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Abstract
A model-based approach to rater reliability for essays read by

multiple readers is presented. Variation of rater severity (between-
rater variation) and rater inconsistency (within-rater 'variation) is
considered in presence of between-examinee variation. An additive
variance component model is posited and the method of moments
for its estimation described. The model involves no distributional
assumptions. Minimum mean squared error estimators of examinees'
true scores and readers' severities are derived. Model diagnostic
procedures are an integral component of the approach. The methods
are illustrated on data from standardized educational tests.

Some key words: mean squared error, reliability, shrinkage estima-
tors, variance components.
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Introduction

Reliability of the scoring process for examinees' responses graded by expert

raters (readers) is an important concern in educational testing. Growing reliance

on item-types with non-standard format, such as constructed response items

and portfolios, requires development of methods for analysis of between-rater

differences and for adjustment of scores. Traditionally, these two problems have

been treated without their integration; one method was applied to estimate

between-rater differences, and another method was used to adjust the scores

based on these estimated differences. This paper presents a method in which

the two problems are treated integrally. In particular, schemes for adjustment

of examinee scores are proposed which are not intermediated by the estimates

of characteristics of the individual readers.

Motivated by the generalizability theory (Shavelson and Webb, 1991), we

focus on a population of readers, rather than the specific readers that happen

to have been recruited, and use variance parameters to summarize differences

among the readers. An important rationale for this is to make inferences from

one set of readers, examinees, and test forms applicable to other settings which

can be regarded as draws from the same population. The adjustment schemes

are based on shrinkage estimators (Morris, 1983) of the true scores. They in-

corporate information about the readers and take account of the uncertainty

about their characteristics. The main advantages of this approach are in model

parsimony, ability to pool information across administrations of tests, and ap-

plicability to any noninformative assignment design (of readers to assays).

The approach presented here is similar to that of Braun (1988), and extends

it in some aspects, in particular, for multivariate scores and for estimation of true

scores. For brevity, the term 'true score' of a response is used for the expected

score of the response over the readers in the population from which they have

been drawn. Braun (1988) gives a comprehensive review of the literature on

scoring reliability. Linacre (1988) and Lunz, Wright, and Linacre (1990) consider
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reader severity as an additional facet of the Rasch model for polytomously scored

items, and estimate severity of each reader. Rater reliability as a source of

measurement error has been extensively studied in medical applications; see,

Landis and Koch (1980), Tanner and Young (1985) and Uebersax (1993).

The approach taken here is applicable to both continuous and ordinal cate-

gorical scales, and it enables direct estimation of both reader characteristics and

examinees' true scores. Approaches based on the classical analysis of variance

(ANOVA) or the ordinary regression are oriented toward estimation of the effects

associated with the engaged (`realized'.) readers and examinees, as opposed to

the hypothesized populations from which they are drawn. Thus, no inference

can be made about a future administration of the same or a similar test form

to examinees drawn from the same population and using readers from the same

population. Also, ANOVA estimation of the effects associated with the readers

and responses is very inefficient when there are a large number of units (readers

and/or examinees) because a considerable amount of information provided by

the other units is not used. The approach implemented in Linacre (1988) is an

adaptation of ANOVA for binary data, and it shares the problems of its classical

counterpart. Uebersax (1993) gives a comprehensive review of other approaches

based on models akin to item response theory.

In a typical situation an item is administered to I examinees of varying

ability, and each response, constructed or performed by an examinee, is scored

K times, at most once by each of J readers. An item is an instruction to write

an essay, solve a problem, perform a task, or the like. An examinee's response

may be documented on paper, computer, videotape, or the like, or observed

during the performance. The scoring scale (the range of possible scores) and

rubric (the correspondence of the ability, skill, or knowledge to the scale scores)

are important components of the item definition. The readers are experts in

the subject area and have received extensive training and instruction about the

rating process. Rating of recorded responses is organized into sessions; each
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session consists of one rating of each response.

Usually, the mean rating given by the K readers who were assigned a given

response is adopted as its score. In a simplistic approach the sample intercorre-

lations among the K readings (sessions) are used as a measure of agreement of

the readers. In this paper, an approach to reader reliability based on a variance

component model is presented. To motivate the development and to highlight

the deficiencies of some of the established approaches, consider the following

two extreme assignment schemes:

Each reader is assigned all the essays in a session (J = K)

Each of the I K readings is done by a different reader (J = IK).

A pair of readers is said to be consistent if the differences in the scores they

give to the responses that both of them have rated are constant. Formally,

declare two readers who have rated not more than one response in common as

consistent, also. A set of readers is said to be consistent if every pair in the set

is consistent.

For a set of consistent readers the sample correlations for the pairs of sessions

(i.e., readers) in the first assignment scheme are all equal to unity, but in the

second scheme these correlations may be much smaller. This is disconcerting;

the sample correlation depends on the assignment design, even though it is

supposed to be a characteristic of the rating process.

Two distinct ways in which readers may differ can be readily recognized.

The readers may vary in their severity; some tend to give higher scores while

others tend to give lower scores. Further, readers may disagree on the relative

merits of the responses; reader A may rate response x higher than response y,

disagreeing with reader B who rates response y higher than response x. Such a

disagreement is referred to as inconsistency, or reader-by-examinee interaction.

Unlike severity, which, in principle, can be corrected by adjusting (calibrating)

the scores, there is no way of adjusting for inconsistency.

5
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It will be shown that the standard approach to score adjustment based on

estimation of reader severity is deficient, because the optimal adjustment de-

pends not only on the estimated severity but also on the amount of information

about severity; that is, when severity is poorly estimated it should be given

small weight in the adjustment. A direct method for estimation of true scores,

which does not rely on estimates of severity, will be presented.

A conceptually useful way of studying the problem of reader reliability is to

consider the I x J matrix Y = {yii} of scores given to response i by reader j.

Usually, most entries of this matrix are not observed (e.g., when each response is

rated twice, there are J-2 missing observations in each row of Y). Consistency

corresponds to constant differences between any two columns of Y. In that case,

the ordering of the scores is the same in each column. Departure of the scores

from this pattern corresponds to inconsistency.

Each response need not be rated the same number of times. Let tci be the

set of sessions in which response i was rated, and be the number of these

sessions (1 < < K). For instance, when each response is rated once in each

of two sessions, Ki = 2 and tzi = {1, 2} for all responses i.

The readers may be assigned unequal numbers of responses both within and

across the K sessions. It will be assumed that the process by which responses

are assigned to readers is non-informative in each session, as are the sets {tzi},

so that the process can be regarded as randomized, subject to the constraint

that no essay be read twice by the same reader. Often there are no systematic

differences among the sessions, and so they can be regarded as interchangeable.

An example to the contrary is likely to arise when, say, the readers are instructed

be cween two sessions to be more lenient.

