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ABSTRACT

Discrete-time survival analysis is a new method for

educational researchers to employ when looking at the timing

of certain educational events. Previous continuous-time

methods do not allow for the flexibility inherent in a

discrete-time method. Because both time-invariant and time-

varying predictor variables can now be used, the interaction

of predictors with time becomes a reality. This article

presents an approach to interpreting this interaction which

involves-testing for significance at each discrete time

period.
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INTERPRETING SIGNIFICANT DISCRETE-TIME PERIODS

IN

SURVIVAL ANALYSIS

THE HISTORY BEHIND SURVIVAL ANALYSIS

Survival analysis is a statistical technique known by

many names, depending on the discipline in which it is used.

Sociologists have event history analysis, engineers use

failure time analysis, biostatisticians have hazard models,

and economists conduct discrete time series analyses. The

field of education is just beginning to use this procedure,

under the name of discrete-time survival analysis, to answer

questions about whether an event will occur, when it is most

likely to occur, and what other variables are impacting the

occurrence of the event.

Survival analysis can be traced back to the 18th

century with the development of the "life table." A life

table depicts survival/failure conditions mathematically at

a particular time among a population (Darden, 1987). It can

be thought of as a-distribution of the time until an event

occurs; death, for example, in the life tables. The method

is nonparametric and has been used primarily by demographers

(Pollard, Ytthef, & Pollard, 1981) and insurance actuaries as

a basis for measuring longevity.

The most widely used nonparametric approach to
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Discrete-time interval 2

estimating the survival function is the product-limit

estimator, referred to as the Kaplan-Meier (1958) estimate,

for data that is right-censored. Censoring occurs when the

event of interest does not occur to all subjects before the

conclusion of the study. The product-limit estimator is the

maximum likelihood estimator of the survival function when

no assumption is made about its functional form (Tuma,

1982). The estimators for each period are then plotted

against duration in the event state to. produce Kaplan-Meier

curves. This technique is commonly reported in sociology

and business related literature.

There are problems however with the life table and

Kaplan-Meier estimators. They both lack the ability to

adequately address censoring, which generally causes the

underestimation of the true expected value (Blossfeld,

1989), and because they are not regression techniques, the

inability to estimate relationships of predictor variables

(Allison, 1984; Blossfeld, 1989; Singer & Willett, 1991).

Tuma (1982) cites the main weakness of the Kaplan -Meier

estimators as a lack of control for heterogeneity across

cases on causal variables.

In the late 1950's and early 1960's the mathematical

theory of stochastic processes began to develop. Panel

studies became popular in sociology during this time,

although they were introduced to the field by Lazersfeld in

the 1940's. Panel data refer to a collection of records of

5



Discrete-time interval 3

individuals at two or more points in time, gathered either

prospectively or retrospectively (Tuma, 1984). The timing

of the collection of data was indicated as "waves." Data

from panel studies, analyzed by constructing an n-fold

table, could be approached in several ways, each having

advantages and disadvantages. A log-linear analysis of a

contingency table was easy to perform, but all the variables

must be discrete, and it may be difficult to find a sample

large enough to fill each cell in the contingency table. A

regression strategy allows both qualitative and quantitative

variables to be used in the analysis, and is also easy to

perform, but Goldberger (1964) found various problems that

arise resulting from assuming that a dichotomous dependent

variable is linear in the independent variables. These

problems included heteroscadasticity and the inefficiency of

ordinary least-squares estimators. However, the biggest

problem with both the contingency table and regression

approach was that the timing of events was ignored as

relevant to the identification of the underlying structure

causing change.

In 1972, David Cox, a British statistician, published a

paper entitled "Regression Analysis and Life Tables" in

which he proposed a proportional hazard model to express how

the hazard rate depended on explanatory variables, namely:

h(t) = + + 32X2
,

where h(t) is the proportional hazard rate, a(t) is any

6



Discrete-time interval 4

function of time, $3, and p, are parameter estimates, and the

X's are time-constant variables. However, because h(t)

theoretically should be greater than 0, the typical approach

was to take the natural log of h(t) before setting it equal

to the explanatory variables. The hazard model could then

be written as: log h(t) = a(t) + $32X2. Because

a(t) does not have to be specified, the model is considered

to be partially parametric or semiparametric. It is called

the proportional hazards model because, for any two

individuals at any point in time, the ratio of their hazards

is a constant. Basically, for any time t, the ratio of

hi(t)/hj(t) = c, where i and j refer to distinct

individuals and c may depend on explanatory variables but

not on time (Allison, 1984).

