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ABSTRACT

Throughout the mid to late 1970's considerable research was
conducted on the properties of Rasch fit mean squares and this
work culminated in a variety of transformations to convert the
mean squares into approximate t-statistics. This work was
primarily motivated by the influence sample size has on the
magnitude of the mean squares and the desire to have a single
critical value that can generally be applied to most cases. In

the late 1980's and the early 1990's the trend seems to have
reversed, with numerous researchers using the untransformed fit
mean squares as a means of testing fit to the Rasch measurement
models. The principal motivation is cited as the influence
sample size has on the sensitivity of the t-converted mean
squares. The purpose of this paper is to present the historical
development of these fit indices and the various transformations
and to examine the impact of sample size on both the fit mean
squares and the t-transformations of those mean squares. Because
the sample size problem has little influence on the person mean
square problem, due to the relatively short length (100 items or
less), this paper focuses on the item fit mean squares, where is
common to find the statistics used with sample sizes ranging from
30 to 10,000.



Using Item Mean Squares to
Evaluate Fit to the Rasch Model

Recent presentations at the Rasch Measurement SIG sessions

at AERA have stressed the use of the weighted and unweighted item

mean squares as a means to evaluate the fit of the responses to a

Rasch model. This evaluation is usually based on a single

critical value --, the order of 1.2 to 1.3 for both mean squares.

The rationale usually given is that the mean square is less

affected by sample size than the apprcximate t-statistic

resulting from the cube root transformation of the fit mean

square. These arguments are the contradictory to the arguments

used in the late 1970's and early 1980's when the fit mean square

transformations were developed.

History of Fit

One of the methods of assessing fit in Rasch measurement

models, and the technique that is used in most of the calibration

and analysis programs distributed by MESA Press, is based on

concatenation of the item/person residual. Other methods, such

as those based on the likelihood ratio chi-square, will not be

discussed in this paper. There is an approximately parallel

history of development for item and person fit statistics based
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on the item/person residual (Smith, 1989 and Smith, 1991b),

however, only the development of the item fit statistics, the

object of inquiry in this study will be detailed here.

The item fit statistic, first proposed by Wright and

Panchapakesan (1969), was based on person raw score groups which

focused on the difference between the observed and expected score

for a group of persons with the same raw score on a test.

Subsequent developments in fit statistics have been based on the

iten/person residual. The unweighted item total fit statistic

(UT) in the chi-square form, based on the item/person residual

(T,1) is

X2 ( UT) =1: yff, 1

n.1

The standardized residual y, is

Yni 1/2
2

n1

where x" is the observed score for each item/person interaction,

p" is the probability of a correct response for each

interaction, and w = p(1 - p) . This chi-square is calculated

for each item by summing over all of the persons in the response

matrix.

This chi-square can be converted to a mean square by

dividing by the number of persons (N),

MS (UT) = X2(UT) =
t

N n:i Wn;

Note that the degrees of freedom used to convert these and
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subsequent total fit statistics to mean squares are N rather than

the (N-1) used with the Wright Panchapakesan x2. This is due to

the fact that the (N-1) overcorrects for the loss in degrees of

freedom due to using the same xni to estimate the item and person

parameters used in calculating the pni and to calculate the score

residual. Alternative methods for correcting for the loss in

degrees of freedom are discussed Smith (1982, 1991b).

The standard deviation of this mean square can be estimated

by

N
1

1 W

A
J

"11 V
/2

S[MS(UT),)-
il

N

4

These statistics originally were evaluated as fit mean squares

(FMS)in BICAL, an early Rasch calibration program. Where MS(UT)

has an expected value of one and the standard deviation given in

Equation 4. The critical values for detecting misfit with this

mean square depend on the number of persons and wr,, so they will

vary from item to item and sample to sample. To simplify the

critical value problem, the mean square can be standardized to an

approximate unit normal by a variety of transformations. This

transformation, the unweighted total item fit statistic, is

discussed in Wright and Stone (1979).

