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Abstract

Cognitive task analysis grew out of efforts by cognitive psychologists to understand problem-solving in a lab setting. It has proved a useful tool for describing expert performance in complexproblem solving domains. This review considers two general models of cognitive task analysisand examines the procedures and results of analyses in three domains. From the standpoint oftechnique, cognitive task analysis can and should be integrated into systematic instructional design.However, true integration will require instructional designers to reexamination their theories oflearning with an eye toward adopting the learning constructs developed by cognitive psychologists.
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Cognitive Task Analysis: Implications for the Theory and Practice of Instructional Design

Introduction

Task analysis as practiced within the world of instructional design typically results in a
linear description of the job process and/or hierarchical orderings of the intellectual skills required
to achieve the task. These constructs are particularly useful for defining observable tasks easily
subject to top down (or bottom up) analysis. When the object of training is to move people
toward expert performance in a complex problem solving task, an instructional designer relying
entirely on task analysis methodologies from the instructional design literature may be at a loss.
However, useful task analysis models and techniques have been developed by cognitive scientists
working in the areas of knowledge engineering, ergonomics, and cognitive measurement. These
techniques generally focus on illuminating the "covert heuristic" (Wilson and Cole, 1990) used by
experts to solve problems, and result in a description of an expert's mental model of the prcblem.

Cognitive task analysis (CTA) techniques were first used by cognitive scientists studying
human cognition in a lab setting, typically by having subjects (college students) work through
domain-free problems such as "The Tower of Hanoi" or "Missionaries and Cannibals". Of
interest to instructional designers, however, is CTA's usefulness as a method for describing the
performance of people who solve difficult problems for a living. Funke (1991) identified six
features common to such problems:

1) Intransparencyonly some aspects lend themselves to direct observation; often one must
infer an underlying state from observational data. Alternatively, the problem can be fully assessed
in principle, but it involves so many variables that by necessity a few relevant ones must be
chosen;

2) Polytelymultiple goals;
3) Complexity of situationthe problem involves a large number of control processes and

regulatory features;
4) Connectivity of variableschanges in one variable affects the status of other variables;
5) Dynamic developmentsthe problem situation may suddenly change for the worse, forcing

a problem solver to act immediately under time pressure;
6) Time-delayed effectsnot every action show immediate results.

Three occupations discussed extensively in the literature as subjects for CTA: air traffic
controllers (Means, 1993), electronics specialists troubleshooting avionics equipment-testing
workstations (Lajoie & Lesgold, 1992; Lesgold &Lajoie, 1991; Lesgold, Lajoie, Logan, & Eggan,
1990; and Means, 1993), and nuclear power plant operators (Roth & Woods, 1992; Roth, Woods,
and Pop le, 1992), reflect these qualities.

Given Funke's characterization, among the problem-solvers' most important skills will be
metacognitive strategies for selecting relevant information, prioritizing and revising goals, and
working between multiple versions of the problem representation. For example, a practitioner
may keep current and projected models in mind. A CTA approach provides a framework for
identifying and integrating skills such as these into the overall task description.

This review of the literature considers the roots and practice of CTA, with the general goal of
elucidating and perhaps expanding the notion of task analysis in instructional design. The first
section of the paper summarizes the underlying theory of CTA, focusing on research in problem-
solving and expertise. The following sections review the literature on CTA models and techniques
and examine weaknesses of CTA. Finally, implications of the technique for the theory and
practice of instructional design are considered.

Underlying theory

Problem-solving
Problem-solving theory developed within the information-processing view of cognition (see,

Reimann & Chi, 1989 for a review). The terminology from this strand of the literature is also
widely used in describing CTA. Initially the solver internally represents the problem in terms of
its objects, actions that can be taken on objects, strategies that can be used to work on the
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problem, and constraints on objects, actions, and strategies. This original representation of theproblem as given is called the initial state, which evolves into subsequent problem states asoperators are applied by the solver until the goal state is reached. The set of all possible problem
states and all possible combinations of operators is the problem space. By definition, peor----solving is the process of picking a path through the problem space from the initial state ugoal state.

