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Abstract

Response generative modeling (RGM) is an approach to psychological measurement which
involves a "grammar” capable of assigning a psychometric description to every item in a universe of
items and is also capable of generating all the items in that universe. The purpose of this chapter is to:
1) elaborate on the rationale behind RGM; 2) review its roots and how it relates to current thinking on
validity; and 3) assess its feasibility in a wide variety of domains. The chapter concludes with a brief

review of possible theoretical approaches to a psychologically sound approach to test construction and

modelling.




A Generative Approach to Psychological and Educational Measurement

Introduction

Response generative modeling (RGM) is an approach to psychological measurement which
involves a "grammar” capable of assigning a psychometric description to every item in a universe of
items and is also capable of generating all the items in that universe (Bejar & Yocom, in press). Such
an approach to measurement, if feasible, could have at least three important implications. First, the
interpretation of scores from a generative instrument would be greatly facilitated because the process
for generating the item is explicitly stated. Second, the possibility of generative modeling implies that
we have a complete understanding of the underlying response process. Such knowledge might allow us,
in turn, to abandon the multiple-choice format in favor of open-ended formats, a long-standing desire
of psychometricians (e.g., Frederiksen, 1990) but without the expense associated with scoring open-
ended responses. In other words, the same knowledge base that is used to create items can be brought
to bear on the scoring of open-ended responses. Third, the ability to assign a psychometric description
to an item is the key ingredient in what might be called intelligent test development aids. Job aids, in
general, are rapidly becoming the key to increased productivity in many fields(e.g.,, Kline & Lester
1988; New York Times, 1989; Harmon, 1986). In a testing context, test development job aids might
become essential if bills to outlaw pretesting succeed in becoming law, (because it is through pretesting
that test developers estimate the difficulty of an item before the test is adminesterd in a final form)
especially in light of growing statistical theory designed to allow equating tests "with little or no data.”
(Mislevy and Sheehan, 1990) Some speculations on the future of job aids for test developmeat can be
found in Bejar (1989); a discussion of open-ended assessment from a generative perspective, with
special cmphasis on certification testing can be found in Bejar (in preparation), see also Baker
(1988)and thc Summer 1989 issue of the Journal of Educational Measurement.

The purposc of this paper is to: 1) claborate on the rationale behind RGM; 2) review its roots

and how it rclates to current thinking on validity; and 3) assess its feasibility in a wide varicty of

domains.
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Historical Background

Although Item Response Theory (IRT) today enjoys unanimous endorsement of test
developers and psychometricians, just some years ago other psychometric frameworks were
serious contenders. One contender was Tryon’s item sampling model (Tryon, 1957). He
distinguished between three theories: the true-and-error-factor theory, which is a primitive
IRT model; the theory of equivalent item samples, also known as a classic test theory
(Gulliksen, 1950); and a theory based on random sampling from a universe of items, which
Tryon endorsed. The tensions that lead to the item sampling model can be surmised from
Osburn’s (1968) influential paper:

Few measurement specialists would quarrel with the premise that the fundamental

objective of achievement testing is generalization. Yet the fact is that current

procedures for the construction of achievement tests do not provide an unambiguous

basis for generalization to a well defined universe of content. At worst, achievement

tests consist of arbitrary collections of items thro'an together in a haphazard manuer.

At best, such tests consist of items judged by subject matter experts to be relevant to

and representative of some incompletely defined universe of content. In neither case

can it be said that there is an unambiguous basis for generalization. This is because

the method of generating items and the criteria for the inclusion of items in the test

cannot be stated in operational terms. (p. 95; italics added)

Whereas local independence is the most critical assumption in IRT, the existence of a universe
of items, or the possibility of generating one, was the core of the random sampling approach. And just
as lack of local independence could prevent correct modelling of some abilities (e.g., Bock, Gibboa &
Muraki, 1988, p. 277), an inability to formulate a universe of items could prevent the correct
implementation of the random-sampling model. Loevinger (1965), for example, objected to the itcm

sampling » odcl because the

Q
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term population [universe] implies that in principle one can catalog, or display, or

index all possible members even though the population [universe] is infinite and the

catalogue cannot be completed....No system is conceivable by which an index of all

possible tests [items] could be drawn up. There is no generating principle (p. 147;

italics added).

If Loevinger is correct then RGM would be doomed because RGM shares with the random
sampling model the assumption that there is a generation principle. However, RGM does not require
that the generated items constitute a random sample. Moreover, RGM goes much farther than the
random sampling model by proposing that there is not only a generating but also that items be
generated with psychometric parameters already estimated, as it were.

Strictly speaking, the random sampling model is a mathematical one, and by itself does not
attempt to generate items. That component was to have been provided by an carlier attempt at
generative item writing. The attempt that reccived most attention was that of Bormouth (1970), which
was perceived at the time (e.g., Cronbach, 1970) as a potential breakthrough in item writing. However,
the genesis of the approach appears to be in instructional psychology (e.g., Hively, 1974; Uttal, Rogers,
Hicronymous & Pasich, 1970). An extensive summary of those efforts can be found in Roid and
Haladyna (1982), a shorter one in Bejar (1983). The reason those cfforts have not matured into a
viable psychometric framework appears to be due to two factors: following too closcly one source of
inspiration, namely Chomskyan linguistics; and clinging to a behavioristic, as opposed to cognitive,
orientation--in retrospect, quite paradoxical sources of inspiration.

Chomsky (1965) introduced the distinction between competence and performance to
demarcate the purely linguistic phenomena from the psychological reality of language use.
Competence refers to the universe of sentences that a user of the language ought to be able to
comprehend or utter. In practice, of course, language users fail to comprehend certain sentences and
make all kinds of grammatical mistakes when speaking or writing. Chomsky chosc to focus on the
phenomena of more linguistic relevance or "what the language user ought to know," rather than

modelling actual language use, or performance. Both Bormouth and Hively also focused exclusively on
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the competence and not the performance. That is, they aimed to generate the universe of items that
students ought to be able to respond to correctly. This meant the generation of items without a
concomitant psychometric description that might reflect the underlying response process required to
respond to an item thus generated. The problem, as Merwin (1977) pointed out, was that what ough:
to have been the case often was not. For example, items generated to represent an educational
objective were found to differ in their difficulty or the proportion of students who answered it correctly.
There was no possible explanation for this variability in the absence of a performance component.

Interestingly, there were exemplars for the integration of competence and performance early
on. Miller (1962), for example, proposed that the syntactic complexity of a given sentence would affect
its comprehensibility, and calied the theory the Derivational Theory of Complexity. The implicit
performance model in the theory is that sentences require more, or less, mental computations
depending on their syntactic attributes and therefore are harder, or easier to comprehend. That this
approach was not recognized as a model for generative psychometrics may be in part due to the strong
behavioristic trends in psychology and education at the time. It was, according to some historians
(Gardner, 1985), Skinner’s lack of rebuttal to Chomsky’s (1965) critique of Skinner’s (1957) Verbal
Behavior that was the beginning of the end for behaviorism.!

