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Abstract

Two types of qualitative dependent variables are presented for use in counseling research:
choices from an unordered set of categorical ?Iternatives and ordered, categorical
counseling outcomes. To investigate choice behavior, the conditional logit model and
analysis are introduced. The conditional logit model can include the attributes of the
people who make particular choices and also the attributes of the choices themselves that
make them more or less attractive. To investigate categorical counseling outcomes, a
model and analytical procedure for studying ordered categories is introduced. For both
choice behavior and outcomes, parameter estimates and significance tests are presented
with examples based on simulated data. These parameter estimates and significance tests
are viewed as preliminary to presenting the probabilities of category membership. These
probabilities are presented graphically using a spreadsheet model. It is argued that these
probabilities should be the primary focus of investigation, for they are the results that can
most directly affect actions to be taken by counselors and clients.
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Qualitative Dependent Variables
in Counseling Research

Traditionally, counseling research has focused on providing quantitative data that can
sometimes be difficult to translate into actionable information. Counselors and their
clients are often concerned with questions that are immediate and personal. What is the
probability that a particular counseling intervention will result in a desirable outcome?
How likely is it that a client will fall into the category of those who will benefit from a
particular treatment? What is the probability that an individual will choose a certain action
or option under certain conditions? Typically, counselors who turn to research for
guidance must attempt to interpret regression weights and effect sizes associated with
various independent variables and try to extrapolate information that will help them and
their clients in making important individual decisions.

It is the thesis of this paper that there could be great value in a type of research that
focuses on how independent variables interact to affect the probability that a particular
client would have a particular outcome or be in a particular outcome category, or would
choose a certain action or option. Such an approach could yield research results that
might be more relevant and useful for clients and their counselors who must make
important decisions about treatment interventions.

In the first section of the paper, we will be focus:ag on unordered categories, giving
attention to the study of choice behavior. This is of interest because it is a key human
behavior and because it allows us to introduce a comprehensive statistical model, the
conditional logit model, and an analytical technique, conditional logit analysis, that looks
at independent variables related to the choices themselves as well as independent variables
that describe choosers. These techniques, not often used in counseling research, offer a
new way to add a qualitative element to the traditional quantitative tools.

In the second section, we will deal with ordered categories, those that can be rank ordered
with respect to some underlying continuum, such as the commonly used five point Liken
scale. The ordered categories model can be applied to treatment outcome. This is an
important area, for it holds the promise of letting us give clients the probabilities of
various outcomes that they need to manage their own care effectively. Despite its
importance, treatment outcome will receive somewhat less attention in what follows. This
is primarily due to the lack of widely agreed upon, operationally defined outcome
continua. Therefore outcome categories are an area more for future development than for
current research.
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For both choice and outcome categories we will present methods for non-linear estimation
that can provide the independent variable weights required to predict the probability of a
client being in one choice or outcome category or another, or that a client will choose a
certain alternative. We will also provide simulation models to show how independent
variables and weights combine to demonstrate dynamically changes in probability as a
result of changes in the values of the independent variables.
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Making Choices from Unordered Alternatives

The Choice Model

Why do people make the choices they make? Different models have been put forward, but
the one described here has been called the utility-maximizing model (McFadden, 1973).
According to this model, an individual is presented with set of alternatives from which one
will be chosen, and each alternative has a certain value, or utility, or that individual. The
individual selects the alternative with the highest associated utility. For example, a person
in psychological need is presented with four alternative sources of help, say,
"Friends/Family," "Social Worker," "Psychiatrist," and "Psychologist." The four
corresponding utilities for this person might be [1.645, -2.564, 1.769, 0.457]. In this case,
the person would chose the third alternative, "Psychiatrist," because it has the highest
utility, namely, 1.769. If another person were to choose, the vector of utilities might be
[2.307, 0.571, 1.654, .003], in which case the first alternative, "Friends/Family," would be
chosen.

Considering a population of individuals, the possible utilities associated with each of these
four alternatives can be symbolized as u1, u2, u3, and u4, or in vector notation as

u = [u1, u2, u3, u4] . The highest value in u determines the choice, and in this model,

there are never any ties.

To code the actual choice that has been made we can use another vector. For the above
examples, choosing alternative three would be coded as [0, 0, 1, O] and choosing

alternative one as [1, 0, 0, 0] . To represent a choice, we can define the array

y = [y 1, y2, y3, y4] . For the first of the preceding two examples, y3 =1 and rest of the

values in y would be zero.

With this setup we can begin to consider the probability of making a particular choice. Let
us suppose that the individuals in a certain population are presented with J alternatives.
(in the psychotherapy example above, .1 = 4.) If the various alternatives are indexed by j,
with j = 1 to 3, then, for a randomly selected individual, the probability that a particular

choice will be made is Pr[yi = 1] = Pr[ui > ui.] for all j # j' . Because we are now

considering more than one person's choice, we could include a subscript for each person,
e.g., uij , but for simplicity, this second subscript is omitted and we will assume that y and

u vary across individuals.

To make this last equation more concrete, we can imagine a simple experiment in which
we repeatedly draw individuals from a population, present them with four alternatives and
record their choices. In the long run, the proportion of people selecting alternative two,
i.e., y2 = 1, will converge to Pr[y2 = 1) . This proportion will be determined by the
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number of times the utility for alternative two exceeds the utilities of the other alternatives,
i.e., the frequency of u2 > u1 , u2 > u3 and u2 > u4.

The probability Pr[ui > ui,], for all j # j' , can be determined if one knows the

distribution of u. Perhaps the easiest way to introduce the determination of probabilities is
to assume that each ui has a normal distribution. Further, we will assume that the ui are

independently distributed of one another, each with a variance equal to one. The means of
the utilities, pi , may or may not be equal.

If the pi were all equal, then the choice probabilities for each alternative would be equal,

and if they were different, the choice probabilities would be unequal. For example, if
= 0.0 and 114 = 1.2, in sampling individual choices we would expect u4 > ui more

often than u1 > u4, and therefore, we would expect alternative four to be chosen more
frequently than one.

If we focus for the moment on the distributions of the individual utilities, we can represent
the situation using the four overlapping distributions depicted below.

9,42 I 1 I I I

/

/

_

The distribution to the far right, with the solid line, represents the distribution of u4 , while
the leftmost distribution, the one with a dashed line, represents the distribution of u1. A

choice is modeled by randomly drawing a vector, u, containing one value from each
distribution, and taking the chosen alternative as the one whose utility is highest. Focusing
on just alternatives one and four, it is clear that the utility for distribution four is more
likely to be higher then that for distribution one.

Continuing with the above example, if we knew the values of all the pi , we could

determine the probability that alternative four would be chosen in the following manner:
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Pr[y4 =11= Pr[u4 > u, & u4 > u2 & u4 > u3]

= Pr([(u4 u, > 0) & (u4 u2 > 0) & (u4 u3 > 0)].

To actually compute the probability, we must consider the joint distribution of the three

u41 U4 U1

random variables, u4 u,, u4 u2, and u4 u3, or d4 = 4(12

d43

= u4 u2

U4 U3_

. These

three random variables are still normally distributed, but they are no longer independently
distributed with unit variance. The three now have an intercorrelation of 0.5 and each has
a variance equal to two. The means of distributions one through four depicted above were
0.0, 0.4, 0.8, and 1.2, respectively, and, therefore, the means of the three difference
variables are 1.2, 0.8, and 0.4. To compute the probability of choice four, we must
integrate a multivariate normal distribution with the following parameters:
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In this case, the probability of choice four is obtained by integrating the following

trivariate normal distribution:
Js

f(d4)dd4 , where

S {C141 d 42 d 43 I 0 .5- d4I 5_ co, ° d42 ck), 0 5_ d43 5_ co] and

1f(d4)=
V1(27031E41

eXp[--2 ku4 1-14/4-'v 4VLA4 ii4)] In an analogous fashion, we

could compute the probabilities for alternatives one, two, and three. Given the
assumptions made above and the means of the distributions, the probabilities for choices
one through four, respectively, are 0.086, 0.162, 0.284, and 0.468. These can only be
obtained by numerically integrating multivariate normal distributions, and as one might
expect, this is a computationally intensive approach, one that quickly becomes impractical
as the number of alternatives increases. Also, as conditional probabilities are computed to
reflect the influence of attributes of the choices and the choosers in the model for the
average utilities, a topic dealt with below, the computation rnuired would increase as a
function of the complexity of the experimental design employed.

