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Abstract

A simulation study of methods of assessing differential item functioning (DIF) in

computer-adaptive tests (CATs) was conducted by Zwick, Thayer and Wingersky (in press; 1993).

Results showed that modified versions of the Mantel-Haenszel and standardization methods work

well with CAT data. DIF methods were also investigated for nonadaptive "pretest" items, for

which item parameter estimates were assumed unavailable. The pretest DIF statistics were

generally well-behaved, but the Mantel-Haenszel DIF statistics tended to have larger standard

errors for the pretest items than for the CAT items. The current extension of the earlier work

addressed the effect of using alternative matching methods for pretest items. Using a more elegant

matching procedure did not lead to a reduction of the Mantel-Haenszel standard errors and

produced DIF measures that were nearly identical to those from the earlier study. Further

investigation showed that the Mantel-Haenszel standard errors tended to be larger when items were

administered to examinees with a wide ability range, whereas the opposite was true of the standard

errors of the standardization DT statistic. Some theoretical findings were obtained that appear to

explain this phenomenon.

1--
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1. Overview.,

Zwick, Thayer, and Wingersky (in press; 1993; henceforth referred to as ZTW) conducted

an extensive simulation study of DM methods for CATs. Simulated data were used to investigate

the performance of modified versions of the Mantel-Haenszel (MH; 1959) approach of Holland

and Thayer (1988) and the standardization method of Dorans and Ku lick (1986). Each "examinee"

received 25 items out of a 75-item pool. For DIF analysis, examinees were matched on expected

true scores based on their CAT responses and on estimated item parameters. Both DIE methods

performed well. The CAT-based DIF statistics were highly correlated with DIF statistics based on

nonadaptive administration of all 75 pool items and with the true magnitudes of DIF in the

simulation. In addition, the across-item means and variances of the DIF statistics were close to

their nominal values.

DM methods were also investigated for 15 nonadaptive "pretest items." Testing programs

often include in test forms a set of new items that are being evaluated for further use. In CATs,

these pretest items are typically administered nonadaptively to some or all examinees. Because

these items are new, item parameter estimates are unavailable. This means that an expected true

score cannot be obtained for these items using the conventional formula. The matching variable

that was used in ZTW for assessing DIF in these items was the sum of the expected true score on

the CAT and the score (0 or 1) on the studied pretest item (i.e., the pretest item that was being

subjected to DIF analysis).

The pretest DM statistics were generally well-behaved and had high correlations with the

true DIF. A somewhat puzzling result was the finding that the Mantel-Haensv 1 DIF statistics

tended to have larger standard errors for the pretest items thz.n for the CAT items. Some results of

Donoghue, Holland, and Thayer (1993) showed that the MH standard error estimates are inflated

by the inclusion of the studied item in the matching criterion. Therefore, it seemed possible that the

inflated standard errors in ZTW resulted from the method of including the studied item.

If DIF analyses were conducted after calibrating the pretest items, it would be possible to

include the studied item in the matching variable using an approach that is better grounded in
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psychometric theory. Although the necessity of prior calibration would make this theoretically

optimal matching variable more cumbersome to obtain, the new approach would be a candidate

for operational use if it produced results that were significantly better than those in ZTW. Both the

optimal matching variable and an approximation to it were investigated in the current study.

Neither the optimal matching variable nor the approximation were found to be substantially

different from the matching variable used in ZTW, and DIF statistics obtained using the optimal

matching variable had correlations of nearly unity with those obtained in ZTW. The larger

standard errors for the MH D-DIF statistics were found to be associated with the larger examinee

ability range for pretest than for adaptive items.

The steps involved in this study were (a) calibrating the pretest items and reestimating

abilities, (b) computing the alternative matching variables, (c) matching examinees on these new

scores, (d) recomputing the DIF statistics, and (e) comparing the results to those obtained in ZTW

and to the true DIF for the items. These steps are detailed in subsequent sections, following a

description of the simulated data.