In short, RGM shares some of the concerns with earlier aite:npts at generative modelling but
in some respects could not be more different. Specifically, the item sampling model, and related item
generation algorithms, constitute a psychometric model for classic behaviorists, for whom talk of
underlying processes is not admissible. RGM, 1.1 contrast, has a cognitive orientation. This means that
the postulation of underlying processes and knowledge structures required to respond to an item are

not only admissible but at the heart of the approach: it is by incorporating information about the

1 Of course, in psychology we can only speak of rounds. Behaviorism may be on its way back disguised as connectionism.
Although behaviorism-as-conncetionism opens the black box it might as well be kept closed: inspecting a neural net after it has
been trained to emulate some human behavior is not likely to be informative, information is distributed throughout a network
of nodes. Even when such a mode! accounts for verbal behavior (€.g., Rummelhart et al, 1986, but see Prince & Pinker, 1988)
all we have lcarncd, it seems, is that through pairing stimuli and responses learning can take place. The computational
attractiveness of these models is undeniable, but it remains to be seen whether they will replace the computer as the metaphor
to modetling human cognition. More likely connectionist ideas will be incorporated into cognitive models to improve the
granularity of the account (Just, personal communication).




demands a given items imposes on the cognitive apparatus that it becomes possible to "pre-estimate"
the parameters of some response model. Moreover, unlike the item sampling model, which rejects the
postulation of latent ability, and therefore is philosophically at the other extreme of the IRT family of
response modcls, RGM is compatible with IRT.

The scope of RGM is not limited to "achievement" items as, many of the earlier attempts to
generative item writing were. As we will see below, RGM is, in principle, applicable to any domain,
including achievement and instructional domains. In fact, a forerunner of the RGM can be found in an
instructional context. Uttal et al. (1970) used the term generative instruction to describe an alternative
to the machine learning efforts of the 60s, which were based on Skinnerian principles. The purpose of
generative instruction is not to strengthen the linkage between a stimulus and a response but rather to
diagnose the source of difficulties in lcarning. This idea was subsequently elaborated by Brown and
Burton (1978) in the context of arithmetic instruction, In short, a generative approach cuts across
domains and, as we will see, is a natural framework for the assessment of complex skills, such as
troubleshooting, clinical diagnoses, and pedagogical skills.

RGM as an Approach to Validation

In addition to imegreiling the modeling of content and response, RGM exemplifies an
approach to construct validation. Validation has traditionally focused on an accounting of response
consistency or covariation among items. Indeed, construct vakidaticn has been described as implying “a
joint convergent and discriminant strategy entailing both substantive coverage and response consistency
in concert" (Messick, 1981, p. 575). There has been far less emphasis on an accounting of response
difficulty_ (but see e.g., Campbell, 1961; Carroll, 1980; Davies, & Davies, 1965; Egan, 1979; Elithorn,
Jones, Kerr, & Lee, 1964; Tate, 1948; Zimmerman, 1954). These two focuses, rzsponse consistency
and responsc difficulty, arc not antithetical by any means. Embretson (1983) has proposed an
approach to validity in which both considcrations are intcgrated. From this validational perspective
knowing the latent structure of a test--for examplc, its factorial structure or its fit to a particular itcm
response model--is clearly essential to an interpretation of test scores but is not the entire story. An

accounting of responsc difficulty would clear'y cnhance the validational status of a test because to
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obtain that accounting a model incorporating the mental structures and processes needed to solve the
item would be required. If that model has been derived from a theory that has empirical support then,
clearly, the validational status of the test scores derived from such a test have a head start, compared to
a test developed following the actuarial model where the characteristics of the items are not known
until it is administered to a sample of examinees.

Not only are accountings of response difficulty and consistency not antithetical, they entail
parallel considerations. For example, within the rcsponsc-;onsistcncy tradition, the extent to which
covariation is accounted for by relevant and irrelevant (e.g., method) variables is often the basic data
from which validity is assessed (e.g., Campbell & Fiske, 1959). A similar consideration is equally
applicable in an accounting of response difficulty. For example, if it were shown to be the case that the
difficulty of analogy items from, say, the SAT or the GRE were purely a function of word difficulty,

then we could reasonably conclude that the validity of scores derived from such items would be

suspcctz.

Psychological theorizing has changed substantially since the original article on construct
validity (Cronbach & Mechl, 1955). The current strength of the cognitive perspective has led
psychology from functionalistic theories to structuralist theories. More specifically, psychology now
emphasizes explaining performance on the basis of the systems and subsystems of underlying processes
and structures rather than identifying antecedent-consequent relationships. Cronbach and Meehl’s
emphasis on building theory through the nomological network, which contained primarily antecedent
(test score) to consequent (other measures) relationships, can be viewed as a functionalistic approach.

Embretson (1983) has proposed a major reformulation of the validation process consisting of
two stages: construct representation and nomothetic span (Embretson, 1983). This reformulation can
be vicwed as t};c culmination of debates on the role of structure and function in individual differences

psychology (e.g., Messick, 1972; Carroll, 1972.)* In Embretson’s reformulation, a construct is a

2Actually. with our increased understanding of the process of vocabulary acquisition (c.g., Sternberg, 1987; Curtis 1987) good
performance on a vocabulary test can not really be discarded as an indication that the person is merely studious. Research
suggests that vocabulary scores are good predictors of academic critcria because the process of vocabulary acquisition is a form
of reasoning, which presumably accounts for the correlation of vocabulary tests with other tests.

3 Structure and function are ambiguous terms. Messick (1971), for example associates structure with the results of factor

11
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theoretical variable that is a source of individual differences Construct-representation research seeks to

identify the theoretical mechanisms that underlie task performance by cognitive task analysis methods.
That is, the component processes, strategies, and knowledge structures that underlie performance
identify the construct(s) that is (are) involved in the task. Nomothetic-span research, in contrast,
concerns the utility of the test for measuring individual differences. It refers to the span of
relationships between the test score and other measures. Nomothetic span is supported by the
frequency, magnitude, and pattern of relationships of the test score with other measures.

In Cronbach and Meehl's conceptualization, the correlations of iadividual differences on the
test with other measures both define the construct and determine the quality of the test as a measure of
individual differences. In Embretson’s integrated conceptualization of construct, validity has
qualitatively different types of data to support construct representation and nomothetic span. The
former is supported by data on how within-task variation in the items’ attributes influence pcrfprmancc,
while the latter is supported by between-task covariation, for example, correlation among tests.

Summary. Inshort, RGM capitalizes on the convergence of several trends and can be seen as
an approach to implement a structural perspective of validation by integrating item development,
response model fitting, and validation. RGM integrates all three processes into a unified framework
where item creation is guided by knowledge of psychology of the domain, and concomitantly
psychometric descriptions (e.g., parameters on an IRT model) are attached to the item as it is
gencrated. Then, every time a test is administered the psychology of the domain is tested, by
contrasting the theoretical psychometric description with the performance of examinees, thus
perennially assessing the validity of the scores. This approach to validation has much in common with

other efforts to develop and validate psychologically-inspired tests or batteries (e.g., Frederiksen’s

(1986);Guttman (1969, 1980); Kyllonen (1990))

analysis, and talks about the functional links among traits and performance outcomes. Guttman (1971), however, associates
structure with the system of a priori relations among variables (sce Lohman and Ippel, this volume). The term construct
representation in Embretson's formulation has both structural and functional overtones, whereas nomological span, which
coincides with Cronbach and Mechl (1955) nomological network idea, is primarily functional.

12 3EST COPY AVAILAT




Evidence for the Feasibility of RGM

The two major ingredients for a gencrative approach are (1) a mechanism for generating items
and (2) sufficicnt knowledge about the responsc process to estimate the psychometric parameters of
the gencerated itcms. The feasibility of the approach, therefore, can be judged by whether iicms can, in
fact, be generated and whether the predicted parameters are, in fact, observed. In the following
scctions I will pres. 1t evidence, from my own research and that of others, suggesting that RGM is
indecd fcasible. At times, however, the discussion will turn speculative because in some domains
where the approach would seem feasible no attempts to implement generative modelling have been
made.

