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A Framework for Studying Differences Between

Multiple-Choice and Free-Response Test Items

Abstract

This paper lays out a framework for comparing the qualities and the quantities of

information about student competence provided by multiple-choice and free-response test

items. After discussing the origins of multiple-choice testing and recent influences for

change, the paper outlines an "inference network" approach to test theory, in which

students are characterized in terms of levels of understanding of key concepts in a learning

area. It then describes how to build inference networks to address questions concerning

the information about various criteria conveyed by alternative response formats. The types

of questions that can be addressed in this framework include those that can be studied

within the framework of standard test theory. Moreover, questions can be asked about

generalized kinds of reliability and validity for inferences cast in terms of recent

developments in cognitive psychology.
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Introduction

Ever since Robert M. Yerkes tested a million World War I recruits with his Army

Alpha Intelligence Test, multiple-choice items have dominated educational selection,

placement, and assessment applications. Occasional criticism has marked their reign, from

observers including no less than Banesh Hoffman, Ralph Nader, and (Educational Testing

Service's own!) Norman Frederiksen. But the character of today's debates strikes at the

very heart of the enterprise: The view of human ability that spawned multiple-choice tests

no longer holds universal currency among psychologists and educators. The ascendent

view originates from a perspective more attuned to instruction than to selection or

prediction. Learners increase their competence not simply by accumulating new facts and

skills at rates determined by relatively immutable "aptitudes," but by reconfiguring

knowledge structures, by automating procedures and chunking information to reduce

memory loads, and by developing strategies and models that tell them when and how facts

and skills are relevant.

Tests can be described as mere tools to gather information, in order to guide

educational decisions. But an educational decision-making framework cannot be conceived

except around a view of human ability, which suggests educational options, determines

what information is relevant, and specifies how an implementation is to be evaluated. The

pertinent questions about multiple-choice tests now are whether, when, and how these

tools, developed and validated within the old paradigm, can serve useful roles within the

new paradigm.

This paper discusses an analytical framework to evaluate the contribution of

different types of test items. It encompasses views of ability from the new and the old

paradigms. When applied with the old, it expresses the same questions that traditional test

theoretic investigations have asked. When applied with the new, it provides machinery to

investigate analogous questionsabout efficiency and reliability, for example. We suggest
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how "inference networks" can be used to model the information from various types of

observations, from traditional multiple-choice items to extended performances or

portfolios, in terms of skills, strategies, and states of understanding. An application in the

setting of medical diagnosis introduces the ideas, and an example based on Robert Siegler's

(1981) balance beam tasks illustrates their application in a simple educational setting.

This analytic framework does not deal directly with an important issue in the debate

over construction versus choice, namely, the feedback effects on instruction from the

content and modality of testing (see N. Frederiksen, 1984); we focus primarily on what is
learned about an individual from observations. The central role of feedback in the "why's"

and "when's" of construction versus choice, however, is addressed in the background
section.

Dackground

The Origins of Multiple-Choice Tests

The initial enthusiasm that greeted multiple-choice testing can be attributed to its

neat conformance to both the psychology and the economics of the post WorldWar I
period. The psychology was that of the IQ. To the degree that a test was reliable, ranking

students in accordance with overall proficiency was thought to reflect the cardinal

characteristic of human intelligence. The economic character of the decisions that shaped

the evolution of testing was nearly universal in education at the beginning of this century,
and it dominates practice yet today: Educators were confronted with selection or placement

decisions for large numbers of students, and resources limited the information they could

gather about each student, constrained the number of options they could offer, and

precluded much tailoring of programs to individual students once a decision was made

(Glaser, 1981).

Exposing a diverse group of students to a uniform educational. treatment typically

produces a distribution of outcomes, as measured by a test score at the end of the program
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(Bloom, 1976). Decision-makers sought to identify which students would be likely to

succeed in a limited number of programs. An individual's degree of success depends on

how his or her unique skills, knowledge, and interests match up with the equally

multifaceted requirements of a program. The Army Alpha demonstrated that at costs

substantially lower than personal interviews or performance samples, responses to

multiple-choice test items could provide information about certain aspects of this matchup.

What is necessary in this approach is that each item tap some of the skills required for

success. Even though a single item might require only a few of the relevant skills and offer

little information in its own right, a tendency to provide correct answers over a large

number of items supports some degree of prediction of success along this dimension

(Green, 1978). A typical multiple-choice test would be used to guide infrequent, broadly

cast, decisions, such as college admittance, course placement, or military occupational

assignment.

stasis Assumptions

The multiple-choice educational testing enterprise evolved under two tacit

assumptions of stasis:

1. A characteristic of examinees that is stable over time is being measured. In the

Army Alpha and many educational tests, that characteristic is posited to be

"intelligence," calibrated in units of IQ. "Intelligence" gave way to "aptitude." This

assumption is consonant with infrequent decision-making; the measure should not

be easily affected by short-term instruction (e.g., the SAT should not be

"coachable.")

2. The characteristics of the system affecting the examinee before the measurement is

made are unaffected by the measurement process. Focusing on the educational

setting, it is assumed that the instruction prospective examinees receive and what

they learn does not depend on the way their performance will be measured. It is

8
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easy to believe this assumption is satisfied when the examiners believe, as did

Yerkes, that tests are measuring examinees' "innate intelligence."

The historic cost/benefits justifications for multiple-choice testing are valid to the

extent that these assumptions are met in a given testing context. Current interest in

alternative modes of assessment, including constructed response formats, is spurred by the

realization that these assumptions are not well satisfied in all educational testing problems.

New types of decisions, new types of costs, and new types of benefits enter into the

equation. The results in a particular context may favor multiple-choice, construction, or

some mix. It is clear, however, that even when multiple-choice is favored, it must be

justified in terms of the new paradigm rather than the old, a point to which we return

below.

Dimensions of Change

Figure 1 offers a framework for discussing current interest in alternative modes of

testing. The upper left cell represents traditional choice-type observations,used to infer

overall proficiency in a specified domain. That is, it is deemed appropriate in the decision

context to treat as identical all examinees with the same overall proficiency estimate, be it

total score, formula score, or item response theory (IRT) ability estimate.