The paper is organized as follows. The next section describes a variance

component model for readers' scores. The between-examinee, within-reader,

and between-reader variances are identified as descriptors of the rating process.

In the following section the moment method for estimation of these variances is
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described. Then, the rater reliability model is expanded to account for varying

behaviour of the readers across sessions, for consistent differences among the

readers and {or multivariate scores. The following two sections present equations

for calibration of the readers and for near-optimal estimation of the examinees'

true scores using shrinkage estimators. Diagnostic procedures are described in

the next section. A section contains several examples in which performance of

the proposed adjustment schemes is evaluated. A simulation study is used for

generating standard errors and for assessing the impact of uncertainty about

the variances on score adjustment. Tne paper is concluded with a summary.

Variance component model

For the realized scores yii consider the additive model

(1)

where jik is the index for the reader who graded the response

i = 1, .. , I in session k E ni; cei is the true score of examinee i, Ai is the

severity of reader j = 1, . , J, and eii is the residual term interpretable as a

reader-by-examinee interaction.

Different (disjoint), overlapping, or identical pools of readers may be used in

the sessions. Let Jk be the number of readers used in session k, nik the number

of responses graded by reader j in session k, and ni the total number of responses

graded by reader j, that is, ni = E. nik. The total number of readers used

(the size of the reader pool) is denoted by J. Note that Ekic_i Jk > J > maxk 4.

Further, let Ik be the number of responses rated in session k, and N the total

number of ratings, so that N =Eil=1K1. A session in which every

response is rated, Ik = I, is called a complete session. Rating of an essay usually

consists of a small number (K = 1 or 2) of complete sessions.

It is assumed that {ai}, {Ai }, and {eq) in (1) are mutually independent

random samples with respective means r, 0, and 0, and variances ag, and



al. These variances represent variation of examinees' true scores, variation in

reader severity, and reader inconsistency, respectively. Various departures from

the model assumptions can be considered as a component of 4.

Given the model in (1), the scores given to the same response by two different

readers have the correlation

.2
ar1 Yi,i,2) =

Cre61,
2 + 2 + 2Oa

while a pair of hypothetical scores given to the same response from two inde-

pendent ratings by the same reader have the correlation

+
ob= cor(yi,j,,

+ 01+ cq
r2

The correlation of the true score with the mean of K scores given for a response

is

(
K

ra = cor ai, K- 1 Yiiik
k=1

(7!

\/O
(tea + 01/K + K)

(1+ Tb + re 2

K
(2)

where rb = alPra2 and Te = (7,21cra2 are the relative variances of severity and in-

consistency, respectively. The correlation of a pair of mean scores in independent

replication of the rating process, equal to ra, is often quoted as a measure of the

quality of the rating process. For two complete sessions the sample correlation,

= Ei(Yid" gl)(Yt g2)

VE;(Yi,J., )2 92)2

(9k is the sample mean of the h scores given in session k) is considered as an

estimator of r1 = 1/(1 + Ta + re). Hence ra could be estimated by a suitable

transformation as

re, = (1 +
1 f)

Figure 1 summarizes the relationship of these two correlations.
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Note that the estimator r does not involve independent scores because sets of

examinees share the same readers. Also, when the designation of the assignment

of ratings to sessions is arbitrary, the correlation depends on the selected assign-

ment. The correlation i` is affected by the assignment design and compounds

variation in severity and inconsistency. Identification of these components is es-

sential for improved calibration of readers, estimation of examinees' true scores,

and for informed choice of the assignment design.

Estimation

The variance components ca2, al, and of are estimated by matching certain

sums of squares with their expectations, and these estimates are substituted

for the true values in the appropriate expression for a correlation or another

quantity.

Define the following statistics:

1. the within-examinee sum of squares,

SE E E (Yid.
ket,

where yi,. = Eke /If; is the mean score for response i;

2. the within-reader sum of squares for session k,

SR,k = E (yijik zi,k)2,
iE(k)

where the summation is over all responses rated in session k, and zj,k is

the mean score given by reader j in session k,

Zj,k = E Yijik ;njk
(ijik=i)

3. the total sum of squares,
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ST,k = E(Yi,j 9k)2

where 9k is the mean score in session k,

9k = a

The expectations of these statistics, assuming the model in (1), are

E(SE) = (N I)(crl + al)

E(SR,k) = (4 4)(cr + (e)

( E. n?k
E(ST,k) = (/k 1)(a2 + al) + 4 ' 01 (3)h

These expectations are linear functions of the variance components. This is

particularly advantageous for the moment matching method described below.

To avoid trivial cases, assume that K > 2, J > 2, and N > I, that is, at least

one response is rated more than once. When Jk = 1 the expectations E(SR,k)

and E(ST,k) coincide. There may be a session with a single reader, Jk = 1, but

the total number of readers, J, has be greater than one.

Matching the statistics of SE, SR = Ek SR,k, and ST = Ek ST,k with their

expectations leads to a system of three linear equations which has the solution

ST SR(N K)/(N Ek Jk)
N EkE j 11; kilk

0-.:

2'a

SE

6.2 (4)

(5.2

N I b

SR

N Ek Jk e

These variance estimates can, in principle, be negative. Such values are ad-

missible when the variance components are interpreted as certain (conditional)

covariances. In practice, it is often meaningful to replace them by zeros.

10
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Extensions

The readers may conduct themselves differently in each session. For example,

the model in (1) can be expanded to allow for session-specific severity of each

reader. Consider the average severity /3j, and a deviation 0,k of the reader's

severity in session k from the average severity (reader-by-session interaction),

so that each score conforms to the model

YIJsk = at +13.71k 7J1k,k Egjsk (5)

where {7j,k} is a random sample from a distribution with mean 0 and variance

(72, independent from the other random variables (a, /3, and E). The variance

cry represents within-reader between-session variation. As a further extension,

variances cr2k specific to sessions can be considered. Also, it may be meaningful

to consider session specific means Pk = E(yii k), and/or inconsistency vari-

ances alk varying from session to session, so as to accommodate, for instance,

higher inconsistency in the first session.

For illustration, assume the variance ag2 to be common to all sessions. In

addition to the statistics SE, SEA, and ST,k define the between-session sum of

squares as

SB = EE(zi,k_zi)2,
k j

where zi is the mean of all the scores given by reader j;

1 r 1
Zi = 2.4

n
k

= nikZjA
nj k

The expectatimi of SB, assuming the model in (5), is

E(SB) = (EJk c-
.1) + (K 1)J + N v-

2.71.4 er: (6)
k=1 j nj k

11
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The expectations of the other sums of squares, SE, SR,k, and ST,k, are obtained

from (3) by replacing of, with cd, + oy (the equation for SR,k is unchanged).