Spatial Ability

Not surprisingly, good examples of the feasibility of RGM can be found in the domain of
spatial ability. For one thing, the generation of spatial items seems simpler, for another spatial ability
has been under intense scrutiny of cognitive psychologists. In this section I present evidence for mental
rotation itcms and hidden figure items (see also Irvine, Dunn & Anderson, 1989).

Mental rotation. It is scldom the casc that sufficient knowledge has accumulated about an
ability to make RGM immediatcly feasible. One cxception is mental rotation. Although
psychometricians have long used two-dimensional figural rotations in tests, it was experimental
psychologists (Shepard & Metzler, 1971) who thoroughly analyzed the mental process. There now
exists a large body of literature (cf. Corballis, 1982) establishing that an angular disparity between the
two figurcs largely determines the time to respond.

A generative approach to the measurement of this ability means controlling the difficulty of an
item through the angular disparity between two stimuli. Imagine, for example, a test consisting of, say,
20 distinct pairs of figurcs which can be prescnted at rotations ranging.from 20 to 180 degrees. In an
adaptive test every examince would be presented with the 20 items, but examinees of different levels of
ability would be presented with items at a different angle. Clearly, such an adaptive procedure requires
a computer. All examinces would perhaps be given the first pair at 100 degrees. A higher ability

cxaminee would then be presented subscquent items at larger rotations. Although it might be feasible

10




to tailor the test to the examinec and score on the basis of rotation angle alone, in practice there are at
tzast two problems with that idea. First, the difficulty of any given item is a function of not only
rowation but also the complexity of the figure. Second, mental rotation is the type of skill where specd
of response is an appropriate consideration. Therefore, in order to use all the information we need to
calibrate each item scparatcly and record how long it takes the examinee to respond.

To judge the feasibility of RGM for this task requires that we calibrate several pairs of figures

on some item response model and that we estimate the difficulty of the pair at several degrees of

rotation. The expectation for mental rotation data is that the relationship of difficulty on angular
rotation is linear for several elapsed times (Bejar, in press). The expectation was tested by fitting the
simplest possible psychometric model of an 80-item test based on figures such as those in Figure 1.
The examinee’s task is to determine if the figure on the right is a rotation of the one on the left. There
were eight basic items presented at five angles (20, 60, 100, 140, and 180 degrecs) in their true-and-
false version (in the false version the second figure is the mirror image of the first figure), in order to

establish the relationship between angular disparity and difficulty.

Figure 1: Sample mental rotation item

Figure 2 shows *he result of a calibration for a typical item based on the responses of nearly
200 high school students. As can be scen, there are some departures from the predictions although, in
general, the fit for this item is good. The major deviation from linearity occurred at 100 degrees. Also,
beyond 5 seconds a tendency towards a quadratic relationship between difficulty and angular disparity
emerges, a situation which suggests that beyond a certain elapsed time different response strategies
may come into play. In principle, such departures from lincarity might be avoided by adapting the test
to the examinee, which was not done with thesc data. In other words, so long as the item is not too
difficult for an examinee responses may in fact be just a function of angular disparity.

The results for the falsc items arc quite different in that angular disparity does not scem to
control response time, as it docs for the truc items. That is, the false items scem to tap the decision

El{fC‘ 14
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aspect of performance, while the true items are tapping the mental rotation aspect. Needless to say,
this introduces a complication. Thus, it may not be practical to use a true-false format in a real
application. A multiple-choice version may eliminate the problem but introduces the complexity that

the attributes of the alternatives would have to be considered in the modeling process.

Figure 2:Relationship of estimated difficulty on angular disparity at several elapsed times

Hidden figure items. Unlike the mental-rotation items, for which the determinants of
performance are understood, very little is known about the determinants of performance on hidden-
figure items. A theory that addresses performance on tasks of this type has been proposed by Duncan
and Humphreys (1989) and although it was not used as the inspiration for representing hidden figure
items, it is consistent with the representation that was chosen. That representation needs to capture
not only the complexity of the item but also lend itself to generating items that have the same

o underlying representation but a different visual realization, that is items that should have the same
difficulty but appear visually different. For convenience, we call the items generated in this fashion
clones, although they could also be called isomorphs, as is done by some cognitive researchers
interested in the cognitive equivalence of problems (e.g., Kotovsky & Simon, 1988). Figure 3 shows a

typical hidden figure item and a corresponding clone. The task for the examinee is to determine if the

smaller figure is embedded in the larger one.

Figure 3: Typical true hidden-figure item and two corresponding clones

The representation chosen to represent items and obtain clones was a matrix consisting of
counts indicating how close the target figure appcars at each possible position in the larger pattern and
was based on the Hough transform (Mayhew & Frisby, 1984), an artificial intelligence technique used
in object recognition (see Bejar & Yocom, in press). We tested the validity of this representation by
implementing a computer program capable of generating clones and then, comparing their
psychometric characteristics on the basis of responses from high school students. In other words, we

tested the psychometric cquivalence of pairs of isomorphs or clones. This "weakened" version of fult
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generative modelling, where instead of generating items of known difficulty we just generate items that
have the same difficulty as the generating item, was necessary because the lack of theoretical
dcvclopmcni for performance on this item type. The results demonstrated that the clones behaved as
such in terms of their difficulty as well as distribution of response timcé. Figure 4 shows the
relationship between the logit for proportion correct for pairs of clones as well as the corresponding

mean response time. Figure 5 shows the cumulative response times for two clones. It can be seen they

are very similar, and this was true for the other items as well.

Figure 4:Regression of logit of proportion correct for pairs of clones (a) and the
corresponding mean response time
Figure 5:Cumulative response time for a pair of clones

Reasoning Tests

Reasoning tests, both deductive and inductive, lend themselves to generative modeling. In this
section we discuss the impressive evidence for inductive reasoning provided by Butterfield, Nielsen,
Tangen and Richardson (1985) using letter series, preliminary evidence on analogical reasoning, and
speculate on the feasibility of generative modeling of deductive and quantitative reasoning items.

Inductive reasoning. Butterfield ct al. describe a comprehensive approach to describing and
generating letter series, as well as a theory of item difficulty, the two ingredients of generative
modeling. The items consist of series of letters produced according to a set of rules and the examinees
task is to predict the next element in the serics. Arbitrary series can be generated by applying
operators to generate the next letter in the serics. The operators considered by Butterfield et al. are

Next (N), Back (B) and Identical (I). The generic form of an item can then be succinctly described as
the rules of construction in terms of these operators.

The following item,

DDQQEEPPFFOO

is described by the form N;I1B,l5 and two starting values, in this case C and S. The subscripts refer to

16
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a position in the starting string. From a starting value of C we first apply N1(C)= D, yielding a D, and
then apply I1(D) =D, yielding another D. We now move to the second element of the string which
starts from S. Applying the B operator yields B5(S)=Q and applying I yields I5(Q)=Q. In short,
Butterfield at al. are able to characterize abstractly series as well as generating series that have a given
abstract characterization. Although oriented to open-ended series their methodology can be used with
multiple-choice versions as well. The following multiple-choice item from the Factor-Referenced

Cognitive Tests Kit (Ekstrom, French & Harman, 1976) asks the examinee to choose the series that

does not belong.

