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Abstract

The paper, in a fashion easy to follow, illustrates the

interesting relationship between structural equation modeling and

canonical correlation analysis. Although computationally

somewhat inconvenient, representing canonical correlation

analysis as a structural equation model may provide some

information which is not available from conventional canonical

correlation analysis. Hierarchically, with regard to the degree

of generality of the techniques, it is suggested that structural

equation modeling stands to be a more general approach. For

researchers interested in these techniques, understanding the

interrelationship among them is meaningful, since our judicious

choice of these analytic techniques for our research depends on

such understanding..

3



SEM & Canonical Analysis 1

INTRODUCTION

The utilization of multivariate methods has been widely

recognized as to be important in social and behavioral science

research. The importance mainly stems from two considerations:

1) we intend to honor the complex social reality in which we

operate and which we eventually want to generalize to; 2) we

intend to avoid inflating experiment-wise error rate in our

statistical analysis (Fish, 1988; Johnson & Wichern, 1988;

SAS/STAT User's Guide, Version 6, Vol. 4, 1989; Stevens, 1986).

Among the multivariate statistical techniques, canonical

correlation analysis has occupied an important strategic

position. It has often been conceptualized as a unified approach

to many parametric statistical testing procedures, univariate and

multivariate alike (Baggaley, 1981; Dunteman, 1984; Fornell,

1978; Knapp, 1978; Kshirsagar, 1972; SAS/STAT User's Guide,

Version 6, Vol. 4, 1989; Thompson, 1984, 1991).

Many popular parametric statistical techniques share one

thing in common: they are designed to analyze linear

relationships among variables. It has been shown that many of

the seemingly different techniques are really not that different

from one another after all (Fan, 1992; Knapp, 1978; Thompson,

1991). More specifically, "most of the practical problems

arising in statistics can be translated, in some form or the

other, as the problem of measurement of association between two

vector variates N and y" (Kshirsagar, 1972, p. 281). Canonical

correlation analysis, which summarizes the relationships between
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SEM & Canonical Analysis 2

two groups (vectors) of variables, naturally brings order to the

superficial chaos of a myriad of analytic techniques.

Theoretically or empirically, the interesting relationship

between canonical correlation analysis and many other statistical

testing procedures ranging from simple correlation, t-test, to

MANOVA, discriminant analysis has been shown many times (Knapp,

1971; Kshirsagar, 1972; Tatsuoka, 1989; Thompson, 1991).

Structural equation modeling (SEM) has been heralded as a

unified model which joins methods from econometrics,

psychometrics, sociometrics, and multivariate statistics

(Bentler, 1994). The generality and wide applicability of

structural equation modeling approach has been amply demonstrated

(JOreskog & Sorbom, 1989; Bentler, 1992). The statistical

relationship among structural equation modeling and canonical

correlation analysis, however, is less obvious. Consequently

such relationship is less known by researchers, despite the

insightful discussion on this topic provided by Bagozzi, Fornell

and Larcker (1981). The purpose of this paper is to use concrete

analysis examples to show the relationship among structural

equation modeling and canonical correlation analysis. Also, this

paper attempts to raise some questions about whether the

structural equation modeling approach to canonical analysis will

allow us to accomplish more than conventional canonical

correlation approach. For researchers who are interested in

these sophisticated analytical tools, to understand the

underlying relationship among these seemingly different methods

5



SEM & Canonical Analysis 3

will contribute to their judicious choice among these techniques

as they encounter different research situations.

SEM AND CANONICAL CORRELATION ANALYSIS

Canonical Correlation Analysis

Pioneered by Hotelling (1935), canonical correlation

analysis seeks to identify and measure the association between

two sets of variables. Canonical correlation analysis can be

understood as the bivariate correlation of two synthetic

variables which are the linear combinations of the two sets of

original variables (Johnson & Wichern, 1988; Thomson, 1984,

1991).

The two sets of original variables are linearly combined to

produce pairs of synthetic variables which have maximum

correlation, with the restriction that each member of each

subsequent set of such synthetic variables is orthogonal to all

members of all other sets.- The maximum number of such pairs of

synthetic variables which can be produced equals the number of

variables in the smaller set of the two. In this sense, the

synthetic variables in canonical correlation analysis, which are

the linear combinations of the original variables, are similar to

the synthetic variables produced in some other multivariate

analysis techniques such-as principal component analysis,

discriminant analysis, etc. The difference is that, in different

statistical analysis, the original variables are linearly

combined to satisfy different criteria. For example, in

6



SEM & Canonical Analysis' 4

discriminant analysis, the original variables are linearly

combined to produce synthetic variables which maximizes the ratio

of between-group variance to within-group variance, so that

different groups can be maximally differentiated on the synthetic

variables. In principal component analysis, the synthetic

variables (principal components) are constructed so that the

variance on the synthetic variables are maximized, and the

maximum amount of variance in the original variables can be

accounted for by the smallest number of these principal

components.

