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Abstract

Several recent studies have investigated the application of statistical inference procedures to

the analysis of differential item functioning (DIF) in test items that are scored on an ordinal scale.

Mantel's extension of the Mantel-Haenszel test is a possible hypothesis-testing method for this

purpose. The development of descriptive statistics for characterizing DIF in polytomous test items

has received less attention. A statistic that appears well-suited as a summary index was proposed

by Dorans and Schmitt. In this paper, two possible standard error formulas for this statistic are

derived and evaluated, hypothesis testing procedures based directly on this descriptive statistic are

outlined, and the results of applications to simulated data are presented.
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Evaluation of the Magnitude of

Differential Item Functioning in Polytomous Items

Several recent studies have inv,.stigated the application of statistical inference procedures to

the analysis of differential item functioning (DIF) in test items that are scored on an ordinal scale.

Several studies (Chang, Mazzeo, & Roussos, 1993; Mazzeo & Chang, 1994; Welch & Hoover,

1993; Zwick, Donoghue, & Grima. 1993a; 1993b) have examined Mantel's (1963) extension of

the Mantel-Haenszel (1959) test. An early application of the Mantel approach to DIF data was

conducted by Holland and Thayer (Holland, 1991). Other approaches that have been evaluated

include combined t-tests (Welch & Hoover, 1993), an extension of Shealy and Stout's (1993)

SIBTEST procedure (Chang, Mazzeo, & Roussos, 1993; Mazzeo & Chang, 1994), an application

of logistic discriminant function analysis (Miller & Spray, 1993), logistic regression approaches

(Holland, 1991; Rogers & Swarninathan, 1994), and methods based on item response theory

(IRT) (Glas, 1991; Muraki, 1993; Wainer, Sireci, & Thissen, 1991). A review of polytomous

DIF methods is given by Potenza and Dorans (in press).

The development of descriptive statistics for characterizing DIF in polytomous test items

has received less attention. Dorans and Schmitt (1991) proposed a statistic that appears well-suited

for this purpose, but they did not discuss the variability of this index. In the present paper, two

possible standard error formulas for the statistic are derived and evaluated, hypothesis testing

procedures are described and compared to Mantel's (1963) approach, and analyses of real and

simulated test data are presented.

The first section of the paper describes the structure of the data and outlines Mantel's

approach. The second section presents the descriptive index proposed by Dorans and Schmitt.

The third section gives two alternative ways of deriving a standard error, mentions two additional

approaches, and addresses issues of hypothesis testing. The fourth section shows an illustrative

analysis, the fifth section presents the results of applying the procedures to simulation data, and the

final section lists some issues for future research.
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Mantel's Test of Conditional Association for Ordinal Response Variables

Mantel (1963) proposed several extensions to the Mantel-Haenszel (1959) test of

conditional association. One of these is a test of whether an ordered response variable is associated

with a dichotomous grouping variable, conditional on a third nuisance variable. In the case of DIF

analyses, the data are organized into a 2 x Tx K contingency table, where T is the number of

response categories and K is the number of levels of a stratification variable, such as score on the

entire test. In each of the K strata, the data can be represented as a 2 x T contingency table like

that shown in Table 1. "Reference" and "focal" denote the two groups to be compared and the y

values, y 1, y2, ..., y7- represent the T possible scores on the item. The body of the table contains

values of nRa and nRk which denote the numbers of reference and focal group members,

respectively, who are at the kth level on the stratification variable and received an item score of yr.

A "+" denotes summation over a particular index. For example, nF,k denotes the total number of

focal group members in the kth stratum.

Insert Table 1 about here

The statistic proposed by Mantel, reformulated in the notation of this paper and expressed

as a Z-statistic rather than a chi-square statistic, is

EFk EWA)
Z =

11,Var(FL)

where Fk, the sum of scores for the focal group in the kth stratum, is defined as

Fk =

(1)

(2)
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Treating the row and column marginals within each stratum as fixed, the expectation of Fk under

the hypothesis of no association (Ho) is

EH (Fk) = 1E±LIY, n+iknk t

and the variance of Fk under Ho is

(Fk)
nR-.4 nF+k .1(71+44 n+ik y n+,k)}yt

11:44(7'4+k 1) t t

2

(3)

(4)