The estimates of the variances cr? cd, 0 92 , and 01 are obtained by solving the

system of four linear equations that match the statistics SE, SR, SB, and ST

with their (theoretical) expectations. The system of equations can be solved

using (4), with 4, replaced by ob + ag2; the estimate of the sum of the variances

cr 09 is then decomposed using (6).

Severity of the readers may depend on extraneous factors, such as the time

of the day. Also, it may be desirable to relate severity to readers' characteristics

and attributes, such as gender and experience. Such features can be accommo-

dated by replacing the random terms in (5) by a linear regression. If the

factors of interest are categorical, the moment matching method of estimation

can be supplemented by suitable contrasts of scores which facilitate identifica-

tion of the effects.

Equations for other extensions of the proposed model, including models that

accomodate session-specific severity variance and reader inconsistency, are de-

rived analogously. Such models are likely to be useful only when essays are read

a relatively large number of times (e.g., K > 3 times) by identical or highly

overlapping pools of readers.

Multiple criteria

Readers sometimes score responses to an item for several aspects, such as techni-

cal skill, originality, and presentation. The models and the associated methods

of estimation have straightforward extensions for multivariate scores; the equa-

tions (3) and (6) remain valid, with the variances oQ, al, 4, and a9 replaced by

variance matrices Ea, Eb, Ee, and Zs. These matrices are of interest for ex-

ploring relationships among the component scores (between examinees, between

readers, and within readers). There is no obvious extension for the correlations

r1, r2 and ra to the multivariate case, other than defining the correlations of

12
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the component scores.

Adjustment for severity (calibration)

Standard approaches to estimating examinees' true scores, exemplified by Braun

(1988), focus on estimation of readers' severity coefficients which would then

be used for adjustment of the examinees' scores. The method described here

estimates true scores without intermediation of the estimated readers' severities.

The advantage of this method can be readily recognized by considering readers

assigned extremely small or large workloads. The severity of a reader with

a small workload is estimated subject to substantial sampling variation, and

therefore adjustment by this 'noisy' quantity is not advisable. On the other

hand, adjustment for severity is effective when the severity is well determined.

Thus, the amount of information about severity of the readers should play an

important role in efficient adjustment.

In the following two sections minimum mean squared error estimators of

the readers' severities and examinees. true scores are derived. Although in this

approach severity estimates are not necessary for estimation of true scores, they

are still useful for identifying unusual readers.

Estimating severity

When the sev .tr's,3, of reader j is realized on several ratings, the realization of

is estimable. The conditional expectation of /35, given the model parameters and

the data, is an obvious estimator of Qj . Evaluation of this expectation involves

inversion of the variance matrix for all the ratings, a formidable task without

taking advantage of the pattern of the matrix. Complex algebra is involved even

if the pattern is appropriately exploited.

An alternative method can be motivated by shrinkage estimation. Consider

the following two estimators of the realization of Ai : the trivial estimator identi-

cally equal to zero, and the difference of the mean of the ratings given by reader

13



j and the mean of all the ratings, zj - g. When 01, = 0, zero is the optimal

estimator of the realization of f3j, because the readers do not differ in severity.

When al is large, or the workloads nj are large, zj - g is a good estimator of

fij. The linear combination of these estimators,

&8 =

is adopted, with the reader-specific coefficient sj which minimizes the the mean

squared error (MSE), E(f3j,, --13j)2.

Denote by [j, k] and [j] the respective sets of responses rated by reader j in

session k and in all the sessions; = Uk[j, kb The model equation (1) implies

1 E + + n tk
1 r.

Z
nj 3 k=1 iE[j,k]

1.= LaKiai Enif3j +E E
i=1 1 1=1 kEic,

and elementary algebra yields

where

2 2 ( l 2 .c.--.1/4 Kl)
EC4.i,3 /3.02 = sica E Ki + L.,

n Nni
.7 " jEL2] i

N2

2i 1 1+4 (1- sj)2 + 2sj(1- sj)--N-n- 2 2
+ S. E 4 + spsre _

N
)

n

= C1,0 2Cj,1Si + Cj,24 ,

2Cj,0 = cb

C),1 oi (1- al
N /

? 2 2ni 2
cr: - E K.; E +obb

nj Nnj N2 N N2 2-snil
.7s

( 1 ) .+ cr
2

N
e

14
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Note that these equations contain totals over all examinees (a), and over all

the examinees rated by reader j (Eieui). The former are common to all readers,

but the latter, together with the workloads nj, may vary among the readers,

resulting in different optimal coefficients Si.

The MSE in (7) has a unique minimum at s; = C5,1/C1,2, and the attained

minimum is C1,0 (11 /Ci,z. The coefficient s; can be interpreted as the optimal

shrinkage of the deviation zj 9 towards zero. When the readers' workloads do

not vary a great deal, maxi ni < nJ /N, and hence 0 < C1,1 < C2.2 . Then

0 < sJ < 1. Values of sJ close to zero and unity are attained only in unusual- -
scenarios; for instance s; = 0 only if 01 = 0.

In practice, the variances are not known and their estimates are used instead.

This is problematic in small samples, that is, when the number of readers and/or

examinees is small. The simulations discussed below provide some insight into

sample size issues. When the variances are known, severity of each reader is

estimable even if each response is rated only once. Note how calibration de-

pends on the reader's load nj; in general, higher load n3 is associated with less

shrinkage toward zero.

Estimating true scores

In practice, estimation of a reader's severity is of secondary concern to esti-

mation of the examinees' true scores (xi, although estimation of the coefficients

[3j can facilitate this. Simplistic schemes for adjustment of the 'raw' scores

Kr Ek E tz, are based on various linear combinations of the mean

score given by reader j, zi , and the mean score for all the sessions, 9 . Common

examples of such adjustment schemes are

1 E _

Ki

15



and

otT') =) E Qi.k + 9,
Ki

kEK,

where A; is an estimator of the realization of pi.

In the literature on rater reliability, the discussion about scoring is often

limited to the dilemma of whether to adjust (use alz) or alb)), or not (use

A continuum of shrinkage estimators can be defined to fill in the void between

these two extremes. For instance, the estimator

1

= A,. u
K=

E zlik y (8)
kEK,

with a constant u, corresponds to no adjustment when u = 0, and to (full)

adjustment by the mean of the K readers' means who rated the response i

when u = 1. It is shown below that intermediate values of u yield more efficient

estimators. Moreover, different coefficients u can be used for the examinees;

more shrinkage is appropriate for responses rated by readers who had small

workloads because the ratings coatain less information about the severity of

their readers.

Another class of estimators of ai is given by the equation

= (1 t)91,. + E , (9)
$ kElc,

where t is a constant. It does not have as appealing a motivation as (8); the

estimator adjusts the scores by shifting them closer to the reader's means. Nev-

ertheless, in several examples analyzed below ero performs better than aim.