2. Simulated Examinee Data

DIF analyses are typically based on two groups - -the group of primary interest, or focal

group, and the group to which it is compared, or reference group. In this study, the focal group

ability distribution was normal, with a mean of -1 and a standard deviation of 1. and the reference

group distribution was standard normal. Twenty-five thousand examinees in each of the two

groups were included in the study; these were a subset of the 60,000 cases per group that were

generated in ZTW. (Section 5.3, below, gives the rationale for using fewer records.) The

examinee records from ZTW included the true ability, the expected true score on the CAT, and the

responses to the 15 pretest items. The new ability estimates and matching variables needed for the

current study, described in sections 3 and 4, were appended to the existing records.
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2.1. Generation of Item Responses

The factors that were varied across the items used in ZTW were the item discrimination

parameters (a) difficulty parameters (b), and DIF parameters (d). The DIF parameter for item./

was defined as di = bjR biF, where bjR = bj is the reference group difficulty and biF is the focal

group difficulty. Therefore, a value of d greater than zero implied that an item was easier for the

focal group than for the reference group, whereas d less than zero implied that the item was harder

for the focal group.

Estimates of item parameters and DIF from actual admissions test data were used in

determining the values of a, b, c, and d for the simulation. (See ZTW for details.) To simplify the

simulation, the guessing parameter, cj, was set equal to .15 for all items. Item responses were

generated with the three-parameter logistic (3PL) item response fundtion (Birnbaum, 1968), using

the true item and ability parameters.

2.1.1. CAT Item Pools

In ZTW, responses to three different CAT pools of 75 items were simulated. In Pool 1,

the items had no DIE; in Pool 2, the items had DIF that was uncorrelated with item difficulty; and

in Pool 3, the items had DIF that was correlated with item difficulty. The same set of 15 pretest

items accompanied each pool. Although each examinee's responses to CAT items were used in

computing the matching variable for that examinee., DIF results for the pretest items were found to

be nearly identical across pools. Therefore, the present study used only one CAT pool: Pool 2.

The included values of a, b, and d for Pool 2 items were as follows:

a: .74, 1,

b: -1.95, -1.3, -.65, 0 .65, 1.3, 1.95, and

d: -.70, -.35, 0, .35, .70.

The CAT simulation was designed as a simplified version of actual CATs being deve' sped

at ETS. The CAT algorithm, originally developed for the ZTW study, selects as the next item to be

administered the most informative item at the maximum likelihood estimate (MILE) of ability
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computed from the items already administered. The item parameter estimates used for computing

item information and ability estimates were obtained through an analog to a paper-and-pencil test

administration. A sample of 2,000 reference group examinees were "administered" all 75 items,

and the LOGIST program (Wingersky, 1983; Wingersky, Patrick, & Lord, 1988) was used to

estimate the a, b, and c parameters. Because 2,000 is a typical sample size for such calibrations,

this approach allowed for the incorporation of a realistic amount of estimation error. The true and

estimated a, b, and c parameters, along with the true d parameters, are given in 21W (see listing

for Pool 2).

2.1.2. Pretest Items

All 15 pretest items had a true a value of 1 and a true c value of .15. Three values of b

(1.3, 0, and 1.3) were crossed with five values of d (-.7, -.35, 0, .35, and .7). The true and

estimated a, b, and c parameters, along with the true d parameters, are given in Table 1.

Insert Table 1 about here.

3. Pretest Item Calibration and Ability Estimation

The item parameter estimates for the pretest items, which were needed to compute the new

matching variables, were obtained by including the 15 pretest items in a single calibration run with

the 75 CAT items. Parameter estimates for the 75 CAT pool items were fixed at the values

previously obtained in ZIW. The calibration sample originally used in estimating the CAT item

parameters (see section 2.1.1) was used. The procedure was intended to parallel a paper-and-

pencil calibration in that all examinees had responses to all 90 items.I

For each pretest item, each examinee's ability was reestimated using the 25 CAT item

responses, as well nF the response to the studied pretest item. This resulted in 15 new ability

estimates for each examinee.

3



4. Matching Variables for Pretest DIF Analysis

In ZTW, the matching variable for the DIF analysis of the CAT-administered items was

obtained by (1) getting the examinee's MLE of ability, based on the responses to the 25 CAT items

and (2) using this MLE, along with the estimated item parameters, to compute an expected true

score for the entire item pool by summing the 75 values of the estimated item response functions.