NOPQ DEFK ABCD HUK UVvwx

The first, third, fourth and fifth can be represented by the rule Ny with starting points N A, H, and V
respectively. Thus, to create multiple-choice versions one would use the theory to generate options
that have the same generation principle.

In addition to characterizing items abstractly, RGM requires a mapping from that
characterization to the parameters of psychometric model, such as difficulty. Butterfield at al., building
upon earlier research by Simon and Kotovsky (1963), proposed and demonstrated a theory of item
difficulty that suggests that the difficulty of a series is indexed by the knowledge required to discover
the most-difficult-to-represent string in the series. They also propose several indices of that
represcntational difficulty. Several experiments demonstrated the validity of the scheme. Moreover,
when app'ied to predict the difficulty of items in the Primary Mental Abilities Test they accounted for
90% of the variance in item difficulty. This is impressive because those items did not enter into the
formulation of the theory.

Deductive reasoning, There is not really a comprehensive demonstration of RGM deductive
reasoning. There are, however, scveral lines of rescarch concerned with among other things an
accounting of difficulty of several types of dcduc‘livc reasoning tasks. This accumulation of results and

variety of theorctical accounts (sce Galotti, 1989) would make it an excellent domain for attempting a
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generative approach. Moreover, because of the conflicting accounts of deductive reasoning such an
investigation may have psychometric value as well as helping to shed some light on the field.

The work of Johnson-Laird, Byrne and Tabossi (1989) illustrates the potential feasibility based
on a mental models approach. A mental model consists of *tokens arranged in a particular structure to
represent a state of affairs* (Johnson-Laird, 1983, p. 398). Specifically, Johnson-Laird at al., propose
and show that the difficulty of problems with multiply quantified premises, e.g.,

None of the Princeton letters are in the same place as any of the Cambridge letters.

All the Cambridge letters are in the same place as all the Dublin letters.

Therefore, none of the Princeton letters are in the same place as any of the Dublin

letters.

They show that the difficulty of the problems is a function of the number of the mental models
that the solver needs to postulate to solve the problem: Problems that required a single model were
found to be easier than problems that required two mental models. A theory of difficulty that accounts
for only two levels of difficulty has a long way to go for psychometric purposes. On the other hand, the
generation of deductive reasoning items would not present serious difficulties because of their rigid
format. In short, generative modelling of deductive problem solving appears feasible, but further work
is needed to fully account for variations in difficulty. A complete accounting will require incorporation
of biases that test takers follow when asked to think deductively. An approach that is gene-ative in
spirit but incorporate logical biases in item construction has been described by Colberg and Nester
(1987).

Analogical reasoning. Analogical problem solving has a long psychometric tradition but
surprisingly little is known about the formal characteristics of such items. A recent study (Bejar,
Chaffin and Embretson, in press) has begun to remedy the situation by studying intensely a large
number of analogy items from the Graduate Record Examination (GRE) General Test. The study
showed that despite the fact that the analogies are in a verbal modality, vocabulary knowlcdge, as such,

is not even remotely the main determinant of performance or item difficulty, (Of course, vocabulary

18
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knowledge is required to answer the items but the more difficult items are not so because they involve
infrequent words.)
The generation of analogies has been demonstrated by Chaffin and Hermann (1987). The

possibility of generative modeling of analogical reasoring, that is, generating items with known

psychometric characteristics was considered by Bejar at al. (in press). They concluded that given the
current state of the art in computational linguistics, working at the word pair level was more feasible.
By using word-pairs as the building block multiple-choice generative modeling could be implemented
in this fashion: Prepare a database of word pairs and store along with the word pair information such
as the semantic relational features of the word pair, the frequency of the words making the pair and
possibly other information as well. The generation of an item starts by deciding which major semantic
class to use. Bejar at al., found 10 major classes in the GRE item pool. Each major class has
distinctive features that, in turn, makes it possible to classify word pairs into subclasses. Thus, to create
an item we chose the stem and the key to be from the same subclass and chose options that are from

the same class but different subclasses. Thus, the template for creating analogy items is:

Stem: Word-pairj;
Kcy:Word-pairij, wherei = j

Nonkey:Word-pairj; , where i <> j,

where i refers to a major semantic class, such as part-whole, class-inclusion, etc; j refers to a subclass
within the major class. Essentially the template says that the stem and the key should be from the
same class and subclass whereas the non-keys should be from the same major class but different
subclasses. Clearly, this approach assumes that a semantic analysis is available for each word pair in
our database, a process which at the moment must be done "by hand" (but see Miller, Fellbaum, Kegl
& Millcr, 1988; Byrd, Calzolari, Chodorow, Edwards, Klavans & Neff, 1987 for advances in
computational linguistics that may cventually allow an automated implementation).

Constructing items according to a scmantic analysis would qualify as generative were it not for
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the fact that the semantic class is a potent determinant of difficulty. Bejar at al. studied different

factors of difficulty and found that for the GRE pool the semantic class was the strongest determinant
and not word frequency as Carroll (1980) had speculated, nor processing demands as we would have
expected from recent research (Sternberg, 1977; Pellegrino & Glaser 1982).

Although the difficulties of generating multiple-choice analogies does not appear
insurmountable, it may be easier to do so in an open-ended format. Tne first idea that comes to mind
for an open-ended analogy item is to present the examinee with a word pair and then ask the examinee
to produce one or more pairs that exemplify the same relation. 'This approach, however, is not likely to
be adequate because the granularity of a typical multiple-choice item is very fine and therefore require
responses that demand a high level of reasoning. That is, the exact nature of the relation represented
by the stem is not certain until the options are examined. For example, a stem like grain:husk
obviously calls for a part-whole relationship, but in the context of a GRE or SAT item the options
would all be part-whole relationships, which requires the examinee to determine the exact kind of part
whole relationship.

A format that prescrves the inductive nature in an open-ended format is the analogical series,
where the stem consists of two or more word pairs that specify the nature of intended analogy. We will
discuss it briefly to illustrate the claim made earlier, namely that the knowledge that makes possible
generative modelling may make it possible to abandon the multiple-choice format in favor of open-
ended items.

Consider the following analogical serics where the examince is asked to provide one or more

word pairs consistent with the scrics:
husk:grain, shell:turtle

The solution is not just any part-whole word pair but one where the part plays a protective function. A
possible correct answer is armour:knight or pecl:orange. This format is compatible with recent

theorizing about the naturc of analogical reasoning. Earlier theorics focused almost exclusively on
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processing models and paid no attention to the structure of knowledge. More recent theorizing (eg.,
Gentner, 1983) by contrast emphasizes the structural details of the process.

In short, a generative approach to either multiple-choice and open-ended analogical reasoning
based on word pairs as the "building blocks" seems feasible because of advances in our understanding
of performance on such tasks, such as the role of the semantic class on difficulty, and improvements in
our understanding of the nature of the analogical process itself (e.g., Gentner, 1983), and advances in
computational linguistics.

Quantitative and arithmetic reasoning. As one might have suspected, arithmct.ic and
quantitative items lends themselves well to a generative approach. It is not difficult to think in the case
of arithmetic, for example, of means of generating items (see Roid and Haladyna, 1982). For the same
reason, the factors that might affect difficulty naturally suggest themselves. The most prominent line of
research on difficulty factors is called "task variables". The culmination of this line of research can be
found in the volume edited by Goldin and McClintock (1984).