The coefficients u in (8) and t in (9) can be set so as to minimize the expected

squared error. Before determining these coefficients, consider a more general

scheme based on the class of estimators formed as the linear combinations of

the statistics and 9:

16
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V2iai = E + V319,
Kt-

kEK,

where vhi, h = 1, 2,3, are the examinee-specific coefficients, such that

Vii V2i V3i = 1.

(10)

This constraint is necessary to ensure unbiasedness, that is, E(&1 ai) = 0.
The shrinkage coefficients vhi are chosen so as to minimize the MSE for the true

score ai. Although the algebra involved appears tedious it is elementary.

Let Viii,k be equal to 1 if responses i and were graded by the same reader

in session k, and equal to 0 otherwise. Further, let nt = nj,,, /Ki,

Ek En,
n(2) = njIN, and

1

Ri = -2, ( 2

Note that 1 < nt < / and 1 > n.;" > 1 /I. The MSE of ai is

E(&8 - «02 =

{(1 v1i)2 + 2(1 vii) (v2inT v3i ) +v3it _ ,.9
N a

+ {(vii v202, + 2(v1i v20v3i4+474.101

+ 2 1 2
-F + 2(vii v2i)v3ik (2vii v2i)v (12)22K, -r V3i Cre

This is a quadratic function in the coefficients vhi. Assuming non-negative

variances 01 crg, and (r the coefficients with the quadratic terms vhi are all

positive. Therefore, (12) has either a unique minimum or a continuum of minima

located on a straight line. Differentiation with respect to the coefficients vhi

yields the linear system of three equations

viiAn v2iAl2 + Kiv3iAi3IN = Ificr,

viiAn V2i A22 + KiV3i/113/N = Ifinicd

vi A13 vziAn + V30133 = Kite, ,

17
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where

A11

Al2

A13

A22

A33

=

=

=

=

=

Kicr2 tr? +

Kinca 0.e2T

KiCra2 /It Crg cre2

la
e r a

2 + Crb2 ni cr,2

(No + Kin(2)cd, + KicrDIN.

The constraint in (11) can be enforced either by substitution, or by application

of the Lagrange multipliers. When the variance of 9 is negligible in comparison

with that of zi and pi, e.g., when there are few sessions and many readers,

application of the constraint corresponds to adjustment of vii, with negligible

adjustments of vii and v21. Thus, it suffices to solve the first two equations in

(13) and then set vas = 1 vli vw. When a shrinkage estimator (3i,, is used

instead of z1 in (10), these two adjustment schemes coincide because 13i,, is a

linear function of zj and g.

Several problems with the solution of (13) are readily recognized: difficulty

with interpretation of the optimal coefficients vhi , lack of any insight into the

dependence of the coefficients on the variance components, sampling variation of

the coefficients, and the amount of reduction of the MSEs over simpler schemes.

These issues are discussed below using several examples.

For the more restrictive schemes given by (8) and (9) the equations for the

MSE are substantially simpler. For (8),

E {(ai,. «02} =
(R.; 21-NC; Nir?

+ (1 )2 k+ 2ui (1 ui uy";} cr?

u;(2 / a:
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= DO, 2 Di + D2

where
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When D2,1 > 0 the MSE in (14) lias a unique minimum at u; = D1j/D2,i, and

its minimum value is D0,1Di ,i/D2,i. When the readers' workloads do not vary

substantially, D2,i > D1,1 > 0, and then 0 < 4 < 1; u; can be interpreted as

a shrinkage coefficient. No adjustment (u; = 0) is optimal when nj,, = I for

all k (one reader per session rating all the responses). When each reader rates

every response, D2,1 = 131,i = 0, and so the MSE in (14) is constant. In that

case adjustment is superfluous.

Note that the examinee variance cra2 is not involved in D1,i. Since the coeffi-

cient of cr?, in D2,1 is positive, higher oi (all else held equal) leads to smaller u;

(less shrinkage). On the other hand, higher between-reader (severity) variation

and higher inconsistency are associated with more shrinkage.

In the administration of a typical large-scale testing program there are a large

number of examinees and readers, and each response is rated a small number

of times (once or twice). Each reader has a substantial workload nj , and so the

scores contain abundant information about his/her severity. If readers' severities

are variable, adjustment with high ui is likely to be better than no adjustment.

Note that even when ob = 0 the optimal adjustment is for u; > 0. However,

when the workloads nj are much smaller than the number of examinees I, the

coefficient of al in D1,i is much smaller than that in D2,i (the coefficients of of
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are equal). Therefore, adjustment is more important (u; is larger) the larger

the severity variance cd.

The estimators of the true scores eti based on the coefficients u; break down

in some extreme scenarios. For example, when ai = 0 the optimal estimator of

each examinee's score ai is the sample mean 9. When the readers are perfectly

consistent, ai = 0, and each pair of readers can be linked through responses

(reader A is linked with reader B if there are readers C, D, E, Z, such that

there is at least one response each rated by the pairs of reaaers A and C, C

and D, D and E, ..., and Z and B), then the true scores ai can be determined

exactly. In these cases the estimator eii, is very inefficient.

The estimators given by (9) can be analyzed by the same approach. The

mean squared error is

E ai)2

24;4(1 n {) + t; {ol (1 2nT + K + 51-:r7(1 nT)}

= E0,i 2E1,it1 E2,it? (15)

for implicitly defined coefficients Ek,i, and so its unique minimum is attained

at

t; a.? (1

cr?,(1C1 21CinT + Ri) + al(1 )

Clearly 0 < t; < 1. When the readers are very inconsistent, that is, cre2 is much

larger than ac,, t; is close to unity. When of is much smaller than cra2, t; is

close to zero, and so the optimal adjustment is minute. This is in agreement

with intuition. It is interesting, though, that the optimal coefficient t; does

not depend on 4..This is of some importance because al is usually the least

precis,`,7 estimated variance component.

Diagnostic procedures

The readers may display any of a whole gamut of behaviours different from that

assumed by the model in (1). In this section, informal procedures for detecting
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some types of departure from the model in (1) are discussed.

Homogeneity of the inconsistency deviations cii is an important assumption

in (1). Define the sum of squares within reader j as the subtotal within SR,k

corresponding to the reader j;

SR,Jk = E (yi,j,k zi,k)2 (16)
iE(j,k)

Assuming normality of the scores yij , SR,ik/(4 + 4) has the X2 distribution

with nik 1 degrees of freedom. For large nik its distribution is approximately

even when the scores are not normally distributed. The statistics SR,ik

can be pooled over sessions k, but not over readers because the corresponding

statistics are not independent. Thus, checking for variance homogeneity involves

comparison of the statistics SR,jk or their combinations with the critical values

of the appropriate X2 distributions. Unlike in other uses of the X2 distribution

both very large and very small values of the statistics are evidence against the

model. Small values are a sign that the reader is giving almost the same grade

for every response.