As can be expected for a multivariate statistical method, in

canonical correlation analysis, eigenstructures of certain

matrices play a crucial role in deriving the linear coefficients

needed to produce the synthetic variables and in deriving the

canonical correlation coefficients for different canonical

functions. Assume two sets of variables X and Y, with X set is

the smaller of the two. When combined, the two sets of variables

have the following partitioned correlation matrix:

Rxy
R=

R R
yx yY

The derivation of the linear coefficients for combining

original variables into canonical variates is based on the

following two matrices A and B, which have the same eigenvalues

but have different eigenvectors ai and bi associated with the

eigenvalues

BEST COPYAVAILABLE
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SEM & Canonical Analysis 5

A = Rxy Ryx

B = R;y1 Ryx 122 Ray

The elements in the eigenvectors ai and bi turn out to be

the linear coefficients needed for the two original sets of

variables X and Y respectively. These coefficients are often

referred to as canonical function coefficients (Thompson, 1984)

or canonical weights (Pedhazur, 1982). Once the linear

coefficients are obtained, we use them to derive a pair of

synthetic variables (canonical variates):

Xi* = ail X = a1X1 + a2x2 + ... + aixi

Yi =bi Y =b1y1 +bye +...+bryi

The correlation between X*i and Y*i is maximized, subject to the

restriction that each subsequent canonical function is orthogonal

to all previous canonical functions. The square root of the

associated eigenvalue li is the correlation between X* and Y*

(Rx *y* 0). Once the first eigenvectors and associated

eigenvalue are determined, a second pair of canonical variates

can be derived based on the next eigenvector-eigenvalue pair.

Canonical structural coefficients, i.e., the correlation

coefficients between the original variables (X and Y) with their

respective canonical variates, can be obtained once canonical

function coefficients are known by premultiplying the function

coefficient vectors with the associated correlation matrix of the

original variables:

8



SEM & Canonical Analysis 6

rX* X = Rze ai
ry* = bi

For every observed variable, it is not only correlated with

its own canonical variate of its own set, but it may also be

correlated with the canonical variate of the other variable set.

This correlation is termed "cross-loading" (Bagozzi, Fornell, &

Larcker, 1981) or "index coefficients" (Johnson & Wichern, 1988;

Thompson, 1984). The relationship between index coefficients and

function coefficients are as follows:

PYgr1/2

rx = Ryx at

Furthermore, the index coefficients are related to canonical

correlation coefficient (rd as follows:

rc
2 = Al = rx. Ryy1 r y

-1= r x R ry* x

Structural Equation Modeling

Structural equation models have been discussed in literature

extensively (J-reskog & S-rbom, 1989; Bentler & Weeks, 1980).

Different theoretical models have been proposed which essentially

accomplish the same goals (McDonald, 1978, 1980; McArdle, 1980;

Bentler & Weeks, 1980; J-reskog & S-rbom, 1988). Among these

models, EQS (Bentler, 1992; Bentler & Weeks, 1980) and LISREL

(J-reskog & S-rbom, 1988) models have become widely known among

9
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7

researchers in different substantive research areas.

EQS model represents the linear relationship among variables

(either observed or latent) as:

T1 = yE

Where, 11 correspond to endogenous variables (either observed or

latent), while correspond to exogenous variable (also either

observed or latent). y describes the relationship from exogenous

to evdogenous variables, and 0 describes the relationship between

endogenous to other endogenous variables.

Similar to EQS model but with somewhat more elaboration,

LISREL model specifically distinguishes between relationships

between observed and latent variables (two measurement models for

exogenous and endogenous latent variables respectively) and those

between latent variables themselves (structural model):

Yl = C

y = Ay 11 E

X = Ax +

Structural Model and Canonical Analysis

SEM Representation of Canonical Correlation Analysis

To represent canonical correlation analysis using structural

equation modeling turns out to be not so straight forward.