Although Mantel does not explicitly state as much, his formulation is consistent with the

assumption that, within each stratum, the vector of frequencies for one group (say, the focal

group) has a multivariate hypergeometric distribution (Johnson & Kotz, 1969); that is, n Fk =

nFlk 7 nF2k 7." nprk ) has a multivariate hypergeometric distribution with parameters nF,k and

n +tk (All vectors are of dimension T. The "H" subscript in (3) and (4) denotes the

hypergeometric model.) Under Ho, the statistic in (1) is approximately distributed as a standard

normal variate. In the case of dichotomous items, this statistic is the same as the Mantel-Haenszel

(1959) statistic,1 which is the basis for the DM procedure of Holland and Thayer (1988).

In DIF applications, rejection of Ho suggests that, even after members of the reference and

focal groups are matched on some measure of ability (the stratification variable), they tend to differ

in their item scores. Using the formulation in (1), a negative Z value implies that, conditional on

the stratification variable, the focal group has a lower mean item score than the reference group.

Two previous findings regarding DIF assessment for polytomous items are relevant here.

First, Chang and Mazzeo (in press) showed that under certain item response models, including

Masters' (1982) partial credit model, identity of conditional item means for two groups implies

identity of the set of item category response functions for the groups on that item. (For an item

with T response categories, there will be T such response functions.) Therefore, no information is
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lost by comparing only the conditional means. Second, Zwick, Donoghue, and Grima (1993a;

1993b) showed that, under the partial credit model, there is a theoretical rationale for defining the

stratification variable (say, 5) as the simple sum of the item scores, including the studied item.

Under certain partial credit model assumptions, the odds ratios for any pair of item score

categories, conditional on S, are constant across values of S and are equal to unity when the item

response functions for the reference and focal groups are the same. This is an extension to the

polytomous case of the findings of Holland and Thayer (1988). This desirable concordance

between the IRT-based definition of DIF and the definition based on the odds ratios at each level of

S can be shown to stem from the fact that S is a sufficient statistic for examinee ability in the Rasch

and partial credit models (see Lewis, 1993; Masters, 1982; Zwick, 1990).

The SMD Index of DIF in Polytomous Items

Dorans and Schmitt (1991) proposed a summary statistic that compares the means of the

reference and focal groups, adjusted for differences in the distribution of reference and focal group

members across the values of the stratification variable. The statistic can be viewed as an extension

of the standardization statistic (STD P-DIF) developed by Dorans and Ku lick (1986) for

summarizing DIF in the case of dichotomous items. In the present paper, the proposed statistic is

labeled SMD for "standardized mean difference." Reformulated in the notation used here, it is

defined as follows:

SMD = WFk mFk wfk MRk
k k

where wFk = nF+k is the proportion of focal group members who are at the kth level of the
nF++

(5)

stratification variable, rnFk
1

Fk is the mean item score for the focal group in the kth stratum,
nF+k

and rniu =
1

Rk is the analogous value for the reference group, where Rk = 1y, nR,k .
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As in STD P-DIF, the first term of (5) is just the grand mean of the item scores for the focal

group. The second term is the mean item score for the reference group, "standardized" as if the

reference group distribution across strata was the same as the focal group distribution.

Variability of The SMD Index of IMF

Dorans and Schmitt (1991) did not include a standard error for SMD and left open the

question of "how big is big" (p. 22). As detailed below, several different models can be used to

derive a variance formula for SMD. First, a general form for Var(SMD) will be presented; the

result of invoking particular model assumptions will then be explored.

Var(SMD) = Var 1w F1, inFk .(
k

v vnT, 1

WFk rnRk = ZawFk ' '''''' 1 k
k !: nF+k

1

nR+k

...k il

W2Fk

1

2

1

2

Var(F. ) +1 Var(Rk ) 2 (-1 ) (-1 Cov(F; Rk ) . (6)
k nF4-k nF+k nR+k

(The weights, WFk nF+k , can be treated as fixed quantities here because, in both the models to
nF++

be discussed, nF+k and nF++ are assumed to be fixed.)