[Figure 1]

A first dimension of change arises from the realization that educational testing can

affect educational practice. Norman Frederiksen (1984) cogently illustrates this point.

During World War II, he and his coworkers encountered a gunnery course that consisted

almost exclusively of bookwork and ended with a paper and pencil final exam.

Frederiksen and his colleagues introduced a performance final requiring actual setup and

operation of the equipment. Within a few sessions, the instructors had of their own

volition introduced equipment into the course itself. Training now consisted of a balance of

bookwork and performance, and trainees' final examination performance translated into
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better performance in the job. Contemporary examples include the New York Regents'

physics examination, where what the Regents test the students study, and high stakes

assessments in schools, where rewards for high scores on specific tests encourage, at best,

emphasis of those skills, and at worst, coaching of the specific items on the test.

Once it is accepted that tests do influence instruction, attention must turn to the

character of that influence. A test has "systemic validity," in J. Frederiksen and Collins'

(1989) terminology, if the behaviors it encourages on the part of administrators, teachers,

and students enforce the learning of desired skills. A.Jministering a final essay test can be

preferable to a final multiple choice test with a higher reliability coefficient if, in preparing,

students write more essays even if the final scores on the essay and multiple-choice tests

are highly correlated within a population of students at any given point in time. This

realization spurs activity in the cell in the lower left. Students are still modeled in terms of

overall proficiency, but the tasks are designed so as to better mirror the behaviors and the

skills of the intended instruction. Steering instruction in positive directions constitutesa

"consequential basis" for validating the use of a test (Messick, 1989).

A second dimension of change challenges the stasis of the examineeor, more

accurately, focuses attention on situations in which relatively short term change is the

intended outcome of the exercise, rather than a nuisance effect. Rather than seeking long-

term, stable characteristics that are immune to change, a test in this context is meant to

provide information about characteristics of an examinee thatare ripe for change. The

problem of interest is one of diagnosis or optimal assignment to instruction; the decision is

viewed as shorter term; the options are cast not in terms of level of persistent proficiency

but of architecture of current proficiency. Examples would include the examinee's level of

understanding of phenomena in a domain of gears and pulleys problems (Hegarty, Just, &

Morrison, 1988), the mental model a student is employing for series and parallel electrical

I 0
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circuit problems (Gentner & Gentner, 1983), and approaches to solving addition problems

with mixed numbers (Tatsuoka, 1989).

The column on the right in Figure 1 thus concerns applications where the inference

depends on the architecture of the examinee's proficiency. Information can be obtained

either from choice items or from constructed responses, as will be illustrated in a following

section. These possibilities are represented by the upper 'and lower cells respectively. The

present paper focuses on comparisons of information about examinees from upper and

lower cells, within columns. That is, the information from choice and construction items

are compared given that one has already specified how to model examinees--according to

overall proficiency or architecture of proficiency. It is clear from the preceding discussion

that this logically precedent choice depends on the nature of the decision to be made about

the student.

An Analytic Framework

In this paper, a student model is a caricature of a student in terms of parameters that

capture distinctions that might exist among real students. A simple student model from the

psychometric tradition posits a single variableoverall proficiencythat expresses all

differences among students that are presumed to be relevant to the task at hand. A student

model inspired by cognitive psychology might characterize a student in terms of the number

of concepts and the nature of links among them. Marshall (1989; in press), for example,

describes students in terms of aspects of weir acquisition of schemata for arithmetic word

problems. Model-based test theory consists of techniques for drawing inferences through

student models, when the model for any given student cannot be specified with certainty

but must be inferred imperfectly from observations.

A catalogue of such techniques has been developed over the past century for student

models based on overall proficiency, from choice-type observationsthe upper-left cell in

Figure 1. Our interest lies in analogous techniques for the remaining cells. What is

11
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required in a given application is a specification of the universe of potential student models

and a way of connecting them to observations. Similar problems in such diverse areas as

forecasting, troubleshooting, medical diagnosis, and animal husbandry have spurred

research into inference networks (Lauritzen & Spiegelhalter, 1988; Pearl, 1988), or formal

statistical frameworks for reasoning about interdependent variables in the presence of

uncertainty. The next section introduces some of the key concepts in inference networks

through a medical example. Following that, the ideas are related to student modeling in

educational testing problems.

M Example from Medical Diagnosia

MUNIN is an inference network that organizes knowledge in the domain of

electromyography--the relationships among nerves and muscles. Its function is to

diagnose nerve/muscle disease states. The interested reader is referred to Andreassen,

Woldbye, Falck, and Andersen (1987) for a more comprehensive description. The

prototype discussed in that presentation and used for our illustration concerns a single arm

muscle, with concepts represented by twenty-five nodes and their interactions represented

by causal links. The ESPRIT team has generalized the application to address clusters of

interrelated muscles in a network containing over a thousand nodes. A graphic

representation of the simpler network appears in Figure 2.

[Figure 2]

The rightmost column of nodes in Figure 2 concerns outcomes of potentially

observable variables, such as symptoms or test results. The middle layers are

"pathophysiological states," or syndromes. These drive the probabilities of observations.

The leftmost layer is the underlying disease state, including three possible diseases in

various stages, no disease, or "Other"a condition not built into the system. These states

drive the probabilities of syndromes. It is assumed that a patient's true state can be

adequately characterized by values of these disease and syndrome states. Paths indicate
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conditional probability relationships, which are to be determined logically, subjectively,

purely empirically, or through model-based statistical estimation. Note that the probability

distribution of a given observable will depend on some syndromes, but not others. The

lack of a path signifies conditional independence. Note also that a given test result can be

caused by different disease combinations.

As a patient enters the clinic, the diagnostician's state of knowledge about him is

expressed by population base rates. This is depicted in Figure 2 by bars that represent the

base probabilities of disease and syndrome states. Base rates of observable test results are

similarly shown. Tests are carried out, one at a time or in clusters, and with each result the

probabilities of disease states are updated. The expectations of tests not yet given are

calculated, and it can be determined which test will be most informative in identifying the

disease state. Knowledge is thus accumulated in stages, with each successive test selected

optimally in light of knowledge at that point in time. Figure 3 illustrates the state of

knowledge after a number of electromyographic test results have been observed.