The work on automated generation of quantitative items, however, has evolved independently
of the work on task variables and for the most part has concentrated on arithmetic problems (e.g.,
Hively, Paterson & Page, 1968). However, it also ignored psychometric difficulty as an attribute of the
generated items (see Merwin, 1977). As a result of this lack of convergence between research on
determinants of difficulty and item generation we cannot point to an exemplar of generative modeling
of arithmetic or quantitative reasoning, However, implicit in Brofvn and Burton (1978) work on

i
diagnosis of arithmetic skills there is a problem generation mcch;nism that aims to generate items that
would be consistent with the current diagnosis (see Burton, 1982) and illustrates that generative
modelling need not be associated with a specific measurement framework, such as IRT. In a diagnostic
context the questions to be administered next should be those that are most informative with respect to
the different diagnoses under consideration. Obviously, this purpose of measurement calls for a
different representation of the cxamince. We will discuss some of these representations below under a

discussion of the asscssment of complex skills.

Quantitative skills involve more than arithmetic computations, of course. The solution of word
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problems is perhaps a more important component of quantitative reasoning. Much of the early work
on word problems focused on surface variables of the problem, or at least on a characterization of the
problem without necessarily establishing that such characterization in any way was consistent with the
problem as approached by the examince. An important chapter by Riley, Greeno, and Heller (1983)
may have changed that. They distinguished between the “specific” and "global factors" that affect
problem difficulty. Global factors refer to surface characteristics of the problem. Specific factors refer
to the deep characteristics of the problem which describes the relationships among the quantities
involved in the problem. The taxonomy of specific factors they proposed consisted of four
classifications: Change, Equalize, Combine and Compare. Each of these types has a schema
associated with it that embodies the understanding required for solving problems of that type.
Another approach to classifying quantitative reasoning problems has been provided by S. K.
Reed (e.g., Reed, Ackinclose & Voss, 1990), who categorizes problems into classes, such as Cost,

Distance, Fulcrum, Work, etc., and then within each such class by the equation implied by the problem.

For cxample, the following is a Cost problen::

A group of people paid $238 to purchase tickets to a play. How many pcople

were in the group if the tickets cost $14 each? (Reed at al., p. 85)

The equation that characterizes this problem is $14= $238/n. Although the classification has
been found useful for tutoring purposes, for gencrative modelling purposes further detail would be
needed. In the above problem there are three quantities involved: the number of people, the cost of

the ticket, and the total pricc. Thercfore, variants of the above problem are possible as follows:

Ten people paid $238 to purchasc tickets to a play. How much did they pay

for cach ticket?

Ten people went to sce a play and each paid $14 per tickct. How much did

they pay altogether?
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In general, given n variables there will be n problem-variants, if we limit our attention to
considering quantities as given or unknown. In reality, there are more variants because the quantities
involved in the problem can enter into different types of relations. For example, in motion problems
the entities may be traveling in the same or opposite directions. We refer the reader to the important
work of Hall, Kibler, Wenger, and Truxaw (1989) and Mayer (1981), who seem to have provided, so
far, the most comprehensive taxonomies of quantitative reasoning items.

With these taxonomies in hand, the generative modelling of quantitative reasoning might
proceed by estimating the difficulty of items in cells of a multidimensional taxonomy. The generation of
items from a given cell would necessarily be based on templates or well-defined scripts from which
specific isomorphs could be generated. The validation of the generation of items from cells in this
taxonomy could be assessed by the degree to which the psychometric parameters from a given cell are
well-predicted and the within-cell residuals are constant across all cells. Unless the latter holds there
are performance factors that are not captured by the taxonomy and the generative modelling is not
complete. Stating generative modelling in this form makes it evident that methods derived from
generalizability theory have relevance to RGM when we focus on the item as the unit of study, instead
of the examinee. Specifically, iethods for test constructed from tables of specifications (Jarjoura &
Brennan, 1982; Kolen & Harris,. 1987) seem relevant.

Verbal Ability

Verbal ability is measured by tasks such as sentence completion, reading comprehension and
vocabulary tests. Vocabulary tests, despite their simplicity, are one of the best predictors of intelligence
(Sternberg, 1987). The high correlation between intelligence and performance on a vocabulary test has
been a bit of a mystery, but as a result of rescarch on the nature of vocabulary acquisition it is now
clcar that the rcason for the corrclation was that performance on vocabulary tests is an indicator of the
knowlcdge acquisition ability of the cxaminee (Jensen, 1980, p. 146).

Vocabulary. The gencration of multiple-choice vocabulary tests by computer would appear to

be trivial We might choose two synonyms to play the stem and key roles and then choose other words
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for the distractors. Examination of vocabulary tests, however, reveals that the distractors are chosen in

such a way that they are not unrelated to the stem. Therefore, difficulty is to some extent a function of
the likelihood that the examince has encountered the words included in the item but also how close the
distractors are to the stem. As items get more difficult, the examinee must make finer distinctions.
Therefore, in order to generate items of a wide range of difficulty the generation procedure would have
to have access to a finely-tuned lexical database. Psychologically-motivated lexical databases are not
rcadily available at the moment but may be in the future (Miller at al., 1988) and at the very least
would be useful to assist the test developer in constructing items.

Interestingly, the measurement of verbal ability through sentence-based items appears more
immediately feasible. Bejar (1988) discussed a system for the assessment of writing ability, which could
casily be applicd to sentence completion as well. The system relied on a grammar correction engine

known as WordMAP published by Linguistic Techrologies. The system envisioned by Bejar (1988) is
shown in Figure 6.

It assumes a databasc of scntences from which items would be created. The system does not aim to
generate natural text but rather to generate items based on sentences that have been previoucly
sclected for their suitability to assess specific writing errors. Because performance would be expected
to depend on a variety of syntactic and scmantic attributes of the sentence (e.g., Bejar, Stabler &
Camp, 1987) that information would be stored along with the sentence.

The system would generate an item by choosing a sentence from the database and introducing
an error, for example, a subject-verb agreement. The sentence with the error is then presented to the
cxaminee who would rewrite it to remove the error. Scoring of the corrected sentence is possible
through a "grammar cngine". Bejar (1988) showed that WordMap could handle most of the
constructions and crrors in the Test of Standard Written English (TSWE). More recently, Breland and
Lytle (1990) showed that WordMap could be used to score actual essays. That is, counts obtained from

WordMap regarding errors and style were shown to predict ratings 1iom readers very well, WordMap
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has no idea about the meaning of the text it analyzes, but the results from Breland and Lytle suggest

that it can be used in licu of a second rater.

Ackerman and Smith (1988) has shown that measurement of writing ability should include
both sentence mechanics and essays. The results presented in this section suggest that generative
sentence-based assessment of sentence mechanics could be coupled with computer-scored essays and
the score from a single rater into a more valid but less expensive measure of writing ability.

Reading comprehension. Reading comprehension, as measured by sentence completion items
could be implemented generatively with a system similar to the one in Figure 6, except that instead of
introducing a grammatical or stylistic flaw into the sentence a word would be omitted. Unfortunately,
very little is known about the sentence completion i?cm type despite the fact that is used by most
admissions test. Examination of a number of these items suggests that not any sentence lends itself 10
be a stem for a sentence completion item and that a small set of rules would account for the choice of
deletion (Fellbaum, 1987).