Mantel's Multivariate Hypergeometric Model

The multivariate hypergeometric framework of Mantel (1963) can be used to obtain the

variance of SMD under Ho. Under this model, Var(Fk ) = VarH(Fk ) is given by (4) and VarH(Rk)

= VarH(Fk ); that is, the subscripts R and F are interchangeable in (4). Because the column

marginals are fixed, there is a negative covariance between Fk and Rk . Specifically,

(cOVH (Fk , Rk) = COV H I yinF,k, E y,(n+,k n!,k) = ly t2 V arH(nFtk) = VarH(Rk)

Now, substituting into (6), we have

VarH(SMD) = 2
k

1 1

k
WFnF+k

nR+k) V arH (Fk)

This variance formula was first presented in Zwick (1992).

1.1

(7)
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Two-Multinomial Model

Another model that can be used to derive a standard error of SMD is the two-multinomial

model. Application of this model is a natural extension of the approach used by Phillips and

Holland (1987) and by Robins, Breslow, and Greenland (1986) in deriving a standard error for the

log of the Mantel-Haenszel odds ratio, which is the basis of the MH D-DIF index of DIF. In the

two-multinomial model, we assume that, within the kth stratum, the frequencies nFk have a

multinomial distribution with parameters IIFk and nf+ic and the frequencies Jaw, have a

multinomial distribution with parameters FIRk and nF+k. (All vectors are of dimension T.) This

model treats the row, but not the column marginals as fixed and does not invoke the null

hypothesis of no association.

Using the properties of the multinomial distribution, we have that

and

Varm (Fk) = YtnF-Fk (DriFk 7 Ha 11;03'

Varm (Rk) = yinR,k (DnRk

where Dim is a Tx T matrix with the elements of IlFk on the diagonal and zeroes e;sewhere, and

DriRk is the corresponding matrix for the reference group.

Alternatively, (8) and (9) can be expressed in scalar notation analogous to (4), as follows:

V arm(Fk) = nF+k[EYr 7rFrk (EY titFik)2] (10)

V arm(Rk) = n11,k CIYr 7Rtk

Now, substituting (10) and (11) into (6) and noting that Cov(Fk , Rk )=0 in this model, we

have



VarM (SMD) = V aim(Fk)
1

Varm(Rk)} . (12)
nR+k

2

In estimating VarM (SMD), the elements irFik are estimated by nFrk and analogously for IgRth
nF+k

Note that multiplying VarM (Fk) (based on equation 10) by the finite population correction factor

nR+k 1(1+44 1) yields VarH (Fk) (equation 4). Also, multiplying VarM (Fk) by np+k /(nF.k 1),

and VarM (Rk) by nR+k /(nR,k 1) in (12) and substituting the appropriate parameter estimates

yields the SIBTEST variance of Shealy and Stout (1993, p. 169, equation 19), provided that

weights based on the focal group distribution are used in the Shealy-Stout formula.

Other Models

Two models have been presented here for deriving a variance for SMD. Two related

models that naturally come to mind are a "one-multinomial" model, in which it is assumed that the

multinomial probabilities are the same for the reference and focal groups, and a noncentral

multivariate hypergeometric model. The one-multinomial model can be easily derived from

equations 10-12 by assuming equality of the within-stratum reference and focal group

probabilities, which are then estimated by ni-tk Under this hypothesis of no conditional
n++k

association,

where

VarM (SMD) = +9-k
1 VarM (SMDk) (13)

k nk

SMDk = WFk (mFk TnRk)

is the kth term of the SMD statistic and

VarH (SMDk) =14Fk
1

+
1

VarH(Fk)
nF+k

(

13

(14)

(15)

9
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is the variance of the kth term of SMD under the multivariate hypergeometric model.

Because of the close relationship between the multivariate hypergeometric and multinomial

models (Johnson & Kotz, p. 301), the somewhat unwieldy noncentral multivariate hypergeometric

model is expected to yield results very similar to (12) in large samples.

Hypothesis Testing

One possible approach to hypothesis testing would be to perform Mantel's test and then use

SMD as a supplementary descriptive statistic, along with its standard error. However, this

approach involves some redundancy because of the close relationship between Mantel's statistic

and the statistic Z(SMD) formed by dividing SMD by its standard error. In terms of (14), the

numerator of Mantel's statistic can be expressed as

nR.k nF+k
k"`

nR+k SMDFk MRk = nF++
n++k k n,+k

and in terms of (15), the denominator of Mantel's statistic can be written as

n F2 4--,nR )H MDkVarH (S
k n++k

(16)

(17)