Observable nodes with results now known are depicted with shaded bars representing

observed values. For them, knowledge is perfect. The implications of these results have

been propagated leftward to syndromes and disease states, as shown by distributions that

differ from the base rates in Figure 2. These values guide the decision to test further or

initiate a treatment. Finally, updated beliefs about disease states have been propagated back

toward the right to update expectations about the likely outcomes of tests not yet

administered. These expectations, and the potential they hold for further updating

knowledge about the disease states, guide the selection of further tests.

[Figure 3]

The MUNIN example described here just concerns diagnosis; the only observable

nodes are tests and symptoms. The ideas can be extended to additional types of nodes.

One type would be prognostic nodes. Probabilities would depend on underlying disease
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states. A network with diagnostic tests and prognostic assessments would draw inferences

from current health indicators to likely outcomes, such as probability of survival after five

years. Prognosis nodes could be potentially observable, such as whether a particular

symptom will be present, or unobservable but inferable stochastically from future

observables, such as the disease state that drives probabilities of new symptoms. Another

type that could be introduced would be treatment nodes. The value of a treatment node,

like an observable, would be determined with certainty when the treatment is initiated.

Before this time, however, "what if' questions would be examined to explore the current

projections of treatment outcomes. A prognostic node would then be affected by both

disease nodes and treatment nodes; conditional probabilities of future states would depend

on the current assessment of the disease state, and expected results under different

treatment options. At any current state of diagnostic testing, the investigator could examine

the expected results of alternative treatment options. Testing would be terminated when the

additional information of subsequent tests would not provide sufficient improvement of

expected treatment outcomes. For example, there may yet be several competing disease

states, but if the treatment is identical in all cases, additional testing would not be

warranted. (See Andreassen, Jensen, & Olesen, 1990, for a hypothetical network that

encompasses diagnosis, disease identification, prognosis, and treatment selection.)

Modeling Student Understanding

To see how the ideas underlying MUNIN apply to the educational setting, consider

the analogy drawn in Table 1. In collaboration with colleagues both within ETS and

elsewhere, I am beginning to pursue a particular approach to student modeling based on

this perspective (Mislevy, Yamamoto, & Anacker, in press). In one sense it is a natural

extension of traditional psychometrics: students are described in terms of unobservable

parameters, whose values, if known with certainty, would serve as the foundation for

decision-making; observational settings (e.g., tests, performance observations, portfolios)

14
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are devised that provide information about what these parameters might be; and statistical

machinery is developed to guide decision-making in the face of the uncertainty engendered

by ascertaining the values of only observable variables rather than parameters.

[Table 1]

Construction of an analytic framework for a specific application begins with a

definition of a universe of student models. This "supermodel" is indexed by parameters

that signify distinctions among states of students' understanding. Symbolically, we shall

refer to the (possibly vector-valued) parameter of the student-model as Ti. Parameters can

be qualitative and quantitative, and qualitative parameters can be unordered, partially

ordered, or completely ordered. A supermodel can contain any mixture of these types.

Their nature is derived from the structure and the psychology of the learning area, the idea

being to capture the essential nature of key distinctions among students. A particular set of

values of the parameters of the supermodel specifies a particular student model, or one

particular state among the universe of possible states.

Any application poses a modeling problem, an item construction problem, and an

inference problem. The following sections discuss each in turn.

The modeling problem is to delineate the states or levels of understanding in a

learning domain. In meaningful applications this map would be expected to include several

distinct strands, as understanding develops in a number of key concepts, and it might

address the connectivity among the key concepts. Symbolically, this substep defines the

nature of T1 and the structure of p(x1r1), where x represents observations. Obviously any

model will be a gross simplification of the reality of cognition. The objective is to capture

differences among students that are important to the job at hand. As Greeno (1976) points

out, "It may not be critical to distinguish between models differing in processing details if

the details lack important implications for quality of student performance in instructional

situations, or the ability of students to progress to further stages of knowledge and

lb



A Framework for Studying Differences

Page 11

understanding." For the kinds of selection decisions that spawned traditional tests, it may

indeed suffice to model students solely in terms of overall proficiency. Such applications

fall in the left column of Figure 1.

As useful as standard tests and standard test theory have proven in large-scale

evaluation, selection, and placement problems, their focus on who is competent and how

many items they can answer falls short when the goal is to improve individuals'

competencies. Glaser, Lesgold, and Lajoie (1987) point out that tests can predict failure

without an understanding of what causes success, but intervening to prevent failure and

enhance competence requires deeper understanding. The past decade has witnessed

considerable progress toward the requisite understanding. Psychological research has

moved away from the traditional laboratory studies of simple (even random!) tasks, to

tasks that better approximate the meaningful learning and problem-solving activities that

engage people in real life. Studies comparing the ways experts differ from novices in

applied problem-solving in domains such as physics, writing, and medical diagnosis (e.g.,

Chi, Feltovich & Glaser, 1981) reveal the central importance of knowledge structures

networks of concepts and interconnections among themthat impart meaning to patterns in

what one observes and how one chooses to act. The process of learning is to a large

degree expanding these structures and, importantly, reconfiguring them to incorporate new

and qualitatively different connections as the level of understanding deepens. Educational

psychologists have begun to put these findings to work in designing both instruction and

tests (e.g., Glaser et al., 1987; Greeno, 1976; Marshall, 1985, in press). Again in the

words of Glaser, Lesgold, and Lajoie (1987),

"Achievement testing as we have defined it is a method of indexing stages of

competence through indicators of the level of development of knowledge,

skill, and cognitive process. These indicators display stage3 of performance

that have been attained and on which further learning can proceed. They

also show forms of error and misconceptions in knowledge that result in

16
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inefficient and incomplete knowledge and skill, and that need instructional
attention." (p.81)

Tests built to support such inferences lie in the rightmost column of Figure 1.

Research relevant to this approach has been carried out in a variety of fields,

including cognitive psychology, the psychology of mathematics and science education,

artificial intelligence (AI) work on student modeling, test theory, and statistical inference.