Later versions of BICAL introduced a log transformation in

an attempt to standardize the fit statistics to an approximate

unit normal distribution. In this transformation
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t = [ln (MS ( UT) i ) + MS ( UT) 2- 11
8

5

where f is (N-1) for the unweighted total item fit statistic.

These transformations were introduced because the values of the

mean squares which indicate possible misfit varied from item to

item and analysis to analysis depending on the number of persons,

the distribution of item difficulties, and the distribution of

person abilities.

The last version of BICAL introduced a cube root

transformation to convert MS(UT) to approximate unit normals. In

this transformation

t=((VS1/3-1) (3/S))+(S/3) ,
6

where S is the standard deviation of MS(UT) or MS(UB) given above

in equation 4.

Experience with these unweighted fit statistic indicated

that when there was a large range of item difficulties and person

abilities, unexpected correct responses by low ability persons to

difficult items and unexpected incorrect responses by high

ability persons to easy items affected the unweighted mean square

severely. A relatively small number of anomalous responses can

result in unusually large mean squares and t-statistics.

The last version of BICAL also introduced the weighted

version of the total item fit statistic, which replaced the

unweighted version in that program. The weighted item total fit
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statistic was developed to diminish the effect of anomalous

outliers. In this statistic the squared standardized residual

(yni2) is weighted by the information function (wra). The weighted

item total fit statistic (WT) in the chi-square form is

MS (PIT) i-
11.1

Xni pni ) 2

Wni (x i-pn1)
1._ n= n

2

N N

Ewni
n.1
E wniE

7

The weighted total mean square is the sum of the weighted squared

standardized residuals divided by the sun of the weights. The

standard deviation of this statistic is

S[MS (WT)

N '/2
E wni -4E Wni
nr1 nrl

Wni
n=2.

8

The weighted version of the total fit statistic is less affected

by anomalous responses by persons with ability far from the

difficulty of the item. A further description of the weighted

total fit statistic can be found in Wright and Masters (1982) and

Smith (1991b).

In recent programs, e.g., BIGSCALE, BIGSTEPS, and FACETS,

the unweighted fit statistics (item and person) have become known

as OUTFIT statistics and the weighted fit statistics have become

known as INFIT statistics.

This study was designed to illustrate the differences

between the fit mean squares and the transformed version of the

5
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item fit statistics. This comparison focused on the use of a

single critical value to determine misfit and effect of sample

size and the type of statistic being evaluated (OUTFIT vs. INFIT)

on the distribution of the item fit mean square. The Type I

error rates of the fit mean square are then compared with those

of the transformed t-statistic.

Methods

In this study 100 replications of simulated data were

generated under six different conditions which varied the number

of persons and the number of items. These conditions were: 150

persons with 20 and 50 item tests, 500 persons with 20 and 50

item tests, and 1000 persons with 20 and 50 item tests. Person

abilities were normal with a C, 1 distribution. Item

difficulties were uniformly distributed from -2.0 to + 2.0 logits

(See Scilumacker, Smith, and Bush (1994) for a complete

description of the simulated data.). All simulated data sets

were calibrated with the BIGSTEPS program (Wright and Linacre,

1991). For each calibration an item file was generated which

contained the weighted and unweighted mean squares and t-

statistics for each of the items in that calibration. The mean,

standard deviation, minimum value, maximum value, and per cent of

cases above given critical values were calculated for each of

four statistics, weighted mean squares and t-statistics and

unweighted mean squares and t-statistics, in each data set.

These summary statistics were then averaged across the 100
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replications in each combination of test length and number of

persons. The critical values used to calculate the percent of

cases with extreme values were fms>1.3, fms>1.2, fms>1.1, fms<.9,

fms<.8, and fms<.7 for the mean squares and t>+4, t>+3, t>+2, t<-

2, t<-3, and t<-4 for the t-statistics.

Results

The results presented in the following tables are based on a

summary of the 100 replications for each of the six conditions.

The mean squares and t-statistics used in this analysis were

obtained from the item file option available in the BIGSTEPS

program. The summary information for the weighted mean squares

is presented in Table 1 and in Table 2 for the unweighted mean

squares.

