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ABSTRACT

Research questions that test the interaction between either categorical variables or

multiplicative expressions are commonly found in multiple regression and analysis of variance

applications. In contrast, research questions posing an interaction between observed variables in

a path analytic model are not commonly found in the literature. This is due in part to some of the

issues and problems that arise in relational path models. Path models with late1:t variables also

pose problems for the researcher that make the inclusion of interaction tests difficult. This paper

further explores the categorical, group or multi-sample approach and the continuous or

multiplicative approach to testing interaction effects in structural equation models that use latent

variables. Some software programs have provided a way in which to test simple interaction

effects among latent variables, and examples are included in the paper. The developers of

structural equation modeling software programs are encouraged to further develop procedures for

testing interaction effects. Until then, the testing of interaction effects in structural equation

model, will not be easy to perform. Of the two approaches, multi-sample and multiplicative, the

multi-sample approach is generally an easier technique to use for testing the equality of

coefficients.
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TESTING INTERACTION EFFECTS IN STRUCTURAL EQUATION MODELS

Research questions that test the interaction between either categorical variables or

multiplicative expressions are commonly found in multiple regression and analysis of variance

applications. In fact, the rationale for a 2 x 2 fixed-effects factorial study is to first test whether

the interaction effect between variables is significant. In the presence of a significant interaction

effect, the main effects are not interpreted. The basic reasoning behind testing for interaction is

that two variables when interacting produce an effect different from their main effects. For

example, hydrogen and oxygen as separate elements (main effects) have specific gaseous states,

however, when they interact water is produced. Their interaction produces a different effect than

their individual main effects. A rather simplistic example, but it serves to illustrate the basic

nature of testing for interaction effects. Since researchers encounter both categorical variables

and continuous variables, different approaches have emerged for testing interaction among the

variable types. In this paper, the term multi-sample will be used when referring to categorical

variables and the term multiplicative will be used when referring to continuous variables in

testing interaction effects.

Types of Interactions

Interaction effects may take many forms. The interaction between two variables may

enhance the effect which each variable has separately, as when alcohol and barbiturates are

ingested together. In contrast, the interaction may dampen the individual effects of the two

variables, as when two noises combine to create a zone of apparent quiet. Smith and Sasaki

(1979) describe a "consistency" interaction effect: when the two variables both deviate from their

means in the same direction, their joint effect may be enhanced, but if the deviations are in

opposite directions, the interaction effect will be opposite, as well. Also, two variables can

interact forming a third variable which is entirely different from each variable's individual effect.
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Multiple Regression and Analysis of Variance

The testing of interaction effects in multiple regression and analysis of variance have

become quite common, and covered in many earlier textbooks (Draper & Smith, 1966; McNeil,

Kelly, & McNeil, 1975; Cohen & Cohen, 1975). The reader is probably aware of the various

terminology used, namely, polynomial, curvilinear, or non-linear effects used to express a model

with an interaction term. A model using continuous variables would take the form:

Y-13, P2X2 '133X';

where X, represents a multiplicative interaction, Xi*X2, or could include interaction effects

expressed in a model as a polynomial term of the form:

P1X1'13X12

where X', represents the square of the scores on X, More recent treatment of the topic by

.ken and West (1993) further illustrates examples using continuous predictors, categorical

predictors, and interactions between categorical and continuous variables.

In general, an interaction effect exists whenever the character of the relationship between

variables A and B is affected by the level of variable C (Keppel & Zedeck, 1989). We can

demonstrate this by examining a multiple regression equation without interactions:

A = 131 * B + 132 * C ( I )

The first partial derivatives of this equation with respect to B and C are. respectively, pi and 13-.).
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These derivatives show, for example, that the only effect of a change in B on variable A is the

immediate effect through pi. By contrast, consider a regression equation with an interaction

term:

A = 131 * B + 132 * C + 133 * (B * C) (2)

Now the first partial derivatives are pi + p3 * C and P2 +133 * B, respectively. In other words,

changes in C, for example, affect A not only 6irectly but also indirectly by changing the character

of the relationship between A and B. Accordingly, the estimated direct effect of B on A, 131, can

be thought of as an "average" value computed over the range of values for variable C which are

represented in the data set (Keppel & Zedeck, 1989).

Path Analysis Models

Path analysis provides an approach to testing models that indicate direct and indirect

effects among specified variable relationships (Pedhazur, 1982; Pedhazur & Schmelkin, 1991).

Certain assumptions are made when conducting path analyses beyond those inherent in

conducting multiple regression analysys, and it is recommended that these be checked prior to

using the technique (Newman, 1991). Other strengths and problems in conducting path analyses

have also been elaborated by Pohlmann (1991). Research questions posing an interaction

between observed variables in a path analytic model, however, were not commonly found in the

research literature (Newman, Marchant, & Ridenour, 1993). Of the studies reporting a test of

interaction between variables, the most common approach to test interaction effects was to

analyze separate models and compare model weights. In a few studies, a first-order interaction

term was included. The authors concluded that, although interaction was implied or explicitly

stated in the theory, the models in many of the studies failed to consider interaction effects.

Pohlmann (1993) has further indicated that nonlinear relationships and latent variable assumptions

can lead to serious specification errors in structural models. Path models with latent variables

obviously pose problems for the researcher that make the inclusion of interaction tests difficult.
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INTERACTION IN LATENT VARIABLE MODELS

Interaction effects in multiple regression and path analysis with observed variables has

posed problems for researchers. These problems with corresponding assumptions are exacerbated

in SEM. First, there is the specification problem. Linear models ease the task of determining

which relationships to investigate and simplify distributional assumptions. Discarding the linearity

restriction magnifies the critical role theory plays in focusing the structural equation modeling

research effort. Researchers modeling interaction effects must also be sure to collect data which

includes a range of values where interaction effects occur. Nonlinear functions may appear

linear within certain ranges, so it seems prudent to suggest that observed variable values be

plotted and investigated prior to model inclusion. In addition, the predictors might be normally

distributed, but their joint-distribution not normally distributed in a multiplicative interaction

term. The test of interaction effects are further complicated by the degrees of freedom

introduced, subsequent interpretation of various fit indices and estimated standard errors,

which are only approximate under certain conditions. In the multiplicative model when

multiplying two observed variables, the product will contain the "true scores"and error with the

distribution of the products of the error variables not normally distributed even if the error

variables themselves are. These concerns, as well as, several others discussed in the paper

complicate testing interaction effects in structural equation models.