A way around the computational difficulties would be to use a different distribution to
compute the probabilities, one that has a "closed form" that allows the probabilities to be
computed without numerical integration. A distribution that is very useful in this case is
the multivariate logistic distribution. There are two distinct reasons for using this
distribution. One reason is that it provides a good approximation to the multivariate
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normal distribution. The other is that in certain cases thL multivariate logistic distribution
is the correct distribution to use, rather than the multivariate normal distribution.

Most discussions of how closely the logistic distribution approximates the normal
distribution focus on the univariate counterparts of the multivariate distributions discussed
here. An exception would be Bock (1975) (See Gupta, 1963). He gives an example in
which a multivariate logistic distribution approximation of a multivariate normal
distribution probability is off by only 0.001, certainly a trivial difference. One can
construct examples where the approximation is not this good, but generally speaking, if
one takes into account the difference in the variances between the usual multivariate
normal distribution assumed and the usual multivariate logistic distribution assumed, then
the approximation is good over a large class of locations for the distributions.

A different perspective from the one just presented, one that is preferred here, begins with
the focus on the probabilities. Using the above example, suppose 0.086 proportion of a
population would choose to see Friends/Family for a personal problem, 0.162 proportion a
Social Worker, 0.284 a Psychiatrist, and 0.468 a Psychologist. Now these proportions
might have come about because of the normally distributed utilities described above,
where the means were 0.0, 0.4, 0.8, and 1.2. Alternatively, these same proportions might
have arisen because the utilities were independently distributed according to the Type I
extreme value distribution with "location parameters" equal to
bl = 0.000, 2 = 0.633, E3 = 1.194, and = 1.694. Paralleling the approach taken
above, we can again define the probability that a person would choose to see a
psychologist as:

Pr[y4 = 11= Pr[u4 > u1 & u4 > u2 & u4 > u3]

= Pr([(u4 u1 > 0) & (u4 u2 > 0) & (u4 u3 > 0)1

As above, we must consider the joint distribution of the three random variables,
u 4 u1, u4 u2, and u4 u3. Differences of this nature between random variables
distributed according the Type I extreme value distribution are themselves jointly
distributed according to a multivariate logistic distribution. As with the normal
distribution, the fact that the utilities are independently distributed results in the
differences, u4 ul, u4 u2, and u4 -U3 having a correlation of 0.5.

Earlier, it was stated that the multivariate logistic distribution allows for a straightforward
way to compute probabilities. For example, the probability that a member of this
population would choose to see a psychologist is equal to:

e, e1.694
Pr[y4 = 1} = =

0 0.633 1.194 1694
= 0.468 In general, if

e +e 2 +e 3 +e ' e +e +e +e
there are J alternatives to choose from, and j = 1 to J indexes the alternatives, the
probability that the jth alternative will be chosen is:
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Prtyj = 11= . Using this approach to calculate the probabilities for alternatives one,

j=I

two, and three (Friends/Family, Social Worker, and Psychiatrist), we obtain the same
probabilities as we did with the multivariate normal distribution.

The point here is this: when we are comparing the multivariate normal and logistic
distributions, we can fix the choice probabilities and compare the utilities, or we can fix
the utilities and compare the probabilities. The perspective taken here is that we should
focus more on the probabilities and take whatever utility estimates our probability model
gives us. After all, social workers trying to increase their "market share" will judge their
success by the increase in the percentage of clients who seek them out, not by an increase
in an average utility.

Assuming the choice probabilities are the same for both models (normal and logistic), if
we wanted to compare the utilities for the normal and logistic distributions, we should not
simply compare the means of the normal distributions (111,i_t2, [13, ) with the location

parameters for the Type I extreme value distributions (1,2,3,4 ) . The reason is that
the linear model for normally distributed utilities can be written as u j = + . The

individual's part, E, would frequently be assumed to be normally distributed with a mean
of zero and standard deviation of one. Therefore, e follows a standard normal
distribution. This is a standardized distribution, because it has a mean of zero and a
standard deviation of one. The linear model for utilities distributed according the Type I
extreme value distributions can be written as uj = +e. The individual part, e, is

assumed to follow the standard.form of the Type I extreme value distribution. Standard
form means that this distribution's location parameter, , is equal to zero, and its scale
parameter, 6 , is equal to one. The standard form of the Type I extreme value distribution
is not a standardized distribution because it has a mean of 0.577 and a standard deviation

of iin2/ = 1.283. The fact that the norma! and the extreme value distributions have6

different means, 0.000 and 0.577, has no effect, because it is the difference between the
means of the utility distributions that is important. Adding or subtracting a constant to all
the means does not affect the mean differences. The difference in standard deviations
between the two distributions does have an effect. We need to judge the mean differences
on the proper scale. If we subtract the lowest average utility from the highest and then
divide by the appropriate standard deviation, we get for the normal distribution
0.4 0 OS 0 1.2 0

1 1

= 0.4, = 0.8,
1

= 1.2 , and for the Type I extreme value distribution,

we get

0.633 0.0 1.194 0.0 1.694 0.0
= 0.493,

1.283 1.283 1.283

more similar after being transformed to a common scale. This suggests that if you collect
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data from a population where the utilities are normally distributed and then fit a model
using the multivariate logistic distribution, you will have no problem getting a fit for the
probabilities. The estimates of the differences between the means will be off somewhat,
but this discrepancy that can be reduced by proper scaling.

The preceding paragraph shows how to compare the utilities from the two different
probability models. In what follows, some additional comparisons will be made, but the
primary focus will be on the probabilities, as stated earlier,.

Before comparing the multivariate logistic distribution and the multivariate normal
distribution, we stated that the similarities between the two provide some justification for
using the multivariate logistic distribution as an approximation of the multivariate normal
distribution. This assumes that the normal distribution is the correct distribution. The
normal distribution, however, has no special justification other than that many individual
difference variables are approximately normally distributed.

One can develop an argument for assuming the multivariate logistic distribution to be the
correct distribution. In this case, there would be little interest in considering the
multival:ate normal as an approximation for the multivariate logistic distribution, since the
former comes with considerable computational baggage.

To justify the use of the multivariate logistic distribution we again assume the "utility-
maximizing" model which conceptualizes the chooser as "utility maximizing," i.e., the
chooser will select the alternative with the highest perceived utility, or value. Next, we
need to determine if a characteristic of the multivariate logistic model agrees with how a
population of choosers is expected to behave.

Suppose a population of choosers selects Psychiatrist over Social Worker on a two-to-one
basis, there being only these two alternatives available to them. In this case, the
probability of selecting a Psychiatrist would be 0.667 and for Social Worker it would be
0.333, representing the two-to-one ratio just described. Now suppose that a new
alternative becomes available to the choosers, namely Psychologist, and that this
alternative is chosen 0.400 proportion of the time. That would leave 0.600 to be shared
between the Psychiatrist and Social Worker alternatives. If it is reasonable to assume that
after the introduction of Psychologist, this population would still prefer Psychiatrist over
Social Worker on a two to one basis, then we can deduce the probabilities for Psychiatrist
and Social Worker. They would be 0.400 and 0.200, respectively. What this says, then, is
that introducing a new alternative changes the proportions of the population seeking the
various helpers, but it does not change the odds ratios of the original alternatives, for
Psychiatrist is still preferred two to one over Social Worker. If this is the expected
behavior of members of the population under consideration, then the multivariate logistic
distribution is the proper one to use.

The appropriateness of the multivariate logistic distribution can be demonstrated as
follows: if the initial probabilities for Social Worker and Psychiatrist are defined as

11
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e=
, . eE:,

e`-'' e . . e' + e''' Whenand , respectively, then the odds ratio is = c,e' + e42 et.' + e4= ec'

+

Psychologist is introduced to the alternative set, the probabilities for Social Worker and
e4 . e4=

Psychiatrist are redefined as and
ec' + + e" e`' +e= +

e4'
e'2

respectively, but the odds ratio remains constant, csl e'" = . It is clear that
E.,e

+ +
the multivariate logistic distribution provides the desired property of a consistent odds
ratio for selecting a Psychiatrist over a Social Worker regardless of whether or not
Psychologist is in the set. If this agrees with the expected behavior of the population of
choosers, then the multivariate logistic distribution provides the correct model.

This property of keeping odds ratios constant as alternatives are included or excluded
from the choice set is called independence of irrelevant alternatives (I1A). Greene (1993)
refers to it more clearly as independence of other alternatives.

