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Demonstrating the Utility of a Multilevel Model in the
Assessment of Differential Item Functioning'

Mary Pommerichsc
eN1 American College Testing

LL1 Total test score is routinely employed as the matching criterion for the Mantel-

Haenszel (MH) procedure for detecting differential item functioning (DIF), under the

assumption that observed score is representative of true score. When tests contain few items,

observe,: score may not be an accurate reflection of true score, and the MH statistic may

perform poorly. Applications of the MH procedure in such situations require an alternate

strategy; one such strategy is to include background variables in the matching criterion.

Techniques for incorporating external information are presented here that match on a

weighted score that combines the observed score and background data, using either ordinary

least squares regression or a multilevel model. The regression and multilevel models were

constructed using data obtained with the Grade 3 North Carolina End of Grade Mathematics

Test. A simulation study was performed in which the prediction models were used to

generate data, and three MH statistics were computed matching on observed scores, regression

weighted scores, and multilevel weighted scores.

The results showed similar performance for the regression and multilevel weighted

score methods. The observed score and weighted score methods performed similarly for test

lengths of 20 and 40 items. The weighted score methods demonstrated advantages over the

observed score method for test lengths of 5 and 10 items, but the improvement was small and

inconsistent. Techniques for improving the performance of the weighted score methods are

discussed.
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Demonstrating the Utility of a Multilevel Model in the
Assessment of Differential Item Functioning

TI- Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988) is a popular method

for examining differential item functioning (DIF) in comparison groups. The method is

designed to detect DIF in dichotomously scored items, for groups that are matched on some

measure of ability; an item is said to display DIF if members of the two groups with the same

ability have different probabilities of answering the item correctly. Routinely, total test score

is employed as the matching criterion for the MH, due to its ready availability and the

assumption that observed score is representative of the latent ability or true score of the

examinee. With multiple choice tests, test length is usually sufficient so that the MH is not

distorted by an unreliable observed score; with short tests, observed score becomes

increasingly unreliable, and the MH statistic becomes unstable (see Donoghue & Allen, 1993).

Donoghue, Holland, and Thayer (1993) concluded that test lengths of fewer than 20 items

should not be used to construct matching variables.

With cognitive testing moving toward the use of performance assessment tasks, the

issue of matching becomes more pertinent, as the number of items is typically very small and

observed score is unreliable. A new matching technique for the MH procedure is required if

the method is to be used to assess short tests with dichotomously scored responses or

extended for the detection of DIF in polytomously scored assessments.

Research on External and Internal Matching Criteria for DIF Studies

Evaluations of alternatives to matching on observed score have been limited primarily

to the assessment of internal criteria; few studies have been published where external criteria

were used in matching the comparison groups. Zwick and Ercikan (1989) hypothesized that

much of the observed DIF on the NAEP History assessment was a result of group differences

in history coursework, and that the occurrence of DIF would be reduced if the groups were

more similar in coursework. They conditioned on the number of historical periods studied

within each level of observed score, but found the number of MH DIF items was not reduced

when compared to DIF items produced by matching on observed score. In an extension of

the MH procedure to assess DIF in polytomously scored items, Zwick, Donoghue, and Grima

(1993) matched on an observed score that summed 20 dichotomous items and five

polychotomous items. The authors addressed the need for research on aspects of matching
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such as multidimensional matching variables, measures external to the assessment, and

matching variables based on noncognitive data.

Multiple studies (Clauser, Mazor, & Hambleton, 1991; Clauser, Nungester, Mazor, &

Ripkey, 1994; Mazor, Narayanan, Stout, & Roussos, 1994; and Tian, Pang, & Boss, 1994)

have reported that the choice of matching criterion, total test or a subtest, resulted in

differential classification of DIF in items. In contrast, Ryan (1991) studied the effect of the

number and context of test items comprising total test score and found no clear tendency for

items displaying a certain magnitude of DIF to vary across matching criteria.

Additional studies have assessed the effect of collapsing score categories on the

performance of the MH statistic. Raju, Bode, and Larsen (1989) concluded that 4 or more

score groups of equal width were sufficient to yield stable MH estimates on a 40-item test.

Clauser, Mazor, and Hambleton (1994) found a gain in power associated with reducing the

number of score groups for an 80-item test. Donoghue and Allen (1993) showed that some

methods of matching on collapsed score categories (defined as thick matching) improved the

performance of the MH procedure for short tests, while matching on total test score (defined

as thin matching) yielded the best results for long tests. Despite the improvement in the

performance of the MI-I procedure implied by methods of thick matching in these studies,

caution must be employed in collapsing score categories because the procedure increases the

possibility of confounding DIF with a difference in the average ability of the groups (often

called impact) as the number of score categories decreases.

The Research Problem

This research examined the effect of an alternate matching strategy on the performance

of the MH for dichotomously scored items, seeking an alternative to matching on observed

score that would yield more stable results under short test lengths where the MH matched on

observed score performs poorly. External background variables were incorporated into the

matching criterion with observed score in an attempt to match on an estimate closer to true

score than observed score. Matching on the alternate estimate was expected to result in more

reliable MH estimates where the MH is known to be unstable.

The alternate matching used a weighted score that was a function of the observed

score and a predicted scon derived from background variables external to the test. The

predicted score was obtained using either a regression model or a multilevel model. In the



regression model, observed score was regressed on student-level background variables to

obtain the predicted score. In the multilevel model, the predicted score was computed by

modeling student characteristics within school district characteristics.

Given the predicted score (either from the regression or the multilevel model), a

weighted score was computed as the sum of the observed and predicted scores, each weighted

by the inverse of their error variance, divided by the sum of the weights. The weighted score

comprised both an internal criterion (observed score) and an externally-based criterion

(predicted score). Of interest was the extent to which the competing methods of matching

resulted in the correct identification of the direction and magnitude of DIF within the same

items, whether the alternate matching method correctly identified DIF where the MH matched

on observed score failed, and the relative power of the two methods when the presence of

DIF was correctly identified.

The Standard Mantel-Haenszel Procedure

The MH procedure was developed by Mantel and Haenszel (1959) for cancer research;

the applicability of the MH procedure to the detection of DIF for two comparison groups was

demonstrated by Holland and Thayer (1988). Under this approach, the performance of a focal

group on an item of interest (the studied item) is compared to the performance of a reference

group, where the reference group provides a standard for comparison. For a studied item,

each observed score category s is represented with a 2 x 2 table of group by item response,

where s = 0, 1, ..., k for a k-item test:

Correct Incorrect Total

Reference RR WR NR

Focal RF WF NF

Total R Ns

The table cells contain the frequencies of correct responses to the item in the reference group

(RR), the focal group (Re), and the combined group (R3) at s; the frequencies of incorrect

responses to the item in each group at s (WR, WF, and W5): and the total number of examinees

within each group at s (NR, NF, and N5).