If the weighting function in (5), rather than in (16), is the desired one, it is intuitively appealing to

use SMD both as a descriptive measure and as the basis for a test of the hypothesis of no

conditional association between group membership and item score. The statistic ZH =--=-ZH(SMD)

obtained by dividing SMD by the square root of (7) and the statistic Zm alZwi(SMD) based on the

variance in (12) are approximately distributed as standard normal variates under H0. As noted by

Dorans and Kulick (1986), weighting functions other than wFk =
nF+k

may be of interest; the
ni:++

appropriate standard errors can be derived using the same steps preserud here.2

14
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Application of New Models to SE(STD P-DIF)

In the case of a dichotomous item with scores coded 0 and 1, SMD reduces to STD P-DIF.

However, the variance estimates in (7) and (12) are computed under different assumptions from

the variance estimate that is used at Educational Testing Service (ETS) for STD P-DIF. In the

current ETS formulation, the variance is estimated as

arETs(STD P DIF) = V ar(EWEi. n2Fk) + V ar(IWFk n'Rk)
c-,

= mF+ (1 tnF+ L WFk rniu (1 11R+k

(18)

(19)

where ma and milk are now means of dichotomous variables scored 0 and 1 and

"IF,= /nF+- . The first parenthesized term in (18) is simply the overall focal group proportion

correct, say, mF+, which is treated as a binomial proportion. In computing the variance of the

right-hand parenthesized term in (18), the milk are treated as binomial proportions within strata

and the WFk are treated as fixed. Based on simulation results, Donoghue, Holland, and Thayer

(1993) suggested that "improvements in the estimation of this standard error may be desirable" (p.

165).

A different estimate of V ar(STD P DIF) is obtained by applying (7). In the case of a

dichotomous response variable, the term VarH(Fk ) in (7) can be expressed more simply as

nR+k nF+kn+Okn,-)kVarH (Fk ) =
n.4k(n++k 1)

(20)

which can be recognized as the within-stratum variance for the Mailtel-Haenszel (1959) statistic.

hypergeometric within-stratum variances are equal to binomial within-stratum variances

(with the binomial parameter estimated by n +1k I n+..k) multiplied by the finite population correction

factor, nR+k 1(n++k 1).

When T = 2, the variance formula in (12) can be expressed as

15
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Vary (ST' P DIF) = W TrFk Fk (1 7rFk)inF-4, 1-1WFk gRk (1 gRIc)1 nR+k
k

(21)

After substituting mRk as an estimate of gizik, the reference group term in (21) is the same as the

corresponding term in (19), but substituting m foror lrFik does not cause the focal group terms to

be the same. It is possible that application of (7) (and (20)) or (21) may provide an estimate of the

variance of STD P-DIF that is preferable to the one that is currently in use.3 As a spinoff of the

current project, the standard error formulas presented here for SMD will be evaluated for the case

of dichotomous items.

Hypothetical Example

Suppose that the data for the reference and focal groups are as shown in the top two panels

of Table 2 for an item that is scored on a 1-3 scale. Each panel represents one of the two levels of

the stratification variable. The entries represent frequencies of examinees; for example, the "5" in

the upper left of the top panel indicates that, among low scorers on the stratification variable, five

reference group members received an item score of "1."

Insert Table 2 about here

The (unadjusted) difference between the item means for the two groups, obtained by

subtracting the reference group mean (2.45) from the focal group mean (2.31), was -0.14. This

value, labeled impact, is shown at the foot of Table 2, along with other summary statistics. Simply

comparing these item means would lead to the conclusion that the focal group performed more

poorly on this item than the reference group. Although the impact was negative, note that the

Mantel Z statistic was positive (0.37), reflecting the fact that within each level of the stratification

variable, the focal group had a higher item mean than the reference group, as shown in the

summary panel of Table 2. The negative impact occurred because the reference group members

were more likely than the focal group members to receive a high score on the stratification variable
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and high scores on the stratification variable were associated with high item scores. The SMD

adjusts for differences in the distribution of reference and focal groups across levels of the

stratification variable by "standardizing" the mean for the reference group and subtracting this

standardized mean (2.26) from the focal group mean (2.31). The resulting value of SMD was

positive (0.05), like the Z statistic. This SMD value indicates that the conditional between-group

difference in mean item score (focal reference) was 0.05 of a score point, after adjusting for

group differences in the distribution of the stratification variable. Using the hypergeometric model

that assumes no association (equation 7), the standard error of SMD was 0.140; based on the two-

multinomial model (equation 12), the standard error was 0.135. The Z statistics corresponding to

these two models were 0.39 and 0.40, respectively.