Expertise
When conducting a task analysis, the problem representation of an expert (or a novice-expert

comparison) is of particular interest. But in complex domains expert problem-solving becomes
inextricably linked with domain knowledge (Reimann & Chi, 1989, Bedard & Chi, 1992). The
problem representations and operators used by experts are specific to their domain, and cannot be
easily identified outside the domain. Expert performance is characterized by other consistentfeatures. Experts' domain knowledge is broader, more interconnected, and better organized. Theylearn to quickly recognize recurring patterns in their domains (Bedard & Chi, 1992). As expertise
grows, procedural knowledge becomes more comprehensive and automatic, freeing up processing
capacity. (Means, 1988) This process can lead to a dissociation between verbal knowledge and
performance as experts may not be able to easily describe what they do (Sanderson, 1989).
Another component of experts' problem-solving capacity is increased memory for information intheir problem domain (Anderson, 1993). Experts tend to view problems by focusing on
underlying principles instead of surface features and, as opposed to novices, will impose structureon ill-defined problems. Finally, when following a means-end problem solving strategy (the
process of iteratively setting and revising intermediate goals to reach a targeted end-goal), experts
follow more efficient paths (Bedard & Chi, 1992).

Implications
The implications for cognitive task analysis are important. The primary goal of CTA is toreveal the problem representations andoperators of the solver (operations include actions andstrategies). But because domain knowledge and expert performance are linked, the analyst must

acquire enough domain expertise to ask the right questions. The finding that experts manipulatedomain data in higher-level "chunked" form is particularly important because people may be unable
to access subordinate elements of chunked information easily from memory. In the same vein,
cognitive strategies are generally not accessible to domain practitioners in the abstract, insteadtending to be buried features of particular situations that are automatically applied whenappropriate. Finally, experts' domain-specific patterns are another potential subject of inquiry forCTA.

Models of Cognitive Task Analysis

Most practitioners treat CTA as a fluid concept with the general practical goal of identifyingan expert's metacognitive domain-organizing structures, and in particular his problem
representation, whether it be propositional or an internal visual representation. (Wilson, 1989;
Nelson, 1990). The actual procedure may in some cases focus on deriving the implicit rule baseused to solve a problem (Ohlosson, 1990). The main focus may also be on determining the waythe expert organizes domain knowledge, resulting in representations of his schemata, semanticwebs, or mental representations of the problem state (Means, 1993; Lesgold et al., 1990; Nelson,1990). However, at least two researchers have proposed formal models of cognitive task analysis.Gardner (1985) defines the purpose of CTA as identifying the performance components,knowledge structures, and metacognitive knowledge underlying a task. Performance componentsare the automatic mental processes ' underlying ill cognition, such as encoding, inference, response,and performing operations on internal representations. Knowledge structures are the network of
propositions and rules that form domain knowledge. Metacognitive knowledge, in Gardner's view,is the collection of overt mental strategies people apply to a task to control higher-order planning,such as breaking the problem into parts.
Roth and Woods (1989) define cognitive task analysis as a two part process. The goal of the firststage is to define competent performance of the task, or to create a model of the problem-solvingenvironment. The resulting competence model specifies "what people must be able to do to
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accomplish the task: what kinds of problems they must solve, what must they know and how
must they use this knowledge to solve problems; what knowledge must be accessed to select
goals, form intentions to act, to monitor and adapt plans" (p. 246). The competence model defines
the parameters of the rest of the CTA, pointing the analyst toward the areas of the task that require
study. Roth and Woods also believe that by first defining a competence model, the analyst is more
likely to correctly identify sources of poor performance. The second stage of analysis derives a
performance model which specifies how practitioners actually perform the task. It is in this phase
that domain specific knowledge is elicited through a variety of interviewing and observational
techniques.