The means of both mean squares (unweighted and weighted) are

very stable about the expected value of 1.00. The average

weighted mean square means have a standard deviation of 0.00

across the six conditions, and the unweighted mean square means

have a maximum standard deviation of 0.03 across the six

conditions. The number of persons and the length of the test has

a small influence on the mean of the unweighted mean squares, and

the influence on the mean of the weighted mean squares cannot be

seen in the second decimal point.

The standard deviation of the mean squares varies

considerably based on the type of mean square (weighted and

unweighted) and the number of persons. The mean standard



deviation for the unweighted mean squares is approximately double

that of the weighted mean square. For example, the mean standard

deviation for the unweighted mean square varies from 0.18 with

150 persons to 0.06 for 1000 persons. The mean standard

deviation of the weighted mean square varies from 0.08 for 150

persons to 0.03 for 1000 persons. The standard deviation does

not ap ear to be affected by the number of items.

The range of the mean squares is similarly affected. The

mean range for the unweighted mean square is 0.72 for 150 persons

and 20 items, 0.40 for 500 persons and 20 items, and 0.25 for

1000 persons and 20 items, but the number of items on the test

has little effect on the range of the unweighted mean square.

Contrast this with the range of the weighted mean square. In the

same example given above, the mean range for the weighted mean

square is 0.29 for 150 persons and 20 items, 0.16 for 500 persons

and 20 items, and 0.10 for 1000 persons and 20 items. These are

less than one-half of the range for the unweighted mean squares.

As with the unweighted mean square, there appears to be

considerable influence resulting from the number of persons and

little influence resulting from test length on the range of the

mean squares.

To examine the Type I error rates and the influence of mean

square type, number of persons and test length, six critical

values were chosen and the percentage of mean squares exceeding

those values were calculated. These results are presented in

Table 3. Values greater than 1.2, a commonly used value for
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detecting measurement disturbances, occurred less than 1 time per

200 for all sample sizes and test lengths for the weighted mean

square and values greater than 1.1 occurred less than 1 time per

200 for sample sizes greater than 500. If weighted mean square

critical value of 1.2 were to be used, then the Type I error

rate would approximate .005. With the weighted mean squares the

per cent greater than the critical value is too small in most

cases to judge the effect of test length on the statistic.

For the unweighted mean square and sample size of 150,

values greater than 1.3 occurred at a rate of approximately 4 per

cent. For sample size of 500, values greater than 1.3 occurred

at a rate of approximately 1 per cent. For sample size of 1000,

values greater than 1.3 occurred at a rate of approximately .1

per cent. To have a consistent Type I error rate of

approximately .04, a critical value of 1.3 would be needed with

150 person samples, 1.2 with 500 person samples, and 1.1 with

1000 person samples. It is also clear from these data that

unweighted mean square is moderately affected by test length with

the per cent above the critical value approximately 1 per cent

higher for the 20 item tests than for the 50 item tests.

It is also clear from the values listed in Table 3 that the

mean square is not symmetrically distributed about 1.0. Extreme

values occur far less frequently below 1.0 then above. This

means that symmetrical critical values for detecting misfit would

operate at different Type I error rates for the upper and lower

tails of the distribution.

9



The results of these simulations suggest that no single

critical value will work with both weighted and unweighted mean

squares. It is also clear that no single value will work with

different sample sizes. If a critical value of 1.2 were chosen,

the actual Type I error rate could vary anywhere from 0.00001 to

0.10 depending on the set cf circumstances.