The matching variable for the DIP analysis of pretest items was obtained by adding the score on the

studied pretest item to the CAT matching variable. That is, the old matching variable for the ith

pretest item was

75

I Pi (OcAT) + Xi,
j=1

(1)

where Pi() is an estimate of the 3PL function for the jth item, ow is the. MLE of ability based on

the CAT items, and Xi is the score on the ith pretest item.

The theoretically optimal matching variable was obtained as follows:

(2)

where 6; is the MLE of ability based on the CAT and the ith pretest hem. This matching variable is

the expected true score on the CAT pool and .he ith pretest item, with the ability estimate based on

26 item responses.

The approximation to the optimal matching variable was

75

Pj (9CAT (ecAT) (3)

7
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In this approximation, the MLE of ability is based on the CAT only, as in equation 1, but the

expected true score is defined in terms of the 75 CAT pool items and the studied pretest item, as in

equation 2. An interesting feature of this approximation is that, although it uses the item parameter

estimate for the studied pretest item, it does not use the examinee's response to that item.

The matching variables in equations 1-3 depend on the parameter estimates or responses for

the studied pretest item, but do not depend on the estimates or responses for the remaining 14

pretest items. Therefore, in the pretest DIF analyses in ZTW and in the present study, the

matching variable differed across pretest items.

It tel 1.,"

Table 2 gives descriptive information on the distributions of the residuals for the matching

variables in equations 1-3. Results are given separately for the reference and focal groups, based

on samples of 1,000. The residual for an examinee was obtained by subtracting the examinee's

true score (based on the generating abilities and item parameters) from the value of the matching

variable. The true score for the ith pretest item was defined as

Pi (0) + P (0). (4)
i=1

Insert Table 2 about here.

The standard deviations of the true scores were approximately 13 for the reference group

and 12 for the focal group. The median residuals in Table 2 are very small with respect to this

standard deviation and show little variation across matching variables. The largest departure from

zero occurred for the optimal matching variable in the focal group results for Item 1, with a median

residual of -.45. The approximation to the optimal matching variable showed the least variation

across items.

11
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As in ZTW, nearly all median residuals were negative. An investigation of this

phenomenon in ZTW led to the conclusion that the obtained set of item parameter estimates led to a

downward bias in the ability estimates. The matching variables used in the present study depend in

large part on the responses and parameter estimates for the CAT items; therefore, it is not

surprising that negative residuals were preponderant in this study as well.

5. DIF methods

This section describes the two DIF methods and the procedure used to estimate the

behavior of DIF stztistics under various sample size conditions. In both the MH and

standardization methods, examinees are first grouped on the basis of a matching variable that is

intended to be a measure of ability in the area of interest In many DIP applications, the matching

variable is the total score on the test in which the studied item is embedded. In the current study,

the matching variable was given by equation 2. Examinees whose values on thematching variable

fell in the same one-unit intervals were considered to be matched. Because the DIF results

obtair -Ai with the optimal matching variable were not found to be superior to those obtained using

the simple matching approach in ZTW, no DIF analyses were conducted using the approximation

to the optimal matching variable (equation 3).

For the DIF analyses in the current study, each of the 15 pretest items in turn played the

role of the studied item. The score on the studied item, group membership, and the value of the

matching variable for each examinee define a 2 x 2 x K cross-classification of examinee data,

where K is the number of levels of the matching variable. Assume that there are Tk examinees at

the kth level of the matching variable. Of these, nRk are in the reference group and nFk are in the

focal group. Of the nRk reference group members, A k answered the studied item correctly while

Bk did not.. Similarly Ck of the nFk matched focal group members answered the studied item

correctly, whereas Dk did not.