These two models describe CTA at completely different, but compatible levels, which can he
described in Roth's and Woods' own terms. Gardner's conception can be seen as part of a
performance model of CTA, for which Roth's and Wood's conception serves as the broader
competency model.

Cognitive Task Analysis Procedures

While investigators have pursued a rich and varied group of strategies to perform CIA's, the
procedures can generally be grouped into three categories. These are: 1) methods for using
domain knowledge to structure the analysis, 2) focus problem development, and 3) knowledge
elicitation.

Acquiring domain knowledge
Before analysts can get very far, they must learn enough about the domain to be able to ask

the right questions about how people do the task and to be able to understand the answers. The
objective is to get a preliminary sense of "the basic concepts, procedures, range of problems and
sources of complexity in the task" (Roth &Woods, p.250) to develop a competency model that
serves to structure the rest of the analysis.

As in any task analysis, one starts with the "official" version of the task by reviewing any
existin3 materials that describe it. Beyond examining documer-ation, a typical approach at this
stage is to interview several people who perform it. However, these discussions can tend to focus
on isolated details of the task, often producing several unrelated versions or a skewed picture of its
true dimensions. Roth and Woods recommend having a domain expert prepare and deliver an
overview presentation first, then moving into structured interviews to add detail. A second
approach is to leverage expert knowledge to define the task without specifically attempting to
bring the task analyst up to speed. Means, for example, used panels of experts who checked each
others' versions of domain problems so that consensus could be reached on which sorts problems
were useful for study. Lesgold included on his analysis team an expert with extensive experience
training novices (Lesgold & Lajoie, 1991).

Developing focus problems
After defining the range of problems, the analyst needs a forum for examining which

cognitive skills are brought to bear on the problems. Rather than analyze a live task in an
"online" work setting, a typical technique is to design focus problems that contain critical features
of the kinds of problems faced by people performing the task. Such problems may be critical
incidents, or they may be generally representative of the job task, but they must be entirely
domain specific in order to stimulate the metacognitive skills and representations of the domain
that are the focus of the task analysis. By studying the practitioner's approach to solving these
problems, the analyst gathers information about the key skills generally required to carry out the
task.

Roth and his colleagues (Roth & Woods, 1989; Roth, Woods & Pople, 1992; Moray
&Rotenburg, 1989) corvened panels of experts to construct the focus problem, an approach
similar to the one described by Means. After convening her experts to define typical problem
types, Mears (1993) had her experts construct problem examples. In their work on avionics
troubleshooting systems, Lesgold and his colleagues relied on their expert to define the focus
problem, but his decision was informed by protocol data (see below) from previous observations of
airmen working in the problem area (Lesgold et al., 1990). 1
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Knowledge elicitation techniques
Performance components. With the focus task in place, the analyst collects observational and

interview data concerning task performance. The data of interest may occur at the performance
component level as described by Gardner. For example, Lesgold and Lajoie (1991) measured
semantic retrieval efficiency on a subtask in an effort to determine whether there were differences in
the accessibility and organization of key concepts between effective and less effective beginning
troubleshooters. Moray and Rotenberg (1989) collected eye-movement data as experts and novices
worked on a computer simulation of a temperature control problem with relevance to power
stations. From this data they formed hypotheses about the processing requirements of subsets of
the task. The data allowed them to identify points at which "cognitive lockup" occurred. In this
condition practitioners fixate on one aspect of the problem to the exclusion of other cues
suggesting alternative solutions.

Conceptual knowledge. An inevitable goal of any task analysis is defining pertinent domain
knowledge (Gardner's knowledge structures), particularly in areas where procedures have become
automatic. This is largely accomplished through interviews. Although there are numerous ways
to help people retrieve information from memory, only the most basic and important technique,
prompting and probing, will be mentioned here by way of example. See Table 1 for a summary of
many elicitation techniques.