The MH common-odds ratio estimator is computed for each item as

3
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Tne MH value will be greater than 1.0 when the item favors the reference group and less than

1.0 when the item favors the focal group. The hypothesis may be evaluated using a one

degree of freedom chi-square test that is the uniformly most powerful unbiased test of the null

hypothesis (see Holland & Thayer, 1988). The chi-square test has the form
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The Multilevel Model for the Research Problem

Data that fall into a hierarchical structure where one level of measurement is nested

within another may be modeled using multilevel techniques. The data used in this study were

of the form students nested within school districts. The multilevel model corresponding to

this structure is a two-level model, where students are represented at Level-1 (the within-

school districts model) and the school districts are represented at Level-2 (the between-school

districts model). The Level-1 model measures variation within school districts:

YU PQ/ PVX1U P2/X24 PPIYAU + EV
(7)

for j = 1,2, ..., n school districts. Xp is a measured characteristic of student i within school

district j, ik represents the expected change in the outcome for a fixed unit of Xi, for student i

within school district j, and e, is random error. The error structure may vary, but commonly

it is assumed to be normal with a mean of zero and constant variance, 02. Both the

individual outcomes, Y, and the regression parameters, 13p,, are assumed normally distributed.

In the multilevel model, each parameter represented in the Level-1 model is allowed to

vary across the units of analysis at Level-2. This variation is represented in an equation

modeling the intercepts and slopes as outcomes at the second level. The Level-2 model is a

between-school districts model:

11 PO 4. PIZ 1,1 P2Z2I + ATZgli r14
(8)

where Zei is a measured characteristic of the school district, ypq represents the effect of Zv on

the pth parameter for school district j, and rp, is random error. The error structure at Level-2

is assumed to be multivariate normal, with mean zero and covariance matrix T. The

parameters of the between-school districts model are fixed effects, while the errors are

random effects of the measured characteristics that influence the parameters associated with

each school district.

Parameter estimates can be obtained for the fixed effects, the random Level-1

coefficients, and the variance-covariance components of the model using the computer

program HLM (Bryk, Raudenbush, Seltzer, & Congdon, 1989). The estimates of the first

level parameters are said to be optimal in that no other estimates have a smaller expected

mean-squared error. The estimates are often called shrinkage estimates because the ordinary

5
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least squares regression line for each school district is pulled toward a predicted value based

on the school district-level model. When no second level predictors are included in the

model, shrinkage is toward a common regression line. The amount of shrinkage is

conditional on the reliability of the first level parameters; when the first level parameters are

reliable, shrinkage is minimal.

These estimates have been shown empirically to be more stable and less variable in

time than least squares estimates, and predict better in the future (Rubin, 1980). Application

of a multilevel model to predicting first year performance in law school avoided the bouncing

beta problem, describing the fact that the estimates fluctuate wildly from year to year when

alternate samples are employed (Rubin, 1989). The estimates also perform better in

cross-validation than the classical estimates (Braun, 1989; Thissen & Bock, 1990).

When the data are of a hierarchical nature, the multilevel method is preferable to

regression or other prediction techniques because it allows unique information for each school

district to be included in the prediction model. However, using regression techniques to

obtain the predicted score may be more desirable, due to the greater complexity of the task of

obtaining a predicted score under a multilevel model. If a comparison of the MH estimates

based on the multilevel and regression predicted scores shows little difference across methods

of obtaining predicted score, then regression would be the preferred method for computing the

predicted score in future applications.

Method

The research involved two stages. In the first stage, multilevel and regression models

for the predicted score were determined using observed score on the 80-item Grade 3 North

Carolina End of Grade Mathematics Test and available student and school district data

obtained from the North Carolina Department of Public Instruction. Three alternate forms of

. le Mathematics test were administered in the spring of 1993 in North Carolina's public

schools, with approximately 25,000 students responding to each form'. The second stage

comprised a simulation study in which the models from the first stage were used to generate

data, and MH statistics were then computed based on observed score and weighted score

matching. Test parameters and item response data were simulated in this study to allow

=Preliminary analyses showed responses to all forms of the Grade 3 Mathematics Test to be unidimensional.
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experimental control of the occurrence, amount, and direction of DIF in an item, enabling

direct comparisons to be made of results from each matching criterion.

The Prediction Models

The Multilevel Model

The predictors for the multilevel model used in the study were chosen from the

available student-level and school district-level variables to yield the most parsimonious, best-

fitting model. The model was fittcd to a 10% sample (N = 2271) of respondents to Form A

of the Grade 3 Mathematics test and cross-validated on a 10% sample (N = 2191) of

respondents to Form B of the test. The final multilevel model included the Level-1 model

MSCORE = Po + Pi(PEDUC) +P2(EXCErt) + c

and the Level-2 models

(9)

P o 00 + Y01(LOCALEXP) + r (10)

Pi = rio YIAOCALEXP) + r (II)

P2 = Y20 4. Y21(LOCALEXP) + r . (12)

In the model, MSCORE represented the observed score on the 80-item test, PEDUC

represented a teacher-report of the highest educational level attained by either of the student's

parents (1 = did not finish high school, 2 = high school graduate, 3 = trade/business school, 4

= community college/technical college/private junior college, 5 = four-year college, and 6 =

graduate school), EXCEPT represented a teacher-classification of the exceptional status of the

student (0 = gifted, 1 = not exceptional, and 2 = exceptional), and LOCALEXP represented

the local expenditure of the school district per student°.

'Students classified as exceptional comprised those who were multihandicapped, autistic, behaviorally-
emotionally handicapped, deaf-blind, hearing impaired, mentally handicapped, orthopedically impaired, specific
learning disability, speech-language impaired, visually impaired, or had some other health impairment.

'According to the North Carolina Department of Puhic Instruction, all expenditures not funded by the state
or the federal governments are regarded as "local" expenditures. As such, they include all funds supplied from
local governments and other local sources.
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The Regression Model

While the multilevel model provides information about the school districts at the

second level, additional information beyond the student level may be unnecessary in this

context. For purposes of comparison, a second predicted score was computed, based on a

regression model that regressed observed score on the predictors from the student level of the

multilevel model:

MSCORE = po pigspup p2(Excurn e . (13)

The use of this model allowed the school district-level information in the multilevel prediction

model to be assessed. Operating at the student-level only ignored the nesting of students

within school districts.

The Simulation Study

Item responses and the background variables for examinees were simulated and MH

statistics were computed using a computer program written in Fortrans.

Fixed Conditions

The inclusion of the studied variable in the matching criterion, sample size, the ratio

of sample sizes in the comparison groups, the degree of incongruence (or lack of overlap)

between the comparison distributions, and the number of DIF items in the matching criterion

were fixed conditions in the study. Given the results of research regarding the inclusion or

exclusion of the studied variable from the matching criterion (Donoghue, et al., 1993; Holland

& Thayer, 1988; Zwick, 1990), the studied variable was included in the matching criterion in

the simulation. The sample size was fixed at (NR + NF = 1000), with the sample size for the

focal group fixed at 30% of the total sample size (NF = 300 and NR = 700). The proportion

of focal group members was set at the proportion of blacks observed in the population .)f

blacks and whites on the Grade 3 Mathemati,s test. The reference group was drawn from a

N(0,1) distribution, while the focal group was drawn from a N(-1, 1) distribution. This

difference between the two distributions is slightly larger than that observed in the empirical

dw.a. Finally, DIF was induced only in the studied item, so that the MH was not distorttil by

DIF in the remaining items. When the studied item contained no DIF, there were no DIF

items in the matching criterion.