5.1. Mantel-Haenszel DIF Analysis

The MH measure of DIF is

MH D-DIF = -2.35 ln(aux) (5)

where &MH is the Mantel -Haenszel conditional odds-ratio estimator given by

IAkDk I Tk
kec

Mil 1BkCk 17;
(6)

In equation 5, the transformation of aim places MH D-DIF on the ETS delta scale of item

difficulty (Holland & Thayer, 1985). The effect of the minus sign is to make MH D-DIF negative

when the item is more difficult for members of the focal group than it is for comparable members

of the reference group. An estimated standard error for MH D-DIF, based on work by Robins,

Breslow and Greenland (1986) and Phillips and Holland (1987), is given in Holland and Thayer

(1988). It is

SE(MH D DIF) = 2.35 4Var(ln(eculd) (7)

where Var(Ln(amll)) is estimated by

EUkilkni2

2 (/Ak Dk ni)2
k

where Uk = (Ak Dk) + amH(Bk Ck) and Vk = (Ak +Dk)+41,1(Bk +cd

(8)

10



The Mantel-Haenszel chi-square test of the null hypothesis of no DIF was not examined in this

research.

5.2. Standardization Analysis

The standardization DIF measure, developed by Dorms and Ku lick (1986), is

STD P - DIF = PF pa (9)

where fiF is the proportion in the focal group who get the studied item correct, and pa is an

adjusted proportion correct on the item for the reference group, defined as

PR = (
Ak
"---)

nEx

nRk nF
(10)

where nF = nFa is the total number of examinees in the focal group? One interpretation of pR

is that it is the proportion of reference group examinees who would have got the studied item right

if the distribution of the rr-aching variable in the reference group had been the same as in the focal

group.

where

The estimated standard error for STD P - DIF is given by the formula

SE(STDP - DIF) = 40; + (72R (11)

2 1 A

F PF (1- PF)
nF

(12)

11
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and

1
2nFkA,Bk

R = 2
nF k n3Rk

(13)

5.3. Definition of Sample Size Conditions

Three sample size conditions were of interest: nR = 500, nF = 500; nR = 900, nF = 100;

and nR = 500, nF = 100, where nR and nF are the sample sizes for the reference and focal

groups, respectively. These sample size conditions were chosen to be similar to those that are

expected to occur in ETS analyses of pretest items that accompany CATs. The first two sample

size conditions were also used in ZTW.

The difficulty of defining sample sizes in a CAT simulation was addressed in ZTW. If

groups of a fixed sample size had been drawn and the CAT administered, the sample sizes per

item would have had a huge range. Because the goal was to investigate the behavior of DIF

statistics for specific sample sizes, it would not have been useful simply to analyze the available

data for each item. After considering several other approaches, including resampling techniques

and multiple replications, the expected table (ET) method was adopted:3 First, within each

simulation condition, item response data were generated for 60,000 examinees per group. Each

examinee received 25 of the 75 CAT pool items. For each of the 75 items, all the available CAT

data (out of a maximum of 60,000 responses per group) were then used to form the 2 (item

responses) x 2 (groups) x K (levels of the matching variable) contingency table needed for DIF

analysis. (The response frequency per item ranged from about 1,800 to about 34,000.) The table

frequencies were then converted to proportions of the total number of observations for the group in

question. Using these proportions as estimates of the population probabilities associated with the 4

x K cells for the relevant configuration of conditions, expected tables for the target sample sizes

were obtained by multiplying the probability estimates for focal group cells by the desired focal

group sample size and then doing the same for the reference group cells. Next, DIF statistics and

1J
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standard errors u. ,re computed, based on the expected tables. A simple example of the ET

approach, which originally appeared in ZTW, is given in the Appendix.

Though it produces only a single estimate, the ET approach can provide a relatively precise

idea of the behavior of the MH D-DIF statistic. A supplementary study comparing the ET method

to an estimation procedure based on multiple replications (as in a typical simulation study) appears

in ZTW. The comparison was based on items for which 60,000 responses per population group

were available. The ET method was found to give results similar to those of the replication-based

approach. For the items that were studied, the ET-estimated MH D-DIF was determined to be as

precise as an average over 316 replications of the MH D-DIF statistic based on the target sample

sizes. Another advantage of the ET approach is that, once the 2 x 2 x K probability tables have

been created, DIF results can be generated easily for any target sample size, facilitating further

research.