Cox developed a partial likelihood method that was

similar to the maximum likelihood method already in use with

the proportional hazards model. A detailed description of

the mathematics of partial likelihood estimation can be

found in Allison (1984), but the general properties are as

"The method relies on the fact that the likelihood
function for data arising from the proportional
hazards model can be factored into two parts: One
factor contains information only about the
coefficients pi and 52; the other factor contains
information about p, p2, and the function a(t).
Partial likelihood simply discards the second
factor and treats the first factor as if it were an
ordinary likelihood function. The first factor
depends only on the order in which events occur,
not on the exact times of occurrence" (p. 37).

7



Discrete-time interval 5

These estimators are asymptotically unbiased and normally

distributed, but are not fully efficient due to the

information lost by ignoring the timing of the event's

occurrence. Efron (1977) found that this loss was so small

that it had little bearing on the efficiency, assuming that

censoring was not a consequence of the event studied.

Unfortunately, violations of the proportional hazards

assumption occurred in several ways. The first involved the

inclusion of time-varying variables in the equation, whereby

hazards were no longer proportional, but became non-

proportional. If there was an interaction between time and

one or more of the explanatory variables, the proportional

hazard assumption was also violated. The interaction model

was written as:

logh(t) = a(t) + Ox + cxt ,

where the product of x and t is one of the explanatory

variables. If c is positive, the effect of time on the

hazard increases linearly as x increases. When the hazards

were not proportional, the effect of some variable on the

hazard was different at different points in time.

Violations of this proportionality assumption can be

checked both graphically and statistically. By stratifying

the sample according to the categories of a variable,

assuming that the influence of other covariates are

identical for all categories, and transforming the survivor

function, the plotted curves should differ only by a



constant factor,

Discrete-time interval 6

If there is a change in the distance

between the two plots, the proportionality assumption may be

violated. A statistical test for proportionality would

demonstrate that the coefficient a would not be

significantly different from zero and the hazard functions

of the two categories of the variable should differ only by

the constant factor exp(P) (Blossfeld, 1989).

Although Cox's proportional hazards model still seems

the most widely used, there are some important limitations.

The first, and most significant, is the basic assumption

that cancels the interaction of the variables with a time

variable not in the equation. Singer and Willett (1991)

state that "TIME itself is the fundamental time varying

predictor", and it should not be left out. The other major

limitation is the lack of a term to represent unobserved

heterogeneity in the model, which has been found to be

especially significant when dealing with repeated events.

Hence, the emergence of disdrete-time analyzes which include

a time-varying predictor variable.

DISCRETE-TIME SURVIVAL ANALYSIS

Logistic regression is the method of survival analysis

coming to the forefront in the 1990's, although it has been

in the literature since the 1970's (Allison, 1982). A new

approach to survival analysis using discrete-time

9



Discrete-time interval 7

measurement and logistic regression has been developed

(Willett & Singer, 1991). To illustrate this approach and

the ability to interpret significant time periods, a

simulated data example was used.

Sample Data

Information was generated for 300 fictitious students

enrolled in a special education work program. These

students, all ages 20-22, were measured when they began

their first job for competitive wages. Employment sites

were coded based on the employer's previous experience with

an employee who had a handicap (PREVHAND). Data were taken

once a month for a year to see if the students were still

employed at their sites, and if there had been a job coach

supporting them for more than half of their on-clock time

(SUPPORT).

Before using logistic regression to conduct a discrete-

time survival analysis, the data structure must be

transformed from the standard one-person, one-record data

set (person data set) into a one-person, multiple-period

data set (person-period data set). Singer and Willett

(1992) have developed a SAS program that will array the data

in such a fashion (Appendix). The records in the

restructured person-period data set show what happened to

each student during each discrete-time period when the event
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of interest (leaving the job) could have occurred, until it

did occur, or until data collection ended (whichever came

first).

The restructured data set yields one record per month

per person. Each person-period record contains period-

specific values of five different types of predictors: (1)

the time-invariant variable, PREVHAND, whose values are

constant across records for each person; (2) the time-

varying predictor, SUPPORT, whose values may fluctuate from

month to month (Si S12); (3) OCCASION, dummy variables El

E12, specifying the discrete-time interval to which the

record refers; (4) a new dummy variable, PE1 PE12, which

reflects the effects of PREVHAND over time; and (5) another

new dummy variable, SE1-SE12, which reflects the effects of

SUPPORT over time.

In discrete-time survival analysis, a researcher uses

the person-period data set to model the relationship between

the occurrence of the event of interest (leaving the job)

and the selected predictors. Because the outcome is

dichotomous, logistic regression is used to model the log-

odds of leaving the job (Willett & Singer, 1991).