If the utility-maximizing model holds, then it can be shown that a necessary and sufficient
condition for the HA property (and the multivariate logistic distribution) is that s , in the
model ui = + s , is independently and identically distributed according to the standard

form of the Type I extreme value distribution. In this case, the probability density of s is

f(c) e-E-e-..

Returning to the example introduced above for Friends/Family, Social Worker,
Psychiatrist, and Psychologist and using the values

= 0.000, = 0.633, = 1.194, and = 1.694 , we can plot the distributions for the
individual utilities as we did for the normal distribution model.
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The above distributions, which represent, from left to right, the utility distributions for
Friends/Family, Social Worker, Psychiatrist, and Psychologist, are positively skewed and
more leptokurtic than their normal counterparts above. Their shape has no particular
intuitive appeal, but given the preceding location parameters, these distributions result in
the probabilities of choosing Friends/Family, Social Worker, Psychiatrist, and Psychologist
being 0.086, 0.162, 0.284, and 0.468, respectively.

Before we end this section, we will consider a situation where the IIA assumption would
not be justified. Suppose that in a particular geographical location, 60% of the people see
psychiatrists and 40% see psychologists with Ph.D.'s. The odds ratio is 1.5 to 1. If a
training program in the area started graduating psychologists with Doctor of Psychology
degrees, a new alternative would be available to potential clients. It is very likely,
however, that the type of graduate degree would be unimportant to clients, and therefore,
some of those seeing Ph.D.'s would begin to see PsyD's. If the clients preferring a
psychologist were equally divided between the two graduate degrees, the effect of this
would be to reduce the proportion seeing Ph.D.'s to 0.20.

In this situation, there is no reason to believe that those seeing psychiatrists would change
to psychologists simply because they have a PsyD. Psychiatrists would continue with 60%
of the clients, and this would give a psychiatrist-to-Ph.D. psychologist odds ratio of 3-to-
1, a change from the previous ratio of 1.5 to 1. In this example, this change would violate
the IIA assumption, for the odds ratio has changed with the introduction of a new
alternative. In attempting to avoid this situation, a good rule of thumb is to include only
alternatives that are discernibly different to choosers. This does not mean that discernibly
different categories must have different utilities. It just means that two or more categories
should not be effectively treated as one category by choosers due to the trivial (from the
chooser's perspective) nature of the difference between categories.

The above section presented a model of choice for a population of individuals. For each
alternative there was a distribution of utilities presented, with the location of the
distribution determined by the utility characteristic of the population as a whole.
Variability in the distribution was presented as a function of individuals' unique tastes and

10
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decision rules. This model of aggregate choice behavior has been developed in the field of
econometrics by McFadden (1973).

There is no reason why the choice model just described could not be applied to a single
individual. That is exactly how the model using the multivariate logistic distribution was
first developed in psychology by Luce (1959). For an individual making a choice, each
alternative would have a fixed utility. Situational factors representing random influences
both inside and outside the individual make this a probabilistic process. In this setup, an
individual repeatedly offered a set of alternatives would tend to select some more often
than others. For example, an individual might eat more oranges than bananas, and more
bananas than apples, but at any given choice point it would not be completely certain
which fruit would be selected. Perhaps it would be helpful to view this model as
analogous to true score/error score model in psychometric theory. An individual has a
true score, with independent error scores distributed around the true score. It is the error
scores that can cause one's scores to vary from testing to testing.

Research Design and Analysis

If one were only going to ask a sample of people to choose from among a set of
alternatives, there would be little motivation to learn about a choice model and a new type
of analysis. For example, if the research called for a sample to choose from
Friends/Family, Social Worker, Psychiatrist, and Psychologist for help with a personal
problem, we could simply assume a multinomial probability model and analyze the data

using a x2 goodness-of-fit test. In this section, however, we will consider much more
complex research designs than the one in this paragraph.

Generally, choice research gets more complex in two \\ ays: by considering additional
attributes of th, choices and by including attributes of the choosers. While the primary
choice attribute of interest in our ongoing example is type of helper, there are other
attributes of the choices that could be considered. For example, three of the categories
have fees associated with their service. We might vary cost per session to see if lowering
or raising fees would affect people's choices. Other attributes of the choices might be
convenience (how much time does it take to travel to the helper), availability (what is the
time between calling for an appointment and actually seeing the professional), helper's
gender, helper's theoretical orientation, and so on. Different combinations of attributes
might make a type of helper more or less attractive in comparison to the other alternatives.

Attributes of the choosers might be gender, race, the type of insurance coverage they have
(if any), the types of professionals they have seen in the past, the specific nature of their
problem, how eager they are to take medication, and so on. Combinations of chooser
attributes like these could define groups with very different choice behaviors. Also, a
chooser attribute could be the chooser's membership in various treatment groups. For
example, people may have been randomly assigned to groups that viewed different video
tapes about the mental health professions, with the experimenter's interest being in how
the tapes affected the subjects' choice behavior.

14 11



Some readers may reflect on the preceding two paragraphs and associate to research
designs where analysis of variance or regression analysis is used to investigate the
influence of similar attributes on a dependent variable (or dependent variables) of interest.
This is a useful insight; for in what follows, we will use the design matrix concept, a
concept fundamental to the general linear model approach to analysis of variance and
regression analysis. Also, we will use many of the design principles used in research with
quantitative dependent variables.

The link between more common research methods and research on choice models is
through the utility distributions. The model, ui = 1 + e , becomes u = + . The

subscript, j, still refers to the jth alternative, while i refers to the combination of
attributes (I = 1 to I) and k refers to the kth person presented with the combination of
attributes (k = 1 to Ki). (KJ allows the number of subjects for each attribute combination
to vary. Likewise, the number of alternatives could vary from choice set to choice set by
using Ji instead of J.). In this setup, the are defined by the following linear model:

131X131 + 132X ii2 + + m Uni + I3 N X um , where m = 1 to M, the number of

13

parameters in the model. If we define 13 = and x = X ijin , then the probability for

_13M_

the kth person receiving the combinations of attributes with respect to the jth alternative
is

eivx,
P.. = P.. =

J
. The reason for dropping the subscript, k, is because all of the Kiuk u

jx"

j=I

people receiving the ith combination are predicted to have the same probability for the jth
alternative. This is analogous to regression analysis were individuals with the same values
on the independent variables are predicted to have the same score. The difference is that

each person is predicted to have J probabilities, where E PIA = Pii = 1.

The predicted probabilities are conditional in the sense that they depend upon the values of
the independent variables for the ith combination of attributes. Also, the probability model
assumes the errors are independently distributed according the Type I extreme value
distribution, because the multivariate logistic distribution is used to compute the
probabilities. This model is referred to as the conditional logit model and is attributed to
McFadden (1973).
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In actual practice, one would have to estimate p , with, say, E3. Using one would have

11.1:

a different (less accurate) set of predicted probabilities, namely, Piik , with

y ef""
jr.-1

J

E pw, E Pi. = 1.
i=1 i=i

To estimate the parameter vector we will use a statistical package, LIMDEP, Version 6.0,
available from Econometric Software, Inc. The conditional logit analysis is carried out by
the program's procedure for estimating the "Discrete Choice Model," which is described
Chapter 41 of the User's Manual.

To estimate , LIMDEP uses the maximum likelihood method. Maximum likelihood

estimation is not covered very well (if at all) in some applied statistics courses. More
emphasis is placed on least squares estimation, especially in the context of regression
analysis. For this reason, we will introduce here the basic concepts underlying maximum
likelihood (NILE) estimation in the context of conditional logit analysis.

To simply the comments about MLE, we will suppose that we have drawn a sample of K
subjects for a single combination of attributes (i.e., I = 1), and we ask each person to make
a choice. As each subject chooses, he or she generates a vector, yk, with J elements. For
the elements of this vector, yik = 1 if the jth alternative was selected, otherwise yik = 0.
Given this setup, the likelihood (probability) of the vector for the kth subject can be written

as Lk = p?in ppk piYA = Pyk , where j' is the value of j corresponding to the

choice that was made. (One way to motivate this definition of the likelihood of a single
vector is to think of Lk as a multinomial probability based on J events and only a single
repetition or trial (i.e., n = 1).) Since the subjects' response vectors, yk, are independently
distributed, the likelihood of the sample is equal to the product of the likelihoods of the

vectors, or L = n Pyk , where, again, j' is understood to equal the number of the choice
k=1

that was made by the kth subjeci. Of the K terms in the preceding product, there are only J
unique values. If we let ni equal the number of subjects who chose the jth alternative, then

K = ni and L = fl Pj.k = n . If there were four choices (J = 4), then
j =1 k=1 j=1

L= Pi'' P2n 2 P3n 3 P4114 .