`The author wishes to thank Judy Spray for proviuing portions of the Fortran code.
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Manipulated Conditions

The conditions that were manipulated in this study were test length, degree of DIF in

the studied item, item difficulty, and item discrimination. The resulting design for the study

was a 4 x 2 x 2 x 2 factorial design, with 4 levels of test length (5, 10, 20, and 40), 2 levels

of DIF (0, and 0.6), 2 levels of the b parameter (-0.5 and 0.5), and 2 levels of the a parameter

(0.5 and 1.0). This design yielded a total of 32 research conditions that were repeated over

each of three matching criteria (observed score, regression weighted score, and multilevel

weighted score).

Test length

In this study, four levels of test length were used: 5, 10, 20, and 40 items. Monte

Carlo studies have shown test lengths of 20 and 40 items to yield satisfactory results, and

short tests (5-10 items) to yield unsatisfactory results (see Donoghue & Allen, 1993;

Donoghue, et al., 1993). Of primary interest was the functioning of two weighted score MH

estimates (based on predicted scores from regression and multilevel models) on short tests,

where the observed score MH has been found to perform poorly.

Degree of DIF in the Studied Item

DIF was induced in the studied item by manipulating the difficulty parameter of a

unidimensional three-parameter logistic item response function:

P(e) = c +
(1-c)

1 + -1.7a(04;
(14)

In the "Non-DIF" condition of the study, the item parameters were the same across both the

focal and reference groups (i.e., aF = aR, bF = bR, and cF = cR). In the "DIF" condition, DIF

was induced in the difficulty parameter by setting bF = bR + 0.6. Inducing DIF in the

difficulty parameter yields nonuniform, unidirectional DIF (see Cressie & Holland, 1983); this

method is typically used in DIF studies.

Item Difficulty, Item Discrimination, and Guessing Parameters

In order to minimize the confounding of the MH value with item difficulty, the levels

of the difficulty parameter for the studied item were set to the moderate values of -0.5 and

0.5. The levels of the item discrimination parameter for the studied item were set to 0.5 and

1.0, and a constant value of CR = CF = 0.25 was used for the guessing parameter. The



guessing parameter represented the chance probability of answering correctly on the 4-

alternative format of the Grade 3 Mathematics test.

For all items within a test excluding the studied item (i.e., the core items), the

parameter values were randomly selected. The a parameters were randomly drawn from a

N(1,0.25) distribution with values greater than 1.5 truncated to 1.5, and values less than 0.5

truncated to 0.5. The b parameters were randomly drawn from a N(0,0.75) distribution with

extreme values truncated to -1.5 and 1.5. The c parameters were uniformly distributed

between 0.05 and 0.25. While the parameter values varied across the core items in a test, the

parameters o' the core items were fixed across the focal and reference groups, so that no DIF

occurred in those items.

Computatica of Weighted Score

In each analysis condition, wo separate weighted scores were computed for each

examinee as the sum of observed score (X) weighted by its inverse error variance and a

predicted score (PS) weighted by its inverse error variance, divided by the sum of the

weights:

WS=

with

and

(X)

1
(PS)

02

1

02fpg

1 1

02 2
ex 0 en

2 _ o 2- x(1 -px)ex

(15)

(16)

o2 E -PS)2o (17)

Observed score was computed as the sum of the item responses. Coefficient alpha was used

as the estimate of test reliability (px). For the first weighted score, predicted score was

computed from fitting the regression model in Equation 13 to the item response data

generated in that condition. For the second weighted score, predicted score was computed

from fitting the multilevel model in Equations 9-12. Each weighted score was then rescaled
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to a 40-item scale for all test lengths. Recent findings for the performance of the MH

statistic with collapsed numbers of score categories for samples with unequal ability

distributions indicated the suitability of the rescaling (Donoghue & Allen, 1993; Clauser,

Mazor, & Hambleton, 1994).

MH and X2 Computation

For each score category of observed score and the two weighted scores, a 2 x 2 table

of frequencies for group by item response was created. Three MH estimates were computed

for each item: a MH based on observed score matching, a MH based on weighted score

matching where predicted score was derived from the regression model, and a MH based on

weighted score matching where predicted score was derived from the multilevel model. In

addition, MH x2 statistics were computed for each estimate to provide a standard for the

magnitude of the estimated DIF, and allow comparison of the performance of the MH across

the three methods of matching. The MH estimates and x2 statis.:cs were replicated 200 times

in each experimental condition.

Results

Comparison of Mean Performance

In order to statistically evaluate the differences in performance of the three methods of

matching within the Non -DIF and DIF conditions, repeated measures analysis of variance

tests with He lmert contrasts were performed. The Helmert contrasts tested the average

observed score against the average of the weighted scores and the average regression

weighted score against the average multilevel weighted score. In the Non -DIF condition, the

square roots of the MH x2 values were analyzed because the magnitude of the effect was of

interest, but not. the direction. In the DIF condition, the log of the MH odds-ratios (LMH)

were analyzed because the direction and the magnitude of the effect were of interest'.

`The analysis was performed on the square roots of the x2 values to avoid problems of interpretation due to
the skewness of the x2 distribution.

'The distribution of MH odds-ratios ranges from 0 to positive infinity. The transformation of the MH odds-
ratio to a log odds-ratio shifts the distribution from negative to positive infinity. A MH value less than one
corresponds to a negative log odds-ratio, while a MN value greater than 1.0 corresponds to a positive log odds-

ratio.



Ncr Condition

The x2 means and standard deviations for the Non-DIF condition are reported in Table

1. The 16 analysis conditions represented are for the levels of test length k40, 20, 10, and 5)

crossed with the levels of the a parameter (.5, 1) and the levels of the b parameter for the

studied item (-.5, .5). In all tables, the levels of the b parameter represent the value of the

studied item in the reference group. The x2 averages and standard deviations collapsed across

conditions of a and b within test length are presented in Table 2. The results of the. Helmert

contrasts for the Non-DIF condition are presented in Table 3. The test of the regression

weighted score method against the multilevel weighted score method showed no significant

effects. Because the analysis showed no differences between the two weighted scores, the

weighted score methods will be considered together for conditions where no DIF was induced

in the studied item.