Following the demonstrations by Bagozzi et al. (1981), the

canonical variate pair (X* and Y*) can be reduced to a model with

a single latent variable (either X* or Y*), rather than two

latent variable model (both X* and Y*). Based on this approach,

10



SEM & Canonical Analysis 8

the canonical correlation analysis can be represented as a

Multiple Indicators/Multiple Causes (MIMIC) model. The

distinguishing feature of MIMIC model is that the latent variable

has both causal indicators and effect indicators (MacCallum &

Browne, 1993). The application and implementation of MIMIC model

in research has been discussed elsewhere (Goldberger, 1972;

JOreskog & Sorbom, 1988). The MIMIC model representing the first

canonical variate X*1 is presented in Figure 1.

Insert Figure 1 about here

In the model of Figure 1, the r matrix (the effects of

causal indicators on the latent variable 1)) contains function

coefficients for the first canonical function for X variables.

The AY matrix (the effects of the latent variable on its effect

indicators) contains the index coefficients of Y set variables on

the first canonical variate X*1. As discussed before, this SEM

representation of canonical correlation analysis only deals one

canonical variate (Xi* or Yi*) at a time, and in this case, the

latent variable 11 is actually the first canonical variate X*1 for

X variables.

Since the latent variable TI in Figure 1 represents the first

canonical variate X *1, base-C. on the concept of canonical

correlation that the canonical variate is a linear combination of

observed variables without error, the disturbance term (C) for

the latent variable should be fixed to be zero. Also, since

canonical correlation analysis is symmetrical, canonical variate

11



SEM & Canonical Analysis 9

Yiel for Y variable set can easily be represented by reversing the

direction of the MIMIC model, i.e., by changing the causal

indicators into effect indicators, and the effect indicators into

causal indicators.

For the first canonical function, once canonical function

coefficients and index coefficients are obtained from SEM model,

canonical correlation coefficient and canonical structure

coefficients can be derived based on the formulas presented

before. After the first canonical function depicted in Figure 1

is solved, the second canonical function can be built over the

first by imposing another latent variable on the_MIMIC model, and

constraining all the coefficients of the original model to be

equal to the values already obtained for the model. Since

canonical functions are orthogonal to each other, the new latent

variable is specified to have or receive no effect from the first

latent variable. The first two canonical functions are depicted

in Figure 2. In the same vein, more latent canonical variates

can be sequentially added to the MIMIC model to accommodate more

canonical functions as data permit.

Insert Figure 2 about here

From the discussion above, it appears somewhat cumbersome to

represent canonical correlation analysis using SEM approach,

since several related models have to be analyzed and some

additional calculation is also necessary to obtain all the

results typically obtained in a canonical correlation study.

12



SEM & Canonical Analysis 10

These inconveniences aside, SEM approach does seem to be able to

provide some additional information which canonical correlation

analysis does not have. Two such potential advantages are 1)

significance testing for canonical function coefficients; 2)

significance testing for individual canonical functions.

Significance Testing for Coefficients

For some multivariate methods such as discriminant analysis,

factor analysis, etc., theoretical sampling distributions are

either not available or extremely complex for different types of

coefficients, thus it is difficult or impossible to conduct

statistical significance testing for these coefficients. The

same is true for canonical correlation analysis.

The lack of sampling distributions for many coefficients in

some multivariate methods contributes to the subjectivity of

certain some decision process. For example, in canonical

correlation analysis, what value of function coefficients should

we use as the criterion to judge the importance of contribution

of observed variables to the canonical function? Since

significance testing is not available in canonical analysis for

the coefficients, we have one less tool for the purpose. SEM

approach to canonical analysis seems to be capable of providing

us with this information. In SEM approach depicted in Figure 1,

since r and Ay contain canonical function and index coefficients

respectively, and standard errors for these coefficients are also

available from SEM, critical t ratios can be calculated to give

us some sense about how much sampling error we can expect for

13



SEM & Canonical Analysis 11

these coefficients.

Testing for Individual Canonical Functions

Mathematically, the likelihood ratio test in canonical

analysis compares the sample restricted generalized variance

under the null hypothesis with the unrestricted generalized

variance as follows:

IRxxl IRyyl

R. Ray

R R)
Yx

This test indicates that the necessary and sufficient condition

for canonical correlations to be zero is 11,q, (14,12) being zero.