In an effort to contrast the use of the mean square with the

transformed t-statistic, the frequency of extreme values for the

same simulations were calculated. These are presented in Table

4. In this table the critical values chosen were +4, +3, +2, -2,

-3, and -4. There is no equivalence implied between these values

and the values chosen for use in Table 3. They are simple

convenient numerical values. The +2.0 value is often used as an

indication of misfit with the t-statistic. As is clear from this

table, the Type I error rate for the unweighted t-statistic is

approximately twice the value for the weighted version. However,

the differences across the weighted and unweighted version of the

t-statistic are less extreme then across the two versions of the

mean square. For example for 150 persons and 20 items the Type I

error rate for the unweighted t-statistic value of +2.0 is 0.026

for the weighted t-statistic the value is 0.0135. For the mean

square with 150 persons and 20 items the Type I error rate for a

value of 1.2 is 0.006 for the weighted version and 0.10 for the

unweighted version. This difference is far greater than with the

t-statistic. Also, the differences across sample size are less

drastic with the t-statistic then with the mean square. The Type

10



I error rates for the unweighted t-statistic critical value of

+2.0 with 150 and 1000 persons are 0.026 and 0.014, a multiple of

about 2. The Type I error rates for the unweighted mean square

critical value of 1.2 with 150 and 1000 persons are 0.10 and

0.0065, a multiple of about 15.

Although it is clear from these simulations that the use of

single critical value for the t-statistic may lead to different

Type I error rates for different statistics, sample sizes and

test lengths, the effect of these three factors on the statistics

is less than those observed for the mean squares. It should be

noted that Smith (1982, and 1991b) has proposed several methods

for removing the differences found across fit statistics due to

the differences in sample size and type of statistic. The values

reported in this study were generated by BIGSTEPS which does not

employ these corrections. If these corrections were employed,

the dissimilarity between the Type I error rates for the t-

statistics would be less than those observed here.

Discussion

Clearly these results indicate that the critical value for

the mean square used to detect misfit is affected both by the

type of the mean square and the number of persons in the

calibration. A single critical value, particularly one of 1.2 or

1.3 will not give .05 Type I error rates for sample sizes of 500

or larger. For the weighted version (INFIT) even a value of 1.1

is too large for sample sizes more than 500. These results have

11

11



serious implications for BIGSTEPS users since the item fit mean

squares have become the preferred method with which the fit of

the data to the model is determined. Many authors suggest that

the mean square is less sensitive to large sample size that the

t-transformation. These results show that this is not the case.

The mean squares are more sensitive to sample size and reliance

on a single critical value for the mean square can result in an

under detection of misfit.
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Table 1
Weighted Mean Square Descriptive Statistics

Simulation 1 (150 persons, 20 items)
Mean S.D. MIN MAX_

Mean 1.00 0.00 0.99 1.01

S.D. 0.08 0.01 0.05 0.11
Maximum 1.15 0.04 1.08 1.33

Minimum 0.86 0.03 0.81 0.92

Simulation 2 (500 persons, 20 items)
Mean S.D. _MAX_

Mean 1.00 0.00
_MIX_
0.99 1.00

S.D. 0.04 0.01 0.03 0.06

Maximum 1.08 0.02 1.04 1.15
Minimum 0.92 0.02 0.87 0.96

Simulation 3 (1000 persons,
hi=

20
S.D.

items)
MIN _MAX_

Mean 1.00 0.00 0.99 1.00

S.D. 0.03 0.00 0.02 0.04

Maximum 1.05 0.01 1.C3 1.09

Minimum 0.95 0.01 0.91 0.97

Simulation 4 (150 persons, 50 items)
Mean S.D. MIN

Mean 1.00 0.00 0.99
_MAX_
1.00

S.D. 0.07 0.01 0.05 0.09

Maximum 1.16 0.03 1.09 1.25

Minimum 0.85 0.03 0.75 0.91

Simulation 5 (500 persons, 50 items)
Mean S.D. MIN

Mean 1.00
.

0.00 1.00
_MAX_
1.00

S.D. 0.04 0.00 0.03 0.05

Maximum 1.09 0.02 1.05 1.16

Minimum 0.92 0.02 0.86 0.95

Simulation 6 (1000
Mean

persons, 50
S.D.

items)
MIN

Mean 1.00 0.00 1.00
_MAX_
1.00

S.D. 0.03 0.00 0.02 0.03

Maximum 1.06 0.01 1.04 1.11

Minimum 0.94 0.01 0.91 0.96



Table 2
Unweighted Mean Square Descriptive Statistics

mulation 1 (150 persons,
Mean

20 items)
MIN _MAX_

0.03 0.95Mean 1.00 1.11
S.D. 0.18 0.07 0.10 0.53
Maximum 1.45 0.31 1.17 3.17
Minimum 0.73 0.06 0.58 0.86