Cognitive scientists have suggested general structures such as "frames" or "schemata" that

can serve as a basis for modeling understanding (e.g., Minsky, 1975; Rumelhart, 1980),

and have begun to devise tasks that probe their features (e.g., Marshall, 1989, in press).

Researchers interested in the psychology of learning in subject areas such as proportional

reasoning have focused on identifying key concepts, studying how they are typically

acquired (e.g., in mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus,

Pulos, & Stage, 1983), and constructing observational settings that allow one to infer

students' understanding (e.g., van den Heuvel, 1990; McDermott, 1984).

Models that focus on patterns other than overall proficiency, and which constitute

rudiments for student models more consonant with the results of educational and cognitive

psychology, have begun to appear in the test theory literature. Examples include the

following:

Mislevy and Verhelst's (1990) mixture models for item responses when different

examinees follow different solution strategies or use alternative mental models.

Falmagne's (1989) and Haertel's (1984) latent class models for Binary Skills. A
learner is characterized as possessing or not possessing each ofa number of

specified skills; a task is characterized by the subset of these its solution requires.

Response probabilities are driven by the matchup between the skills he or she

possesses and the skills a task demands. Also see Paulson (1986) for an alternative

use of latent class modelling in cognitive assessment.
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Embretson's (1985) multicomponent models for integrating item construction and

inference within a unified cognitive model. The conditional probabilities of solution

steps given a multifaceted student model are given by IRT-like statistical structures.

Tatsuoka's (1989) Rule space analysis. Tatsuoka uses a generalization of IRT

methodology to define a metric for classifying examinees based on likely patterns of

item response given patterns of knowledge and strategies.

Masters and Mislevy's (in press) and Wilson's (1989a) use of the Partial Credit

rating scale model to characterize levels of understanding, as evidenced by the

nature or approach of a performance rather than its correctness.

Wilson's (1989b) Saltus model for characterizing stages of conceptual

development. Item responses are assumed to follow an IRT model within stages,

but the characteristics of items are allowed to differ across stages.

Yamamoto's (1987) Hybrid model for dichotomous responses. The Hybrid model

characterizes an examinee as belonging either to one of a number of classes

associated with specified states of understanding, or in a catch-all IRT class.

Examinees in this catch-all class are characterized merely as to overall proficiency;

their response patterns are not strongly associated with the states that are built into

the model.

The item construction problem is to devise situations in which students who

differ in the parameter space are likely to behave in observably different ways. The

conditional probabilities of behavior of different types given the unobservable state of the

student are the values of p(xlri), which may in turn be modeled in terms of another set of

parameters, say 13. The p(x1r1) values provide the basis for inferring back about the student

state. For measuring overall proficiency, p(xlri) might take the form of an IRT model, with

item parameters [3; examinees with high proficiency should be more likely than those with

low proficiency to provide correct answers. As an example of the architecture of

18



A Framework for Studying Differences

Page 14

proficiency, Gentner and Gentner (1983) discuss how different parallel and series

combinations of resistors and batteries prove differentially difficult for students using

"water flow" as opposed to "teeming crowds" analogies to solve electrical circuit problems;

items would be devised to distinguish between students using one analogy or the other, or
neither or both.

Whatever the character of the student model, an element in x could contain a right

or wrong answer to a multiple-choice test item, but it could instead be the problem-solving
approach regardless of whether the answer is right or wrong, the quickness of responding,

a characteristic of a think-aloud protocol, or an expert's evaluation ofa particular aspect of
the performance. These distinctions determine whether one is operating in the top row or
the bottom row of Figure 1.

Specifying a universe of student models selects a column ofFigure 1. This step
depends on the nature of the inference or decision to be made. The question of choice

versus construction is well defined when, for a given student model, observations of both
types can be gathered. The decision of the mix to be observed can depend, wholly or
partly, on the amount of information conveyed by alternative observations about the

unobservable parameters in the student model. The effectiveness of an item is reflected in

differences in conditional probabilities associated with different parameter configurations,
so an item may be very useful in distinguishing among some aspects of student models but
useless for distinguishing among others.

The inference problem is to reason from observations to student models. The
model-building and item construction steps provide rl and p(xhi). Let p(ri) represent

expectations about ri in a population of interestpossibly non-informative, possibly based

on expert opinion or previous analyses. Bayes' theorem can be employed to draw
inferences about Ti given x via p(rilx) oc p(x1n) p(n). Thus p(iilx) characterizes belief

about a particular student's model after having observed a sample of the student's behavior.
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Practical problems include characterizing what is known about 13 so as to determine p(x1r1),

carrying out the computations involved in determining p(rilx), and, in some applications,

developing strategies for efficient sequential gathering of observations. The ESPRIT team

that developed MUNIN has developed the inference network shell IIUGIN (Andersen,

Jensen, Olesen, & Jensen, 1989) to carry out calculations of this type, using the

computational advances introduced by Lauritzen & Spiegelhalter (1988).

As mentioned above in the MUNIN example, an inference network can be extended

with prognostic nodes and treatment nodes. In educational selection, a prognostic node

might be a rating of success in a training course. The goal would be to gather information

about an examinee until it could be predicted with sufficient accuracy whether the rating

would be above or below a cutpoint. In instructional assignment, the same prognostic

node could be used but predictions would depend on instructional options as well. Now

the goal would be to determine to a sufficient degree of accuracy which instructional option

gives the highest expectation of success. For example, the determination may depend on

identifying the mental model a student is employing, in order to explicate the limitations of

that model and introduce complementary models.

Application to Overall Proficiency

IRT models are special instances of inference networks, with the form shown as

Figure 4. There is one unobservable node in a basic IRT model, the overall proficiency,

often denoted 0 in the IRT literature but denoted ti here for consistency. There is one

observable node for each test item, xj for j=1,...,n. A link runs from r to each xj,

symbolizing the conditional probability distribution of the potential responses. If the only

potential responses are right or wrong, this is just a probability of a correct response at each

ri value; that is, P(xj=11n). The lack of links among items indicates the assumption of

local, or conditional, independence of item responses given rl. Most applications of IRT

with multiple-choice items attend only to overall correctness, although models are also

U
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available for partial-credit scoring of choices, where the alternatives are distinguished and

the conditional probabilities of each are modeled as functions of overall proficiency (e.g.,

Bock, 1972; Thissen & Steinberg, 1984; Samejima, 1979; Sympson, 1983).