A finer insight, relevant for large scale tests, is enabled by considering re-

sponses rated by the same pair of readers. The variance of the differences

Ai Yi2 for such a set of responses is 24. The corresponding (within-pair)

sums of squares can be pooled, because they are independent, thus generating

statistics which can be compared with the critical values of the corresponding X2

distributions. Readers who tend to disagree with their fellow-readers, or agree

with them, more than would be expected can be identified from these statistics.

These two sets of statistics imply a general diagnostic method based on

defining suitable subtotals of the sums of squares SE, SR, ST, and others, if

applicable, which have conditionally independent summands. If the number

of terms in these totals is moderate to large, the totals are approximately X2

distributed. The sums of squares selected should reflect the principal concerns

about model violations.
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These diagnostic procedures rely heavily on the assumption of non-informa-

tive allocation of responses to readers. For instance, it is difficult to distinguish

between a reader who was assigned lower quality responses from a reader with

high severity, in particular when each response is rated a small number of times.

Reliability

In the approach presented here the mean squared error appears to be a more

natural metric for assessment of the rating process than the traditionally applied

correlation coefficients, such as ra, and ra. Counterparts of these correlations

can he defined for adjusted scores, for instance, by replacing the unadjusted

score in (2) with the adjusted score.

For the optimal shrinkage coefficients te and ts these correlations are:

ra,iU cor(ai, eti,te)
firl

{1 u* (1 )1
1/130,i 13?,i1D2,i

174rot cor(ai, (17)
JEo,i E?,;/E2,i

where E0,1, E1,1, and E2,1 are the absolute, linear, and quadratic coefficients of t;

in the right-hand side of (15). Note that unlike ra, the correlations ra,ia and rot

are not constant across the responses i, unless a balanced assignment design is

employed. Equation (17) implies that for every response i the correlation ram is

greater than ra, but rou may not be. The counterparts of ra2 are the correlations

raja and ra2,it . The corresponding equations for the general adjustment scheme

based on (10) are not tractable.

Examples
Advanced Placement Biology test

The Advanced Placement Biology test contains a large number of multiple-

choice items and four constructed response items (essays) that are rated by
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expert readers. The dataset, drawn from an experimental administration in

1992, comprises scores on the multiple-choice items and the four essays for 297

examinees. Each essay was rated by two readers; a different set of readers was

used for each essay. Most readers rated 24 or 25 essays in each of the two

sessions. There are a few exceptions when a reader in the first session was

apparently replaced by a different reader in the second session. The allocation

of readers to essays is almost balanced; most pairs of readers rated five responses

in common. The rating scale is 0 10 (integer scores).

The estimates of the variance components are given in the left-hand side of

Table 1. For all four items reader inconsistency dominates variation in severity.

In fact, for essay C the estimated severity variance is essentially zero. That

limits the scope of adjustment. The reduction of the MSE due to adjustment is

modest, though perceptible, for all examinees and all essays.

Note that all conclusions related to MSEs made in this section are contingent

on the assumption that cra2 (variance of the true scores), cr? (severity variance),

and (4 (inconsistency variance) are known and equal to their estimates. This

assumption is subjected to scrutiny in the next section.

The estimated mean squared errors are summarized in Table 1. For the

unadjusted scores (column 'NAdj') the MSEs are constant across the exami-

nees. For the adjustment schemes based on (8) (`uAdj'), (9) (`tAdj'), and (10)

(`AAdj') the ranges of the MSEs are given for each item. For instance, using

the adjustment scheme `AAdj' the estimated mean squared errors for item C

are in the range 0.361 0.367.

For essay A the MSE for the raw mean score (no adjustment) is 1.37, the

MSEs using u7 are equal to 1.32 (t17 = 0.30), and the MSEs using t7 are equal

to 1.22. The adjustment scheme tAdj is better than uAdj for three of the

essays, although the reduction in MSE is greater than 0.1 only for essay A.

For essay A, the adjustment AAdj yields further reduction of the MSE by 0.07.

Score adjustment for essays B and D is useful but neither restrictive adjustment
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scheme (uAdj or tAdj) approaches the efficiency of the general scheme (AAdj).

For essay C, gains by adjustment are marginal.

With incomplete (or no) information about the variances, the choice of the

shrinkage factor is fraught with danger, as is the more discrete choice of whether

to adjust the scores at all. For illustration of this problem Figures 2 and 3

contain plots of the MSEs for the adjusted scores using (8) and (9), as functions

of the respective coefficients ui and ti. For essays A and D these functions are

within a narrow band for all responses; and therefore only the function for an

arbitrarily chosen response is plotted. For essays B and C there were responses

rated by readers with small workloads, and so their MSEs as functions of the

shrinkage coefficient differ from the rest of the responses. The MSEs for such

responses, number 7 for essay B and number 102 for essay C, are plotted together

with arbitrarily selected responses from the rest.

For essay A the choice of the shrinkage coefficient is not crucial; not much

reduction of the MSE can be achieved, although full adjustment, u = 1, is clearly

worse than no adjustment, u = 0. For a response to essay B rated by a reader

with a small workload, full adjustment is extreme!), risky because the reader's

mean zi is based only on one response. There is an interesting contradiction; the

minimum MSE for this response is'smaller than the MSE for responses rated by

readers with the usual workload. Better adjustment should be achieved when

more information is available about the readers. Here this is not the case; this

is another sign that the adjustment scheme is not fully efficient. The same

phenomenon can be observed for essay C for which one reader with a small

workload was engaged.

Figure 3 contains the corresponding plots for the adjusted scores using (9) as

functions of the coefficient ti. The contradiction observed for the scheme based

on (8) arises here also. The choice of the shrinkage coefficient is somewhat more

important; as in Figure 2, the largest meaningful adjustment, corresponding to

ti = 0.5, is detrimental.
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The example of these four essays suggests that indiscriminate use of (full)

adjustment is very risky. Two factors contributing to this outcome are rela-

tively small sample size (numbers of readers and their workloads) and small

variation of reader severity. Thus, without considering shrinkage estimators, no

adjustment is preferable to full adjustment. The simpler adjustment schemes

based on (8) and (9) improve estimation of the true scores somewhat, but the

scheme based on (10) is clearly superior. Note that for the simpler schemes the

mean squared error of the adjusted score is smaller than the raw score only in a

narrow range of the coefficients u or t around the optimal coefficient u' (or t*).

Large differences among the MSEs for the essays suggest that combining the

four (adjusted) scores into a single score should be done in a weighted fashion

reflecting differential reliability of the scores.