There are two general approaches for dealing with interaction effects in structural equation

models. Interaction ; involving discrete or discretized (categorical) variables can be evaluated

using multi-sample analysis, or researchers can model interactions between two continuous

variables by creating measures of the interaction "construct," using techniques similar to those

pioneered by Kenny and Judd (1984). Each of these techniques has its own strengths and

weaknesses, and will be discussed separately. The multi-sample approach is more readily

adaptable to testing the equality of factor structures, equal regression coefficients, and means of

latent variables (Joreskog & Sorbom, 1093a).



Multi-Sample Approach
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In the multi-sample approach, the different samples are defined by the different levels of

one or both of the interacting variables. If interaction effects are present, then certain parameters

should have different values in the different samples. For example, in the context of an

experiment, Mackenzie and Spreng (1992) tested an interaction model of advertising

effectiveness. Their model proposed, in part, that a person's attitude toward an advertisement

(Aa) interacted with the person's motivation to process the ad to affect the person's attitude

toward the advertised brand (Ab). The structural model may be represented as:

a1 ÷ Yll *1 + (1 (3)

where Ili is Aa, a1 is the intercept, 1 is Ab, and l is an error term. Mackenzie and Spreng

hypothesized that subjects with a higher motivation to process the ad would have a higher mean

level of Ab after viewing the ad. This would be reflected in a higher intercept term for the

subjects in the high motivation condition. They proposed that Aa should have a positive "main"

effect (as represented by yii) on Ab. However, they further proposed that the interaction

between Aa and motivation would make the Aa--Ab relationship weaker in the high motivation

condition (see Figure 1).

Insert Figure 1 about here

Under the multi-sample approach, researchers can investigate interaction effects using x2

difference tests. In this example, the two samples are composed of subjects who were either

exposed or not exposed to a manipulation designed to increase motivation. To test for the

interaction between motivation and Aa, first estimate a model where yil is restricted to be equal

across the two groups, and then estimate a model where the parameter is allowed to differ in the
2

two samples. The two models are nested, so that, given assumptions, the test statistic is a x
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difference test with one degree of freedom. In the example drawn from Mackenzie and Spreng

(1992), the x2 statistics for the two models were 44.55 (25 df) and 36.38 (24 df). The difference,

8.17 (1 df) is significant (p < .005), so the interaction hypothesis is supported. The maximum

likelihood estimate for yil was 0.881 (t = 13.99) for the low motivation subjects but only 0.644

(t = 9.58) for the high motivation subjects. The Appendix contains the LISREL 8 command file

for this problem.

The multi-sample approach is the natural choice when the interaction relationship involves

one or more categorical variables, and this approach has additional strengths as well. It can be

used to represent a very wide variety of interaction effects without requiring substantial new

methodological developments. Even the extension to higher order interaction effects is fairly

obvious. This approach can be used regardless of whether the interaction intensifies or mutes the

effects of the individual variables. Because the interaction effect is represented in the difference

between samples, the researcher may be able to preserve linear relations between variables within

each sample, thus avoiding potentially significant complications in fitting the model. Finally,

nearly every commercially available SEM software package allows for multi-sample analysis with

restrictions across samples, so researchers can probably use the package with which they are most

familiar.

The multi-sample approach also has a number of weaknesses. First, this method forces the

researcher to divide the total available sample size by the number of groups. In a methodology

which relies so heavily on asymptotic properties, and where those properties may only be

achieved at relatively high sample sizes, this is a serious limitation. Furthermore, this reduction in

sample size may confound results from x2 difference tests. MacCallum, Roznowski and

Necowitz (1992) noted a substantial degree of instability of fit indices in even moderately sized

samples. Thus, it is possible that the multi-sample approach may yield subsamples which are so

small that instability 7', the x
2

statistic will mislead the researcher into believing that an interaction

effect exists, whether it does or not. On the other hand, the researcher may be able to minimize

this problem by estimating only those distinct parameters that are necessary. In particular,

researchers usually have no reason to expect that measurement parameters, such as loadings, will

be different in the various subsamples. Specifying equality for such parameters may partially

ktl
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lessen the impact of sample division on results.

Additional problems arise if researchers attempt to apply the multi-sample approach to

interactions involving two continuous variables. In such cases, the researcher must reduce at least

one of the continuous variables to a categorical variable, for purposes of defining the groups. The

categorized variable will contain less information than the original continuous variable, and loss of

inf.( nation is undesirable (Russell & Bobko, 1992). Furthermore, in the process of

categorization, a number of observations will probably be misclassified due to measurement error.

SEM researchers account for measurement error by using multiple measures and latent variables,

but latent variables are typically modeled as continuous. Perhaps researchers could compute

factor scores and perform the transformation on that basis. This approach however has not been

reported in the literature. Furthermore, choosing the point(s) at which to divide the sample into

the various groups is(are) arbitrary. If researchers use arbitrary values (such as the median),

mere random sampling error will ensure that many cases are misclassified, violating the basic

assumption that the cases in a particular subsample all come from the same population.

The Continuous-Variable Approach

When an interaction involves two continuous variables, researchers may wish to adapt

procedures similar to those described by Kenny and Judd (1984). In the continuous-variable

approach, an interaction construct, for example E3, is represented explicitly, along with Ei and E2,

the "main effect" constructs, in a structural model of the form:

111 = Y 1 *Ei Y2 *E2 + Y3 *E3 + (1 (4)

where ti 1 is the dependent construct and CI is an error term. Notice that the relationship between

111 and E3 is itself linear. Thus the researcher must create E3 so as to represent the kind of

nonlinear relationship believed to exist between 111 and Ei and E2. For example, to check for a

multiplicative interaction between Ei and E2, E3 must he made equal to El * E2. Measures or

indicators of E3 are then created as functions of the measures of Ei and E2, in a similar way.