For the test of the observed score mean versus the average of the weighted score

means, a significant interaction (a = .05) was found among test length, the item

discrimination parameter (a), and the item difficulty parameter (b). The observed score

method performed slightly better than the weighted score methods at test lengths of 5, 10, and

20 items where a = 1 and h = .5, and at test lengths of 10 and 20 items where a = .5 and h =

-.5. In all other conditions, the weighted score methods performed better than the observed

score method, with the largest difference occurring at a test length of 5 items. At test lengths

of 20 and 40 items, the difference was very similar across the conditions of the a and h

parameters. The weighted score methods showed the most improvement over the observed

score method in the condition where a = .5 and b = .5, for test lengths of 5 and 10 items.

A significant interaction was also found between the levels of the a and b parameters

for the contrast of observed score versus the weighted score methods. When the studied item

was more difficult (h = .5), the weighted score methods performed better than the observed

score method for the less discriminating item (a = .5) and slightly worse than the observed

score method for the more discriminating item (a = 1). When the studied item was less

difficult (b = -.5), the weighted score methods performed better than the observed score

method, with an increase in the difference as the studied item moved from less discriminating

(a = .5) to more discriminating (a = 1). Overall, the difference in performance between the



observed and weighted score methods was largest where a = .5 and b = .5 and smallest where

a= 1 and b = .5.

The contrast of observed score versus the weighted score methods also showed a

significant effect for test length, and a significant effect for overall mean. The significant

effect for test length showed a better performance for the weighted score methods than the

observed score method at all test lengths, with the largest differences in performance

occurring for test lengths of 5 items. The significant effect for the mean showed a lower

average x2 over all analysis conditions for the weighted score methods.

DIF Condition

The MH means and standard deviations for the DIF condition are presented in Table

4. The MH averages and standard deviations collapsed across conditions of a and b within

test length are presented in Table 5. The results of the Helmert contrasts for the DIF

condition are presented in Table 6. The test of the regression weighted score model against

the multilevel weighted score model showed a significant effect for test length and for the

average over all conditions. At all test lengths, the multilevel weighted score method

performed better (i.e., had a higher average MH value) than the regression method, although

the differences were very small. The comparison of MH values, averaged over all analysis

conditions, showed a better performance for the multilevel weighted score method overall.

Because the effect for test length was very small and no other effects were significant, the

multilevel weighted score and the regression weighted score methods will be considered

together for conditions where DIF was induced in the studied item.

For the test of observed score MH versus the average MH of the weighted score

methods, significant interactions were found between the item discrimination parameter (a)

and the item difficulty parameter (b), test length and the item difficulty parameter, and test

length and the item discrimination parameter. Significant main effects were found for the

item difficulty parameter, the item discrimination parameter and the overall mean. Unlike the

Non-DIF condition, a significant effect was not found for the interaction between test length,

item discrimination, and item difficulty.

The interaction between test length and item difficulty showed that the observed score

method performed better than the weighted score method at all test lengths when the item was

less difficult (h = -.5), with the difference in performance decreasing as test length increased.
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The observed score method also performed slightly better at 20 and 40-item test lengths when

b = .5. The weighted score method performed slightly better than the observed score method

at test lengths of 5 and 10 items where the item was more difficult (b = .5) with a decrease in

the difference in performance as test length increased from 5 to 10 items. The differences in

performance at each level of the b parameter were very small at test lengths of 20 and 40

items.

The interaction between test length and item discrimination showed that the observed

score method performed better than the weighted score method at all test lengths when the

item was more discriminatL (a = 1), with the difference in performance decreasing as test

length increased. The observed score method also performed slightly better at 20 and 40-item

test lengths when a = .5. The weighted score method performed slightly better than the

observed score method at test lengths of 5 and 10 items where the item was less

discriminating (a = .5). The differences in performance at each level of a were very small at

test lengths of 20 and 40 items. The trends observed across test length for the significant

interactions show a greater effect for the a parameter than the b parameter on the performance

of the matching methods.

Although the observed score method offered an advantage at all levels of the a and b

parameters on test lengths of 20 and 40 items, the advantage appears to be slight. The results

indicate that the best performance of the weighted score methods occurred at test lengths of 5

and 10 items where the studied item was less discriminating and more difficult (a = .5. b =

.5). The best performance for the observed score method occurred when the studied item was

more discriminating an 1 less difficult (a = 1, b = -.5). The advantage offered by the observed

score method over the weighted score methods in the remaining two conditions appeared to

be very slight.

For the significant main effects, the analysis showed a superior performance of the

observed score method where the studied item was more discriminating (a = 1) and where the

studied item was less difficult (b = -.5). The weighted score methods performed better than

the observed score method when the studied item was less discriminating (a = .5) and where

the studied item was more difficult (h = .5). The effect for the mean showed a higher MH

average over all analysis conditions for the observed score method than for the weighted

score methods.
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Hit Rates and False Positive Identifications

The hit rates and false positive identifications of DIF provide information regarding

the performance of the MH statistics across repeated applications of the DIF detection

procedure. The hit rates and false positive rates are presented as the percentage of times the

studied item produced a x` statistic at the .05 level of significance, across 200 replications of

the analysis condition.

False Positives

The false positives for the studied item in which no DIF was induced are presented in

Table 7. Within a test length of 40 items, the observed score method and the weighted score

methods performed consistently, across the four combinations of the a and b parameters. The

results were only sL ghtly less consistent for 20-item tests. For a test length of 10 items, the

hit rates were still fairly consistent across the three methods of matching; the results of the

analysis of variance of the chi-squares suggest that the superior performance of the weighted

score methods when a = .5 and b = .5 is significant, while the other differences may represent

chance fluctuations.

When test length was reduced to 5 items, the differences in false positive rates for the

observed score matching method and the two weighted score matching methods increased. In

the condition where the studied item was more discriminating and more difficult (a = 1, h =

.5), the three methods were consistent in the number of items flagged. The differences in the

percentage of false positives identified by the observed score method and the weighted score

methods were more inconsistent across the remaining conditions. The results of the

interaction between test length, item discrimination, and item difficulty for the analysis of

variance of the chi-squares indicate that the largest differences in performance between the

observed score method and the weighted score methods occurred at test lengths of 5 items.

Hit Rates

The hit rates for the studied item cin which DIF was induced are presented in Table 8.

For a test length of 40 items, the three methods of matching performed consistently, across

the four combinations of the a and h parameters. For 20-item tests, the results were only

slightly less consistent across the four combinations of the a and b parameters. For a test

length of 10 items, the hit rates were less consistent across the three methods of matching for

the condition where the studied item was more discriminating and less difficult (a = 1, h =
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-.5). In the other three conditions of the a and b parameters, the three methods were more

consistent in the amount of items identified. When test length was reduced to 5 items, the

differences between observed score matching and the two weighted score matching methods

remained closest in the two conditions where the studied item was more difficult (b = .5).