Studio Art Portfolio Assessment

The Advanced Placement Studio Art test comprises a portfolio assessment in

which artwork submitted by each examinee is rated on several criteria. Each

of the six criteria, denoted A F, is subjectively rated on the scale 0 4 by

raters from the same pool. A score of zero is very rare; in most sessions it is

received by less than one per cent of the 3756 examinees. The criterion A is

rated by three different raters and the other criteria by two raters each. A rater

may assess a portfolio on several criteria, but no criterion is assessed twice by

the same rater. The workloads of the raters within criteria vary considerably;

apart from a few raters who rated fewer than four portfolios the workloads are

in the range 120 600.

Table 2 contains the variance estimates and a summary of the MSEs using

the adjustment schemes uAdj, tAdj, and AAdj. Relative to variation of the

true scores (4), the reader inconsistency (4) is very large. For the Advanced

Placement Biology test the inconsistency variance o is less than 30 per cent of

the total variance o +01+ 01 for each essay; here the inconsistency variance is
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around 40 per cent for all six criteria. Here, as in the Biology test, inconsistency

variation dominates variation in severity (o Nevertheless, a considerable re-

duction of MSE is achieved by the adjustment schemes. There is little to choose

between the schemes uAdj and tAdj, but AAdj yields a substantial additional

improvement.

Reader inconsistency is the principal cause of low score reliability. In prin-

ciple, the variation could be reduced by further training and instruction of the

readers. It is instructive to consider two components of inconsistency: disagree-

ment in the merit of the rated material and variation in the grades given by

the same reader in a hypothetical independent replication of the rating. These

components may be reduced by training and instruction, by allowing the raters

more time, and the like. Since rating of a criterion by the same reader cannot

be replicated, one can only speculate about the relative contributions of these

two causes to inconsistency variation.

For illustration of model diagnostics the scores for criterion F are explored

further. Of the 33 readers who took part, nine rated a total of 15 portfo-

lios, and so no meaningful diagnostics for these readers can be generated. The

remaining 24 readers had workloads of 143 533 responses. The standard-

ized within-reader sample variances SR,ik/ {ni k( a2. + 61)} are displayed in Ta-

ble 3 (first two columns) together with their aggregates over the two sessions,

Ek k I fni(e! &D} (third column). The expectations of these statistics

are equal to unity, and their standard deviations to J2 / {nJk(o + 01)} and

V2/{ni(ag + o) }, respectively. For orientation, V2/(erF, + er?).4.- 2.2. Most of

the statistics in Table 3 are within their theoretical standard deviations of unity.

Also, the statistics for the two sessions are very close to one another for several

readers. Two readers, 112 and 190, stand out; their statistics are large in the

first session, but close to unity in the second. 190 had a small workload

in the first session (18 responses), and so SRJI = 1.82 does not present strong

evidence that the reader is unusual. However, SR,11 = 1.85 for reader 112 is a
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strong indication of departure from the model because the standard deviation

associated with Sftdi is equal to 2.2/10 = 0.163. Reader 125 has high values

of SRik in both sessions. There is little evidence that any of the readers give

the same score to almost everybody (small values of the x2 statistics); reader

117 has the smallest value of these statistics (0.53 in session 2).

The variation in the score differences for responses rated by the same pair of

readers can be treated similarly. The within-pair statistics can be accumulated

over the readers, thus generating a X2 -type statistic for each reader. If these

statistics are aggregated within sessions, the components are independent. If

they are aggregated across sessions, they are correlated because an elementary

statistic is included for both readers. However, the correlations are small be-

cause the severity variance is small. For the criterion F there are no outlying

readers for either session, or for the aggregates across sessions; no reader can be

identified who is in exceptional agreement/disagreement with the fellow readers.

For brevity, details are omitted.

CAPA tests

The two examples analysed above suggest that inconsistency variation should

be the principal concern with the readers. This is not a surprising conclusion;

severity of the readers is 'anchored' by common expectations as well as by the

scoring rubric. Being well-acquainted with the quality of the examinees, the

readers make sure that they do not give extreme grades to too few or to too

many examinees.

The English Language and Literature (ELL) and Social Science (SSc) tests

are two components of the Content Area Performance Assessments (CAPA).

CAPA were developed jointly by Educational Testing Service and the Califor-

nia Commission on Teacher Credentialing (CTC). CAPA in conjunction with

a battery of multiple-choice NTE Specialty Area tests is used for teaching cer-

tification in California. The data analyzed here are from the November 1992
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(operational) administration in which each test was taken by about 400 exami-

nees.

The ELL and SSc tests contain two essays each, denoted ELL1, ELL2, SSc1 ,

and SSc2, each rated by a pair of readers. The two tests use disjoint pools of

readers, but the pools for the pair of essays within each test are identical. The

scoring scale is 1 6 for each essay, and the 18 fully participating readers in

each test rated between 36 and 82 responses. A small number of other readers

rated not more than four responses each.

Results of the essay scoring analysis are summarized in Table 4. The estim-

ated severity variances (al) are about a sixth (ELL1) to a quarter (the other

three essays) of the estimated inconsistency variances (4). The reduction in

MSE due to score adjustment is modest, though, because the readers' workloads

are small.

The impact of the score adjustments can be assessed by summarizing the

adjustments. Figure 4 contains the histograms of the adjustments eicu

64,t A,., and for the respective schemes uAdj, tAdj, and AAdj. The

sample variances of these adjustments are 0.013, 0.016, and 0.027 (the sample

means are within 0.01 of zero for each scheme); the scheme AAdj has the largest

adjustments, uAdj the smallest. The adjustments for tAdj and AAdj are highly

correlated (p = 0.77), while the adjustments for uAdj hay., lower correlations

with both tAdj and AAdj (p = 0.50).

The adjustments are in the range -0.40 0.50, with 92.5 per cent of the

adjustments in the range -0.25 0.25; the coarseness of the rating scale remains

transparent even after either of the three kinds of adjustments. For instance,

most adjusted scores rounded to the nearest half-integer are equal to the raw

scores. The coarseness of the adjusted scores is also readily observed in the plots

of the adjusted scores against the subscores for the multiple-choice part of the

test, drawn in Figure 5. The correlations of the scores from essay ELL1 with the

multiple-choice score are in the range 0.460 0.468, lowest for the unadjusted
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scores and highest for uAdj and AAdj. Such a small change in the correlation

could not be interpreted as an improvement in v7.1idity even if the essay and the

multiple-choice part of the test were known to have a common unidimensional

underlying trait.

