for item score, where Xi is the item score for item i. The arrow

from Al to A2 stands for that possession of ability A2 requires possession of

ability At as a prerequisite. The arrows to the node of an item score from a set

of the nodes of abilities mean that, the abilities are tapped by the corresponding

item. For instance, item 1 taps abilities denoted by AI and A2; and item 2

taps the ability denoted by .41. The marginal or conditional probabilities for
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Figure 6.1: A conditional ID

the Ills are given in Figure 6.2, where panel (a) shows the conditional ID given

the problem-solving strategy ST-1, as does panel (b) given ST-2. Suppose the

probabilities in Figure 6.2 are obtained from two distinct data sets, for each of

the two strategies separately. From the conditional IDs in Figure 6.2, assuming

that P(ST = "ST-1") = we generated two data sets, one (of size 768)

from the model in panel (a) and the other (of size 1232) from panel (h). As

anticipated, the log-linear analysis of the two data sets ends up with the LLS

as in (6.1) for both data sets. Table 6.1 shows the result of the analysis.

We may ignore the directions in the graphs (see Lauritzen and Spiegelhalter

(1988)), and regard each graph as a two-clique graph for the four categorical

variables, A1, /12, X1, and A2. For both of the strategies, the CLLSs of the

four categorical variables are

{{i, x2}. { } }.
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Table 6.1: Log-linear analysis of the data from the panels (a) and (b) of Figure

6.2

(a) For ST-1 (data size = 768)

Conditional LLS d.f. Likelihood-ratio Pearson

X2 Prob. x2 Prob.

{{.41,X2},{AI,A2,X1 }l 6 2.80 0.83 2.82 0.83

{1)(21, IAI,A2,XilY 7 288.11 .. .. 0.00 ...3,5.:7,;a1,-;.... 0.00

{{Ai, X2}, {Ai, A2}, {112,-311 }, fili, Xi W 7 36.50 0.00 50.09 0.00

hl For ST-2 (data size = 1232

Conditional LLS d.f. Likelihood-ratio Pearson

\2 Prob. \-2 Prob.

HAI,X2},{A1.A2,-K1 }} 6 9.00 0.17 9.06 0.17

{{X2},{A1,A2,X1 }l* 7 144.77 0.00 157.27 0.00

{-1,41, X21,1111, A21, 1,42, X11, {Al, Xi}}* 7 43.07 0.00 47.89 0.00

*: As appeared in the BMDP output., using a back,Aard-deletion approach.
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As shown in the proof of Traceability Theorem, we may confine ourselves

to the sets, 01V21 and {A1, A2, X1 }, in the hypermodelling process. Since

the two sets are common to both CLLSs, by applying Theorem .1.1 to each of

the two sets, we can see that the largest possible hypermodel is given by

UST X21, {ST, Ai, A2, -Vi}} (6.2)

where "ST" is for the categorical variable of the strategy. By the collapsibility

theorem (Theorem 2.5-1 of Bishop et. al. (1975)), we may investigate the

interaction within the individual sets marginally. The standardized u-terms

(see section 4.4.2 of Bishop et al. (1975)) of the three-factor and the four-fact or

effects for the first. and the second sets respectively in (6.2) can be estimated

and used in searching for the true LLS. This may be a useful approach when

data are not. available for all the five variables.

However, we will take advantage of the simulation set-up where data are

available for the five variables. The Traceability Theorem says that t he true

LLS is either the model in (6.2) or a submodel of it..

Actually, the model in (6.2) fits well to the simulated data set from the

hybrid of the conditional IDs. The observed chi-square was 11.80 with 12

d.f., whose upper-tail probability is 0.46. Table 6.2 shows a 13:111)P out put of

model-fitting by backward-deletion that starts from the LLS in (6.2).
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Table 6.2: Model fitting result by BMDP

LLS d.f. Likelihood-ratio Pearson

"V2 Prob. x2 Prob.

UST,A1,X21,IST,AA2,Xill 12 11.80 0.46 11.88 0.46

{{ST,A4,X2},:AI, A2, X1 }, {ST, A2, X, },

{ST, Ai, Xi}, {ST, Ai, A2}} 13 17.72 0.17 16.98 0.20

{{ST,A1, X2 }, {A,, A2, X1})

{ST, A2, Xi}, {ST, Ai, A2}} 14 20.24 0.12 19.27 0.15

Table 6.2 suggests two other LLSs, {{ST,Ai, X2},{ Al, A2, X1 }, {ST, A21 XI }

{ST, Ai, Xi} , {ST, Ai, A2}} and {MA,, X2MA1, A2, X1}1 {ST, A2, Xi}, {ST, Ai. A2}}.

as possible candidate LLSs for the data. But neither of them is graphical.

We can represent the relationship among these five variables by an ID,

still preserving the relationship among them in the language of LLS. We can

construct. an ID of the five variables in the following order' of the variables:

Al i A2CT, A2, Xi. (See Pearl, Geiger, and Verma (1990).) We have an ID of

the five variables in Figure 6.3, which is obtained as follows2. Al and A2 (10

not look independent. (40=232.18), and by the prerequisite relation between

I Any other ordering will do. But this ordering reflects the inherent. relationship among

the variables.