Simulation 2 (500 persons, 20
Mean S.D.

items)
_MIN_ _MAX_

Mean 1.00 0.01 0.37 1.04

S.D. 0.10 0.03 0.05 0.19
Maximum 1.25 0.13 1.05 1.80
Minimum 0.85 0.04 0.73 0.91

Simulation 3 (1000 persons,
Mean

20 items)
MIN MAX_

0.01 0.98 1.02Mean 1.00
S.D. 0.06 0.01 0.03 0.10
Maximum 1.14 0.06 1.03 1.34
Minimum 0.89 0.03 0.80 0.95

Simulation 4 (150 persons,
Mgan

50 items)
MIN MAX_

Mean 1.00 0.01 0.98 1.05
S.D. 0.16 0.03 0.11 0.35
Maximum 1.52 0.28 1.17 3.19
Minimum 0.71 0.05 0.58 0.81

Simulation 5 (500 persons,
Mean

50 items)
MIN

Mean 1.00 0.01 0.98
_MAX_
1.02

S.D. 0.08 0.02 0.06 0.16
Maximum 1.25 0.14 1.10 1.99
Minimum 0.82 0.04 0.72 0.88

Simulation 6 (1000 persons,
Mean

50
S.D.

items)
MIN

Mean 1.00 0.00 0.99
_MAX_
1.01

S.D. 0.06 0.01 0.04 0.09
Maximum 1.18 0.07 1.09 1.51
Minimum 0.87 0.03 0.79 0.92
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Table 3
Mean Square Frequency of Extreme Values

Weighted
Simulation

% > 1.3 0.05 0.00 0.00 0.00 0.00 0.00

% > 1.2 0.60 0.00 0.00 0.32 0.00 0.00

% > 1.1 8.05 0.60 0.00 6.90 0.40 0.04

% < 0.9 8.35 0.65 0.00 6.62 0.20 0.00

% < 0.8 0.00 0.00 0.00 0.08 0.00 0.00

% < 0.7 0.00 0.00 0.00 0.00 0.00 0.00

Unweighted
Simulation

__1__ __2__ __a__
% > 1.3 4.75 1.35 0.05

__A__
3.48

__A__
0.52 0.12

% > 1.2 10.05 3.90 0.65 8.44 1.76 0.48

% > 1.1 21.40 12.50 4.85 20.70 8.72 4.38

% < 0.9 28.05 11.15 3.10 23.56 8.88 2.70

% < 0.8 8.30 0.50 0.00 6.36 0.48 0.04

% < 0.7 1.30 0.00 0.00 0.84 0.00 0.00

N of Persons 150 500 1000 150 500 1000

N of Items 20 20 20 50 50 50



Table 4
t-statistic Frequency of Extreme Values

Weighted
Simulation

% > 4.0 0.05 0.00 0.00 0.00 0.00 0.00

% > 3.0 0.10 0.00 0.00 0.02 0.04 0.08

% > 2.0 1.35 0.60 0.40 1.02 0.66 0.64

% < -2.0 0.65 1.70 1.10 0.70 0.70 0.90

< -3.0 0.00 0.05 0.05 0.06 0.00 0.04

% < -4.0 0.00 0.00 0.00 0.00 0.00 0.00

Unweighted
Simulation

% > 4.0 0.10 0.05 0.00 0.08 0.10 0.06

% > 3.0 0.40 0.50 0.10 0.24 0.22 0.26

% > 2.0 2.60 2.45 1.40 2.24 1.80 1.56

% < -2.0 0.35 1.25 0.90 0.40 0.62 0.80

< -3.0 0.00 0.00 0.00 0.02 0.00 0.00

% < -4.0 0.00 0.00 0.00 0.00 0.00 0.00

N of Persons 150 500 1000 150 500 1000

N of Items 20 20 20 50 50 50