The advantages of the ET method are less clear for the pretest items, for which data are

available for all simulated examinees, than for CAT items. To facilitate comparisons with the CAT

items, however, the ET method was used for the pretest items in ZTW. The current study used the

ET method so that pretest item results could be compared to those in ZTW. Examination of ZTW

results showed that increasing the number of examinees per group beyond 25,000 led to very little

gain in the precision of the ET estimates; therefore, only 25,000 of the 60,000 available records for

each group were included in the current study.

Except where noted, the values of MH D-DIF, SE(MH D-DIF), STD P-DIF, and

SE(STD P-DIF) in this report were computed from expected tables using equations 5 through 13.

Note that SE(MH D-DIF) and SE(STD P-DIF) are not indexes of the error associated with the

estimation of MH D-DIF and 57D P-DIF. Instead, these standard errors cl.osely approximate

the values of SE(MH D-DIF) and SE(STD P-DIF) that would be obtained using actual samples

of the target sizes. The appropriate formulas for the standard errors of the ET estimates of MH D-

DIF and SID P-DIF, which reflect the degree of precision with which the population DIF values
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are estimated using the ET approach, are given in ZTW. In the present study, these standard errors

of the estimate ranged from .05 to .08 for MH D-DIF and from .004 to .005 for STD P-DIF.

6. DIF Results

DIF analyses were conducted on the 15 pretest items for each of the three sample size

conditions, using the optimal matching variable. Results were compared to those in ZTW and to

the true DIF for the item. For purposes of these analyses, the true DM of an item was defined as

the generating value of ad for that item (see Table 2), based on the following rationale: Under

certain Rasch model conditions, the MH D-DIF statistic provides an estimate of 4ad. (See

Donoghue, Holland and Thayer, 1993, who based their result on the work of Holland and Thayer,

1988.) The assumptions under which this finding holds are that (1) within each of the groups

(reference and focal), the item response functions follow the Rasch model (obtained by setting cj =

0 for all items j and ai = a for all items j) , (2) the matching variable is the number-right score

based on all items, including the item under analysis, referred to as the studied item, and (3) the

items have the same item response functions for the reference and focal groups (ie., bjR = bj-F

bi), with the possible exception of the studied item. When conditions (1)-(3) do not hold, the

population odds ratios will not, in general, be constant across number-right score levels (see

Zwick, 1990). Therefore, for the 3PL model, it is not possible to derive a general expression for

the quantity estimated by the MH D-DIF statistic. However, empirical analyses showed that, in

the ZTW study, MH D-DIF was approximately equal to 3ad.

Table 3 gives the means and standard deviations across the 15 items of MH D-DIF,

SE(MH D-DIF), STD P-DIF, and SE(STD P-DIF). These summaries are given for the ZTW

results (two sample size conditions) and the new results (three sample size conditions). Two

artifacts of the simulation procedures need to be considered when interpreting these results. First,

within each study, results for the various sample size conditions are based on the same ET

probability tables. Because of this, the MH D-DIF measures within each of the two studies are

highly correlated across sample size conditions. The ET-estimated STD P-DIF statistic is

17
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invariant over target sample sizes. The primary purpose of including more than one sample size

condition was to study the behavior of the standard errors of the DIF measures under various

sample sizes. Second, as described in section 5.3, the ET probability tables for the new study are

based on a subset of the simulated examinees from the ZTW study. The ET tables are not the same

as in ZTW because only a subset of the examinees was used and because the examinees were

stratified using a different matching variable.

Insert Table 3 about here.

The mean across items of the DIF values used in data generation was zero; ideally, the

mean of the DIF statistics would also be zero. The standard deviation of the generating DIF values

was about .5; the MH D-DIF staistics were expected to have a standard deviation roughly three

times that large. Results from the old and new analyses look very similar, with the mean DIF

statistics for the new analyses departing slightly more from zero than the -weans for the old

analyses. (When DIF analyses are conducted which the matching variable is the number-right

score, including the studied item, the STD P-DIF statistics are constrained to sum to zero across

items; the MH D-DIF statistics are also constrained to sum to approximately zero. This constraint

does not apply in the present analyses; 0..at is, the closeness to zero of the means of Table 3 was

not a foregone conclusion.) In both the new and old analyses, the across-item variation of the MH

D-DIF statistics was somewhat smaller than expected.