Table 1
Qudingicylanowleclge Elicitation Techniques

Technique Comments

Interview
La France questions
Laddering

Focused Discussion
Retrospective cases
Forward scenario
Critical incident
Interesting cases
Distinguishing goals
Goal Decomposition
Decision Analysis
Teachback

Construct Elicitation
Kelly's diads/triads
Sorting

Protocol Analysis
Think aloud
Eidetic Reduction
Retrospective report

Simulations

All knowledge types will emerge
Reveal schemata w/6 levels of question
Generate hierarchies of concepts

All knowledge types will emerge
Focus on procedural knowledge

Often vividly remembered
Reveal extremes of domain problems
I.D. minimum features that define goal
Means-end analysis
Assign value to each decision path
Doublecheck gathered material

Focus on schemata
Software automates elicitation
Forced conceptual categories

Focus on cognitive strategies
Reports all thoughts during task
Critical self-evaluation of task
Memory of thinking processcan be
compared with real-time version

Esp. useful if acquiring information
about system requirements

Note, Table compiled from Cording ley, (1989).
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Probes are content-free comments by the interviewer which are meant to encourage the expert to
elaborate further, for example, "Can you tell me a bit more about that?" Prompts address specific
aspects of the content, for example, "Who would you send that to?" Means and Loftus (1991)
demonstrated that prompts which provide contextual cues are useful for decomposing molar
(composite) memories for episodic events. For example, if the expert were being asked to recall a
specific case of an activity performed periodically, the analyst would prompt by asking the expert
to recall other activities that occurred in the same time period. Hinkle's laddering technique,
described by Cording ley (1989), prescribes a prompting method for developing concept hierarchies.
The interviewer prompts with "why" questions to elicit superordinate concepts, "how" questions to
elicit subordinate concepts, and "other example" questions to move laterally at the same conceptual
level in the domain.

Lesgold took a semi-structured interview approach to analyze avionics troubleshooters
(Lesgold et al., 1990). He and his colleagues used a means-end analysis to define the problem
space for a focus system fault problem. Then, based on the knowledge of the expert, they defined
on paper an "effective problem space" which consisted only of those steps an expert would take
plus the likely steps novices would take to move through the problem space. They developed a set
of probe questions in advance for each step (or node) in the effective problem space, then presented
the problem and effective problem space on paper to novices. Lesgold recorded the order in which
novices worked through nodes of the problem space, asking the probe questions for each node as
the novice chose that decision path. From the information he gathered, he was able to categorize
deficits in novices' knowledge base. He also derived problem-solving strategies and mental models
of the problem.

Metacognitive skills. To focus the analysis on metacognitive skills, one of the basic
elicitation techniques is protocol analysis (Ericsson &Simon, 1985). In protocol analysis, the
researcher records all the actions and verbalizations of the expert as he performs the task. From
this data the analyst infers the expert's mental model of the task. In verbal protccol analysis, the
analyst typically asks the problem solver to "think aloud" as they complete a task. They may
audio or video tape the task and have the problem solver retroactively describe what he was
thinking or doing at each step as they review the tape together. Means used this method widely to
identify the skills and knowledge of troubleshooters and air traffic controllers. In the weakest
version of the method, the analyst simply asks the practitioner to describe post hoc what the he
was thinking as he completed the task. Other metacognitive elicitation techniques
include reconstruction and asking practitioners to literally reproduce their mental representations by
drawing them.

The reconstruction technique (Roth &Woods, 1989) externalizes practitioners' conceptual
frameworks. The analyst briefly presents a picture or description of a domain situation to the
practitioner. The practitioner is then asked to reconstruct the situation from memory. Memory

rtidisteons indicate the nature of the practitioner's schemata.
Examples of eliciting mental representations are provided by Means (1993). She asked

avionics electronics technicians to draw their mental representations of a test station as they tried
to diagnose a fault. This information helped her identify salient features of a complex problem
representation. She drew conclusions about air traffic controllers' problem representations and
planning strategies by having them draw the airspace post hoc as it looked when they completed
the problem. Woods and Hollnagel (1988) also used drawings of experts' functional
representations of their equipment as part of a CTA of nuclear power plant operators.