The structure of the interaction model emerges as a logical extension of the measurement



model for Ei and E2. It should be noted that these developments are due to the pivotal work by

Kenny and Judd (1984). The basic factcr analysis model CUil be stated as:

x = A * E+ 8 (5)

where x is a vector of manifest variables, A is a matrix of loadings, and 8 is a vector of

measurement error terms. In thinking about the continuous-variable approach, it will help to keep

number of points in mind. Fir A, remember that bath E and 8 are latent variables affecting x.

While researchers may habitually draw sharp mental distinctions between the two, there is little

difference between them, beyond the basic fact that one set of latent variables are common to

several manifest variables while the other set load uniquely on individual manifest variables.

Second, remember the assumptions underlying the basic factor model. The common

factors, E, are assumed to be uncorrelated with the unique factors, 8. Both the common and

unique factors are assumed to be normall:' distributed and have zero means. We can represent the

covariance matrices of the common and unique factors as (It and 9, respectively. In modeling a

multiplicative interaction, Kenny and Judd (1984) cited a third useful result from the theory of

normally distributed variables. If A and B are normally distributed, then:

02(A * B) = o2(A) * 02(B) + (0(A, B))
2

(6)

That is, the variance of the product is equal to the product of the variances plus the square of the

covariance. Obviously, if A and B are uncorrelated, then the last term disappears.

From this point, Kenny and Judd (1984) used simple algebraic substitution to develop

their model of multiplicative interaction effects. Suppose there are two measures which follow

factor models:

xi = Al *El +61

x2 = A2 *E2 +82

Then the product x3 = xi * x2 should he reflected in the following model as:

(7)

(8)
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x3 = 11*12*Ei*E2 11*E14,62 12*E2*81 + 1 * 82 (9)

Or

where

+ 63x3 13 * E3 + Al *E4 ;t2 * E5 (10)

E3 = E l * E2 (11)

E4 = E1*62 (12)

E5 = E2*81 (13)

83 81 * 82 (14)

A3 = A 1 *12 (15)

All )t these new latent variables are mutually uncorrelated and uncorrelated with all other latent

variables in the model.

In order to incorporate this interaction effect into a model, Kenny and Judd (1984) needed to

specify x3 as a function of latent variables whose variances and covariances reflected these

relationships. This involved specifying some model parameters as nonlinear functions of other

parameters. Kenny and Judd (1984) used a version of the COSAN program (Fraser, 1980) to

accomplish this. Hayduk. (1987), applying Rindskopfs (1984) work with "phantom" constructs,

showed how the Kenny-Judd model could be specified artificially using the simple equality

constraints found in programs like Joreskog and Siirbom's LISREL software. However, the

difficulty of using Hayduk's method was sufficient to dissuade most researchers from attempting

to specify such an interaction effect in a model. Today, both SAS/Proc CALLS (19 0) (cited by

Waller, 1993; program by Wood in Appendix) and Joreskog and Sorbom's (1993b) LISREL 8, as

well as, Amos and Mx software programs (see Appendix), include the ability to specify nonlinear

constraints directly.



LISREL8 EXAMPLE

With LISREL 8, researchers can specify the Kenny and Judd (1984) interaction model

using VAlue and EQuality commands and the new COnstraint commands. For example, the

.ny-Judd model implies that:

02 (t3) = 02 (ti) * 02 (t ) + (0 (t1, t2) )2 (16)

Researchers can specify this relationship using the COnstraint line:

CO PH(3,3) = PH(l,1) * PH(2,2) + PH(2,1)**2

Similarly, the model implies that:

2 2 2a (t4) = a (ti) * 0 (82)

and this relationship can be specified via:

CO PH(4,4) = P1-1(1,1) * TD(2,2)

(17)

10

One peculiarity of LISREL 8 is that all terms on the right side of a CO statement must be

free parameters--they cannot be fixed values and they cannot themselves be subject to constraints

(Joreskog & Sorbom, 1993b). If a parameter is fixed, then the researcher should replace the

parameter in the COnstraint line with the fixed value. If the parameter is constrained, then

substitution may eliminate the problem. Furthermore, LISREL 8's routine for computing starting

values will not work for the continuous-variable interaction model. The starting values chosen by

the researcher can have a tremendous impact on the ability of the software to converge on a

solution, even when the model is correct in the population.

Kenny and Judd (1984) demonstrated their approach by fitting a covariance matrix

computed from 500 Monte Carlo observations drawn from a population defined by an interaction

model with known parameter values. A complete LISREL 8 program specification for the Kenny

and Judd model is in the Appendix. Table 1 reports the true parameter values and the estimates

produced by Kenny and Judd (1984), Hayduk (1987), and the LISREL 8 program in the

Appendix. All three sets of results are very similar to the true parameter estimates, and to each

other.

I 'I
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Insert Table 1 about here

Researchers should consider using the continuous-variable approach particularly when

wanting to avoid the weaknesses of the multi-sample approach which included: splitting the

sample and possibly misclassifying observations; categorizing a variable and losing information;

and increased sample size requirements. Kenny and Judd (1984) noted a possible benefit of using

the continuous-variable approach, namely, parsimony. All but one of the additional parameters

involved in the interaction model are exact functions of the "main effects" parameters. The only

new parameter is the y parameter linking the interaction construct to the dependent construct.

However, the continuous-variable approach has its own weaknesses, and specifying a

continuous-variable interaction model is still a tedious, complex undertaking, with a high risk of

making programming errors. Second, if a model includes several measures of a construct, or

higher-oraer interaction terms, the technique becomes even more difficult to program. If

constructs A and B have a and b measures, respectively, then the interaction construct AB will

have a * b measures. If each construct has four measures, as is necessary to apply Anderson and

Gerbing's (1988) internal consistency criterion, then the interaction construct will have II

measures. With the four measures of the two "main effect" constructs, and at least one measure

of the dependent construct, the model will have at least 25 manifest variables before considering

any other constructs.

