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AN EXPERIMENT IN THE APPLICATION OF AN

AUTOMATED ITEM SELECTION METHOD TO REAL DATA

Abstract

A previously developed method of automatically selecting items for

inclusion in a test subject to constraints on item content and statistical

properties is applied to real data. Two tests are first assembled by experts

in test construction who normally assemble such tests on a routine basis.

Using the same pod of items and constraints articulated by test construction

experts the same two tests are reassembled automatically. The manual and

automatic assemblies are compared by test specialists who were not involved in

the original manual assembly. Based on this experiment, barriers to future

progress in the improvement of automatic test assembly methods seem not to be

in the development of different algcrithms, nor in the improvement of computer

time and cost. Rather, the focus of future improvements in the process of

automatic test assembly lies more in the direction of complete specifications

of constraints on item selection and detailed coding of item properties.

Key words: Test Assembly, Test Construction, Mathematical Programming,

Heuristic Algorithms, Test Design
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AN EXPERIMENT IN THE APPLICATION OF AN

AUTOMATED ITEM SELECTION METHOD TO REAL DATA

Introduction

The process of test construction is time consuming and expensive. Every

year public and private testing organizations spend millions of dollars

writing, editing, and otherwise building items and then assembling these items

into test forms for some measurement purpose. Until recently, the process of

test construction or test assembly has been virtually unassisted by modern

psychometrics.

A practical application of Item Response Theory (IRT) suggested by Lord

(1980) and Birnbaum (1968) is to use IRT in the test assembly process. But

the methods they suggest have little or no practical (as opposed to

measurement) advantage over methods using conventional statistics without

additional assistance from modern computers. In the last ten years, many test

assembly paradigms employing a combination of IRT, modern computers, and

mathematical programming methods or heuristic methods have been proposed in

the literature. Most of the studies reported on these new paradigms have

used artificial data in research settings with few constraints on the item

selection. Exemplars of such studies include Thunissen (1985), Thunissen

(1986), Baker (1988), van der Linden (1987), van der Linden and Boekkooi

Timminga (1989), and de Gruijter (1990). These research settings may be

appropriate for the preliminary investigation of new test assembly paradigms,

but may not resemble very closely problems encountered when assembling tests

from real item pools with more numerous constraints on item selection. Some

studies have used quasirealistic data with more (and perhaps more realistic)
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constraints, for example, Ackerman (1)89) and Stocking, Swanson, and Pearlman

(1991). Here the practicality of various paradigms becomes more obvious.

This paper presents an experiment with the Stocking, Swanson, and

Pearlman (1991) heuristic item selection algorithm using real data and real

constraints actually employed in the manual test assembly process for a

particular test. In this experiment, a test form is first assembled manually

using the test construction practices currently in place. Then the test form

is reassembled from the same item pool using the automatic item selection

algorithm. The two forms are compared in terms of item overlap, statistical

properties, and content properties and the results are discussed.

Theoretical Framework

Most of the recently published test construction paradigms depend upon

the use of IRT. Within this context, some aspect of the items to be selected

is optimized subject to constraints on other item properties. Table 3 of van

der Linden and BoekkooiTimminga (1989) lists the functions optimized in a

number of useful models. The constraints may incorporate characteristics of

items, such as content or type, that are important in test construction. The

constraints may also incorporate desirable properties of the resultant test

information function. Some paradigms invoke a formal optimization strategy

familiar from the field of mathematical programming, for example van der

Linden (1987) This guarantees optimal solutions but may sacrifice

practicality. Others invoke more informal heuristic optimization strategies,

such as Adema (1988), Adema (1989) or Ackerman (1989), which may sacrifice

global optimality for the sake of practical gains.
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The automated item selection algorithm (Stocking, Swanson, and Pearlman,

1991) is of the heuristic type.. The rationale for this algorithm is as

follows: Typical test assembly is less concerned with optimizing some

function of the items selected (for example, maximizing test information or

minimizing test length) or even meeting all of the constraints of interest,

than it is with coming "as close as possible" to all constraints

simultaneously. Phrased another way, when confronted with a large number of

constraints it is often better to miss on two or three of them, but come very

close, than meet all but one constraint but miss that one by a large margin.

Thus "constraints", including statistical constraints, are thought of as

more "desired properties" than true constraints. This approach recognizes the

possibility of constructing a test that may lack all of the desired

properties, but emphasizes the minimization of aggregate failures. If a

constraint is not satisfied, the heuristic allows consideration of the extent

to which it is violated. Moreover, the heuristic provides for the possibility

that not all constraints are equally important to the test constructor by

incorporating explicit weights as part of the modeling of constraints.