[Figure 4]

Item response theory models can also be employed with constructed response

items. What is required is that a score of some sort be assigned to a response, bringing it

into the same framework as the choice items discussed immediately abovethat is,

responses are mapped onto a scoring scale, and scores are mapped to ri via an IRT model.

The mapping of responses to item scores may be done by a human judge or mechanically in

accordance with rules (Bennett, in press). An additional option is for the score to be a

continuous real-valued number, Samejima (1973) provides an IRT model of this type.

Figure 4 still represents the inference network.

Consider an application in which both choice and constructed responses can be

garnered. How can the value of their information be compared? We consider four

possibilities, distinguished by whether one wishes to allow for the possibility that "overall

proficiency" has different meanings for choice and construction items (single proficiency

versus distinct proficiencies) and whether a prognostic node is included.

A Single Proficiency. No Criterion Available

Figure 4 is the appropriate inference network in this case. There is only one

proficiency; probabilities of success to all items are driven by that proficiency alone, and

are independent otherwise. Some of the observable nodes correspond to choice items,

others correspond to construction items. A single IRT model is fit to data in which samples

of examinees have been administered overlapping subsets of items of both types.

Comparing information is straightforward in this case. Start with the "nothing known

about an individual" state, analogous to the new patient in the MUNIN example. How

much is the posterior distribution for his or her 71 sharpened by ascertaining a subset of

2.1
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choice items? How much by a subset of construction items? How much by various

mixes? How much for subsets of items of the two types that take the same amount of time

to administer? Do the answers vary for examinees at low, medium, or high proficiencies,

as determined by entering typical responses at these various ti levels? These are analyses

of the accuracy with which different tests distinguish among student models within the

"single overall proficiency" supermodel in traditional terminology, the reliabilities of

different tests that could be constructed from the full pool of items of all types.1

A Single Proficiency. Criterion Available

Extending the analytic framework of the preceding paragraph to predictive potential

is accomplished by including one or more prognostic or criterion nodes, as illustrated in

Figure 5. Having assumed that the same proficiency drives probabilities for both choice

and construction items means that an advantage in accuracy for ri translates directly into an

advantage in accuracy for the criterion. What is new is the ability to evaluate information in

terms of predictive power ("predictive validity") rather than reliability.

[Figure 5]

Distinct Proficiencies. No Criterion Available

Empirical evidence suggests distinctions in at least some tests, in at least some

examinee populations, between overall proficiency on choice items and overall proficiency

on construction items. In the College Board's Advanced Placement (AP) History

examinations, for example, girls appear to enjoy an advantage over boys on the essays

compared to multiple choice, while in AP in Calculus, the boys do relatively better in the

open-ended problems (Mazzeo, Schmidt, & Bleistein, in press). Figure 6 allows for the

possibility of two distinct proficiencies. Choice items are driven by one, with conditional

probabilities expressed perhaps through an IRT model, and construction items are (Liven

by another. The link between the two proficiencies allows for the (possibly high)

relationship between them.
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[Figure 6]

The link between the two proficiencies allows belief about one proficiency to be

updated by information from items of the other type. This suits an application in which one

proficiencysay, the one driving construction items is ultimately of interest, yet

information about it can be obtained indirectly from the othersay, from choice items. If it

is sufficiently easier or less expensive to secure, such indirect information can update belief

about the node of interest more efficiently than information from nodes linked to it directly.

Distinct Proficiencies. Criterion Available

The nodes and links added in Figure 7 introduce a prognostic variable. Interesting

possibilities occur because information can flow to the criterion variable from both

proficiencies, which can differ in their strength. The argument that in a particular

application, construction items are less reliable but more valid than choice items requires the

complexity of Figure 7 as opposed to Figure 5. This claim requires (1) weaker conditional

probability links from construction item nodes to construction proficiency than those from

choice item nodes to choice proficiency, (2) a commensurately stronger link from

construction proficiency to the criterion than from choice proficiency to the criterion, and

(3) a relatively wtak link between choice and construction proficiencies.

[Figure 7]

Application to Proficiency Architectures

This section uses similar reasoning to compare the information from choice and

construction items when the latent variables are more complex than simply low-to-high

proficiency. To fix ideas, we employ the balance beam example from Mislevy, Yamamoto,

and Anacker (in press).

Siegler's Balance Beam Tasks

Piaget studied children's developing understanding of proportion with a variety of

methods, including their explanations of balance beam problems (Inhelder & Piaget, 1958).
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Robert Siegler (1981) devised a set of balance beam tasks such that patterns of response

could be predicted from the stages Piaget delineated. The tasks are exemplified in Figure 8.

Varying numbers of weights are placed at different locations on a balance beam; the child

predicts whether the beam will tip left, tip right, or remain in balance. Piaget would posit

that they will respond in accordance with their stage of understanding, the typical

progression of which is outlined below. Data from the tasks are indistinguishable from

standard multiple- choice test data on the surface, but there are two key distinctions:

1. What is important about examinees is not their overall probability of answering

items correctly, but their (unobservable) state of understanding of the domain.

2. Children at less sophisticated levels of understanding initially get certain problems

right for the wrong reasons. These items are more likely to be answered wrong at

intermediate stages, as understanding deepens! They are bad items by the standards

of classical test theory and IRT, because probabilities of correct response do not

increase monotonically with increasing total test score. From the perspective of the

developmental theory, however, not only is this reversal expected, but it is

instrumental in distinguishing among children with different ways of thinking about

the problems.

[Figure 8]

The usual stages through which children progress can be described in terms of

successive acquisition of the rules listed below.

Rule I: If the weights on both sides are equal, it will balance. If they are not equal, the

side with the heavier weight will go down. (Weight is the "dominant dimension,"

because children are generally aware that weight is important in the problem earlier

than they realize that distance from the fulcrum, the "subordinate dimension," also

matters.)
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Rule U: If the weights and distances on both sides are equal, then the beam will balance.