Under the continuous-variable approach, the researcher must specify the functional form

for the interaction, construct measures of the interaction construct, and then model the

relationships between the interaction measures and the latent variables. The Kenny-Judd model

involved a specific type of multiplicative interaction, but this is hardly the only form that an

interaction can take. For other types of interaction there is little prior work available to guide

researchers. Researchers may also face a profound multicollinearity problem. It is very likely

that the interaction measures will be highly correlated with the measures used to construct them.

This multicollinearity can be devastating to factor analytic measurement models, causing measures
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to be more highly correlated with measures of other constructs than they are with measures of the

same construct. For multiplicative interactions betw en normally distributed variables, Smith and

Sasaki (1979) demonstrated that researchers can eliminate this multicollinearity by centering the

original variables--expressing them as deviations from their means--before computing the product

variables. However, centering the variables alter. _le form of the interactive relationship. Notice

that the product variable A * B will have the same value when A and B are both well above their

means and when they are both well below their means. Thus, Smith and Sasaki (1979) noted that

centering the variables turns the original multiplicative interaction into a kind of "consistency

effect." Researchers who want to model other types of interactions may find no easy answer to

the problem of multicollinearity.

The interaction model also presents distributional problems which are much more serious

than those associated with SEM techniques in general. First, the formula for the variance of a

product variable (Equation 6) assumes that the two original variables are normally distributed. If

the original variables are severely nonnormal, the variance of the product variable can be very

different from the value implied by Equation 5, and the interaction model will perform poorly. Of

course, suitable data transformations may result in approximate normal distributions for the

original variables. There is, however, a second distributional problem. Many, if not most,

functions of two normally distributed variables will not themselves be normally distributed. This

problem applies to both the measures and the latent variables. This nonnormality violates

distributional assumptions associated with estimation methods such as maximum likelihood.

Furthermore, estimation methods that do not make distributional assumptions may not work for

interaction models. Joreskog and Yang (1995) indicated that the asymptotic weight matrix

associated with the covariance matrix for an interaction model may be not positive definite, due to

dependencies between moments of different variables which are implied by the interaction model.

Distribution-free estimation methods that use the inverse of the asymptotic covariance matrix will

therefore fail. Researchers may minimize this problem by estimating the model using a

distribution-sensitive method but evaluating the results with a bootstrapping technique. The

resealed bootstrapping method outlined by Bollen and Stine (1993) may be particularly

appropriate in this case. Note that techniques for computing bootstrap estimates of the weight

I Zi
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matrix will not be helpful in this case, because the weight matrix is singular in the population

(Yung & Bent ler, 1994).

CONCLUSION

Clearly, both the multi-sample and continuous variable methods have their weaknesses.

While new developments in SEM software are creating exciting new possibilities, researchers

need to remain focused on their research hypotheses and theory. The multi-sample approach

appears to be the more generally useful of the two techniques and gives rise to fewer problems, if

theory, hypotheses, and variables are appropriately considered. Researchers who hypothesize

"consistency effect" interactions are probably advised to apply the Kenny and Judd (1984)

approach, but for other researchers, the difficulties of the continuous variable approach may not

be worth the effort. Researchers may balk at the sample-splitting that is a part of the multi-sample

approach, but in our experience, this problem is only a major concern in cases where researchers

are working with data sets that were not collected with an interaction model in mind. Researchers

will always face significant problems when they attempt to use data for unintended purposes,

especially in SEM. Furthermore, it is not clear, in general, which of the two approaches described

here is more robust to this kind of ex post facto modeling. Overall, we encourage further

development of the software programs to more readily incorporate tests of interaction effects and

address many of the issues and concerns indicated by the research literature.
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MULTI-SAMPLE INTERACTION EXAMPLE

(Annotated)

LISREL8 command lines are flush left. Comments are indented.

When estimating multi-sample problems in LISREL, it is important to include a different title card
for each group, in order to make the output more readable.

TITLE CARD: Low Motivation Sample

The DA card includes the NG_parameter, which specifies the number of groups or
samples. As in all multi-sample problems, researchers should be careful to analyze the
covariance matrix rather than the correlation matrix (Joreskog & Sorbom, 1989).

DA NI=6 NO=200 MA=CM NG=2

This problem requires both covariances and means. These keywords would be followed
by either the moments themselves or by their file locations.

CM

ME

LA; ATT_AD1 ATT_AD2 ATT_AD3 If ANDAT1 BRANDAT2 BRANDAT3

Mackenzie and Spreng (1992) specified their model in terms of ri constructs and y
variables only. While it is not required for current purposes, it does simplify the
programming.

MO NE=2 NY=6 LY=FU,FI BE=FU,FI PS=SY TE=SY TY=FR AL=FI

LE; ATT_AD BRANDATT

FR LY(2,1) LY(3,l) LY(5,2) LY(6,2)

VA 1 LY(1,1)LY(4,2)

FR BE(2,1)

OU AD=OFF

As Threskog and SOrbom (1989) note, setting up, multi-sample problems with LISREL is a
less onerous task than one might expect. Specifications for the first group in the set-up
become default values for later groups.

TITLE CARD: High Motivation Sample

DA NO=160

CM

ME

LA; ATLADI ATT_AD2 ATT_AD3 BRANDAT1 BRANDAT2 BRANDAT3

The construct intercepts (the a's) are.only defined relatively across the two groups. Thus,
interceptsntercepts for the first group are fixed to 0. Then estimates of the intercepts in the

second group are evaluated relative to 0.

MO LY=IN BE=PS TE=PS PS=PS TY=IN AL=FR

OU

2 :
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LISREL 8 PROGRAM FOR THE KENNY-JUDD MODEL

Program lines are flush left.

Comments are indented one-half inch.

Title card: Kenny-Judd (1984) simple example with fewest starting values

DA NI=9 NO=500 MA=CM

Kenny and Judd labeled their independent constructs X and Z, and labeled their measures
similarly. The underlines in these labels indicate multiplication.

LA; xl x2 zl z2 xl_z1 xl_z2 x2_z1 x2_z2 y

SE; 9 1 2 3 4 5 6 7 8

CM

For most parameter matrices, most elements will be fixed, so it makes sense to begin with
these matrices set to Fixed.