Thus the goal of this heuristic can be stated very simply: minimize the

weighted sum of deviations from the constraints. The constraints are

formulated as bounds on the number of items having specified properties. The

constraints need not, and in general will not, divide the item pool into

mutually exclusive subsets. Rather each item can have many different features

satisfying many different constraints. This is a very general formulation

which can incorporate constraints related to test information functions in the

context of IRT but can also function equally well in the nonIRT context where

statistical constraints might IN. formulated in terms of conventional item



6

difficulty and discrimination indices. The formulation. works on any set of

linear constraints, including constraints which treat only nonstatistical

properties of items. The same approach can also easily be formulated to

incorporate nonlinear constraints.

In the mathematical expression of models in this framework, decision

variables xi, i = 1,...,N, are defined for each item in an Nitem pool.

These decision variables take on the values of xi= 0 if the item is excluded

from the test being assembled and xi =1 if the item is included in the test.

The complete model for binary linear constraints in an IRT context is

expressed mathematically as follows:

Let i = 1,...,N index the items in the item pool,

Ok, k = 1,...,K be the K values of B at which the test

information function, or item information functions,

are evaluated. Then

minimize

2K*2.m

E wx-Dr
r=1

subject to

N

IL(Ok) E riceoxi d k < 0, k = 1, . . . ,K ,

N

E 4(80 dK,k, < 0 , k = 1, . . . ,K ,

N

L aiaxi = d2x.j < 0 , j = 1, ,m ,

1=1

(1)

(2)

(3)

(4)
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N

E auxi - U3 s: 0 , j = 1, . ,m ,
i=1

N

E xi = n ,
i=1

Xi E (0,1), i = 1,...,N ,

(5)

(6)

(7)

where Dr E {dr if dr > 0; 0 otherwise } for r = 1,...,2K + 2m; m is the number of

linear constraints; 2K + 2m is the total number of constraints to be

considered; the wr are the weights to be applied to each constraint; the

IL(4) and 4(0k) are the set of lower and upper target information values,

respectively; the Li and Vi are the lower E.nd upper bounds on the other

constraints, respectively; and the au are 1 if item i has property j,

otherwise au = 0.

The D's are a measure of the magni:ude of the constraint violations, and

are zero as soon as the relevant constraint is met. This implies that there

may be many solutions to the optimization problem, that is, many sets of items

that can be selected that satisfy all of the constraints; each of these

solutions is equally satisfactory from the test assembler's viewpoint.

This formal expression of the model demonstrates that it can be viewed

as a mixed integer linear programming problem (MILP) (see, for example,

Nemhauser and Wolsey, 1988). However, standard methods of obtaining solutions

i 0
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to this optimization problem are not practical in the context of test assembly

because they cannot be easily applied to such real-world complications as item

sets. An item set is a group of items associated with common stimulus

material, typified by a reading passage followed by a set of questions about

that passage, or a table or graph with a set of questions about that table or

graph. Test assemblers often have constraints on the sets themselves ("select

no more than two science-related passages"), as well as non-mutually exclusive

constraints on the individual items within the set, and often not all of the

items within a set are to be included in the test. There is no easy way of

incorporating sets in the linear optimization paradigm since inclusion of an

arbitrary subset of a set within a test is implied by inclusion of any one of

the 2n-1 possible combinations of n items within that set. The heuristic

algorithm developed by Stocking, Swanson, and Pearlman, treats this and other

practical issues and falls into the class of "greedy" heuristic algorithms

(Nemhauser and Wolsey, Chapter 11.5). The algorithm selects items in such a

way that during the search for the solution the expected sum of deviations

from constraints is never increased, but either remains the same or is

reduced.

The Experiment

The test selected for this experiment consists of a verbal measure and a

quantitative measure. The verbal measure is 70 items long and consists of

three sections: Reading Comprehension (23 items), Sentence Correction (an

indirect measure of writing that is 27 items long), and Critical Reasoning (a

measure of verbal reasoning that is 20 items long). The quantitative measure

consists of two parallel Problem Solving sections, each 20 items long, that

11
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contain a balance of items on arithmetic, algebra, and geometry, and a third

section, 25 items long, that contains Data Sufficiency questions.