If we knew the values of the Pi, we could compute the likelihood of the particular sample
we drew, but, of course, these values are unknown. Therefore, we must estimate the
unknown values. Suppose we had two set of estimates, i3j and Pj , and that we estimated

lh
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J

the likelihood of the sample using each estimate, i.e., L =11 Pin' and L = floc, . If L
j= j=

were much larger than L , we would know that it is much more likely that our data came

from a population with parameters Pi than from a population with parameters Pi . We

would therefore take Pi as our estimate over Pi because our data are more likely to have

come from a population with the Pi as parameters. This seems reasonable, for we would

not want the estimates that are less consistent with the data.

If we agree that we should always take the estimate that gives the highest likelihood for
the sample we have drawn, then we are led to accept as our estimates those values that
maximize the likelihood function. These maximum likelihood estimates ?re symbolized as

J

and they have the property that L = fl Pin, is greater than for any other set of
j=1

estimates.e.-stimates. We therefore take as our estimates those values that maximize the likelihood of
the sample we have drawn. We do this because it seems reasonable think that these values
would be more "similar" to the true values, the Pi, than other values that would make our
data less likely. (Maximum likelihood estimates have been shown to have many desirable
properties that recommend them, properties such as consistency, efficiency and
sufficiency. These properties make them good estimators and are preferred to the vague
notion of "similarity" to a parameter in all but the most casual discussions.)

With this build up, it seems somewhat anticlimactic to note that the maximum likelihood
n

estimators are the sample proportions, i.e., P. =
K

for these are certainly easy to

compute. Our ultimate interest, though, is to estimate 13 , and our estimate, 3 , must yield

the appropriate probability values, i.e., the Pi . This means that 3 must s..tisfy the

'x,

equation Jet/ = Pi for all j = 1 to J.

efrli
i=1
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Examples

Following in this section are examples of five relatively simple research designs that
introduce the basics of the design, analysis, and interpretation of choice experiments. All
experiments are based on simulated data; therefore the populations that generated the data
are known. The underlying strategy in this section is analogous to that used in learning
the use of radar in nautical environments. To learn radar interpretation, one picks a
perfectly clear day and continually alternates between. observing what is on the radar
screen and what is clearly visible as one looks outside. By alternately looking at radar
"targets" and the actual objects being depicted, one learns what boats, buoys, islands, and
so on look like on the screen. In what follows, the "radar screen" is the output from the
LIMDEP program and "what's really out there" are the parameters of the populations
from which the data were sampled.

To make the interpretation more demanding, it was decided to generate the choice data
using normally distributed utilities and then make the correspondence between LIMDEP's
parameter estimates based on Type I extreme value distributions and the actual parameters
of the normal distributions. It became clear in the initial draft of this paper that constantly
working back and forth between the two distributions made the presentation too
convoluted. To remedy this, the following examples are interoreted with respect to
extreme value distribution parameters that would result in the same population
probabilities as their normal distribution counterparts. A discussion of the relationship of
the Type I extreme value distribution parameters to actual normal parameters has been
moved to an appendix. The only consequence for the following examples is that the
parameters discussed are not found to be the "nice, neat numbers" usually found in
simulations. Those will be found in the appendix, where the normal distribution
parameters are discussed.

Example 1: As an example we have generated a sample of K = 50 observations where I =
1 and J = 4. This data could have come from a study where subjects were asked to
choose from among Friends/Family, Social Worker, Psychiatrist, and Psychologist. In this
sample one person chose alternative one (ni = 1), five chose alternative two (n2= 5), 14
chose alternative three (n3 = 14), and 30 chose alternative (n4 = 30). The maximum
likelihood estimates are the sample proportions:

= 0.02, P2 = 0.10, P3 = 0.28, and P4 = 0.60. The independent variables are "choice-

] 0

specific" dummy variables: xi = 0 , x2 = 1

0 0

0 0

x3 = 0 , and x4 = 0

0

Since proportions add to one, on y three proportions are free to vary, and accordingly,

only three elements are required in p :
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R=

The equations = 13j for j = 1 to 4, due to the simplicity of the dummy variables,

Eeoxi

can be written as:

ea' + eP2 + eP3 +e°

+ +e°

+e[1' +e°

e°

ePt + + en' + e°

= 0.10

= 0.28

= 0.60

Note that 114 is set to zero, therefore, as stated, only three estimates are free to vary and
they are interpreted relative to zero. We must solve the preceding system of nonlinear

A A

equations for 131, 132, and 13 . The solution is obtained iteratively using the Newton
method, a numerical analysis technique that will not be covered here. The solution for the

above equations is 131 = -3.4012, 132 = -1.7918, and 133 = -0.7621.

To test the hypothesis H0:131 = 132 = J33 =134 = 0, LIMDEP uses a likelihood ratio test.

Under the hypothesis, the 13 's are restricted to zero and, therefore,

Pl = P2 = P3 = P4 = P = 0.25. The likelihood of the sample under this restriction is
pn,pn,pn,r n, 0.251 0.255 .0.251' 0.253° . Without the restriction on the f3 's, the

values 131 = -3.4012, 132 = -L7918, P3 = -0.7621, and 134 = 0.0 are used to compute the

probabilities, and this leads to the sample proportions

Pl = 0.02, P2 = 0.10, P3 = 0.28, and P4 = 0.60, i.e., the maximum likelihood estimates.

Using these values, the likelihood of the sample is

PP 133'` = 0.02' 0.105 0.2814 .0.603° . The ratio of the two likelihoods,
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pnipn2pn3pn4
= , which varies between 0 and 1, is an index of the adequacy of the null

hypothesis. The larger the ratio, the stronger the support for the hypothesis, the smaller
the ratio, the weaker the support. At some point, as the ratio decreases in size, we would
make a decision to reject the null hypothesis. To test the hypothesis, the statistic 2 ln(A)

is used. It is compared to a x2 distribution, with the degrees of freedom equal to the

number of independent variables (df= 3 for the current example). LIMDEP prints out the

log likelihood for the denominator (1n(P1'11)211'P3' P4'1)== 48.57124 for this example) , the

log likelihood of the numerator (1413"' P", P"' P"' = 69.31472) and the value of the test

statistic (-2(1.n(P"' P"=P"' 13 "4) 1n(PPI P2' P3'' P4nI))= 41.48696) . The p-value for the x2

in this example is 0.0000000044, which would lead to rejecting the hypothesis.

The sample just analyzed was drawn from a population were the true probabilities are
0.086, 0.162, 0.284, and 0.468. As described in the previous section, the location
parameters for the Type I extreme value distributions were

= 0.000, i72 = 0.633, i,3 = 1.195, and E34 = 1.694. The first step in judging the

adequacy of the estimates is to give them a common reference point. Given the

independent variables used, 134 is "estimated" to be zero. Since the probabilities are

unaffected by adding or subtracting a constant from the location parameters, we subtract
1.694 from each location parameter so that we have a more appropriate comparison to the

.
estimates just computed, i.e., 134 = = 0.000. After this adjustment, we have

A A

= -1.694, = -1.061, = -0.501, and 4 = 0.000. 131, 132, and 133 now estimate

the adjusted values and s, respectively (e.g., 13 = -3.4012 is estimating

= -1.694 ). The standard errors for 131, P2, and P3 as given by LIMDEP are

&i = 1.017
132

= 0.4830, and e13y- = 0.3237. All the estimates are within two standard
,

errors of the parameters they estimate. The p-values for 13,, i32, and 133 are 0.00082,

0.00021, and 0.01854, respectively, and therefore, all the hypotheses for the individual
A A

weights (e.g., I-10:(1 = 0) would be rejected. The p-values for 131, 132, and [13 are

computed by LIMDEP by assuming that under the hypothesis that C31/1:311 is distributed

according to a standard normal distribution.
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Example 2: As a second example, we continue with the above setup, but our sample has
an additional 950 observations drawn from the same population, for a total of K = 1000.
The maximum likelihood estimates are the sample proportions, and in this sample, they are

equal to P1 = 0.083, P2 = 0.162, P1 = 0.295, and P4 = 0.460. These are much better

estimates of the population values, as one would expect. The solution for the above

iequations is 131 = -1.7124, 132 = -1.0436, and 133 = -0.4443. These values, not

surprisingly, agree very closely with the adjusted location parameters,

= -1.694, 2 = -1.061, and 3 = -0.501. The standard errors for , 132, and 133 a:e

= = 0.09136, and 61i, = 0.07459 . As would be expected, the standard

errors have decreased a great deal, and all the estimates continue to be within two
standard errors of the parameters they estimate. Due to the increased sample size, the
p-values for the various hypothesis tests have decreased, and therefore, the hypotheses
tested would all be rejected.