MO NY=1 NE=1 NX=8 NK=7 PS=SY TE=FI PH=SY,FI TD=SY,FI GA=FI

This program includes ETA and KSI in the latent variable labels in order to minimize
confusion between measures and constructs. Note that, for the KSI latent variables, 1 and
2 are the main effects, X and Z, while 3 is the interaction, X*Z.

LE; ETA_Y

LK; KSI_X KSI_Z KSI_XZ X_TD3 X_TD4 Z_TD1 Z_TD2
These fixed loadings set the scales of constructs Y, X and Z.

VA 1.0 LY(1,1) LX(1,1) LX(3,2)

These are the free parameters relating to the main effect constructs and their measures.

FR GA(1,1) GA(1,2) PH(1,1 PH(2,2) PH(2,1)

FR LX(2,1) LX(4,2) TD(1,1) TD(2,2) TD(3,3) TD(4,4)

The direct effect of the interaction construct on the dependent consruct is the only
additional free parameter in the interaction model.

FR GA(1,3)

Following this are the constrained elements of the interact model. The loadings of the
interaction measures on the interaction construct are simple products of the loadings of xl
and x2 on X and zl and z2 on Z. Since two of those loadings are fixed to 1, they do not
appear in the COnstraint statements. Remember that the parameters that actually appear
on the right side of a COnstraint line must themselves be entirely FRee.

VA 1.0 LX(5,3)

CO LX(6,3) = LX(4,2)

CO LX(7,3) = LX(2,1)

CO LX(8,3) = LX(2,1) * LX(4,2)
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Note that this program puts the measurement error variances into ®. Alternately, the
program could have created more constructs to represent these - -btlt that would-
needlessly increase the dimension of several parameter matrices, slowing down the
software. With 8 exogenous measures, 8A will be 8 x 8 anyway, so why not put the
product measurement error variances there? Note that the covariances of these
measurement error terms are all zero. That is why those covariances do not appear in
these COnstraint lines.

CO TD(5,5) = TD(1,1) * TD(3,3)

CO TD(6,6) = TD(1,1) * TD(4,4)

CO TD(7,7) = TD(2,2) * TD(3,3)

CO TD(8,8) = TD(2,2) * TD(4,4)

On the other hand, this program specifies that the constructs X and Z are correlated, so
we must remember their covariance in specifying the variance of X*Z.

CO PH(3,3) = PH(1,1) * PH(2,2) + PH(2,1)**2

And these constraints represent the loadings of the interaction measures on the nuisance
constructs, the products of constructs and error terms. In looking at these constraints,
remember that, in LISREL 8, the loading of a measure on its own measurement error is
implicitly fixed to 1. Also remember that LX(11) and LX(3,2) are fixed to 1. All of those
fixed l's are 'invisible' elements of these constraints.

VA 1.0 LX(5,4)

CO LX(7,4) = LX(2.1)

CO PH(4,4) = PH(1,1) * TD(3,3)

VA 1.0 LX(6.5)

CO LX(8,5) = LX(2,1)

CO PH(5,5) = PH(1,1) * TD(4,4)

VA 1.0 LX(5,6)

CO LX(6,6) = LX(4,2)

CO PH(6,6) = PH(2,2) * TD(1,1)

VA 1.0 LX(7,7)

CO LX(8,7) = LX(4,2)

CO PH(7.7) = PH(2,2) * TD(2,2)

The Kenny-Judd model will run in LISREL 8 with only these starting values specified. In
some cases, the problem will require starting values for virtually every parameter in the
model. Do not ignore the constrainedparameters, either. Just because the 'original'
parameters have starting values, LISREL 8 will not automatically compute starting values
for constrained parameters on that basis. The NS parameter on the output line suppresses
automatic starting value calculation - -this may eliminate the occasional processing error.

ST -.15 GA(1,1)

ST .35 GA(I,2)

ST .7() GA(1,3)

LISREL 8's admissibility check will be unhelpful for interaction models, and should be
turned off. ML is LI.)REL's default fit function, but it is srcified here for clarity.

OU ML AD=OFF
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Table 1

Comparison of Parameter EF'.imates

Estimates
Parameter Population Value Kenny-Judd (1984) Hayduk (1987) LISREL 8

Y11 -.15 -.17 -.17 -.17

Y21 .35 .32 .32 .32

Y31 .7(1 .70 .71 .71

A21 .60 65 .64 .65

A42 .70 .69 .69 .69



Figure Captions

Figure 1. An example of an interaction effect.

t)
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Attitude toward
the Brand

Low Motivation

High Motivation

Attitude toward
the Ad (Aa)

Yi : Main effect of Aa
a2 al : Main effect of Motivation
Y2 Y1 : Interaction effect
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MX SOFTWARE EXAMPLES

mod.sum:

Moderator variables: two approaches.

The standard approach allows for main effects of a predictor variable and a moderator
variable, along with a multiplicative interaction term predictor*moderator. This may be modelled
with either summary statistics such as means and covariances, or with the raw data.

The Mx program, modb.mx, illustrates this procedure with simulated data on 500
subjects. A structural equation model of multiple regression of the outcome (Y) variable on the
three X variables is fitted by maximum likelihood to the raw data vectors. The last two lines of
the script revise it to drop out the regression on predictor*moderator. The difference in the fit
function between these two runs is 120.6 which is distributed as chi-square with 1 d.f. ( i.e.,
5270.752 - 5150.144 = 120.6).

The Mx program, modb.mx shows an alternative approach to the problem. Rather than
pre-compute the moderator*predictor variable and use the multiple regression model, we use
special features in Mx to place the observed moderator values directly on a path in the diagram.
This time we are still regressing the outcome variable on the predictor and moderator main
effects, but a second copy of the moderator variable is used as a path in the structural equation
model. During model-fitting, Mx k recomputing the predicted covariance for each subject, so
that every subject has a different model based on their moderator variable value. Again we fit the
model with and without the moderator effect, and we recapture the same difference in
log-likelihood between the two runs with 1 d.f. (i.e., 3698.475 - 3577.868 = 120.6).