Standard errors

The variance components have an important role in estimation of the true scores

ai. In all three adjustment schemes the estimated variance components are used

instead of the unknown parameter values. Therefore., it is important to establish

the sampling variation of the variance components, and the dependence of the

adjustments on the variance components. The latter is relatively straightforward

for the two restrictive schemes (uAdj and tAdj), but not for AAdj. This reduces

somewhat the efficiency of the k.-leme AAdj for small administrations in which

the variances are estimated subject to a lot of uncertainty.

Although feasible, derivation of the sampling variance matrix of the statistics

SE, SR, and ST is extremely tedious, unless o = 0. In any case, the variance

matrix, and therefore the distribution of the estimators of the variances cr2, 01,

and o depends on unknown kurtoses of the random terms ai, /3j, and Eij .

Since estimation of the variances is relatively simple the standard errors for

the variances can be estimated by simulation. For a given assignment design,

say, that for essay B in the Advanced Placement Biology test, the observed

scores are replaced by those generated by the fitted model (with randomly drawn

`examinees' and 'readers'). All the random variables are drawn from normal

distributions with variances set to their estimated values from the real dataset

(cra2 = 3.74, ol = 0.45, and o = 1.40). The effect of rounding and truncation

(to scores 0, 1, ..., 10) can be explored in the same study by reestimating the

variances with the generated (normal) scores rounded and truncated.

The results are summarized in Table 5. For each variance its true value and

mean and the standard deviation of the 200 simulated estimates are given. The
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estimates are evaluated for the normally generated data (left-hand side of the

table) and for their rounded and truncated versions (right-hand side).

The results for the normal scores indicate that the estimators of the vari-

ances are unbiased. For the rounded scores the distribution of the estimators

is somewhat different, although the moments of al are only slightly affected by

rounding. On average, about 13 scores (out of 297) were truncated in a session.

These scores are likely to contribute to reduction of the means of the variance

estimates. The results in Table 5 can in no way be generalized. For instance,

when the scoring rubric is coarser, as in the CAPA tests, the variance er! is

affected. Results of the same simulation study for essay ELL1 in CAPA are

presented in Table 6, in the same format as Table 5. Now the rounding causes

a slight inflation of the variance estimator 4. Thus, to get a rough idea of the

sampling variation of the variance estimators in simulations rounding can be

ignored. Figure 6 contains the histograms of the six sets of estimators; in the

top row the histograms for the normal scores, and in the bottom row those for

the rounded scores are drawn. The shapes of the sampling distributions of the

variance estimators are only moderately skewed.

The simulated data contain abundant information about the examinee vari-

ance o and the inconsistency variance 4. However, for small administrations

estimation of the reader severity variance o is clearly the Achilles heel of this

approach. In both simulations the standard deviation of ed is equal to about

half its mean. This is likely to erode the advantage of the adjustment schemes

over no adjustment, but probably not to the extent that no adjustment would

be preferable.

The scheme tAdj has a distinct advantage over uAdj in that it does not

depend on (an estimate of) Analytical discussion of the scheme AAdj is not

feasible, but on a few examples the adjustments for tAdj and AAdj are highly

correlated, especially when the estimated severity variance is small.

Considerable improvement in estimation of o may be achieved by pooling
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information across multiple administrations of the same test or across similar

forms of the same test when similar selection procedures, instruction, and train-

ing of the readers are conducted. Estimation of vb could also be improved by

embedding additional ratings in the assignment design, as proposed by Braun

(1988), although this is of lesser importance since estimates of readers' severity

coefficients are not required for true score estimation.

The simulations can also throw light on the efficiency of the sample corre-

lation f as an estimator of the between-reader correlation ri = (1 + m + re)-1.

For the simulations based on the allocation design for essay B of the Advanced

Placement Biology test the simulated value of r1 is equal to 1/(1+1.85/3.74)

= 0.669. The mean of the simulated estimates (1 + fe)-1 for the normal

scores is 0.665 and the mean of the sample correlations is 0.664. The sampling

standard deviations of these estimators are 0.044 and 0.045. For the rounded

scores the correlations are only marginally reduced (to around 0.65), and the

two estimators are almost equally efficient; in fact they are nearly identical. The

simulated estimates of the pairs of correlations are plotted in Figure 7 for both

normal and rounded scores. The sample correlation of the pairs of simulated

estimates of the correlations is 0.998 for both sets of scores. Thus, the sample

correlation is a good estimator of r1.

The results of the simulations for essay ELL1 in the CAPA test lead to

similar conclusions. Details are omitted to conserve space.

Summary

A method for decomposition of the variance of essay ratings was presented.

It identified sources of variation due to examinees and readers (severity and

inconsistency). Extensions of the proposed model take account of changes in

severity and inconsistency of the readers across the sessions or due to extraneous

factors, enable relating severity and inconsistency across items (multivariate

models), and allow for unequal numbers of ratings of the essays. The gains in
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efficiency of the adjusted scores over the unadjusted scores are modest, though

perceptible, especially for administrations in which readers have large workloads.

Information about the variance components, and severity variation in par-

ticular, are important for adjustment of scores. Explicit equations were given

which enable detailed disCussion and near-optimal choice of adjustment of the

scores. Standard errors for the estimated variances as well as for the correlations

(reliabilities) can be obtained by simulations. Simulations can also be instru-

mental in deciding on the assignment design. In particular, use of readers with

small workloads should be avoided. In 'he studied examples reader inconsis-

tency dominates variation in reader severity, and therefore the MSE's of scores

can be reduced by adjustment only moderately.

The computational procedures were implemented on a Sun/Unix workstation

using the Splus3.0 software and the program codes developed can be obtained

from the author upon request. In practice, most of the computation can be

carried out interactively, with exception of the simulations. For instance, the

simulations for Advanced Placement Biology and the CAPA test took about

five and ten minutes of elapsed time, respectively.
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Table 1: Estimates of the variance components and estimated mean squared
errors for Advanced Placement Biology test.
The acronyms `NAdj', `uAdj', `tAdj', `AAdj' stand for the mean squared errors
for unadjusted scores, and scores adjusted using (8), (9), and (10), respectively.

Advanced Placement Biology

Variances Mean squared errors

Item - 2a. 2 - 2
o'e NAdj uAdj tAdj AAdj

A 8.20 0.32 2.42 1.372 1.321-1.324 1.218-1.221 1.145-1.147
B 3.74 0.45 1.40 0.926 0.768-0.865 0.817-0.873 0.718-0.723
C 7.07 -0.01 0.78 0.392 0.369-0.386 0.367-0.377 0.361-0.367
D 4.32 0.72 1.72 1.222 1.127-1.128 1.081-1.081 0.924-0.924

35



Table 2: Estimates of the variance components for Advanced Placement Studio
Art Portfolio Assessment.
The layout and notation are the same as in Table 1.