With this sample, we will begin to present the data the way LIMDEP accepts it. For this
example, LIMDEP expects K = 1000 subjects with J = 4 rows for each subject (I = 1).
Since everyone was presented with same set of choices and attributes, the values of XI,
X2, and X3 are the same for everyone. The four sets of rows in the following table depict
the choice of alternative one, two, three, and four, respectively. The first set appears in
the data n1= 83 times, the second set n2 = 162 times, the third n3 = 295 times, and the
fourth n4 = 460 times, for a total of 4000 rows.

Choice X1 X2 X3
1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

Alternatively, if we had tabulated the data prior to submitting it to LIMDEP and knew the
sample proportions, we could submit just four rows, with the proportions in place of the
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choice data. In this case, L1MDEP would require an additional column of weights to tell
it the number of people the proportions are based on.

Given the simplicity of Examph, 1 and Example 2, one may question the effort required to

compute p , for it is hard to see its value when one has the sample proportions. Thai may
be so for these examples, but for more complex examples, the above approach allows us
to specify a probability model, to see which independent variables have a significant
impact on the probabilities, and to develop simulation models that allow us to estimate
probabilities for combinations of attributes not included in our data collection.

Example 3: In this example, with one change, we are using the same four-choice setup we
have been using i;ivolving Friends/Family, Social Worker, Psychiatrist, and Psychologist.
The change is that we are simulating an experiment that includes an additional attribute,
travel time to the helper. The travel times are 10, 20, 30, 40, 50, 60, 70, 80, and 90
minutes. The subjects are asked, for example, whether they would choose a psychiatrist
they had to travel 70 minutes to see, or a social worker they had to travel 50 minutes to
see, and so on. For each alternative for each subject a time is randomly selected with
replacement. In this experiment, there are J = 4 rows in each block, K = 1 one subjects
per block, and I = 1000 blocks. It is possible that time might be constant across the four
alternatives presented to the subject, although we would only expect this to happen about
once in our sample of I = 1000. The experimenter believes that time influences the
utilities in a linear fashion and fits a model that reflects that. The trl is state of affairs is,
however, that time has no effect.

The following table contains the first 16 rows (4 blocks) of the data.

Choice X1 X2 I X3 1 Time

0 1 0 0 80
0 0 1 0 30
0 0 0 1 50
1 0 0 0 40
0 1 0 0 50
0 0 1 0 80
0 0 0 1 60
1 0 0 0 40

0 1 0 0 40
1 0 1 0 40
0 0 0 1 20
0 0 0 0 60

0 1 0 0 60
0 0 1 0 80
0 0 0 1 90
1 0 0 0 30

22,
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Since for this data, time has no impact on the utilities, the sample proportions are the same
as the previous example. When we fit the model with four independent variables, the
weights are PI = -1.7125, P2 = -1.0444,133 = -0.4447, and f34 = -0.0004. The first three
weights are almost identical to their counterparts in the previous example. The tests for
these three weights, as well as the overall test on the full model, are significant, with
p-values less than 0.00001. The p-value of the fourth weight, for Time, is p = .8161,
which would lead us to a correct decision about the influence of Time.

Example 4: With one exception, the setup for this example is the same as for Example 3.
The difference is that Time has an influence in this data. The utility for each helper
alternative had t = -0.006721- (Time 50) added to it.I This is an additive effect that

causes the utility to be reduced for travel times greater than 50 minutes and increased for
travel times of less than 50 minutes. The first four observations are the same as for the
previous example, so no table is included. The sample proportions are only slightly
changed, 0.082, 0.160, 0.287, 0.471. The weights for this data set are

0; = -1.7568, 132 = .1.0744, f33 = -0.4921, and f34 = -0.0065. The p-values for the full

model and the first three weights are less than 0.00001. For f34, the p-value is 0.00002.
While D4 is small compared to the other weights, it is 16 times larger than it was in the
previous example and can exert a noticeable influence on the conditional probabilities.
For example, if the travel times for the four alternatives were, 50, 50, 10, and 90
minutes,respectively, then given these travel times, the choice probabilities are predicted to
be 0.083, 0.164, 0.382, and 0.371. Taking time into account, we see that about 10% of
the participants would shift to a psychiatris', if one were "in the neighborhood" and the
nearest psychologist was 90 minutes away.

'The equation t = -0.006721. (Time - 50) is a close approximation to the definition of the t me
effect that would have been required had the probabilities been defined using Typc I extreme value
distributions. See the appendix for an explanation of how we arrived at the value. -0.006721.
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The manner in which time was included in Example 3 and Ercunple 4 represents only one
of a number of possibilities, and reflects the researcher's belief that a simple linear
relationship exists between time and choice. If the researcher believed that for each
alternative a different linear relationship held, then the first four blocks would have looked
like the following:

Choice X 1 X2 X3 Time 1 Time2 Time3 Time4
0 1 0 0 80 0 0 0
0 0 1 0 0 30 0 0
0 0 0 1 0 0 50 0
1 0 0 0 0 0 0 40
0 1 0 0 50 0 0 0
0 0 1 0 0 80 0 0
0 0 0 1 0 0 60 0
1. 0 0 0 0 0 0 40
0 1 0 0 40 0 0 0
1 0 1 0 0 40 0 0
0 0 0 1 0 0 20 0
0 0 0 0 0 0 0 60
0 1 0 0 60 0 0 0
0 0 1 0 0 80 0 0
0 0 0 1 0 0 90 0
1 0 0 0 0 0 0 30

Handling time as it is in the preceding table allows a different slope for each holper
alternative. This would allow, for example, time to have less of an effect on the more
popular alternatives and a stronger effect on the less popular ones.
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Another alternative for dealing with time is to "dummy code" it. The following table gives
an example of this for the first four blocks (observations). Only the columns for time are
included.

T10 T20 T30 T40 I T50 1 T60 I T70 I T80

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

The coding pattern in the preceding table is straightforward. A "1" is placed in the
column that corresponds to the Time level presented, except for 90 minutes, which is
represented by a row of all zeroes. This type of coding could handle a variety of very
complex relationships between time and choice, but whatever the relationship was, it
would be assumed not to interact with type of professional. To account for complex
interactions, additional columns would be required. One could use the 24 columns that
would result if "product variables" were constructed by multiplying the three choice-
specific variables times the eight time variable.

In the three examples employing time, the same sets of time levels were used with all
helper categories. There is nothing in conditional logit analysis that requires this, for a
different set of times could have been used with, say, Friends/Family.

To this point, we have dealt only with attributes of the choices. In the next example, we
introduce an attribute of the choosers.

Example 5: Th'; example continues with the same setup as Example 4. Time is included
as a single column in the set of independent variables (see the first table in the previous
example) and has the simple additive effect described above. To the design we add
Gender, with two levels, Females and Males. The first 500 observations in the data are
simulated responses from females, and the remaining 500 are from males. In an ordinary
regression approach, the design matrix would be augmented with a single column "dummy
coded" to reflect gender. For example, we could code Females as "1" and Males as "0."
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If we did this, the set ofJ rows for a given subject would have one of its columns
containing J ones or J zeroes. For example, if the first observation were augmented with a
column for Gender, for a female it would look like this:

Choice X.1 X2 X3 Time Gender
0 0 0 80
0 0 0 30
0 0 0 1 50
1 0 0 0 40 1

For a male, an example is:

Choice XI I X2 X3 I Time 1 Gender
0 1 0 0 20 0
0 0 1 0 70 0
1 0 0 1 50 0
0 0 0 0 80 0

We cannot use this approach in the conditional logit model. Since for both females and
males, the gender variable is constant across all alternatives, it cannot affect the choice.
This is because in assessing the impact ofan independent variable on choice, the
conditional logit analysis uses the deviation of the observations in a column around the
column mean within that Nock. This is in contrast to the ordinary regression approach,
where deviations are taken around the means of the entire column. To make gender vary
across the choices, we use the product variables that result from multiplying the
choice-specific variables and the variable for gender. We are assessing, therefore, the
interaction of choice and gender. The following two table:, give an example of an
observation for a female and a male. An example of a female's observation is:

Choice X1 X2 X3 I Time 1 X IG 1 X2G I X3G
0 1 0 0 80 1 0 0
0 0 1 0 30 0 1 0
0 0 0 1 50 0 0 1

1 0 0 0 40 0 0 0
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For a male, an example of an observation is:

Choice XI X2 X3 Time X I G X2G X3G

0 0 20 0 0 0
0 0 70 0 0 0
1 1 50 0 0 0
0 0 80 0 0 0

To study the effect of Gender, we will assume that Time = 50 for the four alternatives so
that its effect is removed and we can concentrate our attention on the helper alternatives
and Gender. In order for Gender to have an effect, there must be differential
increments /decrements of the four helper utilities associated with females and males. For
females, the population model was modified so that the helper utilities were changed by
0.3738, 0.8648, 0.3698, and 0.0 for Family/Friends through Psychologist, respectively.
For males, the corresponding weights were changed by -0.3702, -0.9142, -0.3529, and
0.0. The sum of each helper utility and its corresponding change for females results in
utilities of -1.3203, -0.1961, -0.1297, and 0.0. The sum of each helper utility and its
corresponding change for males results in utilities of -2.0643, -1.9751, -0.8524, and 0.0.
The largest effect is clearly for Social Worker, the second alternative, where the difference
between females and males is -0.1961 - (-1.9751) = 1.7790. This magnitude of effect can
substantially shift the utility distributions and result, as we will see shortly, in major shifts
in the choice probabilities. The effects for alternatives one and three, are 0.7441 and
0.7227, respectively.

As should be clear from the preceding two tables, the choice model now has seven
independent variables, three for choice-specific variables, one for Time, and three for the
interaction of choice and Gender. The weights estimated by LIMDEP for the data are:

131 = 2.1778, 132 = 1.9457, 133 = 0.82827, 134 = 0.0069723, 135 = 0.76716, 136 = 1.8304,

and 13 = 0.67602. The last three estimates, 135, 136, and (37, are reasonable estimates of

the population Gender effects reported above, which we will designate as

135 = 0.7441, 06 = 1.7790, and J3. = 0.7227. On the other hand, 131, 132, and P3 bear

much less resemblance to the original location parameters, = -1.694, i;2 = -1.061, and

= -0.501. This discrepancy is due to the codii ig scheme used for gender, which caused
the choice-specific variables and the product variables (choice multiplied times gender) to
be nonorthogonal. Had gender been coded 0.5, -0.5, instead of 1, 0, the product variables
would have been orthogonal to the choice-specific variables and the values of the first
three estimates would have been -1.7942, -1.0305, and -0.49026, respectively. These
values are in much closer agreement with actual location parameters. Regardless of the

The fact that deviations in the "corrected" design matrix are taken about the within-block column means
has an effect on the rank of this matrix. If J, and K, arc constant in r.11 blocks. then the matrix will have
IJK rows and M columns. and the maximum the rank can be is the minimum of IJ - J and M. This is the
reason why the number of choice-specific variables is one less than the number of choices.
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coding scheme, the sums of the products of the estimates and the values of the
independent variables lead to the same probabilities. Therefore, while the estimates may
look different as a function of the coding scheme used, in combination with the values of
the independent variables they lead to the same probabilities for the four choice
alternatives.

The weight for Time, 134 = 0.0069723, remains close to the population value -0.006721,
given in Example 4. Since the values of the time variable were selected at random, they
would not be expected to correlate with the other variables.

The preceding, five examples demonstrate designs and associated analyses employing
attributes of the choices and of the choosers. They are, of course, very simple research
designs and serve only to introduce the conditional logit model and analysis. In practice,
experiments designed to study choice could involve many attributes and the resulting
experimental designs could be far too complex to allow all combinations of the
independent variables to be included. In this case, researchers can turn to confounded
designs, namely fractional factorial and incomplete block designs. While these designs are
not typically found in counseling research, choice experiments could cause their greater
use.

Relationship to the multinomial logit model: What has been presented here as the
conditional logit model has sometimes been called the multinomial logit model. In this
paper we have followed what little consensus there seems to be by using the term
conditional logit model whenever the model involves attributes of the choices or attributes
of the choices and attributes of the choosers. We reserve the term nndlinomial logit
model for designs that do not have attributes of the choices. For example, if one were
studying career choices and used as independent variables such predictors as gender,
ethnic group, parents' educational level, parents' income, and so on, then we would call it
the multinomial logit model because attributes of the careers were not included in the
model.' With-respect to the above examples, if the choice-by-gender product variables
were the only independent variables in the model, it would be a multinomial logit model
and analysis. For this case, one could use LIMDEP's LOGIT command, although the data
would be structured differently than in Example 5.2

Model Simulation: Earlier in this paper, it was suggested that primary attention might
well be placed on the probabilities of the choice alternatives, rather than the estimators
used in computing them. The impact of the independent variables can best be seen
through their effect on the conditional probabilities associated with the various levels of
the independent variables. The following is an Excel spreadsheet for Example 5. Since

I Sec Maddala. 1983. p. 42. for the formal equivalence of the two models.
2 Scc Chapter 40 of the Version 6.0 User's Manual.
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Time is constant across the four alternatives and Gender is set to "All," the percentages
reported reflect the overall sample proportions for the four categories.
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Leaving Time constant, but setting Gender to Males, we can observe the conditional
probabilities for men unaffected by time.
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As a last example, Gender is set to Females, and Social Worker is made the most
convenient alternative, with the others all having a travel time of 90 minutes. Under these
conditions, Social Worker is clearly the preferred alternative.
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With only the three preceding figures, it is hard to capture the dynamic nature of the above
spreadsheet model. Using "spinners" to change the Time values and a "drop down menu"
to vary Gender, the spreadsheet's instant recalculation of values and redrawing the graph
produces an animated presentation that goes far in revealing the variables' effects, both
singly and in combination, on the choice probabilities. In our experience, this has been
more revealing than any attempt to ferret out meaning by focusing exclusively on the
estimators.

Ordered Outcome Categories

Ordered categories are those that can be rank ordered with respect to some underlying
continuum. All that is initially postulated is that the second category has more of
something than the first, the third has more than the second, and so on. A common
example would be a five point Liken scale from "Strongly Disagree" to "Strongly Agree."
While it seems reasonable to assume that, in general, those choosing "Strongly Agree"
have more of a particular attitude than those who merely "Agree," it would usually not be
reasonable to assume that everyone who chose "Agree" had exactly the same strength of
attitude. Likewise, the amount of difference between, say, "Strongly Disagree" and
"Disagree" would not necessarily be equal to the difference between, say, "Agree" and
"Strongly Agree."
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The focus in this section will be on a set of ordered categories that could represent
treatment outcomes in counseling. For this discussion, the categories to be considered are
"Significantly Deteriorated," "Deteriorated," "No Discernible Change," "Improved," and
"Significantly Improved."' Using a set of categories such as these could eventually lead to
giving potential clients the probabilities of these five counseling outcomes. Clients could
then weigh their chances for success in counseling in much the same way as patients do
when they face surgery or some other medical procedure.

Using categorical outcomes could lead to a different type of quantitative integration of
research findings. The meta analysis of the future is envisioned as being based on
categorical outcomes that are agreed upon by researchers and practitioners, and a set of
independent variables that also have some wide acceptance. This assumes agreement on
diagnostic categories, outcome criteria, treatment specifications, and client and counselor
characteristics of importance. This agreement does not currently exist, and may never
exist. Accordingly, this section is somewhat abbreviated in comparison to the section on
"unordered categories," because choice research and similar studies can be carried out
immediately by individual researchers. Lacking the kind of cooperation required for useful
categorical outcome research, the remainder of this section will briefly introduce the
underlying statistical model and an available method of analysis in the hope that it will
stimulate discussion and lead to increased interest in and understanding of the benefits of
using categorical outcomes in counseling.