In he conditions where the studied item was less difficult (b = -.5), the hit rates across

test length were slightly higher for the observed score method than the weighted score

methods, with the difference in performance decreasing as test length increased. However,

the results of the analysis of variance suggest that at test lengths of 5 and 10 items, the hit

rates should be slightly better for the weighted score methods than the observed score method

where the studied item is more difficult (b = .5); the difference in hit rates appears to be due

to the differences among the variances of the statistic. The results also suggest that for test

lengths of 20 and 40 items, the hit rates should be fairly consistent across the levels of a and

h. At test lengths of 5 and 10 items, the hit rates should be slightly better for the weighted

score methods than the observed score method where the studied item is less discriminating

(a = .5).

Performance Across DIF and Non-DIF Conditions

A comparison of the hit rates and false positive identifications of DIF in Tables 7 and

8 shows that the overall performance of the three methods of matching was best where the

studied item was more discriminating and less difficult (a = 1, b = -.5). This finding

corresponds to previous conclusions that DIF will be most easily detected in items of

moderate difficulty and high discrimination (Rogers & Swaminathan, 1993). For the DIF-

induced items within this condition, the reduction in hit rates across matching methods was

very slight as test length decreased from 40 to 5 items. For the Non-DIF items, the number

of false positive identifications of DIF for the matching methods remained fairly constant

across test lengths of 40, 20, and 10 items, with an increase in the rate of false positives

observed for each method at a test length of 5 items.

The overall performance of the three matching methods was the poorest where the

studied item was less discriminating and more difficult (a = .5, b = .5). In this condition, the

total number of false positive identifications of DIF exceeded the total number of correct

identifications of DIF for the observed score method of matching. The two weighted score

methods performed only slightly better, identifying a few more DIF-induced items than Non-
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DIF items. This discrepancy between the hit rates and false positives is largely attributable to

the performance of the methods for test lengths of 10 and 5 items. When test length was 40

or 20 items, all three matching methods were consistent in their rate of flagging for both the

DIF and Non-DIF conditions with substantially higher hit rates than false positive

identifications. Reducing the number of items in the matching criterion below 20 appears to

increase the likelihood that DIF will go undetected in an item. A similar trend was noted by

Donoghue and Allen (1993), who found a tendency for 5 and 10-item tests to falsely identify

Non-DIF items as possessing DIF.

For test lengths of 40 and 20 items within the Non-DIF and DIF conditions, it appears

that neither weighted score method offers an improvement over the observed score method.

Inconsistencies in the hit rates and false positives for the three methods did not appear until

test length was decreased to 10 and 5 items. Any potential improvement in the performance

of the MH by the weighted score matching technique is most noticeable in the case of 5 items

in which no DIF is induced, particularly where the studied item was less discriminating and

more difficult (a = .5, h = .5).

Summary

The hit rates, false positive rates, x". averages, and MH averages generally displayed

similar performances between the three methods of matching for test lengths of 20 and 40

items. A difference in the performance between the three methods of matching became more

distinct in the case of 5 and 10-item test lengths. Overall, the results suggested a better

performance of the weighted score methods, relative to the observed score method when the

studied item was less discriminating (a = .5), with a better performance for the observed score

matching method when the studied item was more discriminating (a = 1). Likewise, the

weighted score methods seemed to perform better when the studied item was more difficult (h

= .5), while the observed score method appeared to perform better when the studied item was

less difficult (b = -.5). The two weighted score methods showed similar performances across

the DIF and Non-DIF conditions.

The combination of a more discriminating and less difficult studied item (a = 1, b =

-.5) showed the poorest performance of the weighted score methods, relative to the observed

score method. The detection of DIF was best for all three methods under this combination of

the a and h parameters because the item discriminated between individuals midway between



the means of the comparison group distributions. The combination of a less discriminating

and more difficult studied item (a = .5, b = .5) showed the best performance of the weighted

score methods, relative to the observed score method. Overall, the detection of DIF was

poorest within this condition; each method showed a greater percentage of false positives than

hits on test lengths of 5 and 10 items. The MH statistic performed poorly because the item

was difficult for the focal group and did not discriminate well between individuals with

differing levels of ability.

For the 5 and 10 item test lengths the condition a = .5, b = .5, and the 5-item test

lengths where a = .5, b = -.5 and a = 1, b = .5, the MH log odds-ratio is biased, showing DIF

in favor of the focal group (i.e., a negative value) when no DIF was induced. A similar bias

was noted by Donoghue and Allen (1993) on 5 and 10-item tests. The difference between the

focal and reference group distributions may be confounded with DIF for short tests in these

conditions. When DIF was induced against the focal group the log odds-ratios shifted right

(i.e., became less negative); however, because of the bias in the statistic, the estimates

remained close to zero, and the hit rates were very low.

For these conditions of the study, the bias in the MH statistic resulted in a greater

percentage of false positives than correct identifications of DIF. Although the weighted score

methods showed a slight reduction in bias for the MH statistic, they still resulted in more

false positives than correct identifications of DIF with the shorter test lengths. Given this

disci .pansy in performance, employing the weighted scores of this study as the matching

criterion did not provide a particularly useful alternative to the traditional method of matching

on observed score, or enable the use of the MH procedure with short tests.

Discussion

Although the weighted score MH estimates did not perform consistently better than the

observed score MH estimates in the simulation study, the weighted scores correlated more

highly with latent ability (0) than did the observed score. It is likely that there was little

improvement in the performance of the MH statistic with weighted score matching because

the correlation between the weighted score and 9 was only slightly larger than the correlation

between the observed score and O. As test length decreased the magnitude of the difference

between the correlations of the weighted scores with 9 and the correlation of the observed
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score with 8 increased, which suggests an explanation for the best performance of the

weighted score methods at test lengths of 5 and 10 items. However, the observed correlations

suggest that the strength of the relationship between the weighted score and 8 was not of a

magnitude to enable the weighted score matching technique to perform optimally. For a MH

statistic matched on a weighted score to perform well on shorter tests, the correlation between

the weighted score and 0 should be of a similar magnitude as the correlation between

observed score and 0 for test lengths of 20 or 40 items.

Effect of the Weighting Scheme

The observed trends in correlations across test length were probably a result of

weighting the observed and predicted scores by the inverse of their respective error variances.

At all test lengths, the error variance for the predicted score was larger than the error variance

for the observeci score, with an increase in the difference between the error variances as test

length increased. For test lengths of 20 and 40 items, the observed score contributed most to

the weighted score; it is likely that the weighted score did not add enough information to

improve noticeably upon the performance of the MH matched on observed score. At test

lengths of 5 and 10 items, the observed score was much less influential and the background

information contributed more to the weighted score, resulting in some improved performance

of the weighted score MH.

Due to the greater cost of implementing the more complex procedure of weighted

score matching, very little would be gained by employing weighted score matching at test

lengths of 20 and 40 items, because observed score matching is effective. Improvement upon

observed score matching is necessary in the case of 5 and 10-item tests, where the observed

score method performs poorly. The results of the simulation study indicate that matching on

a weighted score shows potential for shorter test lengths, but that better predictors would need

to be used to show substantial gains.