Research Questions

The type of research questions that can be answered

using the discrete-time survival method include:

11
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1) Does the employer having previous experience with
a worker who has a handicap have an effect on the
length'of time an employee with a handicap remains
on their first job?

2) When is a student at the greatest risk of losing a
job?

3) Does the presence of a job coach play a part in

maintaining employment?

4) Is there interaction between the two predictor
variables PREVHAND and SUPPORT?

5) When is it most essential for the job coach to be
present to maintain the employment of the student?

An interesting aspect of this method is that it uses

two different types of variables. In the method, the

variable PREVHAND is a time-invariant predictor, meaning

that the information remains constant over time. Other:

examples of time-invariant predictors include sex, age of

first pregnancy, and race. The other variable, SUPPORT,

measured S01-S12, is a time-varying variable, meaning that

over time, the presence of the job coach varied.

Statistical Model

Relationships between entire hazard profiles and one or

more predictors are hypothesized in a hazard model (Willett

& Singer, 1991). The predictors for this analysis were

SUPPORT and PREVHAND. SUPPORT from a job coach was coded 1

if a coach was present, 0 if not, for each of the 12 monthly

periods, S01-S12. PREVHAND was a dummy variable taking on

12



Discrete-time interval 10

two values 1 for experience and 0 for no experience. In

this model, the hazard function was the outcome (employed at

time t = 1 and unemployed at time t = 0), with PREVHAND and

SUPPORT as potential predictors of that outcome.

Because the variables included in the analysis were

measured at-different levels, the sample hazard profiles

must be transformed logarithmically to put all variables on

the same level of measurement (Ferguson & Takane, 1989).

Time is measured in discrete intervals, rather than

continuous, so that a logistic transformation is

appropriate. If p represents a probability, then logit(p)

is the natural logarithm of (p /(1-p)); so in this case,

logit (p) can be interpreted as the conditional log-odds of

leaving the job.

The Baseline Model

If h; represents the entire log hazard profile, the

relationship of the log-transformed hazard profile to the

variable TIME is: log(h0 = po (t), where I3 (t) is termed

the baseline log hazard profile, and represents the values

of the outcome (the entire log-hazard function) in the

population without other predictor variables. It is written

as a function of time because the outcome itself, log(h)j,

is an entire temporal profile (Singer & Willett, 1991).

This equation can be expanded to account for specific

13



Discrete-time interval 11

measurements of monthly intervals to:

logite (h)) = [MT' + a2T2 + . + a12T12

and therefore,

hi = 1 \1 e-[arn arr., aa2T12)

The alpha parameters are multiple intercepts, one per

time period and represent the baseline logit-hazard function

because it captures the time-period by time-period

conditional log-odds that individuals whose covariate values

are all zero will experience the event in each time period,

given that they have not already done so (Singer & Willett,

1993).

Adding Predictor Variables

When predictor variables are included to control for

observed heterogeneity, the equation expands, as in

regression, to include them. The relationship of the log-

transformed hazard profile to the predictor variable

PREVHAND is:

logite(h)i = (aiTi + a2T2 + . . . . + cci2T12] + PiPREVHAND

and therefore,

hi = 1 \1 + + a2T2 + .... a12T121 piPREVHAND)

The pl parameter is the slope parameter that represents the

magnitude of the shift up or down between the two lines, or

the vertical shift in logit-hazard associated with a one-

.14
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unit difference in the predictor (Willet & Singer, 1991).

The inclusion of a time-varying predictor, such as

SUPPORT, can be included in the equation as follows:

logite (h) j = [MT). + a2T2 + + C12T12] + 01PREVHAND + 02SUPPORT(t)

and therefore,

hj =1 \1 + e -(tarri + 02T2 + + ct12T12) PREVHAND +42SUPPORT(t))

Because SUPPORT is a time-varying predictor, it is

distinguished by the (t) in the variable name. The model

postulates that, although the values of SUPPORT may

fluctuate over time, its effect on log-hazard remain

constant. The model is set up so that the time-varying

predictor has a time-invariant effect (Singer & Willett,

1993).