If the weights are equal but the distances are not, the side with the longer distance

will go down. Otherwise, the side with the heavier weight will go down. (A child

using this rule uses the subordinate dimension only when information from the

dominant dimension is equivocal.)

Rule III: Same as Rule II, except that if the values of both weight and length are unequal

on both sides, the child will "muddle through" (Siegler, 1981, p.6). (A child using

this rule now knows that both dimensions matter, but doesn't know just how they

combine. Responses will be based on a strategy such as guessing.)

Rule IV: Combine weights and lengths correctly (i.e., compare torques, or products of

weights and distances).

It was thus hypothesized that each child could be classified into one of five stages

the four characterized by the rules, or an earlier "preoperational" stage in which it is not

recognized that either weight or length bear any systematic relationship to the action of the

beam. The classification of students is a simple example of the "architecture of

proficiency," placing it in the right-hand column of Figure 1. While Piaget's interviews fall

in the lower cell, Siegler's tasks fall in the upper. Table 2 shows the probabilities of

correct response that would be expected from groups of children in different stages, if their

responses were in complete accordance with the hypothesized rules.2 Scanning across the

rows reveals how the probability of a correct response to a given type of item does not

always increase as level of understanding increases. For example, Stage 11 children tend to

answer Conflict-Dominant items right for the wrong reason, while Stage III children,

aware of a conflict, flounder.

[Table 2]

2:)
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A Latent Class Model for Balance Beam Task

If the theory were perfect, the columns in Table 2 would give probabilities of

correct response to the various types of items from children at different stages of

understanding. Observing a correct response to a Subordinate item, for example, would

eliminate the possibility that the child was in Stage I. But because the model is not perfect,

and because children make slips and lucky guesses, any response could be observed from a

child in any stage. A latent class model (Lazarsfeld, 1950) can be used to express the

structure posited in Table 2 while allowing for some "noise" in real data (see Mislevy et al.,

in press, for details). Instead of expecting incorrect responses with probability one to

Subordinate items from Stage I children, we might posit some small fraction of correct

answersp(Subordinate correctlStage =1). Similar probabilities of "false positives" can be

estimated for other cells in Table 2 containing 0's. In the same spirit, probabilities less than

one, due to "false negatives," can be estimated for the cells with 1's. Inferences cannot be

as strong when these uncertainties are present; a correct response to a Subordinate item still

suggests that a child is probably not in Stage 1, but no longer is it proof positive.

Expressing this model in the notation introduced above, represents stage

membership, x represents item responses, and p(xIT) are conditional probabilities of

correct responses to items of the various types from children in different stagesa noisy

version of Table 2. The proportions of children in a population of interest at the different

stages are p(r1), and the probabilities that convey our knowledge about a child's stage after

we have observed his responses are p(illx).

Siegler created a 24-task test comprised of four tasks of each type. These tasks can

be considered multiple-choice, because the respondent was asked to predict for each

whether the beam would tip left, tip right, or balanceonly one of which would actually

happen. Siegler collected data from 60 children, from age 3 up through college age, at two

points in time, for a total of 120 response vectors. Mislevy et al. (in press) fit a latent class
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model to these data using the HYBRIL computer program (Yamamoto, 1987), obtaining

the conditional probabilitiesp(xlri)--shown in Table 3, and the following vector

summarizing the (estimated) population distribution of stage membership:

p(1) = (Prob(Stage=0), Prob(Stage=1), ..., Prob(Stage=IV))

= (.257,.227,.163,.275,.078) .

[Table 3]

Note that different types of items are differentially useful to distinguish among children at

different levels. Equal items, for example, are best for distinguishing Stage 0 children

from everyone else. Conflict-Dominant items, which would be dropped from standard

tests because their probabilities of correct response do not have a strictly increasing

relationship with total scores, help differentiate among children at Stages II, III, and IV.

Figure 9 depicts the state of knowledge about a child before observing any

responses. Just one item of each type is shown rather than all four for simplicity. The

corresponding status of an observable node (i.e., an item type) is the expectation of a

correct response from a child selected at random from the population. The path from the

stage-membership node to a particular observable node represents a row of Table 3.

[Figure 9]

Figure 9 represents the state of our knowledge about a child's reasoning stage and

expected responses before any actual responses are observed. How does knowledge

change when a response is observed? One of the children in the sample, Douglas, gave an

incorrect response to his first Subordinate item. This could happen regardless of Douglas'

true stage; the probabilities are obtained by subtracting the entries in the S row of Table 3

from 1.000, yielding, for Stages 0 through IV, .667, .973, .116, .019, and .057

respectively. This is the likelihood function for ri induced by the observation of the

response. The bulk of the evidence is for Stages 0 and I. Combining these values with

the initial stage probabilities p(rt) via Bayes' theorem yields updated stage probabilities,
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p(Tilincorrect response to a Subordinate item): for Stages 0 through IV respectively, .41,

.52, .04, .01, and .01. Expectations for items not yet administered also change. They are

averages of the probabilities of correct response expected from the various stages, now

weighted by the new stage membership probabilities. The state of knowledge after

observing Douglas' first response is depicted in Figure 10 (see Mislevy et al., in press, for

computational details; also see Macready & Dayton, 1989.)

[Figure 10]

Extending the Paradigm

The balance beam exemplar illustrates the challenge of inferring states of

understanding, but it addresses development of only a single key concept. A broader view

characterizes interconnections among distinct elements of understanding or lines of

development. Calculating and comparing torques to solve the "conflict" problems

characterizes Stage IV. But if a child at Stage IV cannot carry out the calculations reliably,

his pattern of correct and incorrect responses would be hard to distinguish from that of a

child in Stage III. Although the two children might answer about the same number of items

correctly, the instruction appropriate for them would differ dramatically. And children at

any stage of understanding of the balance beam might be able to carry out the computational

operations in isolation. This section discusses a hypothetical extension to the exemplar,

namely, the ability to carry out the arithmetic operations needed to calculate torques. For

illustrative purposes, we simply posit a skill to carry these calculations out reliably, either

possessed by a child or not.3 The goal of the extended system is to infer both balance-

beam understanding and computational skill. To make the distinctions among states of

understanding in this extended domain, we introduce two new types of observations:

1. Items isolating computation, such as "Which is greater, 3x4 or 5 x 2?"
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2. Probes for introspection about solutions to conflict items: "How did you get your

answer?" These items are construction items, in contrast to the choice items asking

simply for a prediction, of "tip left," "tip right," or "remain in balance."