Effect of Thin Matching

Although larger correlations were observed between the weighted score and 0 than

between the observed score and 0 for all analysis conditions of the original simulation study,

the results showed that the weighted score methods did not perform consistently better than

the observed score. In the case of 20 and 40-item tests, this finding was not surprising

because the increase in correlation between the weighted scores and 8 over the correlation
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between the observed score and A was very small. However, this occurrence was somewhat

surprising in test lengths of 5 and 10 items, where the differences between the correlations of

the weighted scores with 0 and the correlations of the observed score with A were larger. A

possible explanation for the inconsistent performance of the weighted score methods is that

the rescaling of the weighted scores to a 40-item scale for all test lengths resulted in a loss of

information for the MH matched on the weighted score. In rescaling to a 40-item scale it is

probable that the 2 x 2 tables became more sparse for the shorter test lengths, eliminating

some of the data. In the MH procedure, a score category with an empty row or column in

the 2 x 2 table does not contribute to the computation of the odds - ratio, and the information

from the remaining row or column is discarded. This would account for some of the

inconsistencies in performance of the weighted score methods with the 5 and 10-item tests,

and may also have contributed to the similar performance of the matching methods for test

lengths of 20 and 40 items. Applying the weighted score method to a larger sample or to

focal and reference group samples of equal size may help eliminate this problem.

A caution again.t employing overly fine matching was given by Donoghue and Allen

(1993), who suggested that much of the data might be eliminated by such a process. They

tested various methods of collapsing score categories as an alternative to finer matching.

However, the classification onto a 40-item scale in this study allowed the unique background

information for examinees to be retained in the matching process. Keeping the original scale

for each test length would often have resulted in grouping together individuals with the same

observed score but different background information, rather than distinguishing between them.

As the study was intended to assess the contribution of the background information to the

performance of the MH, the thinner matching was judged necessary for categorization.

Improving the Model

Additional simulations were conducted for test lengths of 5 and 10 items within the

Non-DIF and DIF conditions. The purpose of the additional analyses was twofold: first, to

study the effect of an improved prediction model on the performance of the weighted score

methods, and second, to determine how much additional information was necessary to obtain

the predicted score for the matching process. Improving the prediction model would decrease

the error variance for the predicted score and allow the background nformation to contribute

more to the weighted score. Greater contribution of the predicted score to the weighted score
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would result in a greater difference in the correlations between the weighted score and 9 and

the observed score and 9. Since using a multilevel model greatly complicates the task of

computing a predicted score, a regression model would be preferable if it provides sufficient

information for the matching procedure under a better predicting model.

In the new simulation, the performance of a third model was compared to the

regression and multilevel models presented earlier. The new model is a regression model that

includes the student-level predictors from the regression and multilevel models and the

school-level predictor from the multilevel model, analyzed at the student level:

MSCORE = 130 1(PEDUC) +P2(EXCEPT) + P3(LOCALEXP) + e . (18)

This model allowed the degree of information necessary for an optimal performance of the

weighted score methods to be addressed. The inclusion of this model examines whether the

addition of another predictor (LOCALEXP) to the regression model appears sufficient for

computation of the weighted score methods, or whether the more precise modeling of unique

coefficients for each school appears necessary. Demonstrating the former would enable the

use of the simpler regression technique for the matching process, while demonstrating the

latter would require the use of the more complicated multilevel technique.

MH estimates and MH x2 statistics were computed over 100 replications for three

values of model r2 (.2778, .5, and .75). In the original simulation, r3 was fixed at the value

observed when the prediction model was fit to the real data (.2778). Within an analysis

condition, the same seed was used to generate the data for the replications across the different

I-2 values, making r' a within-unit factor. With each increase in the value of r`, the error

variance for the predicted score decreased, while the error variance for the observed score

remained constant. Likewise, the correlations between the weighted scores and 9 increased

with each simulated improvement in model prediction, while the correlations between

observed score and 0 remained constant across the three values of r'.

The false positive rates of identification for the Non-DIF condition are presented in

Table 9, while the hit rates for the DIF condition are presented in Table 10. In the tables, the

regression model containing the variables PEDUC and EXCEPT is labeled RI, while the

regression model containing the variables PEDUC, EXCEPT, and LOCALEXP is labeled R2.

For both test lengths in the condition a = 1, h = -.5, all methods appeared to perform fairly
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consistently across the levels of improved prediction. For test lengths of 5 items in the other

conditions of a and b, all of the matching me thods showed hit rates that were about the same

or less than the false positive rites for an r2 of .2778. As prediction improved, the regression

weighted score including LOCALEXP and the multilevel weighted score showed more

notable increases in hit rates and decreases in the number of false positives, while the

identifications under the observed score method remained fairly constant. For test lengths of

10 items, the improvement in performance of these two methods was more distinct, with the

multilevel weighted score showing the best performance. In the best predicting model, the

weighted score methods appear to reduce the bias in the MH statistic for some conditions of a

and b, moving from a greater percentage of false positives than correct identifications of DIF

to a greater percentage of hits than false positives. That this trend did not occur in the 5-item

case where a = .5, b = .5 suggests that an even better model would be required in this

condition.

Additional information about the performance of the weighted score methods across

the replications is presented in Tables 11 and 12. Table 11 gives the e averages and

standard deviations for the Non-DIF condition, while Table 12 gives the MH averages and

standard deviations for the DIF condition. For test lengths of 5 and 10 items, the x2 averages

indicated a similar performance for the MH estimates matched on observed score across the

values of r`, while the x2 averages matched on the regression weighted score with

LOCALEXP and multilevel weighted score showed decreasing averages as r2 increased. This

trend did not occur where a = 1, b = -.5, but in this condition all methods performed well,

regardlels of level of model prediction. Of the weighted score methods, the multilevel

method showed the greatest decrease in the X2 averages and standard deviations as r2

increased. The MH averages for the DIF condition showed corresponding trends across the

values of r2 for the methods of matching. Consistently, the observed score averages remained

constant for both test lengths, while the weighted score averages increased with each increase

in r'. The biggest increases in average MH were noted in the casc of the multilevel weighted

score technique.

The averages and standard deviations, in addition to the hit rates and false positive

rates, suggest the utility of a better prediction model for the weighted score matching

technique. Also, as prediction improves, the difference in performance of the weighted score



methods becomes greater. This suggests that the use of more unique information, such as is

available with the multilevel model, is likely to lead to a more precise classification into score

categories than occurs with using the regression models, resulting in an improved

performance of the MH statistic. When prediction is as poor as observed in the real data, the

distinctio., between the regression and multilevel models is small, and the performance of the

weighted score methods does not differ.