Adding Interaction Terms

Statistical interactions can also be included in the

hazards model. Cross-product terms are added to the main

effects models in the same manner in which interactions are

examined in multiple regression. The following equation

includes the interaction between the support of a job coach

and the experience of the employer:

logite(h)j = [alT1 + a2T2 + + a12T12] + P1PREVHAND +

P2SUPPORT(t) + P3PREVHAND*SUPPORT

and therefore,

15



Discrete-time interval 13

h, = 1 \ 1 e -tam cr2T2 .. a12T121 AlPREVHAND A2SUPPORTIt 1 + PPREVHANDSUPPORT

A complete listing of these statistical models and

their equations is in Table 1. Figures 1 through 6 graph

each of these models. In model 1 (null model),

Insert Table 1 Here

Insert Figures 1-6 Here

PREVHAND and SUPPORT both equal 0, therefore each hazard is

plotted by time period. In model 2 (main effects for

PREVHAND), if PREVHAND = 0 is higher than PREVHAND = 1, then

students working for employers who have not had previous

experience with handicapped students are at greater risk of

leaving their job. In model 3 (main effects for SUPPORT),

the presence of a job coach (SUPPORT = 1) indicates that

students without a job coach support are at a greater risk

of leaving their job. In model 4 (main effects of PREVHAND

and SUPPORT), the combined effect of both having an employer

with previous experience and job coach support decreases the

risk of losing a job. These form the basic models for

discrete-time survival analysis.

Models 5 and 6 are interaction models that test the

proportional hazards assumption. The proportional hazards

model assumes that the magnitude of the slope between the

two lines remains constant, or proportional over time. As

1 6



Discrete-time interval 14

in multiple regression, the interaction term can be removed

from the model if the proportional hazards assumption is not

violated. Singer and Willett (1991, 1993) found that the

proportional hazards assumption is frequently violated, and

if a violation is detected, the interaction with time

remains in the model to ensure the appropriate estimation of

predictor effects. It is these interactions, and at what

point in time the differences between the hazard lines

become significant, that are the main focus of this article.

The Hazard Functions

The hazard functions, rather than the survival

functions, become the "cornerstone" of survival analysis.

Singer and Willett (1993) discuss three properties of the

hazard function that make it so appealing. First, it

indicates whether events occur, and if so, when. The risk

of the event occurring during that time period can be

directly assessed; the higher the hazard, the higher the

risk. Second, both censored and noncensored data are

included in the calculations. Third, and what makes

discrete-time survival analysis so promising and different,

information on variation in the timing of events is not

ignored as in other previously mentioned methods.
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Parameter Estimates and Goodness-of-Fit test

Besides graphs, logistic parameter estimates, standard

errors and goodness-of-fit statistics are also generated

when predicting the dichotomous outcome of leaving the job

or not using the time indicators and predictors. Allison

(1982) demonstrated that these estimates are consistent,

asymptotically efficient, and asymptotically distributed.

Wright (1993) affirms that the logistic regression model

works because it is a Rasch model: "Willett and Singer's

technique and rationale provide support and insight for

Rasch practitioners. Manual calculation and a Facets Rasch

analysis confirm Singer and Willett's results. Linearity is

assured for fitting data because their models incorporate

the necessary and sufficient conditions for constructing

linear measures. What is not assured is the extent to which

their data cooperate in constructing this linearity, i.e.,

fit their model" (p. 307). Singer and Willett (1991) have

also found that even though the person-period date set

increases the sample size, the estimated standard errors are

consistent estimators of the true standard errors.

Table 2 gives the parameter estimates and goodness-of-

fit statistics for fitted discrete-time hazard models 1, 2

and 3 (see Table 1). The estimate of the a's (E01-E12) lead

to fitted hazard probabilities for each discrete-time period

and allow reconstruction of fitted hazard and survivor
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plots. These estimates are maximum likelihood estimates and

also constitute the discrete limit of the better known

Kaplan-Meier estimate of continuous-time hazard rate (Singer

& Willett, 1993). Interpreting the parameter estimates is

similar to estimating unstandardized regres.sion

coefficients. That is, if b is the coefficient, compute

exp(b) (take the anti-log), which means raising the number e

to the b power. The interpretation is then as follows: For

each unit increase in an explanatory variable, the hazard is

multiplied by its exponentiated coefficient. Further,

computing 100(exp(b)-') gives the percentage change in the

hazard with one unit change in the explanatory variable

(Allison, 1984). .

Insert Table 2 here

The likelihood-ratio chi-square test is a procedure

that is very similar to testing for the significance of

increments of R2 when additional explanatory variables are

added to a multiple regression equation. This test should

be used whenever one model includes all the variables in

another model, but also includes additional variables. The

test statistic is constructed from a product of the maximum

likelihood estimation, the maximized value of the log-

likelihood function (Allision, 1984). To compare the fit of

19
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the two models, one calculates twice the positive difference

between their log-likelihoods, although most computer

printouts report -2 times the log-likelihood, or -2LL. This

statistic will have an asymptotic chi-square distribution

under the null hypothesis. In most cases, the associated

degrees of freedom will be the difference between the number

of variables in the two models. As with multiple

regression, each model can be assessed until the best model

is found.