Due to the complexity of distribution theory for sample

canonical correlation coefficients (Johnson & Wichern, 1988;

Kirsagar, 1972), the likelihood ratio test in canonical analysis

is constructed not for testing individual canonical functions,

but rather, for sequentially testing several canonical functions

as a group. For example, in a situation where three canonical

functions are derived, three likelihood ratio tests will be

conducted. The first tests the Ho that all canonical functions

are zeros, the second tests the Ho that the second and the third

canonical functions are zeros, and the third tests th-e Ho that

the last canonical function is zero. If the first two tests are

statistically significant and the third is not, it will be

concluded that the first two canonical functions are

14



SEM & Canonical Analysis 12

statistically significant while the third is not. Such

conclusion sounds as if we had conducted significance tests for

individual canonical functions when, in reality, we have not.

Strictly speaking, only the last test for the third canonical

function is a true test for individual function, and all previous

tests are not. Theoretically, in the situation described above,

it is possible that the second canonical function by itself,loes

not account for a statistically significant portion of data

covariance, but only together with the third canonical function,

they jointly account for a statistically significant portion of

data covariance. This possibility will not be known under the

conventional likelihood ratio test in canonical analysis.

If structural equation model can be formulated to represent

canonical analysis, one interesting question will be whether

statistical significance test can be conducted for individual

canonical function, instead of the sequential testing process

described above. In other words, can we independently test for

the null hypothesis that the first canonical correlation itself

is zero, or the second, and the third, instead of testing for all

three, last two, and'last one? Conceptually, this seems to be

possible in SEM using the approach of nested models and then test

for the statistical significance of differential x2 between two

nested models, one with constraints while the other without.

Within the framework of LISREL model, the implied

correlation matrix for standardized variables for our MIMIC model

is as follows:

15
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Ax4Ax AAA/
A),

Ay r4Ax Ay (r4r') A/3, + eE

It is easy to see that once Ay is constrained to be zero, Ry (R %)

will be zero so that the restricted condition for the likelihood

ratio test in conventional canonical analysis will be satisfied.

This suggests that constraining the Ay to be zero conceptually

represents a restricted model of zero canonical correlation.

That zero Ay means zero canonical correlation is also shown

through the relationship between canonical index coefficients

(r, = Ay) and canonical correlation coefficientAr0):

r2 = rx, rc x y x y
i -1

= ry* x R ry* x

The flexibility of testing for nested models approach in SEM can

easily accommodate testing for such unrestricted vs restricted

models, though in this case of MIMIC model, the restricted model

seems to be a somewhat strange model with only causal indicators

and no effect indicators. It is not clear what methodological

ramifications such a restricted model may have on SEM estimation

process.

An Example

An example in SAS STAT User's Guide (SAS Institute, 1988) is

used as an illustration for the relationship between canonical

correlation analysis and SEM. The data contain three physical

16
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variables (measurements of Weight, Waist and Pulse) and three

exercise variables (numbers of Chins, Situps and Jumps

completed). The correlation matrix for the three variables is

presented in Table 1, and the sample size was altered in order to

yield statistically significant results for the canonical

functions derived from the data (original sample size for the

data matrix is 20).

Table 2 presents the results of canonical function

coefficients from both SEM and canonical analysis approach. The

values for the coefficients from the two approaches are

essentially the same, thus not repeated in the table. The

critical t ratios for the function coefficients based on SEM

approach (t ratios are for unstandardized coefficients) are also

presented in the table together with the coefficients. As

discussed previously, conventional canonical analysis does not

provide estimate for standard errors for the coefficients, thus

making it difficult to make statistical assessment for the

relative importance of the function coefficients, i.e., the

relative contribution of observed variables to the canonical

variate. In SEM approach, such information becomes available,

assuming that the data satisfy the SEM theoretical assumptions in

order for such estimates to be valid.

It is observed that statistical importance of the

coefficients may not be accurately assessed by its absolute

value, since such values should be assessed in relation to its

standard error. For example, the variable Chins has function

17



SEM & Canonical Analysis 15

coefficient -.35 on the first canonical function, and -.37 on the

second canonical function. Without knowledge of the standard

errors, as in conventional canonical analysis, it may be

concluded that the variable Chins is about equally important for

the first and second canonical functions. But when judged in

relation to the standard errors, the interpretation will change

dramatically. This variable is much more important for the first

canonical function (critical ratio 4.59) than for the second

canonical function (critical ratio .88, and statistically not

different from zero). This example shows some advantage of using

SEM to represent conventional canonical correlation analysis.

Such information about standard errors for the coefficients is

meaningful and important in the statistical sense.