Computers as a tool for knowledge elicitation. As a final note about elicitation techniques,
comparing human and computer problem-solving performance can sometimes reveal human
strategies. Roth, Woods, and Pople (1992) compared human performance in a simulation of an
emergency situation at a nuclear power plant to computer performance in the same situation. Two
teams of experts worked the problem while the researchers collected protocol and observational
data. By comparing the experts strategies to the computer's superior problem solution, Roth and
his team were able to pinpoint the areas of the problem space where the experts' schemata
interfered with optimal problem solution.
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Results of CTA
Having performed a CTA, how can one organize the data in a useful form? The task analyses

performed by Means, Lesgold, and Woods and their colleagues each resulted in a wealth of data
organized in different forms.

From her protocol analyses Means (1993) created tables which related steps in the problem
solution both to the specific knowledge which supported each step and to more general categories
which describe the overall knowledge base required to do the job. Organized one way the data
show the specific knowledge needed to do a task. Organized another way the data show which
knowledge is common to various tasks. Means also tried to examine the working mental
representations of her two groups of practitioners. Although she never specifies how she uses the
troubleshooter's mental representations in her analysis, she used the air traffic controllers'
representations to draw conclusions about using radar during training.

Woods' project comparing nuclear power plant operators' problem-solving to an expert system
solution of the same problem was an interesting sidelight which arose after the expert system was
well developed. Woods and his colleagues performed many CTA's during the development of the
system, collecting a large body of declarative and procedural knowledge as well as experts'
schematic representations of the physical systems with which they work. To define competency
models of task performance, they combined these schematic images with text describing the
knowledge base. Thus experts' pictorial representation of their mental models were used as an
anchor to define the important goal states within the task. Performance models were then derived
by posing problems that could arise within the competency model and documenting practitioners'
means-end solutions.

In his CTAs of avionics troubleshooters Lesgold and his colleagues categorized the resulting
protocol and interview data in primarily two ways. They identified six knowledge areas (see, Table
2) which listed all the metacognitive, declarative, and procedural knowledge required to solve the
focus problems.

Table 2
One of Lesgold's Data Organizers

Information Type Examples

Plans Extend and test a card; trace through schematic of card.

Hypotheses Short is caused by broken wire; ground missing from relay.

Device and system Understanding and use of external control panel; understanding of
understanding grounds and voltage

Errors Getting pin numbers for a test wrong.

Methods and skills Ability to run confidence check programs; ability to interpret
diagrams of relays, contacts, coils.

Systematicity Returns to point where he knew what was going on when a dead end
was encountered; check path from power source.

Note, Adapted from Lesgold, et al., 1990.

They then used this framework as a diagnostic scale to compare the strengths and weaknesses of
less and more proficient troubleshooters. They also superimposed novice solution paths through
the problem space onto expert solution paths to simplify the process of identifying salient
differences in the means-end solutions.
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CTA Caveats

The benefit of CTA is clearly its rich and thorough description of task performance. However
it is not without its drawbacks. The biggest problem is resource intensity. Gathering the data for
a CTA will take hours of the practitioner's and analyst's time--far more than a traditional task
analysis--and will generate huge quantities of data, only some of which will have broad
applicability to the problem. Analyzing the data is then another time-consuming effort. As
Means (1993) points out, the process of codifying and categorizing the data is highly iterative,
with new conceptual categories emerging as you proceed that may require reviewing previously
analyzed material.

The CTA process is fertile ground for bias and error. Roth and Woods (1989) list three
dimensions that will determine the validity of CTA results:
"1) the specificity of the information being elicited, 2) . the fidelity or realism of the retrieval
context, 3) the length of time between when the information was attended to by the expert and
the time he is asked to report it" (p. 255). If the CTA lacks in any of these areas tremendous
amounts of effort may be uselessly expended. In addition, complex problems will inevitably have
a variety of good solution paths, and for any one path, a variety of explanations (Means, 1993).
Therefore the choice of experts and solutions studied is another potential area of bias.