The pool from which the verbal test is constructed for this experiment

consists of 1,538 items, including 55 reading comprehension passages with 11

to 12 items associated with each passage. The pool from which the

quantitative test is constructed consists of 853 items, including 11

quantitative stimuli with 4 to 5 items associated with each stimulus. Both

pools have been (independently) calibrated using the 3parameter logistic

(3PL) item response function model (see Lord, 1980) and the computer program

LOGIST (Wingersky, 1983). Information about the items, including their

estimated item parameters and content classifications, is stored in an

electronic PCbased itembanking system.

The Manual Test Assembly

In the current manual test assembly process for these measures, test

assemblers work with target test information functions. The targets for each

measure are based on the attributes of previous test editions. Since the new

test is required to be as parallel as possible to previous editions, both in

terms of content and in terms of statistical properties, there are two targets

for each measure representing the desirable range in which the resultant test

information function must lie. If the information function for the test under

construction lies extensively outside this range, it is considered to be less

than optimally parallel to previous editions. The target information

functions for each measure are shown as the lower and upper curves in Figures

1 and 2.

For the verbal measure, current practice is to assemble the three

sections in a serial fashion, starting with Reading Comprehension, then

12
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Critical Reasoning, and finally Sentence Correction. This practice developed

over the history of this test and was based on the observation that the

assembly of the Reading Comprehension section is subject the most

constraints (because of the passages) and has the least extensive item pool.

The Critical Reasoning section has only a moderately extensive pool, while the

Sentence Correction section has a reasonably extensive pool. Thus it is

always likely that any measurement deficits (in terms of test information)

that exist after the assembly of the first two sections may be compensated for

in the assembly of the final section.

During the actual assembly, a test construction specialist chooses an

item or a group of items to include in the test, then checks the resultant

partial information function against the targets. This process is repeated,

in very much the fashion suggested by Lord (1980), until the entire section is

complete. The completed section is then turned over to the individual

responsible for assembling the next section.

The assembly of the quantitative measure is a simpler process since two

separate sections are constructed simultaneously to be parallel, and the third

is then added to complete the total test information function. Items with

approximately the same content and statistical properties are chosen in pairs

for the two parallel sections using frequency distributions of item

difficulties and discriminations. When the third section, data sufficiency,

is assembled using a frequency distribution, the three are combined and their

toLdl information function is compared to the target functions.

The statistical results of the manual assemblies for the two measures

are shown as dotted lines in Figures 1 and 2 with the companion target test

information functions. As would be expected, the measurement requirements of

13
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the resultant tests are predominantly satisfied. In addition, all of the non

statistical specifications that control the selection of items have been met.

The Automatic Assembly

All properties of items considered relevant to test assembly are coded

in the PCbased itembanking system. Close observation and interaction with

test construction experts led to the realization that tests are assembled

using not only the unique specifications for a particular test, but also using

more general specifications that apply to a broader class of tests of which a

particular test is a member. These additional specifications generally

incorporate what are considered to be "good test construction practices" for

assembling multiple choice tests of this kind and are automatically taken into

account by experienced test assemblers. However, for any automatic method of

test assembly to be effective, these types of more general constraints must be

made explicit.

Tables 1 and 2 display the complete list of (generally nonmutually

exclusive) nonstatistical item features determined to be relevant to the

assembly of the verbal and quantitative measures, respectively. The verbal

measure is assembled using 43'item features; the quantitative measure is

assembled using 144 features. The tables are intentionally displayed in

reduced size because a detailed

necessary. Our purpose here is

rationale for each feature, but

understanding of the table entries is not

not to provide a complete discussion and

rather to give a general overview of the

number and nature of all nonstatistical features controlling the process of

test assembly. In the tables, each feature is given an abbreviated name that

indicates what item properties are relevant for the feature This may be a

single item feature as in, for example, the first line in Table 1, labeled

14
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MAINID, which specifies items that are classified as questioning some aspect

of the main idea of a reading passage. Multiple item features may be

considered together as in, for example, the first line in Table 2, labeled

DS4AB which specifies data sufficiency items coded in field 4 of the database

as involving absolute values.

Each item feature has associated with it a lower and upper bound on the

number of items with these features that may appear in a test. These lower

and upper bounds may, of course, be equal. If the bounds are not equal, then

two constraints are added to the optimization problem as specified in

equations 4 and 5. If the bounds are equal, then only a single constraint is

added to the optimization problem as equations 4 and 5 become equivalent.

Constraints generated by features marked with an asterisk in the Tables

are specifications mandated by the specific purpose of this particular test.