The assessment of reading comprehension through the reading of longer texts takes two
rms. One is based on the cloze procedure, where words are deleted from the text according to a set
of rules, and the examinee is supposed to replace the word, or choose from a set of possible
replaccments. The other possibility for measuring reading comprehension, found in most admissions
tests, is to present a text and then ask questions about the text. Generative modelling for this item type
would seem to especially challenging, First, it requires an understanding of the effect of text attributes
on comprehension and secondly a procedure to generate questions about the text.

A characteristic of typical items of this type is that performance, as in most reading tasks (Just
& Carpenter, 1987), requires background knowledge. That is, reading comprehension is a function of
the attributes of the text but also of what the examinee brings to the reading task. In fact, Perfetti
(1989) has distinguishcd between reading comprehension and reading interpretation to emphasize that
what he calls interpretation requires both extracting the meaning from the text and applying world
knowledge to it, whercas what he calls comprchension comprehension is just extracting the meaning

from the text. Generative modclling of interpretation appears especially challenging because in effcct
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the question generation mechanism would have to have world knowledge equivalent to that of potential
examinees. On the other hand, generative modelling of what Perfetti calls comprehension requircs a
mechanism for posing questions based on a given text and a theory of difficulty to anticipate the
difficulty of those questions. Katz (1988) has developed a system called START which automatically
analyzes English test and automatically transforms it into a propositional representation in such a way
that ques.ions based on the text can be generated. Examination of the questions generated by START
for a GRE passage show, however, that t‘hey are of the factual type, and would not be appropriate for

the measurement of reading ability of prospective graduate students. Nevertheless, the system might

have applications for younger testees and in the assessment of English as a second language, if a theory
of diificulty can be developed for it.

in short, generative modelling of reading comprehension appears especially difficult because
the role background knowledge plays on performance and because questions that best tap that
comprehension must call on background knowledge as well as the specifics of the text.
Complex Skills

In this section I discuss the assessment of skills that are not well characterized by a total score
and call for a richer representation of the tasks and the examince. First, I discuss achievement testing
of the type that takes placc in computer-based instruction where the computer would, ideally, guide the
student through an optimal path. Next, I discuss the assessment of pedagogic skills. Finally, I discuss
gencrative asscssment of trouble shooting and diagnostic assessment skills.

Achievement testing. A gencrative approach to achievement testing remains to be developed.
Part of the challenge no doubt is due to the elusive nature of the concept of achievement (cf. Green,

1974; Cole, 1990). A gencrative approach that is consonant with current thinking on the nature of

lcarning (c.g., Glascr, 1988) is likely to be different from the approaches we have discussed for the
assessment of gencric abilitics because ranking individuals would not be the focus of measurement. In
achicvement testing we arc often interested in providing diagnostic information for a student, a teacher,
or a computer to formulate an instructional plan. Therefore, the selection of questions would not be

bascd on difficulty, but rather on the degree of information that the answer to a question would provide
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in updating the several hypotheses under consideration to account for a student state of knowledge. An
exampie of this approach is illustrated by the work on fractions of Brown and Burton (1978). The
essence of the approach is to concoct the next item so that it would be maximally informative with
respect to a hypothesis about the misconceptions harbored by a student. Although their notion of
explaining performance in terms of bugs is not currently widely endorsed by cognitive psychologists, the
general approach remains sound (e.g., Bejar, 1984) and has even been cast within an IRT framework
(Tatsuoka & Tatsuoka, 1987; Yamamoto, this volume).

In general, achievement testing that is also diagnostic requires that we represent a student not
as a point on a scale but rather as a complex data structure, such as a vector of misconceptions or a
network, the nodes of which could stand for beliefs, hypothesis, concepts, etc, that describe the
student’s knowledge state. The purpose of measurement then is to estimate the activatioh, ie., the
degree to which concepts and beliefs, for example, are present, as well as the interconnectedness
among the concepts. Traditional measurement models are not oriented to representing the examinee
in that form and therefore a methodology is lacking for estimating achievement for such complex
representations of the student. Although such representations are the essence of cognitive models,
utilizing them for measurement, rather than description, is not common yet. A description is a
declaration or set of assertions about the knowledge state of a student without inferential power.
Measurcment, by contrast entails generalizations, given a description. For example, given an ability
estimate based on an IRT model we can make inferences about the probability of that someone with
that ability will respond to other items measuring the same ability. Thus, for cognitive descriptions to
qualify as mcasures we need to be able to estimate them and demonstrate their inferential power (cf
Mislevy, this volume).

The advent of connectionist computational models opens up interesting possibilities because of
the flexibility they provide to model a wide varicty of phenomena as well as for their computational
convenicnce. As an example, consider the modeling of physics knowledge in terms of beliefs about
physical observations (Ranney & Thagard, 1988). In this case the description consists of a network of

nodes for a given student. Some of these nodes stand for evidence, world knowledge, hypotheses, and
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explanations that describe the student’s knowledge state. Ranney and Thagard (1988) build the
network by transcribing a think-aloud protocol into nodes and connections among nodes. What makes
their system suitable as a measurement tool is that they superimpose a set of constraints on the
network, based on Thagard’s theory of explanatory coherence (Thagard, 1989). For example, among
the principles or constraints proposed by the theory are the analogy principle, which states that
analogous hypotheses explaining analogous evidence are coherent with each other. These constraints
have the effect of controlling the propagation of activations throughout the network. After each picce
of new information the network is allowed "to settle.” The settled network is then the current estimate
of the student’s knowledge state. A further characteristic of the approach that makes it suitable for
assessment purposes is that the representation of the student as a network is dynamic. That is, as new
information becomes available it can be propagated throughout the network. Thus, the network
represents the state of knowledge or F ~licfs on a moment by moment basis.

An obstacle to becoming a practical method of assessment is the reliance of think-aloud
protocols as a means of computing the initial network. However, it would scem feasible to bootstrap
the network from a structured questioning procedure. That is, instead of expecting the student to
verbalize observations and hypothesis through a think-aloud protocol, a questioning procedure would
extract information from the student. Once the network is bootstrapped, predictions can be made
about the student beliefs and tested against questions posed to assess those beliefs. The answer to each
such question is further data to be fed to the network. The goal of the entire procedure is to move the
student toward some idcal network. Therefore, the questioning procedure would have access not only
to the student’s network but also to a network representing an ideal student. Marshall (1990) has
devised a related procedure for mathematic word problems. She presents a series of problems to a
student and, after the student has worked a set of problems, responds to a structured questioning
procedure about the problems just solved. The result is a network, which, at the moment, is used for
descriptive purposcs but could casily be used as the basis for dynamic instruction and assessment.

Teaching skills. Becausc generative modelling is based on a model of the examinee it has the

potential to be used for the asscssment of tcachers as well. For example, the information used to
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model the examinee can also be used "in reverse" to generate case studics for a teacher to diagnose.

This would correspond with the generation of medical and troubleshooting scenarios to be discussed
below. Such an approach to the assessment of teachers would be very much in line with the
preoccupation of integrating an "expanding body of knowledge on children’s learning and problem
solving to classroom instruction” (Carpenter, Fenncma, Peterson, Chiang & Loef, 1989, p. 500).

As with the characterization of expertise in other fields (e.g., Chi, Feltovich & Glaser, 1981), a
cognitive approach has become fashionable (cf Borko & Livingston, 1989). For example, Borko and
Livingston suggest that a characteristic of more experienced teachers is the ability to reason
pedagogically, which means the ability of the teacher to adapt content knowledge to the background of
a specific group of students (Shulman, 1987). Such reasoning presupposes the ability of the teacher to
charactcrize, in some detail, each student’s knowledge state. In other words, more experienced
teachers are able "to predict misconceptions students may have and areas of lcarning these
misconceptions are likely to affect” (Borko & Livingston, 1989, p. 491).