Although the results suggest a better model will yield better results for matching on a

weighted score, it may not be possible to find predictors that are not redundant with observed

score that will result in the necessary level of prediction. However, a model with some

degree of improved prediction, in conjunction with a weighting scheme that favors the

observed score less, may increase the contribution of the predicted score to the weighted

score, and yield a relationship between the weighted score and 8 of the magnitude required

for the MH to perform well.
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Table 1. x2 averages and standard deviations across 200 replications for the Non-DIF
condition (a = .05), with Obs = observed score matching, Reg = regression weighted score
matching, and ML = multilevel weighted score matching.

a = .5, b = a = .5, b = .5

Nitems Obs Reg ML Obs Reg ML

40 22 .827 .818 .810 .928 .912 .876

SD 1.288 1.243 1.240 1.350 1.308 1.245

20 22 1.200 1.243 1.187 1.121 1.125 1.116

SD 1.637 1.719 1.621 1.406 1.426 1.431

10 22 1.447 1.472 1.436 1.811 1.734 1.641

SD 2.249 2.210 2.202 1.993 1.931 1.816

5 2.2 2.016 1.857 1.863 3 ":06 2.857 2.909

SD 2.409 2.214 2.212 2.893 2.588 2.760

Total 22 1.372 1.347 1.324 1.766 1.657 1.636

SD 1.993 1.924 1.900 2.195 2.025 2.057

a = 1, b = -.5 a= 1, b = .5

Nitems Obs Reg ML Obs Reg ML

40 2! .902 .898 .899 .876 .859 .838

SD 1.478 1.507 1.493 1.343 1.337 1.292

20 22 .800 .750 .802 1.236 1.271 1.202

SD 1.255 1.192 1.284 1.819 1.952 1.799

10 22 .956 .949 .921 1.476 1.561 1.467

SD 1.282 1.284 1.216 1.990 2.097 2.052

5
22 1.277 1.046 1.094 1.836 1.837 1.903

SD 1.727 1.472 1.509 2.393 2.33 2.493

Total 22 .984 .911 .929 1.356 1.382 1.352

SD 1.456 1.371 1.383 1.952 1.994 1.993



Table 2. x2 averages and standard deviations across test length in the Non-D1F condition (a
.05).

Total

Nitems Obs Reg ML

40 x2 .883 .872 .856

SD 1.364 1.350 1.320

20 22 1.089 1.097 1.077

SD 1.551 1.608 1.551

10 x2 1.423 1.429 1.366

SD 1.933 1.933 1.876

5 x2 2.084 1.899 1.942

SD 2.489 2.280 2.376

Total X2 1.370 1.324 1.311

SD 1.937 1.866 1.868

4 7
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Table 3. Results of the repeated measures analysis of variance Helmut contrasts for the Non-
DIF condition.

Contrast Effect

Observed Score vs. Weighted Scores Mean 30.98 .00

Nitems 12.53 .00

a 2.31 .13

b 0.11 .73

Nitems x a 2.52 .06

Nitems x b 1.47 .22

a x b 22.28 .00

Nitems x a x b 8.17 .00

Regression vs. Multilevel Mean 1.38 .24

Nitems 2.30 .08

a 2.43 .12

b 2.53 .11

Nitems x a 0.00 1.00

Nitems x b 0.30 .83

a x b 1.92 .17

Nitems x a x b 0.51 .68
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Table 4. MH averages and standard deviations across 200 replications for the DIF condition
(a = .05).

a = .5, b = -.5 a= .5, b =..5

Nitems Obs Reg ML Obs Reg ML

40 MH 1.389 1.385 1.388 1.258 1.256 1.262

SD .24- .247 .244 .214 .208 .210

20 MH 1.346 1.338 1.351 1.206 1.201 1.210

SD .208 .206 .213 .237 .241 .238

10 MH 1.280 1.278 1.288 1.109 1.108 1.116

SD .239 .246 .244 .166 .172 .168

5 MH 1.200 1.200 1.200 1.023 1.037 1.040

SD .212 .210 .204 .181 .190 .188

Total MH 1.304 1.300 1.307 1.149 1.151 1.157

SD .238 .238 .237 .221 .220 .220

a= 1, b = -.5 a = 1, b = .5

Nitems Obs Reg ML Obs Reg ML

40 ME 1.808 1.799 1.809 1.342 1.336 1.339

SD .282 .290 .285 .238 .237 .234

20 MH 1.799 1.781 1.796 1.272 1.265 1.274

SD .334 .334 .340 .212 .207 .207

10 MH 1.819 1.780 1.799 1.211 1.205 1.212

SD .351 .340 .341 .205 .208 .207

5 MH L851 1.805 1.812 1.179 1.165 1.177

SD .353 .334 .341 .223 .209 .214

Total MH 1.819 1.791 1.804 1.251 1.243 1.251

SD .331 .325 .327 .228 .225 .224



Table 5. MH averages and standard deviations across test length in the DIF condition (a =
.05).

Total

Nitems Obs Reg ML

40 MH 1.449 1.444 1.450

SD .325 .324 .324

20 MH 1.406 1.396 1.408

SD .343 .340 .343

10 MH 1.354 1.343 1.354

SD .371 .360 .362

5 MH 1.313 1.302 1.307

SD .405 .383 .385

Total MH 1.381 1.371 1.380

SD .366 .356 .358
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Table 6. Results of the repeated measures analysis of variance Helmert contrasts for the DIF
condition.

Contrast Effect

Observed Score vs. Weighted Scores Mean 24.75 .00

Nitems 0.64 .59

a 77.24 .00

b 36.43 .00

Nitems x a 17.28 .00

Nitems x b 8.38 .00

a x b 4.23 fa/
Nitems x a x b 2.02 .11

Regression vs. Multilevel Mean 97.58 .00

Nitems 3.70 .01

a 1.05 .30

b 0.01 .93

Nitems x a 1.04 .37

Nitems x b 1.23 .30

a x b 0.12 .73

Nitems x a x b 0.67 .57
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Table 7. Percentage of false positives across 200 replications in the Non-DIF condition (a =
.05).

a = .5, b = -.5 a= .5, b = .5

Nitems Obs Reg ML Obs Reg ML

40

20

10

5

4

4

12

19

4

7.5

14.5

14

4

7

12.5

15.5

5.5

6.5

15.5

34

4.5

7

13

27

5.5

6.5

13.5

30

Total 10.75 10 9.75 15.38 12.88 13.88

a = 1, b = -.5 a = 1, b = .5

Nitems Obs Reg ML Obs Reg ML

40

20

10

5

3

5

4.5

9.5

3

3

4.5

6.5

3

4.5

4

6.5

3.5

7.5

9.5

16.5

3.5

8.5

10.5

15

3

8

10

16.5

Total 5.5 4.25 4.5 9.25 9.38 9.38

Total

Nitems Obs Reg ML

40 4 3.75 3.88

20 6.75 6.5 6.5

10 10.38 10.63 10

5 19.75 15.63 17.13

Total 10.22 9.13 9.38



Table 8. Hit rates (as percents) across 200 replications in the Non-DIF condition
(a = .05).