Finally, there is the question of how to best use the important cognitive and metacognitive
data arising from a CTA, an area researchers are only beginning to understand.

By very definition, experts' mental models and strategies have been developed through the
slow process of accumulating experience in their domain areas. It is completely unclear to what
extent this process can be circumvented. Strategies, schemata, and organizational webs that
emerge directly from domain knowledge--the powerful tools of expertise which are least subject to
articulation and conscious manipulation by the experteven if identified, may not be transferable.
And if they are imposed on learners, they may interfere in as yet unknown ways with the process
of acquiring expertise.

On the positive side, some lower-level cognitive strategies can be taught. For example,
experts' domain specific strategies for planning and reflecting on the problem solving process will
emerge from a CTA. These can be taught to novices through modelling (Brown, Collins, &
Dugiud, 1989; Collins, Brown and Newman, 1990). Conceptual models such as a picture of an
avionics test-station focusing only on certain pieces of equipment are another CTA result. Similar
models which highlight the key features of a domain area have also been shown to aid learning
(Mayer, 1989) for lower ability students. Although in Mayer's work the conceptual models used
were not explicitly the working models of experts, it seems plausible that in some cases experts'
models could be used productively in instruction.

Implications of CTA for Instructional Design

Similarities
A difficulty for instructional designers is that CTA procedures were developed by cognitive

psychologists without reference to task analysis as described in the instructional design (ID)
literature. The many similarities between the two approaches are obscured by differences in
terminology and emphasis.

To note the most important similarity first, both approaches result in a hierarchical or
proceduralized description of task. None of the articles reviewed here clearly laid out the
proceduralized version of the knowledge uncovered by CTA. However, all of the CTA's were
undertaken in the service of either expert system or intelligent tutor design. Therefore to be useful.
the knowledge ultimately had to be put in a rule-based form manipulable by a computer program.

None of the knowledge uncovered by CTA is outside the range of knowledge types described
by Gagne (cf. Gagne, Briggs, and Wager, 1992), whose instructional theory is perhaps the most
influential outside the ID literature (Kyllonen & Shute, 1989). Because cognitive psychologists
tend to work from the perspective of Anderson's ACT* theory (Anderson, 1987), they use fewer
terms to describe the same knowledge types. But an instructional designer could carry out a CTA
and describe the results in Gagne's terms -- verbal information, discriminations, defined and concrete
concepts, rules, and cognitive strategies. For example, Means instantiated skill of avionics
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troubleshooters: "Knowing how P/S regulator is related to power fail indicator lights," (Means,
1993) can be recast as a defined concept: "Identify characteristics of faulty P/S regulator." Paths
through a problem space, including planning and reflective steps, can easily be recast as a set of
rules.

A final similarity worth considering is that between Gagne's learning hierarchies and Wood's
competency model. A learning hierarchy, with its emphasis on what is to be achieved, not how,
is conceptually similar to a competency model. However, where Gagne's hierarchy lists all the
actions that lead to the desired goal-state, Wood's competency model lists each object that can be
acted on and the actions that can be performed on that object in the service of the desired goal-state.

Barriers to Integrated Models
Given the above discussion, a question that must then be asked is, "Should cognitive

psychologists conducting CTAs as part of an instructional design process be referring to the ID
literature?" The answer, unfortunately, appears to be "Why bother?"

Perhaps most damaging, the ID literature is weak when it comes to addressing the importance
of metacognitive skills in problem solving. Despite uncertainty about how to incorporate such
skills in instruction, they have emerged as crucial factors in expert performance and are some of the
richest data obtainable through a CTA. While the importance of domain-specific metacognitive
skills is acknowledged by Gagne et al. (1992), they also believe that on a cost-benefit basis, ID
resources are better focussed on the verbal information and intellectual skills (rules and concepts)
within a domain (see, Gagne et al., 1992, p. 72). A look at Dick and Cary (1985) reveals no
mention of metacognition or cognitive strategies in any form.