This method takes quite a bit longer to run than the first approach, so what is its value?
Consideration of the further possibilities of this method gives the answer. We could very easily
revise the script to employ some arbitrarily complex function of the moderator variable. Perhaps
we expect some exponential model? Or a sinusoidal one? Whatever theoretical expectations we
have, they can be modelled directly and uniquely for each subject.
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Moda.mx Program
moda.mx:
Title Moderated regression with raw data
Data Ninput=4 Nobs=500 Ngroups=1
Rectangular file=moda.raw ! Data file contains 4 variables:
Labels Predictor Moderator Predictor*Moderator Outcome
Matrices
R symm 3 3 Free !Cov matrix of Pred, Mod, Pred*Mod
L full 1 3 Free !Regression of Outcome on above 3 variables
D diag 1 1 Free !Error of outcome
M full 1 4 Free !Matrix for estimated means of all 4 variables
Means M; !Predicted means
Cov R I R*L'

L*R I L*R*L'+D ; !Predicted covariance structure
Start .5 all !Starting values
Start 3 R 1 1 R 2 2 R 3 3
Option multiple-fit !To allow fitting of submodel after the end statement
End
Drop 9 !Fix at zero the 9th parameter, regression of outcome on pred *mod
End

Modb.mx Program
modb.mx:
Title Moderated regression with raw data
#define nx 2 ! Number of X variables
#define ny 1 Number of Y variables
Data Ninput=4 Nobservations=5(X) Ngroups=1
Labels Predictor ModeratorMainEffect Moderator Outcome
Rectangular file=modb.raw
Definition Moderator /
Matrices
R symm nx nx Free !Cov matrix of Predictor and ModeratorMainEffect (X vars)
J full ny nx Free !Regression of Outcome on X variables
K full ny nx !To contain individual moderator values for each subject
L full ny nx !Free parameter for magnitude of moderating effect
D diag ny ny Free !Error of Outcome (Y)
M 1 3 Free !For estimated means of X & Y
Means M; !Matrix expression for means
Coy R I R*(J+L.K)'

(J+L.K)*R I (J+L.K)*R*(J+L.K)'+D ; !Matrix expression for covariance
Icodes 1 2 4 99 !To indicate that variables 1, 2 & 4 are being analyzed
Specify K -1 0 !Individual moderator values will go in K
Specify L 100 0 !Free parameter for size of moderator effect
Start .5 all
Start .0 L 1 1

Start 1 R 1 1 R 2 2 !Starting values
Option Multiple-fit !To allow fitting of submodel
End
drop -1 100 !Refit model with moderator effect fixed at zero
End
moda.raw: <insert raw data file here from SAS program via ftp address>
modb.raw: <insert raw data file here from SAS program via ftp address>

2



26

OUTPUT OF MODA.MX
(abridged)

** Mx startup successful **
** MX-Windows version 1.30**

Summary of VL file data for group 1

Code 1.0000 2.0000 3.0000 4.0000
Number 500.0000 500.0000 500.0000 500.0000

Mean 0.0314 -0.0189 0.5145 0.1258
Variance 1.0162 1.0074 1.3608 1.0690

MX PARAMETER ESTIMATES //
GROUP NUMBER: 1

TITLE MODERATED REGRESSION WITH RAW DATA

MATRIX D
This is a DIAGONAL matrix of order 1 by 1

1

1 0.3392

MATRIX L
This is a FULL matrix of order 1 by 3

1 2 3

1 0.4972 0.4281 0.2609

MATRIX M
This is a FULL matrix of order 1 by 4

1 2 3 4
1 0.0314 -0.0189 0.5145 0.1258

MATRIX R
This is a SYMMETRIC matrix of order 3 by 3

1 2 3

1 1.0162
2 0.5151 1.0074
3 -0.0420 -0.0318 1.3608

Your model has 14 estimated parameters and 2000 Observed statistics

-2 times log- likelihood of data = 5150.144



Multiple fit option in effect

The following MX script lines have been read:

DROP 9
END

Summary of VL file data for group 1

27

Code 1.0000 2.0000 3.0000 4.0000
Number 500.0000 500.0000 500.0000 500.0000

Mean 0.0314 -0.0189 0.5145 0.1258
Variance 1.0162 1.0074 1.3608 1.0690

MX PARAMETER ESTIMATES

GROUP NUMBER: 1

TITLE MODERATED REGRESSION WITH RAW DATA

MATRIX D

This is a DIAGONAL matrix of order 1 by I

1

1 0.4317

MiTRIX L
This is a FULL matrix of order 1 by 3

1 2 3
I 0.4883 0.4245 0.0000

MATRIX M
This is a FULL matrix of order 1 by 4

1 2 3 4
1 0.0314 -0.0189 0.5145 0.1258

MATRIX R
This is a SYMMETRIC matrix of order 3 by 3

1 2 3

1 1.0162
2 0.5151 1.0074
3 -0.0420 -0.0318 1.3608

Your model has 13 estimated parameters and 2000 Observed statistics

-2 times log-likelihood of data = 5270.752

;$ I



OUTPUT OF MODB.MX

** Mx startup successful **
**MX-Windows version 1.30**

Summary of VL file data for group 1

Code -1.0000 1.0000 2.0000 4.0000
Number 500.0000 500.0000 500.0000 500.0000

Mean -0.0189 0.0314 -0.0189 0.1258
Variance 1.0074 1.0162 1.0074 1.0690

MX PARAMETER ESTIMATES

GROUP NUMBER: 1

TITLE MODERATED REGRESSION WITH RAW DATA

MATRIX D
This is a DIAGONAL matrix of order 1 by 1

1

1 0.3392

MATRIX J
This is a FULL matrix of order 1 by 2

1 2
1 0.4972 0.4363

MATRIX K
This is a FULL matrix of order 1 by 2

1 2
1 0.7378 0.0000

MATRIX L
This is a FULL matrix of order 1 by 2

1 2
1 0.2609 0.0000

MATRIX M
This is a FULL matrix of order 1 by 3

1 2 3

1 0.0314 -0.0189 -0.0086

MATRIX R
This is a SYMMETRIC matrix of order 2 by 2

1 2
1 1.0162
2 0.5151 1.0074

Your model has 10 estimated parameters and 2000 Observed statistics

-2 times log-likelihood of data = 3577.868
34:

28
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Multiple fit option in effect

The following MX script lines have been read:

DROP -1 100
END

Summary of VL file data for group 1

Code -1.0000 1.0000 2.0000 4.0000
Number 500.0000 500.0000 500.0000 500.0000

Mean -0.0189 0.0314 -0 0189 0.1258
Variance 1.0074 1.0162 1.0674 1.0690

MX PARAMETER ESTIMATES
GROUP NUMBER: 1

TITLE MODERATED REGRESSION WITH RAW DATA

MATRIX D
This is a DIAGONAL matrix of order 1 by 1

1

1 0.4317

MATRIX J
This is a FULL matrix of order 1 by 2

1 2
1 0.4883 0.4245

MATRIX K
This is a FULL matrix of order 1 by 2

2
1 0.7378 0.0000

MATRIX L
This is a FULL matrix of order 1 by 2

2
1 0.0000 0.0000

MATRIX M
This is a FULL matrix of order 1 by 3

1 2 3
1 0.0314 -0.0189 0.1258

MATRIX R
This is a SYMMETRIC matrix of order 2 by 2

1 2

1 1.0162
2 0.5151 1.0074

Your model has 9 estimated parameters and 2000 Observed statistics
-2 times log-likelihood of data = 3698.475
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AMOS PROGRAM EXAMPLE

! nonlin.amd file contents
! Nonlinear example data from Kenny and Judd, 1984

$Sample size = 500
$input variables

xl
x2
xlxl
x2x2
x 1 x2

y

$Covariances
1.150
,617

-.068
.075
.063
.256

.981
-.025
.159
.065
.166

2.708
.729 1.717
1.459 1.142
-1.017 -.340

1.484
-.610 .763

Note: The nonlin.amw file used in Amos to compute the coefficients is generated from the model
specification diagram on the next page. The unstandardized coefficients are then printed
for each path (unstandardized estimates) on the diagram (see subsequent page).
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SAS/PROC CAL1S EXAMPLE

Interactive models don't often converge and are often difficult to specify. A two-stage fit seems to work
best. A short SAS program is provided which will generate the interactive model, given the LINEQS and
STD statements of the original measurement model with contraints on the covariances rather than
generating nuisance variables. These covariance models run quicker and yield identical results to the
model proposed by Kenny & Judd (1984).

I have provided two SAS programs below: (1) the first fits the Kenny & Judd model using LISREL and
the appropriate constraints; t2) the second is a small program which the user can employ by putting the
LineEQS statements on one card section and the STD statements on another for the measurement model
of interest. A punch file is then created which is the Proc CALIS program you need with all of the
necessary constraints under a restatement of Kenny & Judd's model with only covariances.

*This is the interactive example on page 208 of Loch lin's Latent Variable
Modeling book;
data corrs (type=cov);input xl x2 zl z2 xlz 1 xlz2 x2z1 x2z2 y ._name_ $ 58-61;
_type_=VOVI;cards;
2.39!.; XI
1.254 1.542 X2
.445 .202 2.097 Z I

.231 .116 1.141 1.370 Z2
-.367 -.070 -.148 -.133 5.669 . . X1Z1
-.301 -.041 -.130 -.117 2.868 3.076 . . . X IZ2
-.081 -.054 .038 .037 2.989 1.346 3.411 . . X2Z1
-.047 -.045 .039 -.043 1.341 1.392 1.719 1.960. X2Z2
-.368 -.179 .402 .282 2.556 1.579 1.623 .971 2.174
Ydata size (type=cov);input xl x2 zl z2 x I zl xlz2 x2z1 x2z2 y _name_ $ 58-61;
cards;
0 0 0 0 0 0 0 0 MEAN
2.395 1.542 2.097 1.370 5.669 3.076 3.411 1.960 2.174 STD
500 500 500 500 500 500 500 500 500

data corrs (type=coy);set corrs size;
proc print;
proc calis coy data=corrs method=gls maxiter=300 tech=quanew
edf=499;



34

Lineqsx1 = fl + el ,x2 =g (.646) fl + e2 ,z1 = f2 + e3 ,z2 =h (.685) f2 + e4 ,x1z1 = flf2 +e le3
,x1z2 =h flf2 +ele4 ,x2z1 =g flf2 +e2e3 ,x2z2 =gh flf2 +e2e4 ,y=c fl + d f2 + e flf2 + e5;stde 1 =erl
,e2 =er2 ,e3 =er3 ,e4 =er4 ,e5=er5,e1e3 =erl er3 ,e1e4 =erler4 ,e2e3 =er2er3 ,e2e4 =er2er4 ,f1 =vfl ,f2
=vf2 ,f1f2 =vflf2 ;covele3 ele4 =cl ,e le3 e2e3 =c2 ,ele4 e2e4 =c3 ,e2e3 e2e4 =c4 ,f1 f2 =cflf2
;erler3 =erl *er3 +vfl *er3 +vf2 *erl ;erler4 =erl *er4 +vfl *er4 +h *h *vf2 *erl ;er2er3 =er2 *er3

+g *g *vf 1 *er3 +vf2 *er2 ;er2er4 =er2 *er4 +g *g *vfl *er4 +h *h *vf2 *er2 ;vflf2 =vfl *vf2 +cflf2
*cflf2 ;cl =vf2 *erl *h ;c2 =vfl *er3 *g ;c3 =vfl *er4 *g ;c4 =vf2 *er2 *h ;gh =g *h ;