The Ordered Probit Model

Let us suppose that for a particular type of problem or diagnostic category that raters have
been trained to rate individuals' improvement or deterioration and to assign them to the
following five categories: "Significantly Deteriorated," "Deteriorated," "No Discernible
Change," "Improved," and "Significantly Improved." These categories are numbered 0, 1,
2, 3, and 4, respectively, and they correspond to segments on a continuum defined by the
points 00, 01,02, and 03. If the amount a person changes falls below uo , he or she is
placed in category "0." When people fall between uo and ul, they are in category "1."
People between ui and 02 are in "2," and those between 02 and 03 are in "3." Those
above 03 are in category "4." The values of upsilon in this example are
uo = 1.65, ut = 0.30, 02 = 0.30, and 03 = 1.00 . Category 2, "No Discernible

Change," is defined by yi = -0.30 and 02 = 0.30 , an interval that covers zero and
represents that part of the continuum where raters cannot tell whether the change was
positive or negative. The two categories to the left of this interval represent successively
more negative changes, while the two to the right represent successively more positive

The word "Significantly" is meant to mean "Marked" and has no statistical meaning as it would in the
context of hypothesis testing in the phrase "significantly different."
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changes. The following number line graphically depicts the outcome continuum.

-CO
U0 Ul U2 1)3

0 +00

For the particular diagnostic category related to this continuum, we will assume that the
independent variables that determine the amount of change are socio-economic level
(upper, middle, lower), ethnicity (majority, minority), gender (female, male), and treatment
(yes, no). The 24 = 3 x 2 x 2 x 2 combinations of these variables define 24 populations.
Determining the rater's assignment, there is for each population an underlying random
variable, u, = Dix + c , where 13 is a vector of parameters, x is the vector of
independent variable values for the ii" population and c is independently distributed
according to the standard normal distribution. Given this setup, each of the 24
populations can have a different location on the outcome continuum, and the location
determines the proportion of its distribution that falls in each of the five categories. The
following figure contains two such distributions, one located at -0.433 and the other at
0.833.

4 3 2 1 0 1 2 3 4

The vertical dotted lines in this figure are located at uo, u I , u2, and 03, defining the area

in each category for each distribution.

The dependent variable in this model is, of course, category assignment, and it is defined
as y = 0, 1, 2, 3, or 4 , depending on the category assigned being category 0, category 1,
and so on. The following equations define the probability of being assigned to each
category:
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Pr(y = = Pr(ui < u) = (I)(u -13

Pr(y = 1) = Pr(u < ui < ul).(1)(ul -13'xi)-(1)(u -13'0

Pr(y = 2)= Pr(u, < u; <u2)= cI)(u2 -WO (qui -13'0

Pr(y = 3) = Pr(u2 < Li; < u,) = (I)(u3 -13'x ) (1)(u2 -13'x1)

Pr(y = 4) = Pr(u, > v3) =- 1- cl)(u,),

where (1 is the cumulative distribution function for the standard normal distribution.

Again, these equations make it clear that different populations can have different
probabilities associated with the categories.

LIMDEP, the statistical package discussed previously, has a procedure for estimating the
parameters of the ordered probit model. To demonstrate the use of this program, 100
simulated observations were generated for each of the 24 populations, for a total of 2400
observations. A main effects model was used for the data, with the effects for the four
independent variables being the following: 0.3333, 0.0, and -0.3333 for social-economic
status; 0.5 and -0.5 for gender; 0.3, and -0.3 for ethnicity; and for treatment, 0.7 and -0.7.
The sum of the effects for each of the 24 combinations resulted in the means for the 24
populations varying from -1.833 to 1.833.

The data matrix submitted to LIMDEP had 2400 rows and five columns. The first column
was for y, with 0, 1, 2, 3, and 4 representing the categories. The independent variables
were dummy coded using contrast coefficients. Socio-economic level had a single column
coded for a linear effect.

With respect to model estimation, LIMDEP's output included 8 maximum likelihood
estimators: a constant, four coefficients for the independent variables, and three points on
the outcome continuum. The sample size and effects used guaranteed statistical
significance for estimators.

For purposes of interpretation, we symbolize the estimators in the following manner: 13

for the constant, 131, 132, 133, and 114 for the four independent variables, and

V2, and ci3 for the three points on the continuum. The values for these estimators are

130

/'

= 1.6948, pi -0.35349, 132 = -1.0033, 133 = -0.64269, 134 = -1.3699 ,

= 1.3906, /2 = 1.9799, and /3 = 2.7130. Corresponding to 13, defined above, is

13' = 13, RI, P21 011 04]
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Relating the estimators to the population values is straightforward for
A A A

1:31, 132, 133, and 134, but less so for the others. The first independent variable was coded

as --I, 0, 1 and multiplying these values with 13, results in 0.35349, 0.0, -0.35349, which

are close to the socio-economic effects, 0.3333, 0.0, -0.3333. The other three
independent variables were all coded -0.5, 0.5 and carrying out the multiplications with

132, 133, and 134 we have 0.50165, -0.50165 for gender, 0.321345, - 0.321345 for
ethnicity, and 0.68495, - 0.68495 for treatment, which compare favorably with the
population effects 0.5, -0.5 and 0.3., -0.3 and 0.7, -0.7, respectively.

To make the correspondence between the u, ui,u2, and u3 and v,, c/2, and i3 we
must note that LIMDEP always sets in = 0 and then finds 0 < 71 < < V3. Our

population model and LIMDEP both assume a normal distribution with unit variance, but
the distributions are assumed to be centered at different locations. The "center" of our
population model is "0" (for zero change), because given the usual constraint that effects
sum to zero, the mean of the 24 population means is zero. For LIMDEP, the "center" is

estimated to be 13'37, , where )7 contains the column means of the independent variables.

Therefore, the distance, - v^0, must estimate 0 uo = 0 (-1.65) = 1.65. Due to the
contrast coding employed, the means of the independent variables are all zero. As a

result, i =11,0,0,0,0], and consequently, 13'i = 130. This means that

- v0= 130- ,'0=1.6948 - 0 = 1.6948, and therefore, the negative of the constant,

10 = 1.6948, is the estimate ofuo = 1.65, i.e.,v0 = 1.6948. To adjust the other
three points for the difference in location, we must compute:

= (130 = (1.6948 1.3906) = -0.3042;

= 030 -",2) = (1.6948 1.9799) = 0.2851;

= T/3) = --(1.6948 2. 130) = 1.0182.

These last three values compare fairly well with the parameters,
ul = 0.30, 02 = 0.30, and 03 = 1.00.

Had a different coding scheme been used for the independent variables, the results would
have been different. For example, l!ad the coding scheme been 0.1,2 for the first
independent variable and 0,1 for the others, the constant would have equaled 3.5565, not
1.6948. The other estimates would have been,virtually the same. With this alternative

coding, #130 and would have to be used in finding 60, v,, 62, and 63.

As with choice modeling above, the ordered probit model requires some effort to
understand the estimates, even in a situation were the data has a very simple structure. An
alternative is to focus more on the probabilities of category membership associated with
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various combinations of the independent variables. To accomplish this, we turn again to a
simulation model.

Model Simulation: The following is a simulation of the model analyzed in the previous
section. The first graphic shows the simulated probabilities for each category for a middle
class, white female who would not receive treatment for her problem.
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In the next graphic, the probabilities for the same woman are displayed, assuming she has
been treated.
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Concluding Remarks

This paper focused on two types of categorical depende., variables, choices and treatment
outcomes. Choice behavior is an important class of human behavior. Choices about sexual
behavior (abstinence, protected, and unprotected), drug usage (abstinence, legal, and
illegal), birth control, type of post high school education and so on can have lasting
consequences in one's life. Later in life, some choices may be viewed as "life defining," in
that the choice of another alternative may have led to a substantially different life. To
investigate choice behavior, the conditional logit model and analysis were introduced. The
conditional logit model allows us not only to study the attributes of the people who make
particular choices, but also the attributes of the choices themselves that make them more
or less attractive.

The second area of focus, tre2tment outcome, discussed the need to consider categories of
treatment outcome. As consumers, potential clients want to know how likely it is that
they will get better, or better than ever, or worse than they were. Knowing the probability
of various outcomes is essential information in making an informed decision to seek help.
To investigate categorical outcomes, a model and analytical procedure for studying
ordered categories was introduced.

For both choice behavior and outcomes, parameter estimates and significance tests were
presented for examples based on simulated data. These estimates and tests are analogous
to the estimates and analysis of variance common to the linear models approach that
dominates counseling research today. With categorical data, however, parameter
estimates and significance tests are only preliminaries to presenting the probabilities of
category membership. Probabilities of category membership are best presented graphically
using a spreadsheet model. In this way, changes in independent variables can be related
directly to changes in probabilities. It is argued that these probabilities should be the
primary focus of the investigation, for they are the results that can most directly affect
actions to be taken by clients and counselors.
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Appendix

As was stated in the body of this paper, the simulated data used in the choice modeling
examples were obtained by generating random numbers thz /ere distributed N(t ,1),

j = 1 to 4. This was done so that the examples could be used to demonstrate the effect of
violating the assumption that the utility distributions for the choice alternatives were
distributed according to Type I extreme value distributions. It became clear that
introducing this complexity led to making the examples more difficult to read than was
thought appropriate given the expository nature of this paper. This appendix explains the
relationship of the location parameters of the Type I extreme value distributions described
in this paper to the means of the normal distributions that were used in generating the data
for the examples.