Advanced Placement Studio Art

Variances Mean squared errors

Criterion -cra - 2
(7b

- 2
cre NAdj uAdj tAdj AAdj

A 0.310 0.016 0.199 0.072 0.066-0.067 0.060-0.064 0.055-0.058
B 0.448 0.033 0.220 0.127 0.108-0.111 0.105-0.108 0.089-0.097
C 0.384 0.034 0.222 0.138 0.112-0.116 0.113-0.120 0.087-0.100
D 0.320 0.147 0.264 0.155 0.124-0.133 0.117-0.137 0.094-0.104
E 0.304 0.153 0.276 0.164 0.128-0.139 0.121-0.143 0.095-0.106
F 0.359 0.053 0.279 0.166 0.133-0.141 0.127-0.147 0.101-0.113
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Table 3: Within-reader diagnostics for Advanced Placement Studio Art Port-
folio Assessment.
For sessions 1 and 2 the standardized versions of the statistics SR,pc are given.
The column 'Both sessions' contains the standardized versions (theoretical
expectation equal to unity) of these statistics pooled across the sessions. Each
statistic is accompanied by the workload on which it is based. Statistics men-
tioned in the text are printed in bold.

Reader diagnostics Studio Art Portfolio

Reader

Session 1 Session 2 Both sessions

x2Idf load x2/df load X2/df load

110 0.80 152 0.76 174 0.77 326
111 0.65 183 0.77 197 0.71 380
112 1.85 151 1.15 141 1.51 292
113 1.05 154 0.85 122 0.96 276

114 1.09 164 1.15 153 1.13 317
115 0.92 232 0.81 301 0.86 533
116 0.91 162 0.89 134 0.90 296
117 0.77 126 0.53 86 0.67 212
118 0.94 170 1.25 153 1.09 323
119 0.86 175 1.03 189 0.97 364
120 0.85 214 0.92 166 0.88 380
122 1.2`,' 97 0.74 46 1.11 143

123 1.42 128 1.11 124 1.28 252
124 1.39 131 1.11 197 1.27 328

125 1.86 123 1.43 114 1.68 237
126 0.94 207 0.79 224 0.86 431

127 0.84 140 1.72 96 1.30 236
128 1.24 170 1.05 183 1.17 353
129 0.80 156 0.88 214 0.85 370
180 0.85 195 0.74 177 0.80 372

181 1.03 167 0.83 119 0.94 286

182 1.04 232 1.08 205 1.05 437

183 1.03 102 1.07 90 1.06 192

190 1.82 18 1.11 143 1.19 161
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Table 4: Estimates of the variance components for CAPA tests.
The layout and notation are the same as in Table 1.

Variances Mean squared errors

Item cr.- 2 Ia -di NAdj uAdj tAdj AAdj

ELL1 0.730 0.062 0.371 0.217 0.190-0.195 0.182-0.188 0.152-0.161
ELL2 0.762 0.056 0.240 0.148 0.124-0.127 0.132-0.133 0.108-0.112

SSc1 0.707 0.077 0.321 0.199 0.166-0,173 0.170-0.171 0.136-0.143
SSc2 1.358 0.064 0.264 0.1b*: 0.142-0.144 0.15-0.153 0.130-0.132
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Table 5: Summary of the simulations using the assignment design for essay B
in Advanced Placement Biology test.
Two hundred simulations were generated. The scores were generated according
to the model in (5), with variances equal to their estimates from the real dataset.
The right-most column summarizes the numbers of scores that were smaller than
zero or greater than 10 (out of a total of 2 x 297 = 594 scores).

200 simulations, Essay B in AP Biology

Normal scores Rounded scores

Trunc.' a
0.2

e 'a 2 .2

True value 3.740 0.450 1.400 3.740 0.450 1.400 n/a
Mean 3.756 0.455 1.407 3.440 0.418 1.408 26.370
St. dev.-n 0.421 0.261 0.194 0.371 0.241 0.188 6.788
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Table 6: Summary of the simulations using the assignment design for essay
ELL1 in the CAPA test.
Two hundred simulations were generated. The scores were generated according
to the model in (5), with variances equal to their estimates from the real dataset.
The right-most column summarizes the numbers of scores that were smaller than
one or greater than 6 (out of a total of 2x419 = 838 scores).

200 simulations, Essay ELL1 in the CAPA test.

Normal scores Rounded scores

Trunc.,2
'' a

2
Crb

2(7, ,2"a 0.2
b

2a,

True value 0.730 0.062 0.371 0.730 0.062 0.371 n/a
Mean 0.749 0.077 0.350 0.722 0.074 0.421 19.955
St. dev.-n 0.067 0.038 0.040 0.065 0.038 0.041 5.075
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Figures

1. Relationship of the correlations of two scores given to the same essay by

different readers

2. The mean squared error as a function of the shrinkage coefficient ui using

the adjustment scheme based on (8). Advanced Placement Biology test.

3. The mean squared error as a function of the shrinkage coefficient ti using

the adjustment scheme based on (9). Advanced Placement Biology test.

4. Histograms of the score adjustments for essay ELL1. The CAPA test.

5. Plots of the adjusted scores for ELL1 against the scores from the multiple-

choice part of the CAPA test.

6. Histograms of the simulated estimates of the variances using the assign-

ment design from the ELL1 essay in the CAPA test.

7. Plots of the estimates of the correlation ri based n the variance estimates,

and the sample correlation
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Figure 1: Relationship of the correlations of two scores given to the same essay
by different readers, r1, on the horizontal axis, and the correlation of the mean
score (K readers) with the true score, I.., on the vertical axis.
The number of scores contributing to the mean, K, is marked in the plot.
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Figure 2: The mean squared error as a function of the shrinkage coefficient ui
using the adjustment scheme based on (8). Advanced Placement Biology test.
Each essay is represented by a plot of the function for one or two responses.
Response 7 for essay B and response 102 for essay C were rated by one reader
each with small workload. The functions for responses with the usual workload
almost coincide.
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Figure 3: The mean squared error as a function of the shrinkage coefficient ti
using the adjustment scheme based on (9). Advanced Placement Biology test.
The same layout as in Figure 2 is used, and the functions for the same responses
are plotted.
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Figure 4: Histograms of the score adjustments for essay ELL1. The CAPA test.
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Figure 5: Plots of the unadjusted and adjusted scores for ELL1 against the
scores from the multiple-choice part of the CAPA test.
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Figure 6: Histograms of the simulated estimates of the variances using the
assignment design from the ELIA essay in the CAPA test.
The first row refers to the normal scores, the second row to the rounded scores,
the symbols (variances) 'A', '13', and `E' stand for tea, cd, and c4, respectively.
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Figure 7: Plots of the estimates of the correlation r1 based on the variance
estimates (horizontal axis), and the sample correlation 1. (vertical axis).
Simulated data based on the allocation design for essay B of the Advanced
Placement Biology test.
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