*Note: all variable names and parameters must be limited to 4 characters,because this program generates
product variables and parameters which are products/functions of other variables. 8 character
namesparameters will result in generation of illegal SAS names/values;

data try;infile cards eof=last;
array name{ 11} $ xvarl-xvar11;array load{ 11} $ xloadl-xload11;array
eld{ 11} $ eloadl-eload11;array enmi 11 $ enamel-enamel 1 ;retain xvar 1 -xvar 11 xload I -xload 11
eloadl-eloadll enamel-enamel 1 firsty lastx bottom factln fact2n;input varname $ symbol $ fload $
fname $ symbol $ eload $ ename $;
if fname=lag(fname) then cut;else cut=1;i+1;
if cut=1 then do;factln=lag(fname);fact2n=fname;lastx=i-1;firsty=i;end;
name{ i }= varname;
load{ i} =fload;
eld{
enm { i )=translate(ename,",',');
if eld{ i} =111 then eld{i}=";
if load{ i} ='1' then load{ i} =";bottom=i;return;last:nvar=i;output;

cards;
vara = 11 fl + esd 1 e 1 ,varb =12 fl + esd2 e2,varc = 13 fl + esd3 e3,vard =14 fl + esd4 e4,varg = ml f2
+ esd5 e5,varh = m2 f2 + esd6 e6,vari = f2 esd7 e7,data try2;
infile cards eof=last;array env{ 11} $ evarl -evar 1 1;
retain enamel- enamel 1 evar 1-evar II nvar2;
input ename $ equals evar $ ;1+1;env{ i }=translate(evar,",','); if env{ i } ='1' then env { =";

return;
last:nvar2=i;output;
cards;
el = 1,e2 = I,e3 = 1,e4 = 1,e5 = 1,e6 = 1,e7 = 1,f1 = 1,f2 = 1,data try;set try;

drop cut varname symbol fload fname eload ename;dal i try2;set try2;
drop I ename equals evar;data try;merge try try2;data try;set try;
11!.... punch;

arn.y name{ 11 } $ xvarl -xvarl 1;
array load{ 11 } $ xload 1 -xloadll;
array eld{ 11} $ evarl-evarl 1;
array eld2 ( 11 } eloadl-eloadll;
array enmf 111 enamel-ename 11;

do 1=1 to lastx; do j=firsty to bottom;
intvar=compress(name { i } Ilname I j1);
put intvar '=' name( 1) name{ j ';';
end;end;
put 'Proc Calis coy method= gls;';
put 'Lineys';do 1=1 to nvar;
put name( 1) load{ i} @;
if i<firsty then put factln @;else put fact2n



put '+' @;
if eld2(i)>' ' then put eld2(i) " @;
put enm( i) ',';end;do i=1 to lastx;
do j=firsty to bottom;
intvar=compress(name(i )1Iname(j));
intload=compress(load(i )11load{ j));
intfname=compress(factlnIlfact2n);
intename=compress(enmf i) Ilenm( j });
put intvar '=' intload intfname 1+1 intename @;
if i=lastx and j=bottom then put ;';else put ',';
end;end;put 'std ;do i=1 to bottom; if eld{ i } =" then eld{ i }='11;
if eld2(i)=" then eld2{ i }=' l';put enm{ i } 1=1 eld{ ',';end;
do i=1 to lastx;
do j=firsty to bottom;
intename=compress(enm{ i ) Ilenm j 1);
if eld{i } >111 then texta=eld(i);else texta=e1d2{ i } ;
if eld(j)>'1' thin textb=e1d{ j};else textb=e1d2{ j };
inteload=compress(textalltextb);
put intename '=' inteload ',1;
end;end;
put factln '=v' factln ',';
put fact2n '=v' fact2n ',';
put intfname '=v' intfname ';';
put 'cov1;ind=0;do i=1 to lastx;
do j=firsty to bottom;
intename=compress(enm( i)llenm{ j} );
do k= i to lastx:
do 1=j to bottom;
intenam2=compress(enm{ k }Ilenm{ 1} );
if (i=k or j=1) and not(i=k and j=1) then do;

ind=ind+1;
cname= 'c'Ilind;
cname=compress(cname);
put intename " intenam2 '=' cname '.';
end; end; end; end; end; put factln " fact2n intfname ';';

*here are the covariance constraints;

do i=1 to lastx;
do j=firsty to bottom;
if eld { i }>11' then texta=eld{i};else texta=e1d2{ i };
if eld{ j} >I1' then textb.eld(j };else textb=e1d2( j);
intename= compress(textal Itextb);
put intename '=' @;
if eld(i)>T then put eld(i) @;
if eld2{ }>'1' then put eld2(i) '* eld2(i) @;
put '*' @
if eld(j)>T then put eld( j) @;
if eld2( j)>1 l' then put eld2(j ) eld2{ j} @;
put '+' @;

if load{ i}>" then put load( i ) '*' load( i ) 1*' @;
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put 'v' factln '*' @;
if eld{j}>11' then put eld{ j} '+' @;
if eld2{j } >111 then put eld2{ j} eld2{ j} '+' @;
if load{ j }>" then put load{ j} '*' load{j @;
put 'v' fact2n @;
if eld{i}>'11 then put eld{i} ';';
if eld2{i }>'1' then put eld2{i} '4° eld2{i} ';';
end;end;
intfname=compress(factlnlifact2n);
put 'v' intfname '=v' factl n '*v' fact2n '+c' intfname '*c' intfname ';';ind4);

*constraints for the covariances;
do i =1 to lastx;
do j=firsty to bottom;if eld{i}>'1' then intename=compress(eld{i}Held{j} );if eld2{ i }>'11 then
intename=compress(eld2{1}Held{j});

do k= i to lastx;
do 1=j to bottom;

if eld{k}>11' then intename=compress(eld{ k } Held{1} );
if eld2{k}>11' then intename= compress(eld2 { k }Held{1} );

if (i=k or j=1) and not(i=k and j=1) then
do;
ind=ind+1;
cname=ic'llind;
cname=compress(cname);
put cname '=' @;
if i=k then do;

put 'v' fact2n '*'@;
if eld{i}>I1' then put eld{i} @;
if eld2fil>11 then put eld2 { i } eld2{i} @;
put load{ 1} ';';
end;

if j=1 then do;
put 'v' factln '*' @;
if eld(j)>T then put eld{j} @;
if eld2{j}>'11 then put eld2{j } '*' eld2{ j} @;
put load { k} ';;
end;

end; end; end; end; end;
do 1=1 to lastx;
do j=firsty zo bottom;
if load{ i }>" and load{ j}>" then do;
intfname=load{ j};
intfname=compress(intfname);
put intfname '=' load 1} '*' load{ j ';';
end; end; end;
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