Although many other statistics are reported on the SAS

printout, one is especially noteable. The Odds Ratio column

contains the antilog, or ex. This value is the effect size

and can be thought of as the ratio of 1 to the antilog

value, e.g. e N 1.310and e respectively for PREVHAND and

SUPPORT in Table 2. The odds ratio for each model that

would be reported on the SAS printout are as follows:

Model 2 the addition of PREVHAND 1: 0.901
Model 3 the addition of SUPPORT 1: 3.706

PROPORTIONALITY AND DISCRETE-TIME INTERVALS

Having postulated the discrete-time hazard model,

Singer and Willett (1993) made three assumptions. The first

is linearity. It is similar to linearity in regression with

the addition that vertical displacements in logit hazard are

linear per unit of difference in each predictor. This

assumption can be checked by exploratory data analysis or

statistical inference. The second assumption is that of no

20
L
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unobserved heterogeneity. All of the error is assumed to be

accounted for by the inclusion of predictors in the model.

Thus it becomes very important to choose the correct

predictors and not omit relevant predictors. Model

proportionality, described by Cox's Proportional Hazards

model, is the third assumption. Logit-hazard profiles of

various predictor models should maintain the approximate

shape of the baseline profile, but shift it up or down,

depending upon the sign of the b value. Other models make

no allowance for violation of this proportionality

assumption, but violation does occur frequently, and across

many disciplines. Violations of the proportionality

assumption are the rule, rather than,the exception. If data

is not checked, either graphically or statistically, for

nonproportionality, results may be biased.

In discrete-time survival analysis, it is relatively

easy to ascertain if the proportionality assumption has been

violated. Their SAS program can be used to create new dummy

variables, in this case PREVTIME (PE1-PE12), and SUPPTIME

(SE1-SE12), both reflecting the effects of the predictors

over time. These new variables are cross-products in the

person-period data set between the time indicators (alTi,

a2T2, a12Ti2) and the predictor. The model equation for

the effect of SUPPORT across time is:

logite(h)j = [U1T1 + a2T2 + + a12T12) * P2SUPPORT(t)

21
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and therefore, hj= 1\1 + e («1T1 4. WT2 W2T12) 025UPPORTIt)

This procedure will allow the data to be checked both

graphically and statistically. By looking at the graphs of

Model 5 and Model 6 (Figures 5 and 6), it can be seen that

the proportionality assumption appears to have been

violated. There are no longer proportional distances

between the baseline, which represents TIME only, when

PREVHAND = 0 and when the line representing the values of

the employer who had previous experience with an employee

with handicaps, PREVHAND = 1. There are similar differences

in Model 6 between the baseline, SUPPORT = 0, and the

presence of a job coach, SUPPORT = 1.

Graphically, one can see that the two regression lines

are no longer proportional; but statistically, where are the

differences? During which time periods is there a

statistically significant difference in the distance between

the two lines? When the answers to these questions are

known, one can see, not only when and if events occur, but

also when are critical times for the presence of predictors,

and when specific intervention might encourage or discourage

events to occur.
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TESTING THE SIGNIFICANCE OF DISCRETE-TIME INTERVALS

The proportionality assumption in discrete-time

survival analysis is analagous to the homogeneous regression

assumption for the analysis of covariance (violation of this

assumption in ANCOVA presents problems in interpretation

because the magnitude of the treatment effects is not the

same at different levels of X). If homogeneity of

regression slopes is not tested, or data is not plotted,

false conclusions can be drawn such that means are equal and

there is no treatment effect. In discrete-time survival

analysis erroneous conclusions can also be drawn if the

effects of a predictor over time are not assessed, such as

the constant effect of a predictor rather than a time-

varying one.

In regression, the Johnson-Neyman technique (Huitema,

1980; Johnson & Fay, 1950; Johnson & Neyman, 1936; Pedhazur,

1982) is applied to ANCOVA designs with heterogeneous

regression slopes to identify the values of X that are

associated with significant group differences in Y. Limits

of the regions of nonsignificance are computed using the

quadratic equation. Pothoff (1964) has extended the

Johnson-Neyman technique to the establishment of

simultaneous regions of significance for all possible

points.

Aiken and West (1991) have applied the Johnson-Neyman

23
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technique to find differences between regression lines at a

specific point. They recommend the use of the Bonferoni

procedure to adjust obtained values for the number of tests

undertaken. Huitema (1980) has an extensive discussion of

both the Johnson-Neyman technique and the use of the

Bonferoni procedure in this context. Pohlmann (1993) has

also discussed the examination of group differences on the

dependent variable at specific point values of the covariate

with a Johnson-Neyman analysis using SAS REG programs.