Secondly, cognitive psychologists have designed instruction, based on the results of CTA's, in
which they provide successful remediation defined only in terms of declarative and procedural
knowledge. Most notable is Lesgold's intelligent tutor, Sherlock (see, Lesgold & Lajoie, 1992,
for an overview). Sherlock simultaneously addresses gaps in novices domain knowledge, domain-
specific problem-solving cognitive strategies, and genetic problem-solving skills in a
contextualized form.

Finally, cognitive psychologists have defined a taxonomy of learning outcomes which better
reflects the knowledge structures that have emerged from cognitive psychological research
(Kyllonen & Shute, 1989). This taxonomy defines propositions as the simplest knowledge
structure and mental models as the most complicated. The same research effort which applied
CIA's to avionics troubleshooters and air traffic controllers is now poised to test this taxonomy
and to systematically investigate instructional strategies based on it.

The opposite question might well be asked: "Could instructional designers benefit from a
CTA approach to task analysis?" Here an affirmative answer seems appropriate. Most examples
of task analysis in ID how-to texts are of tasks where the designer qualifies as an expert:
introspection, simple research, or naturalistic observation are all that are required for the analysis.
However, in the real world instructional designers frequently rely on subject-matter experts for task
descriptions. Merely viewed at the most technical level as a collection of methods for working
with subject-matter experts, Cm still adds a valuable dimension of specificity to ID's usually
vague prescriptions for task analysis

Conclusion

Having traced the roots of CTA, reviewed its methods, and examined some examples in
practice, it is obvious that researchers outside the field of ID are making major strides in the
important area of analyzing real-world problem solving tasks. If ID is to grow, or even survive,
as an interesting academic pursuit, it must find some way to incorporate and make use of this and
other contributions from outside disciplines. At the very least, ID texts could incorporate CTA
into the systematic design of instruction. It could be cast as a task analysis subroutine to be
followed in the case of problems meeting the criteria by Funke which were presented at the
beginning of this paper. Gagne et al. (1992) already differentiate the design procedure for
intellectual skills from those for motor or affective skills.

However this solution begs the question to some extent. At issue are fundamental theoretical
principles of learning. Cognitive task analysis and traditional task analysis, with their emphases
on the practitioner and the task respectively, reflect the theoretical divergence between behaviorism
and constructivism. As cognitive psychologists focus their research efforts on identifying and
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instructionally manipulating complex mental models, they will continue to make headway in
defining instructional techniques for teaching in complex problem-solving domains. Unless ID
also finds a way to capitalize on the importance of cognition in mediating task performance, it will
not have the theoretical power to handle such tasks.

Footnotes

I . In general, it is a poor strategy to accept the task descriptions and solutions of one expert as
a basis for examining the cognitive skills applied by others on the task, as Lesgold and Lajoie

(1991) acknowledge. In doing so the analyst runs the risk of missing critical aspects of the task
not articulated by their particular expert.

References

Anderson, J. R., (1987). Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 94, 192-209.

Anderson, J. R., (1993). Problem solving and learning. American Psychologist, 48, 35-93.

Bedard, J., and Chi, M. T. H., (1992). Expertise. Current Directions in Psychological Science, 1,
135-139.

Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 32-42.

Cording ley, E. S. (1989). Knowledge elicitation techniques for knowledge-based systems. In Diaper,
D., (Ed), Knowledge Elicitation: Principles, techniques and applications. New York: Halsted
Press.

Dick, W., and Carey, L., (1985). The systematic design of instruction. Glenview, IL: Scott,
Foreman, and Company.

Ericsson, K. A., and Simon, H. A. (1985). Protocol analysis: verbal reports as data.. London: MIT
Press.

Funke, J. (1991) Solving complex problems: Explorations and control of complex social systems. In
Sternberg, R., and Frensch, P. A. (Eds.), Complex problem solving. Hillsdale: Lawrence Erlbaum
Associates.