Based on the Mantel and SMD statistics, the conclusion would be that, after matching

examinees on a measure of overall proficiency in the area of interest, the focal group performed

better, rather than worse, than the reference group, although the difference was extremely small

and not statistically significant. The SMD statistic, like the Mantel Z statistic, reflects the superior

performance of the focal group within each level of the stratification variable.

Application to Simulated Data

The standard error in (7) was computed in the simulation study of Zwick, Donoghue and

Grima (1993a; 1993b) and compared to the empirical variation of SMD across replications. More

recently, the same simulation programs were used to generate new data sets so that the standard

error formulas in (7) and (12) could be tested and compared. Results appear in Table 3.

Insert Table 3 about here

The top panel of Table 3 provides results for a standard normal focal population; the lower panel

corresponds to the case in which the focal population was N(-1, 1). The reference population was

standard normal for all simulation conditions.

17
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Item response data were generated for nine studied items, each of which was examined in

turn, and for 24 "matching items," used to construct the stratification variable. (No DIF was

present in the matching items.) The simulation represented a test consisting of a relatively large set

(20) of dichotomous items and a small set (5) of polytomous items. The three-parameter logistic

(3PL) model was used to generate the responses for the 20 dichotomous items. (The b parameters

had a mean of 0 and a standard deviation of 1.37, the a parameters had a mean of .88 and a

standard deviation of .19, and the c parameters were equal to .15.) The partial credit model

(Masters, 1982) was used to generate the item responses for the remaining four matching items and

for the nine studied items. All partial credit items were .-'sumed to have four response categories;

each item, therefore, had three difficulty parameters. (The reference group difficulties, defined as

in Masters, 1982, ranged from -2.25 to 3.40. Assuming the inclusion of a scale factor of 1.7, as

in the 3PL generating model for the dichotomous items, the a parameters for the polytomous items

were equal to 1/1.7 = .59.) Note that, although there was reason to expect that the procedures

would perform optimally when all items followed the Rasch or partial credit model, the simulation

conditions were not completely consistent with this model.

The nine studied items were obtained by crossing three DIF conditions with three sets of

reference group item parameters. The three DIF conditions were as follows:

No DIF: The three difficulty parameters for each item were the same for both groups.

Constant (.1): Each difficulty parameter for the focal group was obtained by adding 0.1 to the

reference group parameter.

Constant (.25): Each difficulty parameter for the focal group was obtained by adding 0.25 to the

reference group parameter.

The parameters for all simulation items appear in Zwick, Donoghue, and Grima (1993b).

For each item within each focal population condition, 100 replications were conducted and

the following statistics were computed: Mean and standard deviation across replications of SMD,

ratio of the mean value of SEH(SMD) to the standard deviation of SMD, ratio of the mean value of

SEH(SMD) to the standard deviation of SMD, and proportion of replications in which Ho was

18
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rejected for the Mantel Z, ZH, and ZM statistics, respectively (a = .05). Because the variation

across items within a DIF condition did not appear to be systematic or meaningful, results were

averaged for the three items within each of the three DIF conditions. Results for each focal

population condition were analyzed separately.

Several aspects of the results are worthy of note. First, the magnitude of SMD was

consistent with the generating parameters. In the no-DIF condition, the average SMD was close to

zero, and in the two constant D1F conditions, the average SMD was approximately equal to the

item standard deviation in the score point metric (.5), multiplied by the DIF magnitude (0.1 or

0.25), which is expressed in standard deviation units of the ability metric.

The standard error ratios were always smaller for SEH(SMD) than for SEH(SMD). This is

not surprising: Equation 13 shows that under H0, SEH(SMD) must be smaller than SEH(SMD).

In the non-null conditions, the across-replication averages of SEH(SMD) and SEH(SMD)for the

nine items (not shown) never departed by more than .01 from the corresponding averages for the

null case.