Table 3 presents the results of SEM nested-model approach

for testing each of the three individual canonical functions as

discussed above, together with the results from the sequential

testing in canonical correlation analysis. It is seen that for

this dataset, the results from the two approaches are very

similar. It is unclear whether this (the same results based on-

the two approaches) will hold for different data sets.

Theoretically, the sequential testing approach in canonical

analysis is somewhat different from testing individual canonical

functions, since more than one canonical functions are being

tested at a same time except for the last canonical function.

Assuming that the nested model approach in SEM for testing

canonical correlation as discussed above is correct, there seems

18
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to be some slight conceptual difference between this and the

sequential testing approach. It is unclear why no obvious

difference between the two approaches occurs.

The solution to the model presented in Figure 1 does not

directly provide canonical correlation coefficient or canonical

structural coefficients. By using formulas presented previously,

these can be obtained with some calculation. Although this may

be burdensome computationally, it does not negate the fact that

canonical correlation analysis can be conceptually and

statistically represented as a structural equation model. Such a

relationship is meaningful in the sense that it further

demonstrates the generality and versatility of structural

equation modeling approach to data analysis.

At this time, several questions remain with regard to the

relationship between canonical analysis and structural equation

modeling. First, is there a better model representation for

canonical analysis other than what was presented in Bagozzi et

al. (1981)? Can we represent canonical analysis using a

different model so that we may directly obtain those statistics,

especially canonical correlation coefficient, which we can not

directly obtain from the current model? Several models have been

tried, but this current model seems to be the only one which

works.

Another question is related to the nested model testing

approach for testing individual canonical functions. As

discussed previously, it is not certain the approach tried in

19



SEM & Canonical Analysis 17

this paper is a sound approach statistically, since the

restricted model seems to be a strange model, although the test

based on the differential x2 seem to provide reasonable results.

Are there better ways to construct statistical test for

individual canonical function? Also on this point, the

conventional sequential testing approach and the nested model

testing approach seem to provide very similar results. Assuming

that the nested model testing approach is correct, is this a

coincidence due to data, or they are essentially the same? These

and some other minor questions aside, the relationship between

conventional canonical analysis and structural equation modeling

is unmistakable. Researchers interested in these methods may

benefit from the understanding of such underlying relationship.

The statistical relationship between the approaches may also

provide us with some new insight for the conventional canonical

correlation analysis.
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Table 1

Correlation Data Matrix Used for Presentation (N = 213)

Weight

Waist

Pulse

Chins

Situps

Jumps

1.000

0.870

-0.366

-0.390

-0.493

-0.226

1.000

-0.353

-0.552

-0.646

-0.192

1.000

0.151

0.225

0.035

1.000

0.696

0.496

1.000

0.669 1.000
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Table 2

Testing for Canonical Functions: SEM Nested Model Approach and

Sequential Testing Approach in Canonical Analysis

SEM Sequential Testing

Ho: 1st rc=0 X2diff (df.3)== 212.01

p < .0001
110: 2nd re=0 X2diff (df..3) = 8.62

p < .05

Ho: 3rd ret0 x2diff(df.3) = 1.12

p > .10

Ho: All 3 rc=0

p < .0001

Ho: Both 2nd & 3rd re--0

p < .05

Ho: The 3rd

p > .10
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Table 3

Standardized Canonical Function Coefficients and Critical Ratios

from Canonical Analysis and SEM Estimation

Variable
Group

Variable
Names

Function
I

Function
II

Function
III

Physical Weight -.77 (7.23)* -1.88 (11.44) -.20 (.11*)

Waist 1.57 (12.91) 1.17 (4.07) .51 (.35*)

Pulse -.06 (1.04*) -.23 (.64*) 1.05 (1.04*)

Exercise Chins -.35 (4.59) -.37 (.88*) -1.30 (1.59*)

Situps -1.05 (11.25) .12 (.21*) 1.24 (2.07)

Jumps .72 (9.60) 1.06 (5.53) -.41 (.37*)

Canonical r rcl = .795 rc2 = .199 rc3 = .072

SEM Fit X2,11.3= 9.73 x2df-3= 1.12 X2df3= .000

p < .001 p > .10

a critical ratios estimated from SEM in parenthesis

* statistically not different from zero
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Y1

Y2

Y3

Figure 1: Structural Equation Model Representation of the First

Canonical Function
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Figure 2 Structural Equation Model Representation of the First

Two Canonical Functions
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