Gagne, R. M., Briggs, L. J., Wager, W. W., (1992). Principles of instructional design (4th &Q. New
York: Holt, Rinehart and Winston.

Gardner, M. K., (1985). Cognitive psychological approaches to instructional task analysis. In Gordon,
E. W., (Ed.), Review of research in education 12. Washington, D. C.: American Educational
Research Association.

Kyllonen, P.C., and Shute, V. J., (1989). A taxonomy of learning skills. In Ackerman, P. L.,
Sternberg, R. J., and Glaser, R., (Eds.), Learning and individual thfferences: Advances in theory
and research. New York: Freeman and Co.

Lajoie, S. P., and Lesgold, A. M., (1992). Dynamic assessment of proficiency for solving procedural
knowledge tasks. Educational Psychologist, 27(3), 365-384.

Lesgold, A. M., and Lajoie, S. P., (1991). Complex problem solving in electronics. In Sternberg, R.,
and Frensch, P. A. (Eds.), Complex problem solving. Hillsdale: Lawrence Eribaum Associates.

12
122



Lesgold, A. M., Lajoie, S. P., Logan, D., and Eggan, G. (1990). Applying cognitive task analysis and
research methods to assessment. In Fredriksen, N., Glaser, R., Lesgold, A., and Shafto, M.,
(Eds.), Diagnostic monitoring of skill and knowledge assessment. Hillsdale: Lawrence Erlbaum
Associates.

Mayer, R. E., (1989). Models for understanding. Review of Educational Research 59, 43-64.

Means, B. (1993). Cognitive task analysis as a basis for instructional design. In Rabinowitz, M.,
(Ed.), Cognitive science foundations of instruction. Hillsdale: Lawrence Erlbaum Associates.

Means, B., and Loftus, E. F., (1991). When personal history repeats itself: Decomposing memories
for recurring events. Applied Cognitive Psychology, 5, 297-318.

Moray, N. and Rotenberg, I., (1989). Fault management in process control. Ergonomics, 32, 1319-
1342.

Nelson, W. A., (1989). Artificial intelligence knowledge acquisiL itechniques for instructional
development. ETR&D, 37, 81-94.

Newell, A., and Simon, H. A., (1972) Human problem solving. Englewood Cliffs, NJ: Prentice Hall.

Ohlosson, S. (1990). Trace Analysis and spatial reasoning: An example of cognitive diagnosis and its
implications for testing. In Fredriksen, N., Glaser, R., Lesgold, A., and Shafto, M., (Eds.),
Diagnostic monitoring of skill and knowledge assessment. Hillsdale: Lawrence Erlbaum
Associates.

Riemann, P. and Chi, M. T. H., (1989). Human expertise. In Kilhooly, K. J., (Ed.) Human and
machine problem solving. New York: Plenum Press

Roth, E. M., Woods, D. D., and Pope, H. E., (1992) Cognitive simulation as a tool for task analysis.
Ergonomics, vol. 35, 1163-1198.

Roth, E. M., and Woods, D. D., (1989). Cognitive task analysis: An approach to knowledge
acquisition for intelligent system design. In Guida, G., and Tasso, C., (Eds.), Topics in expert
system design. New York: Elsevier Publishers.

Rothkopf E. Z., Cognitive science applications to human resources problems. In Sticht, T. G., Chang,
F. R. and Wood, S. (Eds.), Advances in reading/language Research, 4. Greenwich, CT: Jai Press.

Sanderson, P., (1989). Verbalizable knowletz and skilled task performance: association, dissociation,
and mental models. Journal of Experimental Psychology: Learning, Memory and Cognition,
15(4), 729-747.

Wilson, B. and Cole, P., (1990). A review of cognitive teaching models. ETR&D, Vol. 39(4),
47-64.

Woods, D. D. and Hollnagel, E., (1988). Mapping cognitive demands in complex problem-solving
worlds. In Gaines, B., and Boose, J. (Eds.), Knowledge-based systems Vol 1. San Diego, CA:
Academic Press Limited.