In short, the picturc that emerges is that teacher expertise requires not only subject matter
knowlcdge, which can be measured in the usual manner, but also the ability to transform that
knowledge in such a way that students varying in their knowledge can benefit most effectively.
Measures of the lattcr remain to be developed. One possibility is an assessment task that requires the
candidate to characterize the knowledge state of a group of students. As part of the exercise the
teacher would prepare a sct of problems and simulate its administration to a group of students. The
simulation would then return to the teacher the answers provided by each student. The teacher’s task
would then be to characterize each student’s knowledge state. From there the simulation could
continue in a number of directions. For example, as a next step the teacher might be asked to prepare
a tcaching plan that is suited to the mix of students generated by the simulation.

Troubleshooting. Tasks which rcquire diagnostic expertise, such as equipment
troublcshooting and clinical diagnosis, arc naturals for gencrative assessment, especially if approached
from a model-based perspective. For example, in a troubleshooting situation a model-based approach

would estimatc the mental representation of the device under consideration, i.e., the structural and
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functional description of the device as known to the examinee (e.g., Kieras, 1990). This sense of

model-based is seen in Al rescarch to distinguish between model-based (deep) and shallow (rule-

based) cxpert systems.

Table 1:Trouble shooting table

In short, a generative approach to the assessment of troubleshooting skills would be to infer
the examinec’s conception of the device from responses to short questions which tap knowledge of
diffcrent aspects of the device. The tasks would be generated from an algorithm that has access to a
description of the device and generates troubleshooting tasks that collectively tap all the procedural
and device knowledge. An alternative approach is to present open-ended tasks and record all the
actions taken by the examince and infer from those actions their mental model of the device, as well as

procedural, declarative, and heuristic knowledge. Both approaches are compatible because knowledge

of the domain is required to gencrate discrete items and interpret open-ended performance .

However, asscssment based on short questions items may be more efficient without sacrificing
information.

For cxample, consider the gencrative assessment of troubleshooting of the circuit in Figure 7.
The circuit is a full adder after Fulton and Pepe (1990). The circuit has threc commands that can be
sent to the circuit and five responses (or measurements) that can be obtained from it. Table 1 shows
the relationship between the 8 possible input configurations and the correct outputs. There are
however, 32, possible output vectors (the number of distinct vectors of length n is, in general, 2% or 2
in this casc), which lcave 27 possible troubleshooting tasks. Obviously, if the examinee can correctly
pinpoint the problem in each of these 27 tasks he or she must have an adequate mental modcl of the

device. The more interesting question is to infer the partial device in the cxamincc’s mind when there

is less than perfect performance.
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Insert Figure 7:Electronic device

In practice, the assessment of troubleshooting skills is most likely to take place in an
instructional context. Lesgold, Ivill-Friel and Bonar (1989) discuss a system for teaching basic
electricity principles, where the system needs to know not only electricity but also must contain
instructional expertise to guide instruction and testing.

As with device troubleshooting, the representation of medical expertise with "shallow," i.c., if-
then rules, has been found to be inadequate for many purposes. Causal or model-based
representations have now been proposed which have important uses in expert systems and for clinical
training. An important by-product of that trend for assessment for a generative perspective is the
possibility of generating clinical scenarios or patients. (e.g., Parker & Miller, 1988; Miller, 1984; Pearl,
1987, Chapter 4). When a clinical scenario is represented as a probabilistic causal network it is
possible to update the network as new information becomes available, from, say, clinical tests ordered
by the examinee, or other simulated clinician-patient interactions. Actions and decisions can then be
evaluated with respect to a perfect clinician represented by the network. Some ideas for generative
asscssment of medical expertise are discussed by Braun, Carlson and Bejar (1989). A system that lends
itself to measurement from that perspective has been discussed by Warner and associates (1988),
Conclusions

There is a growing concern among some psychometricians (e.g., Goldstein & Wood, 1989)
that the kind of theorizing that accompanies Item Response Theory has little to do with what the test it
is applied to is supposed to measure. They even suggest that the research performed under the IRT
rubric should be relabelled Item Response Modelling instead. This paper is, in a sense, a constructive
reaction to the concern and evolves naturally from attempts within the IRT tradition (e.g,, Fischer
1973) to incorporate substantive or collateral detail as part of the response modelling process. It also
represents an example of what Snow and Lohman (1988) call the link between laboratory and field.
RGM not only links laboratory and field but also challenges the item writer and psychometrician to test

their knowledge base constantly, indeed every time a test is administered,
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While the foregoing results point to t' - feasibility of an approach to measurement where
responsc modelling and responsc theory are integrated under a generative framework, it also raiscs the
question of whether there is a single psychological framework under which such an ambitious
undertaking would fit. Even if RGM were successfully implemented in a wide range of domains
chances are that somewhat incompatible procedures and assumptions would be used to model each
domain. This is hecause RGM is not a psychological theory, or even a methodology, but rather a
philosophy of test construction and response modelling that calls for their integration. 1t is more than
likely that the application of RGM to specific item types will not yield a coherent picture that
encompasses a multitude of domains. A complete picture requires an account of inter-domain
covariation, that is the relationship of test performance across different domains, as well as within-
domain variation in item parameters. The challenge, therefore, would be to model specific domains
through a common set of assumptions in such a way that the within-domain psychometric
charactcristics can be anticipated as well as inter-domain covariation.

Stating the challenge in this form underscores the communality that exists between cognitive
psychology and diffcrential psychology. A major objective of cognitive psychology has been an
accounting of learning or performence in specific tasks, i.c., within domain phenomena. The results for
the most part have been a variety of microtheories, each optimized for the phenomenon at hand, just as
diffcrent microtheories of item difficulty are likely to emerge from attempts to implemen* RGM. Even
if the microthcories are successful there is another aspect of the data that must be accounted for,
namely intcrdomain covariation.

An accounting of intcr-domain covariation is really not differcnt from the "transfer problem”
that has persisted in lcarning and cognitive psychology. Indeed, Messick (1972) has proposed the
transfer problem as an arena for incorporating function into individual differences theorizing. Whereas
psychometricians have attcmpted to account for the degree to which test scores covary--and for the
most have failed, according to Carroll (1988)--for the cognitive psychologist the problem is to account
for transfcr--or more often than not lack thercof. Psychometricians may have described the covariation

among a wide range of tests but such descriptions do not constitute an accounting. Similarly, cognitive
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psychologists are often at a loss to explain lack of transfer According to Larkin (1989, p. 303):

"Although attractive, the notion that transferable knowledge is a core of general problem-solving skills
has been historically unproductive.” She argues that the answer lies in incorporating more detail:

Instruction in skills is most effective if we can understand in detail what we want to

teach and focus instruction accordingly. Detailed models of strategies for related

domains, methods for setting subgoals, knowledge of task management, and learning

skills seem a promising road to this end (Larkin, 1989, p. 304).

Knowing that cognitive and differential psychology share concerns is reassuring but does not
answer the question whether a single framework can serve as the foundation for RGM across a variety
of domains. A similar question has been raiscd by computational psychologists (Boden, 1988, p. 171)
who phrase the questions in terms of a general theory of problem solving, and by intelligence theorist
(e.g., Sternberg & Powell, 1982).