Figure 11 offers one possible structure for this network. The "S-Correct" and "CS-

Correct" nodes represent the multiple-choice responses: is the stated prediction correct?

The "CS-Why" node represents the examinee's verbal explanation fora prediction for a

particular Conflict-Subordinate task. To keep the diagram simple, only one balance-beam

task each for a Subordinate and a Conflic(Sirbordinate task are illustrated. Equal and

Dominant tasks would have the same paths as the Subordinate task, and Conflict-Dominant

and Conflict-Equal tasks would have the same paths as the Conflict-Subordinate tasks,

although the conditional probability values would generally differ.

[Figure 11]

There are three unobservable variables in the system; i.e., rl has three components.

The first again expresses level of understanding in the balance beam domain. The second

is the ability to carry out the calculations involved in computing torques. The third

concerns the integration of balance-beam understanding and calculating proficiency.

Specifically, it indicates whether a child both is in Stage IV And possesses the requisite

computational skills.

Before discussing the construction versus choice tradeoffs in thisnetwork, we

mention in passing some conditional independence assumptions implicit in the figure.

First, note that the probabilities of the pure computation items depend on the unobservable

computation variable only; they are conditionally independent of level of balance beam

understanding. Secondly, for children in Stages 0 through III, both the right/wrong

answers and their explanations depend only on level of understanding. Because they do

not realize the connection between the problems and the torque calculations, their responses
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to the balance beam tasks are conditionally independent of their computational skill, even

on items for which that skill is an integral component of an expert solution.

The correctness aspect of an answer has only two possibilities, right or wrong, but

an explanation can fall into five categories corresponding to stages of understanding. The

overt explanation is the raw observation of the constructed answer, an expert's judgement

categorizes that response into one of the stage categories. Note that a Stage III child might

give an explanation consistent with Stages 0, I, II, or III, but would not, by definition,

give a Stage IV explanation. Theory thus posits that the conditional probability of a Stage K

response from a Stage J child is zero if K>J. Conditional probabilities for KSJ might be

estimated from data or based on experts' experience. The most likely explanation for an

Equal task from people at Stage IV would probably be a Stage II explanation: "It balances

because both the weights and distances are equal." A hypothetical example of the

conditional probabilities of explanations of different levels for a Equal item are given in

Table 4.

[Table 4]

The first type of comparison of information from construction and choice items

occurs when a given inference can be drawn from items of either type: to what degree do

responses update the nodes of interest? In this example, probabilities of stage membership

can be updated by observing either choice or construction data. Their comparative values

depend on the conditional probabilities p(rilx) associated with the potential responses.

Specifically, the more the probabilities from a given latent state are concentrated on a few

observable states, the more "reliable" the items are. The construction items in this

hypothetical example would be more reliable in this sense than the choice items because a

correct prediction can emanate from a student at any level, whereas a Level K verbal

explanation can only come from a student at Level K or higher.

U
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The second basis of comparison is whether certain inferences can be drawn from

one type of response but not the other. For children in Stage IV, right/wrong answers to

conflict items depend on the understanding/computation integration variable, but

explanations depend only on understanding. As noted above, information from choice

items alone cannot determine whether poor performance on conflict items is due to Stage DI

reasoning or Stage IV reasoning coupled with an inability to carry out calculations reliably.

This is represented in Figure 12: after a correct answer to a choice-type Subordinate item

and an incorrect answer to a choice-type Conflict-Subordinate item, the state of knowledge

expresses a mixture of four possibilities:

1.. The student is in a low stage (0-II) and gave a correct answer to the Subordinate

item without a correct rationale.

2. The student has the requisite computational skill but is in Stage III, and thus

answered the Conflict-Subordinate item incorrectly because she did not have

sufficient understanding.

3. The student is in Stage IV but lacks the requisite computational skill, and thus

answered the Conflict-Subordinate item incorrectly because of an error when

carrying the appropriate torque comparison.

4. The student is in Stage DI and lacks the requisite computational skill.

[Figure 12]

All four of these possibilities lead to the prediction of an incorrect response to future

Conflict-Subordinate items or a structurally similar proportional reasoning task such as

"shadows" (Siegler, 1981). Figure 13 illustrates this by adding a prognostic node: a

Conflict-Subordinate choice-item at Time 2. For an accurate prediction, or a selection

decision based on this composite skill, the distinction among the four possibilities would

probably not be important; the child would probably perform with a similar pattern, for the

same unknown reasons. But if the distinction were important to makeas it would be if

3f
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the objective is to improve the student's chances at handling such problemsit could be

accomplished by accumulating information of additional kinds. One way would be to

obtain responses to open-ended or choice-type computation problems as in Figure 14, to

investigate the hypothesis of calculation failure. Alternatively, one could obtain an open-

ended answer to the Conflict-Subordinate itemwhy did you make the response you did?

Figure 15 illustrates this possibility. The results of these types of items would inform

whether the instruction should be computational or conceptual. Figure 16 adds

instructional nodes, and illustrates the case in which information from a choice item has

indicated that the problem was computational, and computational instruction increases the

probability of a correct response at Time 2.

[Figures 13-16]

A Final Comment

This paper is based on the following premises:

1. Educational testing is gathering information to make educational decisions.

2. The type of decisions to be made determines the student model that is appropriate.

It is assumed that the decision maker would know how to act if a particular

student's model were known with certainty.

3. Student models cannot be known with certainty. At any point in time, the model

for a given student is known only up to the probabilities of various alternatives.

4. Test theory consists of rules and techniques for designing observational settings to

obtain information to reduce uncertainty about student models, and for carrying out

inferences and making decisions in the presence of remaining uncertainty.