a= .5, b = -.5 a= .5, b = .5

Nitems Obs Reg ML Obs Reg ML

40 46.5 46 44.5 25 25 25

20 39.5 37 40 23 21.5 20.5

10 22.5 22 24.5 5 5.5 5

5 17.5 12.5 14.5 4 5 6

Total 31.5 29.38 30.88 14.38 14.25 14.13

a = 1, b = -.5 a= 1, b = .5

Nitems Obs Reg ML Obs Reg ML

40 94.5 94 94.5 35.5 33 , 36.5

20 88 89.5 88.5 22 22 21

10 90 84.5 88.5 15.5 16.5 16.5

5 89 86 88.5 12 10 11.5

Total 90.38 88.5 90 21.25 20.38 21.38

Total

Nitems Obs Reg ML

40 50.38 49.5 50.13

20 43.13 42.5 42.5

10 33.25 32.13 33.63

5 30.75 28.38 30.13

Total 39.38 38.13 39.09
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Table 9. False positives across 100 replications in the Non-DIF condition, for models with
different values of

r2 = .2778 = .5 r2 = .75

a b Nitems Obs R1 R2 ML Obs RI R2 ML Obs RI R2 ML

.5 -.5 10 9 12 8 10 7' 8 5 8 13 4 5 5

5 17 13 14 13 16 13 11 8 17 7 4 3

1 -.5 10 7 7 6 6 8 8 12 10 7 5 6 10

5 9 6 7 8 8 7 8 7 10 9 8 13

.5 .5 10 14 9 12 11 13 10 6 7 14 9 5 6

5 33 25 27 27 34 24 28 20 36 23 21 14

1 .5 10 7 10 11 8 6 9 8 7 10 7 3 5

5 19 15 17 17 15 16 18 17 15 14 13 12
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Table 10. Hit rates across 100 replications in the DIF condition, for models with different
values of r2.

r2 = .2778 1.2 = .5 e = .75

a b Nitems Ohs RI R2 ML Ohs RI R2 ML Obs RI R2 ML

.5 -.5 10 22 20 23 25 25 28 33 33 26 40 43 48

5 17 10 13 13 12 13 15 16 16 16 23 26

1 -.5 10 91 90 91 91 94 94 95 93 89 93 94 98

5 89 87 88 88 89 88 90 88 86 87 91 94

.5 .5 10 5 6 8 5 8 9 11 7 7 10 13 19

5 5 6 5 8 5 6 7 5 3 3 6 4

1 .5 10 11 12 12 14 10 12 16 17 9 17 25 29

5 11 9 10 10 12 6 II 12 13 10 13 20
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Table 11. x2 averages and standard deviations across 100 replications in the Non-DIF condition, for models
with different values of r2.

r2 .2778 1-2 = .5 I.2 = .75

a h Nitems Obs RI R2 ML Obs R1 R2 ML Ohs R1 R2 ML

.5 -.5 10 x2 1.202 1.257 1.189 1.208 1.166 1.062 .929 .947 1.315 .964 .923 .889

sd 1.670 1.751 1.701 1.709 1.545 1.451 1.332 1.339 1.793 1.428 1.389 1.291

5 x2 1.939 1.727 1.785 1.712 1.924 1.570 1.576 1.492 1.902 1.420 1.185 1.018

sd 2.282 1.988 2.017 1.968 2.475 2.019 2.032 1.977 2.364 1.712 1.531 1.398

1 -.5 10 x2 1.019 1.006 1.050 .958 1.169 1.157 1.197 1.194 1.062 1.136 1.307 1.375

sd 1.414 1.424 1.510 1.351 1.675 1.667 1.786 1.736 1.756 1.797 2.079 2.098

5 x2 1.279 1.107 1.173 1.171 1.250 1.075 1.079 1.183 1.233 1.073 1.176 1.334

sd 1.764 1.592 1.726 1.650 1.806 1.579 1.714 1.774 1.758 1.573 1.801 1.828

.5 .5 10 x2 1.613 1.632 1.612 1.583 1.558 1.422 1.270 1.176 1.647 1.179 1.023 1.014

sd 2.047 2.199 2.197 2.093 1.969 1.989 1.749 1.701 2.010 1.671 1.394 1.480

5 X' 3,177 2.901 2.905 2.906 3.220 2.686 2.686 2.433 3.264 2.389 2.119 1.740

sd 2.585 2.388 2.422 2.463 2.751 2.348 2.270 2.173 2,898 2.315 2.189 1.847

I .5 10 x2 1.391 1.550 1.510 1.447 1.289 1.326 1.174 1.124 1.360 1.101 .926 .893

sd 1.805 2.113 2.068 2.011 1.896 1.948 1.888 1.771 2.046 1.815 1.651 1.459

5 X' 1.897 1.866 1.892 1.890 1.797 1.747 1.699 1.635 1.972 1.873 1.490 1.352

sd 2.473 2.442 2.394 2.540 2.309 2.246 2.218 2.205 2.512 2.424 1.971) 1.911



Table 12. MH averages and standard deviations across 100 replications in the DIF condition, for models
with different values or r`.

1.2 = .2778 1.2 = .5 1-2 = .75

a b Nitems Obs R1 R2 ML Obs R1 R2 ML Obs RI R2 ML

.5 -.5 10 X2 1.283 1.281 1.280 1.289 1.283 1.304 1.320 1.330 1.274 1.335 1.377 1.385

sd .237 .251 .242 .242 .224 .230 .234 .228 .224 .226 .233 .229

5 X2 1.198 1.196 1.200 1.198 1.194 1.211 1.221 1.228 1.202 1.236 1.274 1.303

sd .210 .202 .207 .199 .207 .191 .201 .202 .213 .195 .202 .201

1 -.5 10 x2 1.838 1.809 1.809 1.825 1.836 1.838 1.861 1.877 1.830 1.893 1.942 1.976

sd .351 .341 .336 .342 .357 .351 .356 .365 .366 .366 .382 .378

5 / 42 1.838 1.788 1.785 1.804 1.850 1.804 1.823 1.856 1.835 1.818 1.892 1.932

sd .348 .323 .321 .340 .352 .335 .324 .350 .353 .340 .332 .341

5. .5 I() x2 1.103 1.102 1.107 1.112 1.108 1.123 1.150 1.154 1.105 1.161 1.203 1.214

sd .167 .171 .172 .168 .168 .175 .173 .167 .169 .178 .171 .177

5 x2 1.009 1.023 1.022 1.027 1.006 1.029 1.042 1.047 1.005 1.050 1.095 1.114

sd .179 .185 .184 .192 .175 .184 .184 .187 .159 .171 .174 .177

1 .5 10 x2 1.2(X) 1.195 1.201 1.202 1.196 1.203 1.227 1.237 1.181 1.238 1.280 1.294

sd .182 .189 .186 .184 .178 .185 .182 .181 .168 .185 .190 .198

5 x2 1.201 1.183 1.194 1.192 1.189 1.173 1.188 1.201 1.183 1.190 1.230 1.251

sd .199 .187 .193 .190 .198 .181 .182 .188 .205 .192 .198 .197
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