An aspect of the results that is harder to explain is the relation between the theoretical

standard errors and the empirical standard deviation of SMD. When the focal population was

N(0, 1), both theoretical formulas produced values that tended to be too small in the no-DIF and

Constant (.1) condition, but tended to be too large in the Constant (.25) condition. Although

SEM(SMD) does not invoke H0, its performance in the non-null conditions was not, in general,

superior to that of SEH(SMD).

Averaged over all nine items, the standard error ratios look quite promising in the focal

N(0,1) condition: 1.01 for SEH(SMD) and .97 for SEH(SMD). In the focal N(-1,1) condition,

SEH(SMD) continued to perform well, with an average ratio of 1.00, but SEH(SMD) tended to be

too small, with an average ratio of .92. In their simulation study of DIF in dichotomous items,

Donoghue Holland, and Thayer (1993) computed the ratio of the empirical standard deviation of

DIF statistics to the average of the formula-based standard errors (i.e., the reciprocal of the ratios

computed here). They reported an average ratio of .96 for MH D-DIF and .92 for STD P-DIF.

19



The power of all three Z statistics tended to be smaller in the focal N(-1, 1) condition than

in the focal N(0, 1) condition, although ZH and Zm both had higher Type I error rates in the focal

N(-1, 1) population. It is interesting that in the focal N(-1, 1) condition, the Mantel Z had a

smaller Type I error rate than both ZH and ZM, but had greaterpower to detect constant DIF of

0.25. (The standard errors of the tabled rejection rates are approximately 0.01 for the No-DIF

condition, 0.02 for tie Constant (.1) condition, and 0.03 for the Constant (.25) condition.)

Future Research

The work described here is part of an ongoing research project on DIF for polytomous

items. One area that needs to be examined further is the effect of variation in item discrimination

on the performance of the Mantel procedure and related methods. Some results of Chang and

Mazzeo (1994) show that when the two groups differ in ability and the discrimination parameters

of the studied item are very different from those of the ma'ching items, the Type I error rates

associated with these methods may be unacceptably high. The extended version of the SIBTEST

procedure appears to be more robust to variation in the a parameters. (We have conducted some

subsequent analyses that show that the degree of inflation for the Mantel approach is much smaller

when test length is increased from 25 to 45 items.) In the dichotomous case, Roussos and Stout

(1993) conducted a simulation that showed that both the Mantel-Haenszel test and the Shealy-Stout

SIBTEST procedure tended to have inflated Type I error rates under certain departures from the

Rasch model. Inflation was somewhat more severe for the Mantel-Haenszel when the reference

and focal groups had different ability distributions. On the other hand, Chang, Mazzeo, and

Roussos (1993), in an earlier simulation study that used the same data-generating programs as

those used to produce Table 3, showed that the extended SIBTEST had slightly higher Type I error

rates than the Mantel procedure when the groups had different ability distributions.

The superior robustness of SIBTEST under certain conditions is not entirely surprising.

The Mantel-Haenszel and Mantel DIF procedures are rendered independent of the group ability
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distributions in models for which the matching variable is a sufficient statistic for ability. This

occurs when the Rasch or partial credit models hold and the matching variable is number-right

score (Zwick, 1990; Zwick, Donoghue & Grima, 1993). The Mantel-Haenszel and Mantel

methods show a certain degree of robustness in that they continue to perform well under modest

departures from these models. Unlike SEBTEST, however, these methods do not include an

explicit correction for measurement error in the matching variable. Any DIF procedure that uses

number-right score as a matching variable (or predictor, in the case of logistic regression

approaches) is vulnerable to the Type I error inflation that characterizes the Mantel method in some

conditions.

More work is needed to determine whether the Mantel procedure and related approaches

tend to brea1 down under conditions that are likely to be encountered in practice. In the

dichotomous case, Holland (personal communication) has suggested that an index of the degree of

departure from the Rasch model would be useful in investigating this issue. In the polytomous

case, an index could be developed to measure departures from the partial credit model, for which

total score is a sufficient statistic.