The others, often more detailed, are determined by commonly accepted test

construction practices. As can be seen from these tables, the verbal measure

has a preponderance of test specific features (33 out of 43) while the

quantitative measure has a preponderance of more general features (130 out of

144).

The total number of non-statistical constraints for the optimization

problem for the verbal measure is 75, (2 times the number of features with

unequal lower and upper bounds plus the number of features with equal lower

and upper bounds). The total number of non-statistical constraints for the

quantitative measure is 282.

The automatic assemblies were also subject to statistical constraints in

terms of the resultant test information function, as were the manual

assemblies previously described. The information functions were required to
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lie at or above the lower target test information functions and at or below

the upper target test information functions at selected values on the ability

metric. The number of ability levels at which these constraints are enforced

determines the number of constraints added to the automatic test assembly

problem. The actual ability levels used for the final test assembly may be

chosen based on some prior knowledge of the strengths and weaknesses of the

item pool as a whole, or through an iterative process where intermediate

solutions are seen to be less than satisfactory. For the verbal measure, the

constraints on the test information function were specified at 7 ability

levels (theta = 2.1, 1.5, .9, 0., .9, 1.5, 2.1), thus adding 14 constraints

to the verbal solution. The total number of items to be selected serves as a

final constraint, bringing the total number of constraints for the verbal

solution to 90. For the quantitative measure, the constraints were specified

at 11 ability levels (theta 2.4. 1.8, 1.5, 1.2, .9, .6, .3, 0., .9,

1.8, 2.4) adding 22 constraints for a total of 305 constraints on the

solution, including a constraint on the total number of items in the test.

The Results

The automated item selection algorithm was implemented on a Compaq 386

with a 80387 math coprocessor, running at 20 megahertz. All of the

constraints for both the verbal and quantitative measures were weighted

equally at 1.0. It took 10 minutes to assemble a 70item verbal measure from

a pool of 1,538 items, subject to 90 constraints, and 8.5 minutes to assembly

a 65item quantitative measure from a pool of 853 items subject to 305

constraints. These are total times that include both the time required for

the algorithm and the time required to retrieve relevant data from the data

base. The latter components of the total time are clearly implementation-

16
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based, and while they are important in terms of practical applications, they

are less important when comparing properties of algorithms. The amount of

time directly attributable to the algorithm was 2.6 minutes or 155 seconds

(out of 10 minutes) for the assembly of the verbal measure and 2.4 minutes or

145 seconds (out of 8.5 minutes) for the assembly of the quantitative measure.

The total times seem acceptable given that the time to assemble the two

measures manually from these pools is approximately three persondays.

The results of the

shown as dashed lines in

predominantly within the

within the ability range

automatic assembly in terms of test information are

Figures 1 and 2. The test information functions lie

lower and upper target test information functions

of interest Although different from those for the

manual test assembly process shown in the same Figures, these results are

clearly acceptable. These statistical results were obtained with complete

satisfaction of all nonstatistical constraints specified for the algorithm

and listed in Tables 1 and 2.

When the tests assembled automatically were compared with the tests

assembled by test specialists, there was little overlap of the actual items

selected. For the entire verbal measure, only 12 out of 70 items (all

associated with a single reading passage) were selected by both methods

whereas for the quantitative measure there were 7 out of 65 items in common.

Clearly the large item pools are rich enough to support the assembly of a

number of parallel editions of the measures without compromising either

statistical or content constraints.

As a final check on the forms assembled automatically, each form was

given to test specialists for review. These test specialists were also ones
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who normally assemble the final forms manually but were not involved the

manual assembly for this experiment.

The comments made by the test specialists tended to fall into two

distinct categories. One category concerned items that individual test

assemblers considered to be of poor substantive quality for a variety of

reasons. Items with poor statistical properties were, for the most part,

never included in the pools available for this experiment. The elimination of

the problematic items identified on a substantive basis by test specialists

could be handled in a similar manner. Eliminating them from the pool

guarantees that they are never selected for inclusion in a test assembled by

the heuristic. Incorporating them appropriately in the constraints guarantees

that they are only selected when absolutely necessary The former solution

requires no additional item coding; the latter solution requires additional

item coding but is probably closer to what test assemblers do in practice.