A similar approach can be used to test the significance

of discrete-time intervals, or the nonproportionality of

hazard profiles in discrete-time analysis. This is done by

computing a t using the b and the standard error of the b.

Since t2=F, when df=1 (Ferguson & Takane, 1989), an F is

computed and compared to the critical value of the Bonferoni

F.

It will be recalled that Model 5 and 6 (Figures 5 and

6) are the models set up to test the assumption that

predictors vary proportionally with the baseline model

across time. The SAS program will compute parameter

estimates and standard error values for the variables El-

E12, which are the a values from the null model when the

value for the predictor variables PREVHAND equals 0 and

SUPPORT equals 0. The same estimates and standard errors

are computed for PE1-PE12, which is the new dummy variable

computed as cross products between PREVHAND and TIME. The

24
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parameter estimates for PE1-PE12 reflect the value of b,

which is the shift in distance between the two plots.

A t value can be computed by dividing the parameter

estimate by its corresponding standard error. An F is

calculated by squaring t (t2). It will be noted that the

degrees of freedom for each variable is 1, thereby making

t2 = F appropriate. Each F is evaluated by consulting a

Bonferoni F table for the critical value of F based on p

dependent variables, J-1, and N-J-C degrees of freedom,

where N= number of subjects, J=number of groups, and C=number

of comparisons (Huitema, 1980). The critical value of F for

this data was approximately 8.3; df = 1,286. See Table 3

for a comparison of values of p, SE p, t and F for Model 5.

Based on this procedure, only three periods were found to be

critical months 1 and 2, and month 12. It may be

concluded from this data that the most critical time to have

an employer, who has had previous experience with a handicap

employee, help an employee is at the beginning of the job

and after one year.

The same procedure was applied to the parameter

estimates and standard errors for Model 6 where SE1-SE12 was

the cross-products of SUPPORT across TIME. In Table 4, it

can be seen that significant F's (Bonferoni F 8.3 with

df 1, 286) were obtained at Months 1, 2, 3, 5, 6, and 7.

These results may lead to the conclusion that, for this

data, the most critical times for the presence of a job
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Discrete-time interval 23

coach are during the first six months on the job for the

student.

The SAS computer printout also provides information

that can be used to get a different check on these critical

periods. A column on the printout will give the

probabilities of the Wald Chi-Square indicating that time

periods with significant F's also have a chi-square with a

probability less than .004. This is the value of .05

divided by 12, or the probability of the Bonferoni F with 12

comparisons. This provides an adjustment for experiment-

wide error rate.

Insert Tables 3 and 4 Here

Discrete-time survival analysis affords a valuable tool

to educational researchers whose research questions don't

fit a proportional-log hazard model that does not allow the

fluctuation of the significance of the predictor variables

across time. The testing of predictor variables across time

for significance helps in the interpretation of when

intervention should occur. This method for evaluating the

significance of interactions between predictors and TIME, is

"not simply nuisances, (but) can lead to richer substantive

interpretation" (Singer & Willett, 1993).
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Table 2

Parameter estimates and goodness of fit statistics
for three fitted discrete-time hazard models

for special education employees data

Predictor Model 1 Model 2 Model 3

El 2.683 2.727 1.982

E2 2.247 2.289 1.576

E3 1.946 1.987 1.437

E4 1.775 1.815 1.308

E5 1.645 1.681 1.179

E6 1.404 1.439 0.958

E7 1.398 1.432 0.806

E8 1.314 1.345 0.454

E9 1.038 1.067 0.355

El 0 1.042 1.071 0.575

El 1 0.894 0.924 0.477

E12 0.001 0.045 -0.567
PREVHAND - 0.104

SUPPORT 1.310

-2LL 4671.81 2687.87 2529.33

change in 1983.94 2142.48

-2LL (df) (1) (1)

=.0001 =.0001

Model 1 - Null Model
Model 2 - Main Effects of PREVHAND
Model 3 - Main Effects of SUPPORT
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Table 3
Calculation of F Values from Parameter Estimates

Model 5 - Interaction between PREVHAND and TIME

Month Parameter
Estimate

Standard
Error

t F

1 -1.5213 .3436 -4.427 19.59

2 -0.9372 .2908 -3.222 10.38

3 -0.7230 .2692 -2.685 7.21

4 -0.5861 .2531 0.333 .11

5 -0.3889 .2662 -1.460 2.13

6 -0.1229 .2729 -0.450 .20

7 0.1258 .2942 .427 .18

8 0.4083 .3605 1.132 1.28

9 0.5687 .4031 1.410 1.99

10 0.3891 .4099 .949 .90

11 0.7861 .5695 1.380 1.90

12 2.5813 .6100 4.231 17.90

Bonferoni F cvE..--.8.3 with df 1, 286
Significant F's are in bold print.
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Table 4
Calculation of F Values from Parameter Estimates