Examples 1, 2, & 3'

The location parameters for the four choices in E.vainp/e.s. 1, 2, and 3 were
= 0.0, = 0.633, = 1.194, and = 1.694. The relationship of these values to

the normal distribution means is described in the section entitled The Choice Model."
This appendix complements that section, but focuses more on how the data were
generated.

To. obtain the s;mulated data, four random numbers were generated for each observation,
each number from a different normal distribution. The means for these distributions were
pi = 0.0, I.L2 = 0.4, 1.t3 = 0.8, and jA4 = 1.2, and each distribution had unit variance. The
four random numbers wer° compared, and since they were simulated utilities, the choice
for that observation corresponded to the highest number, or utility.

To determine the population probabilities, three difference variables were defined for each
alternative as a function of the four utilities, ui , for j = 1 to 4. For example, for

alternative one, these difference variables were defined as dl =

density f(c11) =
1 1exp[-- (c11-piYE1(di -1114 where

d12

d,3

d,4

pi

1.11-U2

1.11-U3

_111 u4

1-ti -112

= -113

, with

and
V(27031E11 2

Ei =
a2l +152

2

2

2

a 2

2 2+a3
al2

2al
2al

22
+ CY4

. With similar sets of difference variables defined for

Mathcad Plus 5.0 was used to obtain the results in this and the following sections.
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the other three alternatives, the choice probabilities were found by integrating the
following four trivariate normal integrals:

P1 = f(di)dd, , with S = [d12,d13,d14 I 0 5 d12 CO, 0 5 d 1 3 _5 co, 0 5 d14 5 cc]

P2 = f f(d 2 )dd 2 , With S = [d 2 1 , (113 , d I 0 d 21 CC, 0 d23 5 o=, 0 .5 d24 cc] ]
.

P3 = f(d3)dd 3 , with S [d31,d32 ,d3.1 I 0 5 d31 or, O5d32 I X, 0 5 d34 00]

P4 =$ f(d4)dd4 , with S =[d4i,c14,,d43 I ° dal 0 _5 d 4, I X, 0 I d43 500].

Given pi = 0.0, It 2 = 0.4, 1.i3 = 0.8, and 1.14 = 1.2 , P1 = 0.086, P2 = 0.162, P3 = 0.284 ,

and P4 = 0.468. To find the Type I extreme value distribution location parameters that
would yield these probabilities, the following set of nonlinear equations were solved for

Z",3, and 4 , with =1.11 = 0:

e°
= 0.086

e° + e2 + e43 + e4

e43

e° + e2 + e3 + e4

e -3

e° + e42 + e3 + e.34

e44

e° + e42 + e3 + eye

= 0.162

= 0.284

= 0.468

The solution to these equations is = 0.633, E,. = 1.194, and a = 1.694. Since the
normal distributions used had unit variance and the Type I extreme value distribution

location parameters are for distributions with a variance of 1t2X when comparing the

parameters of the two types of distributions, the above location parameters should be

divided by = 1.283. This results in values of 0.0, 0.494, 0.931, and 1.321.
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Example 4

Using the same set of random numbers used in Examples 2 and 3, each number (utility)
had the random variable, -0.005(,1 SO), added to it to simulate a time effect. Values of

t q = 1 to 9, were randomly drawn from the set: [10, 20, 30, 40, 50, 60, 70 ,80, 90].

The first step in finding a corresponding weight for the Type I extreme value distributions
was to compute multivariate normal probabilities that reflected the time effect.
Accordingly, four population means were defined as follows:

0.005(90 50), p 2 0.005(60 50), 1_L 3 0.005(30 50), and 1.t 4 0.005(10 50) ,

with the µj set to the values used above. Using these four means, trivariate integrals

were evaluated to find the conditional probabilities for these times. When the means of
the utility distributions for the four alternatives were changed to reflect the effect of 90,
60, 30, and 10 minutes, respectively, the resulting probabilities for the four alternatives
were 0.052, 0.131, 0.287, and 0.529. In general, for a given set ofprobabilities, there is
not a linear relationship between the means of the normal distributions and the location
parameters for the Type I extreme value distributions. Therefore, even though the time
effect is a linear function of time with normally distributed utilities, it would, in general,
not be a linear function of time with utilities distributed according to Type I extreme value
distributions. This latter statement assumes that the probabilities are the same for the two
probability models. That being.the case, a linear time effect for utilities distributed
according to the Type I extreme value distribution would only approximate the slope
parameter for normally distributed utilities. For this reason Mathcad's "minerr()" function
was used to find the best fitting value as an approximate solution for the following
equations:

e4 0 11

=

=

=

=

0.052

0.131

0.287

0.529

4(111 .,+1011 6,t-2(41e +e- +e--

E,+10e-

C, -40i

e +e401i -2011

e
43-2°13

+

e4op e2-1-10 ±e3-2013

e E,-4011

e4,4-4013

4011 +101i -2013e + e -E, 2 + e .3 + e E, -4011

With i;2 = 0.633, E3 = 1.194, and i;4 = 1.694, the approximate value found was

p = -0.00672079. Resealing this value by dividing by 1.17c2
6

results in -0.00524018,

which is close to -0.005, the weight actually used.
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Example 5

Starting with the same data as used in Example 4, a gender effect was added in Example
5. For females, which were taken to be the first 500 observations in the data set, the
values 0.15, 0.50, 0.15, and -0.15 were added, respectively, to the four utilities of each
observation. For males, which were taken to be the remaining 500 observations in the data
set, the values -0.15, -0.50, -0.15, and 0.15 were added to the utilities. With the time
effect held constant at zero by setting Time equal to 50 for all alternatives, the means of
the conditional utility distributions for females became 0.15, 0.90, 0.95, and 1.05. With
these means, the probabilities for the four choices were 0.090, 0.277, 0.296, and 0.337.
Using these probabilities and setting the fourth location parameter to zero, the following
location parameters result, -1.32027, -0.19607, -0.12972, and 0.0. To remove the effect
of the helper categories, the location parameters for those categories must be subtracted.
Since the values reported above had = 0, however, those values must be relocated

before subtraction, so that the last parameter is zero. This is easily accomplished by
subtracting 1.69412 from and These relocated parameters are then'2
subtracted from the females' location parameters and the differences are the changes in
location for females reported in Example 5, namely, 0.3738, 0.8648, 0.3698, and 0.0. To
compare these values to their counterparts for normal distributions. they must resealed by

dividing by V7r2
6

and then relocated so that the first location parameter is equal to 0.15.

After these operations, the values are 0.15, 0.533, 0.147, and -0.141. These are
reasonably close to the values used in generating the data, i.e., 0.15, 0.50, 0.15, and -0.15.

For males, when the values -0.15, -0.50, -0.15, and 0.15 were added to the utilities, again
with the time effect held constant, the means of the conditional utility distributions for
males became -0.15, -0.10, 0.65, and 1.35. With these means, the probabilities for the
four choices were 0.075, 0.082, 0.252, and 0.591. Using these probabilities and setting
the Fourth location parameter to zero, the following location parameters result, -2.06433,
-1.9751, -0.85239, and 0.0. Adjusting these parameters in the same way as for females
results in the changes in location for males reported in Example 5, namely, -0.3702,
-0.9142, -0.3529, and 0.0. To compare these values to their counterparts for normal

distributions, they must be resealed by dividing by 117E2 and then relocated so that the

first location parameter is equal to -0.15. After these operations, the values are -0.15,
-0.574, -0.136, and 0.139, and these are fairly close to the values used in generating the
data, i.e., -0.15, -0.50, -0.15, and 0.15.

For the above examples, it is clear that even though one assumes the wrong distribution
for the utilities, there is a set of "wrong" parameters for that "wrong" distribution that lead
to the same ( or virtually the same) probabilities as would be obtained using the "right"
set of parameters with the "right" distribution. While the "wrong" and "right" sets of
parameters must necessarily be different, their difference is not great. We would most
often be led to the same conclusions regarding the effects of the independent variables no
matter which set of parameters we used.
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