The stability of the DIF statistics depends heavily on the minimum of the two sample sizes;

therefore the variation of the standard errors across sample size conditions was as expected: The

standard errors were considerably larger for nR = 900, nF = 100 than for nR = 500, nF = 500,

and only slightly larger for nR = 500, nF = 100 than for nR= 900, nF = 100. See section 6.2 for

further discussion of these results.

There was also a tendency for standard errors to be slightly larger for the new analyses.

Figures 1 and 2 show the standard errors for the new and old analyses for MH D-DIF and STD
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P-DIF, respectively for nR= 500, nF = 500. On nearly every item, the standard errors of both of

these statistics were slightly larger for the new than for the old analyses. This suggests that better

matching may have been achieved using the old matching variable (equation 1).4

Insert Figures 1-2 about here.

Tables 4 and 5 give the intercorrelations of the old and new DIF measures and true DIF for

the n R = 500, nF = 500 and the n R = 900, nF = 100 sample size conditions, respectively.

(Re liabilities were computed for each DIF statistic using the methodology described in LlsW.

Because they were all at least .997, reliability-corrected results were essentially identical to

uncorrected results.) For both sample size conditions, the intercorrelations among the DIF

statistics were nearly unity. The correlations with true DIF (ad) ranged from .91 to .95; these

correlations were .01 higher for the new that, for the old analyses.

Insert Tables 4-5 about here.

6.1 Expected Percent of "C" Results

ETS has a system for categorizing the severity of DT based on MH re:;ults. According to

this classification scheme, a "C" categorization, which represents extreme DIF, requires that the

absolute value of MH D-DIF be at least 1.5 and be significantly greater than 1 (at a = .05). A

"B" categorization, which indicates moderate DIF, requires that MH D-DIF be significantly

different from zero (at a = .05) and that the absolute value of MH D-DIF be at least 1, but not

large enough to satisfy the requirements for a C item. Items that do not meet the requirements for

either the B or the C categories are labeled "A" items, which are considered to be free of DIF.

Items that fall in the C category are typically eliminated from tests or subjected to further scrutiny.

13
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Because the ET-estimated DIF statistics were based on a total of 50,000 observations in the

present study, it is reasonable to assume that they provide precise estimates of the population mean

and standard deviation of the theoretical distribution of MH D-DIF for the relevant configuration

of item properties and simulation conditions. This is supported by analyses reported in ZTW. If it

is assumed that MH D-DIF statistics for this configuration follow a normal distribution with this

mean and standard deviation, percentiles of the theoretical distribution of MH D-DIF can be

obtained. These percentiles can then be used to estimate the percent of times such an item will be

classified as an A, B, or C. This is an alternative way of providing information about the sampling

variation of the MH D-DIF statistic.

Based on the ETS DIF rules, an algorithm was developed for estimating these percents, to

be applied separately to each item in each condition. The algorithm was tested and found to work

well with data from two simulation studies. Details are given in ZTW.

In the 3PL model, the determination of which items are nominally A, B, and C items is not

straightforward. Based on the empirical finding that MH D-DIF was approximately equal to 3ad

in the conditions investigated in ZTW, Items 1, 5, 6, 10, 11, and 15, which have ad = ±.70, can

be considered to be nominal C's; Items 2, 4, 7, 9, 12, and 14, which have ad = ±.35, would be

nominal B's; and Items 3, 8, and 13, which have ad = 0 would be nominal A's. The same

categorization would result from application of the theoretical finding that MH D-DIF is an

estimate of 4ad under certain Rasch model conditions. (See ZTW for further discussion of these

issues.)