Model 6 - Interaction between SUPPORT and TIME

Month Parameter
Estimate

Standard
Error

1 1.5932 .5104 3.121 9.74

2 1.5409 .4462 3.453 11.92

3 1.5966 .4771 3.571 12.57

4 1.2235 .4571 2.708 7.33

5 1.5950 .5207 3.489 12.17

6 2.1905 .6391 3.427 11.74

7 3.7716 1.0482 3.598 12.95

8 -0.3260 .6284 -0.518 .27

9 -0.2776 .6163 -0.450 .20

10 1.0986 .7497 1.465 2.15

11 -0.3365 .8040 -.418 .17

12 0.5108 1.0165 .461 .21

Bonferoni F cva8.3 with df 1, 286
Significant F's are in bold print.
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Figure Captions

Figure 1. Null Model

Figure 2. Main Effects of PREVHAND

Figure 3. Main Effects of SUPPORT

Figure 4. Main Effects of PREVHAND + SUPPORT

Figure,5. Interaction PREVHAND * TIME

Figure 6. Interaction SUPPORT * TIME
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APPENDIX

WILLETT AND SINGER'S SAS PROGRAM FOR CONDUCTING
DISCRETE-TIME SURVIVAL ANALYSIS

CREATING THE PERSON PERIOD DATA SET;

DATA JOBSURV;
SET JOBINFO; (Assumes the previous creation of data set JOBINFO)

ARRAY OCCASION[12)E01-E12;
ARRAY ASSIGN[12]S01 -S12;
ARRAY PREVTIME[12]PE01-PE12; (Creates the variable PREVTIME)
DO PER1010.1 TO MIN(LASTPD,12);

IF PERIONLASTPD AND CENSORaO THEN Y.1;
ELSE Y.0;

DO INDEX -1 TO 12;
SUPPORTagASSIGN[PERION;
IF INDEX.PERIOD THEN OCCASION[INDEX] -1;

ELSE OCCASION[INDEXja0;
PREVTIME[INDEX].PREVHANDOCCASION[INDEX);

END;

OUTPUT;
END;

ARRAY SUPPTIME[12]12E01-PE12; (Creates the variable SUPPTIME)
DO PERIM/al TO MIN(LASTP0,12);

IF PERIOD - LASTPD AND CENSOR -0 THEN Vail;

ELSE Yi.0;
DO INDEX.1 TO 12;

SUPPORT.ASSIGN[PERIODJ;
IF INDEX- PERIOD THEN OCCASION[INDEX]a1;

ELSE OCCASION[INDEX]a0;

SUPPTIME[INDE*SUPPOROCCASION[INDE4;
END;
OUTPUT;
END;

*CREATING THE INITIAL MODEL;

PROC LOGISTIC DATA - JOBSURV NOSIMPLEOUTINESTIMATE;

TITLE2 "MODEL 1 INITIAL (NULL) MODEL";
MODEL Y.E01 -E12/NOINT MAXITER.100;



*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASIOND 2jE01-E12;
SURVIVAL -1;
DO PERIOD -1 TO 12;

X2OCCASION[PERIOD];
HAZARD2,11(1+(EXP(X)));
SURVIVAL.(1-HAZARD)*SURVIVAL;
OUTPUT;

END;
KEEP PERIOD SURVIVAL HAZARD;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC PRINT;
VAR PERIOD SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)*PERIOD;

MODEL 2 - MAIN EFFECT OF PREVHAND;

PROC LOGISTIC DATA.JOBSURV NOSIMPLE OUT - ESTIMATE;

TITLE2 "MAIN EFFECT OF PREVIOUSLY EMPLOYED HANDICAPPED PERSONS";

TITLE3 "MODEL 2";
MODEL YaE01-E12 PREVHAND/NOINT MAX1TER.100;

*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASIOND 2JE01-E12;
DO PREVHAND-1 TO 2;

SURVIVAL-1;
DO PERIOD -1 TO 12;
XsOCCASION(PERIOD) +( PREVHAND-1)*PREVHAND;

HAZARD- 1/(1 +( EXP(X)));
SURVIVALa(1-HAZARD)SURVIVAL;
OUTPUT;
END;

END;
KEEP PREVHAND PERIOD SURVIVAL HAZARD;



*PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY PREVHAND;