5. Choice and construction items are two options for obtaining information to update a

student model.

6. Decisions about the type of observations to gather should be made in light of (a) the

information they provide for the decision at hand, and (b) the real and potential
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consequences of the method of testing for the system in which the testing takes

place.

The paper's objectives are achieved to the extent that it places the debate on choice
and construction in a framework wherein advocates of different approaches can ask
questions that have common meanings to all participants, and that can, at least in principle,
be answered.
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Mao

1. As noted in the introduction, neither this analytic framework nor those that follow take

into account feedback effects on the educational system, which can, in cost/benefit

analyses, tip the balance in favor of tests with lower reliabilities and predictive potentials.

2. The values in Table 2 assume that whenever a child's state of understanding does not

predict a particular answer, the probabilities of responding with "tip left," "tip right," and

"equal" are the same. Propensities to respond one way or another will certainly exist

within particular children in these stages, and they may vary systematically with stage of

understanding. These probabilities could be estimated from richer data, as might be

gathered from the hypothetical extension of the test described below.

3. Obviously, states of understanding for calculating and comparing torques could be

developed in greater detail, and would indeed have to be if one intended to remediate skill

deficits in this domain. Verifying the presence of the broadly construed skill suffices to

eliminate it as a source of failure on Conflict beam items. Discovering its absence could

trigger further investigation with an inference network probing the details of the composite

skill's architecture.
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Table 1

Inference Necworks in Medicine and Education

Medical Application Educational Application

Observable symptoms, medical tests Test items, verbal protocols,

teachers' ratings of student performances

Disease states, syndromes States or levels of understanding of key

concepts, strategy choices

Interconnections based on medical theory Interconnections based on cognitive and

educational theory

Medical prognosis Predictive distribution for criterion

measures

Evaluation of potential treatment options Expectations of student status after

potential educational treatment



Table 2

Theoretical Conditional Probabilities-- Expected Proportions of Correct Response

Problem type Stage 0 Stage I Stage II Stage III Stage IV

Equal .333 1.000 1.000 1.000 1.000

Dominant .333 1.000 1.000 1.000 1.000

Subordinate .333 .000 1.000 1.000 1.000

Conflict-

Dominant .333 1.000 1.000 .333 1.000

Conflict-

Subordinate .333 .000 .000 .333 1.000

Conflict-Equal .333 .000 .000 .333 1.000



Table 3

Estimated Conditional ProbabilitiesExpected Proportions of Correct Response

Problem type Stage 0 Stage I Stage 11 Stage III Stage IV

Equal .333* .973 .883 .981 .943

Dominant .333* .973 .883 .981 .943

Subordinate .333* .026 .883 .981 .943

Conflict-

Dominant .333* .973 .883 .333* .943

Conflict-

Subordinate .333* .026 .116 .333* .943

Conflict-Equal .333* .026 .116 .333* .943

* denotes fixed value



Table 4

Conditional Probabilities of Explanations to an E Item

Respondent's

Stage Stage 0 Stage I

Explanation

Stage II Stage III Stage IV

Stage 0 1 0 0 0 0

Stage I .20 .80 0 0 0

Stage II .10 .10 .80 0 0

Stage DI .05 .05 .80 .20 0

Stage IV .03 .10 .70 .02 .15
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Multiple
Choice,
True/False

"Something
else"-
essays,
patient
management
problems,
portfolios,
etc.

Object of Inference

Level of Architecture of
Proficiency Proficiency

Traditional
standardized
intelligence and
aptitude tests

Tatsuoka's
"rule space";
Mislevy/

Verhelst
"mixed strategies"

Essay tests of
proficiency, tests
with extended
problem solving
activities

Both at the
same time!

Figure 1

Modes and Objects of Educational Testing
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Choice Item 1

Choice Item 2

Choice Item 3

Choice Item 4

Proficiency

Construction Item 1

Construction Item 2

Construction Item 3

Figure 4

Construction Item 4

Network for a Single Proficiency, No Criterion Available
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Proficiency

Choice Item 1

Choice Item 2

Choice Item 3

Choice Item 4

/101 Construction Item 1

Construction Item 2

Construction Item 3

Construction Item 4

Criterion
Performance

Figure 5

Network for a Single Proficiency, Criterion Available
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Proficiency- -
Construction

Proficiency--
Choice

Figure 6

Choice Item 1

Choice Item 2

Choice Item 3

Choice Item 4

Construction
Item 1

Construction
Item 2

Construction
Item 3

Construction
Item 4

Network for Distinct Proficiencies, No Criterion Available
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Choice Item 1

Choice Item 2

Proficiency- -
Choice

Choice Item 3

Choice Item 4

Proficiency- -
Construction

Construction
Item 1

Construction
Item 2

Construction
Item 3

Construction
Item 4

Criterion
Performance

Figure 7

Network for Distinct Proficiencies, Criterion Available
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Item Type Sample Item Description

E

D

S

4,

I

sif

CD III Ilt III
A 4/

CS Mil ICII
4/

CE

Equal problems (E), with
matching weights and lengths on
both sides.

Dominant problems (D), with
'unequal weights but equal
lengths.

Subordinate problems (S), with
unequal lengths but equal
weights.

Conflict-dominant problems (CD),
in which one side has greater weight,
the other has greater length, and the
side with the heavier weight will go
down.

Conflict-subordinate problems
(CS), in which one side has greater
weight, the other has greater length,
and the side with the greater length
will go down.

Conflict-equal problems (CE), in
which one side has greater weight,
the other has greater length, and the..
beam will balance.

Figure 8

Sample Balance Beam Items
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Figure 10

State of Knowledge after an Incorrect Response to an S Task
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Figure 11

An Inference Network for an Extension of the Balance Beam Exemplar
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An Extended Inference Network: Knowledge after Two Responses
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Figure 13

An Extended Inference Network: Prediction of CS at Time 2
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Figure 14

An Extended Inference Network: Knowledge after Three Responses,

Including Computation
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S--Correct?
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Figure 15

An Extended Inference Network: Knowledge after Three Responses,

Including "Why?"
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