A second category of comments from test specialists concerned the

assembled tests as a whole and the classification of items represented by the

assemblies. Some subcategories of classifications of items were not

previously identified as important and therefore were not part of the item

coding or the specification of constraints. In addition, some items were

identified previously as having only a single property (for example, a verbal

item on the abolitionist movement) when they should have been identified as

having two properties (for example, the role of women in the abolitionist

movement). Thus this exercise has proved useful in eliciting from test

construction specialists a more complete list of unique specifications for

this test. A more, detailed classification and coding of items as well as the

18
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specification of additional constraints are required to satisfy these

additional specifications.

Discussion and Conclusions

The implementation of the automated item selection algorithm was

technically successful. All constraints for both measures were satisfied in a

reasonable amount of computer time. There were two areas of possible

improvement in the process. First, a more detailed and careful consideration

of items included in the item pools is clearly necessary. Either

substantively problematic items should be removed from the pool, or they

should be included along with the appropriate constraints to the algorithm so

that they are chosen only if no alternative is available.

Second, it seems clear that we have not yet achieved the complete

specification of all constraints. The process of developing such complete

specifications should most likely be iterative and interactive. With the

knowledge gained so far, we can develop additional constraints and try again.

It seems likely that after a few more iterations we will have a set of

constraints that is more satisfactory.

With this expanded set of constraints, the automatic assembly of tests

should result in very good tests that may be more parallel to each other than

those constructed through a manual process. However, it seems unlikely that

any automatic process can ever produce a test that can be considered finished

without any human intervention. The automated item selection algorithm tried

out here, as well as other test assembly algorithms in the literature, can

probably never capture that part of test assembly that is clearly more of an

"art" rather than a "science."

19
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Subsequent to the experiment described here, the heuristic algorithm has

been successfully applied to the assembly of 14 other tests or test sections

from item pools ranging in size from around 300 items to over 5,000 items and

subject to constraints that numbered anywhere from 30 to over 500. A number

of these tests or test sections used conventional rather than IRTbased item

statistics in the assembly process. Nothing that wt. have learned from this

experiment was contradicted by these more extensive applications.

Based on this experiment and the more comprehensive applications,

barriers to future progress in the improvement of automatic test assembly

methods seem not to be in the development of different algorithms, nor in the

improvement of computer time and cost. Rather, the focus of future

improvements in the process of automatic test assembly lies more in the

directions of complete specifications of constraints on item selection and the

detailed coding of item properties.
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Table 1: The non-statistical features controlling the selection of
items and sets for the verbal measure. Those features
marked with an asterisk are specific to this measure.'

Name
Lower

Bound
Upper
Bound

Number
Chosen Name

Lower
Bound

Upper
Bound

limber
Chosen

*MA I N ID 2 3 3 *OPSSG 1 1 1

*SUP I D 6 8 8 *BPSSG 1 1 1

*INFER 6 8 7 *HPSSG 0 1 0
*APPL 2 4 2 *AGREE 1 3 3
*EVAL 2 4 2 *CSTGRA 1 3 1

*STYLE 0 2 1 *CSTNE 3 6 3
* SS 7 9 7 *DICTIO 1 3 1

* PS 7 9 7 *IDIOM 2 5 5
* BU 7 9 9 *LOGPRE 5 9 9
*SSPSSG 1 1 1 *PARALL 1 3 2
*BSPSSG 0 0 0 *VRBFRM 2 4 3
*PSPSSG 1 1 1 AGREE4 2 4 3
*BUPSSG 1 1 1 CSTGRA4 2 4 2
GENDER 1 1 1 CSTNE4 2 5 4
*BUS! NS 8 15 11 DI CT I04 0 2 1

CRD I FC 0 0 0 ID IC014 2 5 5
*CRT! 6 12 LOGPRE4 5 9 8
*CRT I I 6 12 8 PARALL4 1 3 1

*CRTIII 1 6 3 VRBFRM4 1 5 3
*HUMAN 0 2 0 *RCRAN 23 23 23
*OTHER 5 10 9 *SCRAN 27 27 27
*CRRAN 20 20 20

'Abbreviated feature names containing the characters PSSG are features of
reading passages.