One answer, of course, is that such a general theory is not possible, a view taken by modularity
psychologists (e.g., Fodor, 1983) and by cognitive anthropologists who argue that the modelling of
problem solving must take context and situations into account (Lave, 1988). Others, however, argue
that it is indeed possible, and they propose a scheme, or architecture, under which we can subsume a
variety of problem solving behaviors. (Newell, 1989) The Newell-Simon (1972) approach to problem
solving is especially relevant to psychometrics because of its concern with problem difficulty. As early
as 1972 Newell and Simon (1972, p. 93) discussed at length problem difficulty in ways that are totally
consistent with the componential approaches to psychometric modelling of Carroll (1976), Sternberg
(1977) and Whitely (1980) and even the disjunctive-conjunctive distinction discussed by Jannarone (in
preparation). In the Newell-Simon theory, the problem solver is viewed as constructing problem
spaces for cach problem. The difficulty of a problem is then, in part, a function of the problem space:

"“The size of the problem space provides one key to the estimation of problem
difficulty. The problem space defines the set of possibilities for the solution, as seen by the
problem solver. (Newell & Simon, 1972, p. 93, italics addcd).

Clearly, Newell and Simon had an idiographic view of difficulty in mind when they defined
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problem spaces as being specific to a problem solver, but later on in the book they consider nomothetic
individual differences and attribute them primarily to the contents of long term memory and, to "basic
structure” (p. 865):

...it follows that any proposal for communality among problem solvers not attributable

to basic structure must be represented as an identity dr similarity in the contents of

the LTM--in the production system or in other memory structures (p. 865).

The applicability of the Newell-Simon framework to an accounting of individual differences on
a psychometric instrument, the Raven Progressive Matrices, has been demonstrated by Carpenter, Just
and Shell (in press). They account for performance on this test, consid.crcd to be one of the purest
measures of intelligence, by explicating the differences in level of performance in the form of
simulation models that perform at different levels. Briefly, the kinds of models they postulate consist
of a set of productions, or condition-action rules, to represent the content of long term memory. When
those productions are activated by the requirements of the problem they deposit information in short
term memory. The solution to a problem is obtained by operating on the content of short term
memory. Within this framework individual differences can be a function of the content of long term
memory and the working memory capacity, or "basic structure” as originally forr ulated by Newell and
Simon. But in the casc of the Raven, whick uses totally novel stimuli, working memory capacity may in
fact be more important because there is not much information to be retrieved from long term memory.

In general, and especially with achievement tests, long term memory would be expected to play
a larger role. However, "basic structure,” or working memory capacity, would seem to be centrally
involved, cven in domains that arc knowledge dependent, because working memory capacity is involved
not only in the solution of the currcnt problem but was als. involved in the creation and storing of the
knowledge which is now triggered to solve the current problem. Thus, working memory capacity may
be the cquivalent of g in differential psychology, postulated by Spearman (1923) to account for the
consistent covariation among intcllectual tasks. However, we now know that there is more thang. A
break down of the "factorial pie” in terms of crystallized and fluid intelligences (¢.g., Horn, 1970) has

received a wide acceptance (e.g., Snow & Lohman, 1989). This breakdown seems to fit with an
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equating fluid intelligence to working memory capacity, and crystallized intelligence to productions, or
knowledge.

The notion that there can be an all-encompassing theory of problem solv.ing has not gone
unchallenged (e.g., Boden, 1988, p. 171). One argument is that problem solving is not computationally,
encapsulated, but involves cognitive penetrable phenomena, & term originated by Pylyshyn (1984), which
means that the problem solver is influenced by his or her desires and beliefs. This view would seem to
suggest that the actual difficulty of a problem for a given individual would be a function of that person’s
ability, the nature of the problem, and its desires and his or hex beliefs. From a psychometric
perspective this need not be a fatal a problem as it might be to a purely'psychological theory because
psychometric models can deal with error. Moreover, there is no reason why the penetrability could not
itself be modeled by establishing the link of beliefs and desires into a response mechanism (cf Boden,
p. 174). An example of modelling penetrability within a psychometric framework is provided by
Colberg and Nester (1987), who are able to anticipate the range of illogical beliefs and incorporate
those as part of the prediction of difficulty of deductive reasoning items. In short, penetrability need
not be a fatal problem, at least from a psychometric perspective.

The Newell-Simon approach has been characterized as embodying a symbolic paradigm
(Smolensky, 1986). A contender to the Newell-Simon framework argues for a subsymbolic approach.
Smolensky 1986, for example illustrates electronic problem solving from a subsysmbolic perspective
where instead of of representing knowledge as productions, knowledge is distributed in a network the
nodes of which represent bits of knowledge. The states of that network are assumed to correspond to
psychological meaningful states.

Both symbolic and subsymbolic approaches to modelling cognition lend themselves to
psychometric modelling, and are appealing because of their psychological underpinnings but seem
better suited for within-task analyses. The covariation among tasks needs also to be accounted for.
Such an accounting could come about from a detailed analysis of studies that describe performance
covariation across a variety of tasks. The most obvious source of data for such an analysis is found in

the factor analytic literature. The value of such analyses is demonstrated by two metanalyses. Snow,
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Kyllonen and Marshalek (1984) reanalyzed several data sets and concluded that Guttman’s (1954)
radex theory of intelligence was correct. That is, performance across a variety of cognitive tasks can be
described as a circular map. Located at the center of the map we find performance on the Raven’s
Progressive Matrix test, presumably representing g. Moreover, the circle can be divided into three
slices corresponding to verbal, quantitative and spatial domains. The tests on the periphery are
simpler, and as we move toward the center their complexity increases. The rich detail provided by
Snow at al. seems to be beyond the scope of the Newell-Simon or mental models frameworks. The
second reanalysis of existing data was provided by Carroll {e.g., 1980) who postulates ten basic
information processing components as the basis for the factors that factor analysts have postulated to
account for covariation among test scores.

Clearly, we are not at the point where we decide what is the best approach to a general
psychological framework for test construction. Perhaps, a variety of perspectives should be
encouraged. What RGM does is to provide a Popperian mechanism for psychometric modeling,
According to Popper (1959) the scientific status of a theory depends on its falsifiability. Moreover,
evidence in favor of a theory is not as convincing unless that evidence was obtained as part of a
challenge, i.e., in an attempt to falsify the theory. RGM links item construction and response modeling
in a single package so that the linkage, i.c., the predictions about response behavior, are challenged
cvery time a test is administered. Thus, the administration of a test becomes a psychological

experiment, which in turn may lead to the improvement of both theories and tests.
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Table 1

The first three columns refer to the possible input arrangements, the last five colums refer to correct
output arrangements

Measure
Comm-1 Comm-2 Comm-3 ‘ 1 2 3 4 5
0 0 0 0 0 0 0 1
1 0 0 1 1 0 1 0
0 1 0 1 1 0 0 1
0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0
0 1 1 1 0 1 0 1
1 0 1 1 0 1 1 0
1 1 1 0 1 1 0 0

. 44
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Figure Caption
Figure 1. Sample mental rotation item
Figure 2. Relationship of estimated difficulty on angular disparity at several elapscd times.
Figure 3. Typical hidden figure item and two corresponding clones.
Figure 4. Regression of logit of proportion correct for pairs of clones administered to two respective
random samples.
Figure 5. Cummulative response time for (a) a generating item administered to two random samples,

and (b) two clones administered to respective random samples.

Figure 6. System for generative assessment with sentence-based items.

Figure 7. Electronic device.
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