Another area in which further research is planned is the development and evaluation of

methods for accommodating the sparseness of data that is often evident at some levels of the

matching variable. (In particular, problems occur in computing SMD when some values of nyt+k

are zero because m undefined in that case. Strata with nF.i.k = 0 do not pose an analogous

problem since np.i.k = 0 implies wa = 0, resulting in elimination of those strata.). In the simulation

results reported here, strata in which nR.i.k was zero were dropped from the analysis, as proposed

in Zwick (1992). Shealy and Stout (1993) also exclude strata for which sample sizes are

inadequate. As an alternative to exclusion, simple imputation techniques could be used to assign a

value to mom, as is ordinarily done in computing STD P-DIF, or more sophisticated smoothing

methods could be applied. Adjustments to the standard error formulas are also needed. Some

recent work on smoothed DIF statistics has been conducted by Dorms, Potenza, and Ramsay

(1994).
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One of the ultimate goals of this research effort is to develop descriptive categories of DIF

for polytomous items that are analogous to the A, B, and C classifications used for dichotomous

items. As in the dichotomous case, the criteria will involve some combination of statistical

significance and effect size. The statistical approaches considered will not be restricted to those

presented here, but will include the polytomous extension of SIBTEST and possibly other

procedures. Test developers as well as statisticians from testing programs will be consulted and

further analyses of simulated and actual test data will be conducted.

22



Footnotes

'The Mantel-Haenszel statistic is often used in the form of a chi-square, rather than a Z-

statistic; that is, the statistic is the square of (1), which has a chi-square distribution with one

degree of freedom under Ho. In many applications, including DIF analysis, a continuity correction

is included; see Holland and Thayer, 1988.

2Longford (personal communication, February 9, 1994) suggested a statistical test that

resembles Mantel's procedure but uses, a slighily different weighting scheme that incorporates

within-stratum score variability.

3M. Wang (personal communication, October 7, 1992) suggested a formulation of

SE(STD P DIF) identical to (20).

4.Copyright 1993 by Educational Testing Service. All rights reserved.
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Table 1

23

Data for the kth Level of the Stratification Variable

Item Score

Group Y 1 Y2 Y3 YT Total

Reference

Focal

"Rlk
'1Flk

"R2k

'F2k
12R3k

"F3k

...

...
"RTk

"FTk

"R+k

"F+k

Total 12+1k r1+2k ni-3k ... 71+Tk "++k

27



24

Table 2

Illustrative DIE Analysis of a Polytomous Item

Frequencies of Reference and Focal Group Members Receiving Each Item Score

Low Score on Stratification Variable

Item Score

Group 1 2 3 Total

Reference 5 13 7 25

Focal 3 11 6 20

Total 8 24 13 45

High Score on Stratification Variable

Item Score

Group 1 2 3 Total

Reference 18 54 108 180

Focal 1 5 9 15

Total 19 59 1 117 195

Summary Statistics

Low on Matching

Variable

High on Matching

Variable

Total

Statistic Ref. Focal

Proportion of cases 0.12 0.57 0.88 0.43 1.00 1.00

Item mean 2.08 2.15 2.50 2.53 2.45 2.31

Standardized mean - 2.26 -

Impact = 2.31 2.45 = -.14

Mantel Z = 0.37

SMD = 2.31 - 2.26 = 0.05

SEH(SMD)= 0.140, ZH = 0.39
SEm(SMD)=0.135, Zm = 0.40
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Table 3

Results of Nine-Item Simulation

DIF Condition

SMD SEH(SMD) SEM(SMD) P(Reject Ho)b
Mean S.D. Ration Ratio Mantel Z ZH ZM

Focal N(0, 1)

-.00
-.05
-.12

.05

.05

.04

.99

.95
1.09

.96

.92
1.04

.05
.18
.78

.04

.17

.75

.05

.20

.79

No DIF
Constant (.1)
Constant (.25)

No DIF
Constant (.1)
Constant (.25)

Focal N(-1, 1)
-.00
-.05
-.13

.06
.06
.06

1.00
1.00
.99

.92

.92
.92

.03

.18

.73

.06

.15

.62

.08

.21

.69

Note. The reference population was N(0, 1), nR.H. = nF4= 500. Each row in the table corresponds to 3 distinct
items. There were 100 replications per item; each table entry is the average result for 3 items.

a For each item, the ratio of the across-replication average of SEH (SMD) to the empirical S.D. of SMD was
computed. The table entry is the average ratio for 3 items. Analogous computations were performed for SEM
(SMD).

bEach entry is the proportion of rejections for a = .05. The standard errors of the rejection rates are approximately
0.01 for the No-DIF condition, 0.02 for the Constant (.1) condition, and 0.03 for the Constant (.25) condition.