Table 6 gives the expected percent of C results for the 15 pretest items for the new and old

matching variables for each sample size condition. The nominal status of the item is also given,

with a "minus" sign indicating items that are easier for the reference group and a "plus" sign

indicating items that are easier for the focal group. As expected, the likelihood of detecting C items

is greater when SE(MH D-DIF) is smaller (see section 6). Results tended to be similar for the

new and old matching variables. The exceptions were two nominal C items: Item 10 for nR =

500, nF = 500, in which the new analysis was better able to detect DIF and Item 1 for nR = 900,
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nF = 100, in which the old analysis was more sensitive. For both the new and old analyses, DIF

became harder to detect as items became more difficult. This is most obvious in the case of Item

11, a nominal C item with b = 1.30, for which the expected percent of C results never exceeded

1.4. This phenomenon, noted by Donoghue, Holland, and Thayer (1993), occurs in simulations

in which the guessing parameter c is constrained to be the same in the reference and focal groups.

The more difficult the item, the closer the probability of correct response is to the guessing value,

and the harder the groups are to differentiate.

Insert Table 6 about here.

6,2. DIF Results for Smaller Sample Sizes

A secondary question in this study concerned the functioning of theMH D-DIF statistic

with nR = 500, nF = 100. It is anticipated that sample sizes this small will be encountered in

pretest DIE analyses at ETS. Specifically, there was an interest in whether the standard errors of

the DIF statistics would be much larger than for the nR = 900, nF = 100 condition included in

ZTW.

Table 7 gives a comparison of the distribution across items of the standard errors of the

DIF statistics for the new analyses for nR = 900, n F =100 and nR = 500, nF = 100. For both the

MH D-DIF and STD P-DIF statistics, the median standard error for nR = 500 IF = 100 was

larger than the median for nR = 900, nF = 100 by a factor of 1.06.

Note that by using the estimated value of the standard error for a particular pair of sample

sizes (say, n RI, n F1) as a baseline, the standard error of MH D-DIF for another sample size pair

(say, nR2,nF2) can be predicted accurately using the ratio of the harmonic means of the sample

size pairs. More specifically, SE(nR2, nF2) can be well predicted by multiplying SE(nRi, n F1)

by
lih(nRi,nFi)

, where h(.) denotes the harmonic mean. In the present case, the multiplication
h(4/22)nF2)

factor obtained through the simulation (1.06) is approximately equal to that which would be

4. ..:...
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obtained analytically by examining the ratio of the harmonic mean of the sample sizes for the two

conditions (1.04).

A point to keep in mind when evaluating the results of Table 7 is that DIF standard errors

for both nR = 900, nF = 100 and nR = 500, nF = 100 are quite large relative to the magnitude of

DIF that are sometimes thought to be of interest. As shown in Table 6, the detection of C items is

substantially impaired when the smaller of the two sample sizes is 100 rather than 500.

Insert Table 7 about here.

.11- 1 1111101 5(55. it
The ZTW study showed that SE(MH D-DIF) tended to be larger for pretest items than for

CAT items, with a range of 0.4 - 0.6 for the nR = 500, nF = SOO condition and 0.6 - 1.1 for the

nR = 900, nF = 100 condition, compared to 0.3 - 0.4 and 0.5 - 0.7, respectively, for the two

sample size conditions in the CAT. The values of SE(STD P-DIF), however, were slightly

smaller for pretest items than for CAT items.

The findings of the present study show clearly that the large values of SE(MH D-DIF) did

not result from the ad hoc procedure used in ZTW for defining the matching variable. As shown in

Figure 1, standard errors were slightly larger when the theoretically optimal matching variable was

used. Other factors were therefore investigated to determine the cause of the seemingly inflated

MH standard errors. Two questions that were addressed were:

How do the standard errors compare for CAT and pretest items if the matching variable is held

constant?

Do the standard errors of MH D-DIF and STD P-DIF accurately reflect the empirical variation of

these DT indexes?
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7. 1. How do the standard errors compare for CAT and pretest items if the matching variable is

held constant?