23



Table 2: The non-statistical features controlling the selection of
items and sets for the quantitative measure. Those features

marked with an asterisk are specific to this measure.1

Name LB UB NC Name LB UB NC Name LB UB NC

DS4AB 0 2 0 DSAG 1 2 1 PSALP 1 2 1

DS4AM 0 2 0 DSALR 1 2 1 PSALR 1 2 1

DS4AN 0. 2 0 DSALP 1 2 1 PSALR 1 2 1

DS4AV 0 2 2 *DSALG 6 7 7 PSAOP 1 2 1

DS4BB 0 2 0 *DSARP 6 7 7 *PSAPU 6 8 6

DS4B0 0 2 0 *DSARR 4 5 4 *PSARE 6 8 6

DS4C3 0 2 0 *DSGP 2 2 2 *PSARP 10 12 10

DS4CA 0 2 0 *DSGR 1 1 1 *PSARR 12 14 14

DS4CC 0 2 0 DSKE': A 2 7 4 PSSEX 0 6 0

DS4CD 0 2 1 DSKEYB 2 7 4 *PSGP 2 2 2

DS4CF 0 2 1 DSKEYC 2 7 6 *PSGR 2 2 2

DS4CG 0 2 0 DSKEYD 2 7 6 PSROMA 0 2 1

DS4C I 0 2 1 DSKEYE 7 3 PS4ML 0 4 0

054C0 0 2 0 PS4AB 0 4 0 PS4MS 0 4 1

DS4CP 1 2 2 PS4AM 0 4 1 PS40E 0 4 0

DS4CR 0 2 1 PSRAN 0 4 2 PS4OR 0 4 3

DS4E2 0 2 1 PS4AV 0 4 0 PS4PC 0 4 1

DS4ES 0 2 0 PS4BB 0 4 0 PF4PF 0 4 1

DS4F F 0 2 0 PS4B0 0 4 0 PF4PG 0 4 0

DS4FM 0 2 2 PS4C3 0 4 0 PS4PL 0 4 1

DS4GR 0 2 0 PS4CA 0 4 1 PS4PP 0 4 0

DS4 I F 0 2 0 PS4CD 0 4 3 PS4PV 0 4 0

DS4 I N 0 2 0 PS4CF 0 4 1 PS4PY 0 4 1

DS4L3 0 2 0 PS4CG 0 4 1 PS40A 0 4 0

DS4L L 0 2 0 PS4CI 0 4 3 PS4QE 0 4 0

DS4L0 0 2 0 PS4C0 0 4 0 PS4QP 0 4 0

DS4L S 0 2 0 PS4CP 0 4 3 PS4R3 0 4 0

DS4MC 0 2 0 PS4CR 0 4 1 PS4RE 0 4 0

DS4MG 0 2 0 PS4E2 0 4 0 PSARP 0 4 2

DS4ML 0 2 0 PS4ES 0 4 0 PS4RT 0 4

DS4MS 0 2 0 PS4F F 0 4 0 P54S3 0 4 0

DS4PY 0 2 0 PS4FM 0 4 2 PS4SP 0 4 0

DS40A 0 2 1 PS4GR 0 4 2 *PSRAN 40 40 40

DS4QE 0 2 0 PS4 IF 0 4 0 *DSRAN 25 25 25

D S4OP 0 2 0 1 PS4 IN 0 4 0 DS40E 0 4 0

DS4R3 0 2 1 PS4L3 0 4 0 DS4ORE 0 4 3

DS4RE 0 2 0 PS4LL 0 4 0 DS4PC 0 4 0

DS4RP 0 2 2 PS4L0 0 4 0 DS4PF 0 4 0

DS4RT 0 2 1 PS4LS 0 4 0 DS4PG 0 4 0

DS4S3 0 2 0 PS4MC 0 4 0 DS4PL 0 4 0

DS4SP 0 2 1 *DALRA 4 5 4 DS4PP 0 4 1

DS4SS 0 2 0 PS4MG 0 4 0 DS4PV

DS4ST 0 2 0 PS4SS 0 4 1 DS4WK 0 2 0

DS4TA 0 2 1 PS4ST 0 4 1 DS4XP 0 2 1

DS4TO 0 2 0 PS4TA 0 4 0 DSALQ 1 2 1

DS4TP 0 2 0 PS4TO 0 4 0 PS4TT 0 4 0

DS4TR 0 2 0 P54TP 0 4 0 PS4WK 0 4 1

D5411 0 2 0 PS4TR 0 4 1 PS4XP

1LB stands for Lower Bound; UB stands for Upper Bound; NC stands for

Number Chosen.

24 BEST COPY AVAILABLE
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Figure 1: Upper and lower target test information functions and the resultant
test information functions for the manual and automatic assemblies of the
verbal measure.
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Figure 2: Upper and lower target test information functions and the resultant
test information functions for the manual and automatic assemblies of the
quantitative measure.