2See the table in the appendix for I he simulated frequency table of the five variables.

3,1
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them, we put an arrow from node Al to node A2. The three variables, A1, A2.

and ST, look second-order associated (No submodel of the saturated LLS of

the three variables fits well). Choice of a problem-solving method is subject

to a test-taker's knowledge state and experience (Greeno and Simon (1988)).

In other words, the test-taker's ability level may influence his or her choice of

a problem-solving method, which is depicted by two converging arrows from

the nodes of Al and A2 to the node of ST. The three variables, Ai, ST, and

X2, make a clique in the LLS of the five variables, and the item score X2 is

influenced by the state of Al and the value of ST (i.e., the strategy selected).

This can he expressed by

A2 1 X2 {Ai, ST} (6.3)

in the Ill construction process (see Corollary 4.1 of Pearl, Geiger, and Verma

(1990)). The relationship in (6.3) is supported by the simulated data. Marginally

for the 4 variables, ST, A1, A2 and X2, the LLS, {{ST, A1, A2}, { ST, A1, X2}},

has the likelihood-ratio chi-square value 5.73 with 4 d.f. (its upper tail prob.=0.22).

Finally, the four variables, A1, A2, ST, and X1, make a clique, and, by the same

reasoning as above, we drew arrows from A1, A2, and ST to X1. This com-

pletes an Ill for the five variables, A1, A2 CT, X1, and X2. The maximal or

conditional probabilities for the ID are given in Figure 6.3. 'These probabilities

are frequency probabilities based on Table A.1 in the appendix.

36

4.1



The covariance structures of the five variables from the combined ID (Fig-

ure 6.3) and from the hybrid of the conditional IDs (Figure 6.2) were very close

to each other. The test statistic for the null hypothesis, that. the covariance

structures are the same, asymptotically follows the chi-square distribution with

15 d.f. (Section 10.6.1 of Anderson (1984)). For simulated data of size 3,00()

(we regenerated them) from each of the two ID models, the combined ID and

the hybrid of the conditional IDs, the observed value of the test statistic was

17.246 (p-value=0.304).

This section has illustrated an application of the main result of the paper

to the problems of searching for a LLS using its conditional LLSs. In reality.

data for "ST" may be missing. In this situation, however, we can apply the

main result of the paper by assigning a prior distribution on the unobserved

variable.

7 Summary Remarks

A main result in this paper is that we can see partial information about

a true LLS from its CLLSs and use the information in trying to guess the

true LLS. But we would face uncertainty, as indicated in Theorem 1.1, in

the hypermodelling process, when all the CLLSs contain at. least. one common

37

42



subscript. set. Under the assumption that the true LLS is graphical, we can

search for the true LLS by focusing on the "largest cliques" that are obtained

from the CLLSs, as illustrated in the previous section.

The hypermodels are confined to be graphical in this paper. However, we

can easily extend to the case where the true hypermodel is hierarchical. In

such a case, the set of the possible hierarchical hypermodels will become much

larger. If all the CLLSs of a hybrid are the same and given by {2, 3, ,n

for 1 < n < oo, then the number of the possible graphical hypermodels is

given by g,, = 2n; while that of the possible hierarchical hypermodels is given

by

/
71

h = 1 + E
i=1

11

where f(j) is the number of j non-empty subgroups of a. set of i distinct

elements, and its values, for 1 < j < i < 6, are given in Table 7.1. The

numbers g and /in of up to a = 6 are given in Table 7.2.

Besides the numerical advantage, the graphical log-linear structure would

be a natural means when we deal with experts' opinions which are given

via causal networks or influence diagrams (see Lauritzen and Spiegelhaulter

(1989), Shachter (1986) and Smith (1989)). As illustrated in section 6, the by-
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Table 7.1: Values of f; (j) for 1 < j < i < 6

1 2 3 4 5 6

1 1

2 1 1

3 1 3 1

4 1 10 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

Table 7.2: Values of gn and hn for 1 < is < 6

n gn h

1 2 2

2 4 5

3 8 15

4 16 55

5 32 218

6 64 922
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permodelling process may be useful when we want to build a larger graphical

model from a set of conditional graphical models. Although a simple example

was used in this paper, the approach can be applied to any sized graphical

models in principle.

In this paper, each of the CLLSs in a hybrid involves the same set of

variables. But it may not be unusual that the CLLSs involve different sets of

variables. The difference could be due to nonresponse or variable-omission, the

result of this paper is not of immediate use unless the missingness is ignorable.

Research in this direction deserves our attention, and the author of this paper

is currently exploring this issue.
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Appendix

X2 X1 A2 A1 ST

ST-1 ST-2

0 0 0 0 65 40

1 7 61

1 0 8 19

1 4 16

1 0 0 19 38

1 5 47

1 0 1 12

1 42 138

1 0 0 0 9 20

1 101 144

1 0 1 6

1 24 64

1 0 0 4 9

1 38 129

1 0 0 5

1 440 484
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