PROC PRINT;
BY PREVAND;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)*PERIOD=PREVHAND;

*MODEL 3 - MAIN EFFECT OF SUPPORT;

PROC LOGISTIC DATA=jOBSURV NOSIMPLE OUT=ESTIMATE;
TITLE2 "MAIN EFFECT OF SUPPORT OF A JOB COACH";
TITLE3 "MODEL 3";
MODEL Y=E01-E12 SUPPORT/NOINT MAXITER=100;

*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASIOND 2JE01-E1 2;
DO SUPPORT=1 TO 2;

SURVIVAL=1 ;
DO PERIOD=1 TO 12;
X=OCCASION[PERIODMSUPPORT-1SUPPORT;
HAZARD=1/(1+(EXP(X)));
SURVIVAL*(1-HAZARD)*SURVIVAL;
OUTPUT;
END;

END;
KEEP SUPPORT PERIOD SURVIVAL HAZARD;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY SUPPORT;

PROC PRINT;
BY SUPPORT;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)'PERIOD=SUPPORT;

*MODEL 4 - MAIN EFFECTS OF PREVHAND AND SUPPORT;
PROC LOGISTIC DATA.JOBSURV NOSIMPLE OUT=ESTIMATE;

TITLE2 "MAIN EFFECT OF SUPPORT OF A JOB COACH";

TITLE3 "MODEL 4";
MODEL YatE01-E12 PREVHAND SUPPORTMOINT MAXITER=100;
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COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASIONO2)E01-E12;
DO SUPPORT=2;

SURVIVAL-1;
DO PREVHAND -2;

SURVIVAL.1 ;
DO PERION1 TO 12;
X=OCCASIONIPERIOWSUPPORT-1)*SUPPORT + (PREVHAND-1)*PREVHAND;
HAZARN1/(1+(EXP(X)));
SURVIVAL-(1 -HAZARD)*SURVIVAL;
OUTPUT;
END;
END;

END;
KEEP SUPPORT PERIOD SURVIVAL HAZARD;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC PRINT;

ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)PERION'+;

*MODEL 5 - INTERACTION BETWEEN PREVHAND AND TIME;

PROC LOGISTIC DATA=JOBSURV NOSIMPLE OUTxESTIMATE; (This mode tests the
TITLE2 "INTERACTION BETWEEN PREVHAND AND TIME"; assumption of proportion)
TITLE3 "MODEL 5";
MODEL YaE01-E12 PE01-PE12/NOINT MAXITER.100;

*COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASIONI121E01-E12;
ARRAY PREVHAND[123PE01-PE12;
DO PREVHANN1 TO 2;

SURVIVALm1;
DO PERIOD:1 TO 12;
XmOCCASIONPERIODHPREVHAND-1rPREVHANDIPERIOD];
HAZARD-1 /(1+(EXP(X)));
SURVIVALs(1-HAZARD)*SURVIVAL;
OUTPUT;
END;

END;
KEEP PREVHAND PERIOD SURVIVAL HAZARD;
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PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY PREVHAND;

PROC PRINT;
BY PREVAND;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)PERIOD=PREVHAND;

MODEL 6 - INTERACTION BETWEEN SUPPORT AND TIME;

PROC LOGISTIC DATAzJOBSURV NOSIMPLE OUT.ESTIMATE; (This model tests the
TITLE2 "INTERACTION BETWEEN SUPPORT AND TIME"; assumption of proportion)
TITLES "MODEL 6";
MODEL YuE01-E12 SE01-SE12/NOINT MAXITERa100;

COMPUTING FITTED HAZARD AND SURVIVAL FUNCTIONS;

DATA NEWEST;
SET ESTIMATE;
ARRAY OCCASION[12]E01 -E12;
ARRAY SUPPORTO 2ISE01-SE12;
DO SUPPORTn1 TO 2;

SURVIVAL-1;
DO PERIOD.1 TO 12;
X.00CASIONIPERIOWSUPPORT-lrSUPPORTIPERIOD);
HAZARD=1/(1+(EXP(X)));
SURVIVAL.(1-HAZARD)SURVIVAL;
OUTPUT;
END;

END;
KEEP SUPPORT PERIOD SURVIVAL HAZARD;

*PRINT SURVIVAL AND HAZARD RESULTS;

PROC SORT;
BY SUPPORT;

PROC PRINT;
BY SUPPORT;
ID PERIOD;
VAR SURVIVAL HAZARD;
FORMAT SURVIVAL HAZARD 6.4;

PROC PLOT;
PLOT(SURVIVAL HAZARD)PERIONSUPPORT;
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