Figures 3 and 4 show the results of computing two kinds of MH D-DIF statistics for 71

items administered in the ZTW CAT study (Pool 3). (Four of 75 CAT pool items were never

administered; see ZTW.) The values plotted along the horizontal axis are based on a nonadaptive

administration to 900 reference and 100 focal group examinees. The matching variable was the

expected true score on the 75 CAT pool items, with the ability estimate based on responses to all

75 items. The values plotted along the vertical axis are based on only the examinees who received

the item in a CAT administration. The matching variable, however, was the same as that used for

the nonadaptive DIF statistics. In practice, it would, of course, be impossible to compute this

matching variable for examinees who received only 25 CAT items. The reason for doing so in this

analysis was to eliminate any possible effect of the matching variable on the DIF statistics. The

CAT DIF results for the nR = 900, nF = 100 sample size condition were obtained using the ET

method.

Insert Figures 3-4 about here.

Figure 3 shows hat the MH D-DIF statistics are clustered around the 45-degree line; there

were no systematic differences for the two types of administration. Figure 4, however, shows that

the standard errors were dramatically different; for almost every item, they were smaller for the

CAT data.

To determine whether these findings were related to the particular CAT algorithm used in

this study, another analysis was conducted, comparing what might be termed a pseudo-CAT

administration to nonadaptive administration. For the pseudo-CAT, examinees were eliminated

from the DIF analysis of a particular item if their abilities departed substantially from the estimated

item difficulty. Specifically, if the examinee's ability was less than b - 1.25 or greater than b +

1.25, the examinee was eliminated. The ET method was applied to both the selected and
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unselected data, with target sample s:zes of nR = 900, nF = 100. Results were very similar to

those obtained in Figures 3 and 4, suggesting that this phenomenon was associated with the ability

range of the examinees, but was not unique to the ZTW CAT algorithm. In a later study of DIF

analysis for pretest items, Way (1994) obtained a similar result.

To determine whether this result was related to the use of item response theory for ability

estimation, the CAT DIF statistics were also plotted against those obtained through nonadaptive

administration, with number-right score as a matching variable. Again, results were very similar to

those in Figures 3 and 4.

Figures 5 and 6 show corresponding results for the STD P-DIF statistic and its standard

error. The STD P-DIF values are clustered around the 45-degree line, but, as in ZTW, the

standard errors showed a tendency to be smaller for the nonadaptive administration.

Insert Figures 5-6 about here.

7.2. Do the standard errors of MH D-DIF and STD P-DIF accurately reflect the empirical variation

of these DIF indexes?

The ZTW study included a comparison of the ET method to an estimation procedure that

involved averaging over 66 replications. The DIF analyses for this investigation were conducted

on the 15 pretest items. For each item, the comparison produced three estimates of the variation of

the MH D-DIF and STD P-DIF statistics: the empirical variation of MH D-DIF or STD P-DIF

across the 66 replications, the average over 66 replications of the ordinary standard errors,

computed using equations 7-8 and 11-13, and the ET standard error, computed on the expected

tables using these same equations. For the ET estimates, the total sample size was 60,000 per

group, and the target sample sizes were nR = 900 and nF = 100. For the replication-based

approach, actual samples of 900 reference and 100 focal examinees were used.



Table 8 shows the Pearson correlations (across the 15 items) among these hree estimates

of the variability of MH D-DIF and the corresponding three estimates for STD P-DIF. Several

aspects of these results are worthy of note: The ET standard errors were highly correlated with the

mean SE across replications (.99 for MH D-DIF; .98 for STD P-DIF). Also, the ET standard

errors had moderately high correlations with the empirical standard deviation of the DIF indexes

(.81 for MH D-DIF and for STD P-DIF). All cross-correlations between the MH-based

variables and the standardization-based variables were negative and some were substantial in

magnitude. The empirical standard deviations of MH D-DIF and STD P-DIF had a negative

correlation, albeit a small one (-.14).

Insert Table 8 about here.

In discussing the somewhat inferior performance of SE(STD P-DIF) relative to SE(MH

D-DIF) in another simulation study, Donoghue, Holland, and Thayer (1993) made note of "the

large amount of work that went into the development of a useful standard error for the Mantel-

Haenszel log-odds-ratio estimator...In contrast, [the formula for SE(STD P-DIF) is] based on

simple asymptotic approximations that are suspect when the number of cases in each 2 x 2 table is

small" (p. 161, 163). The correlational results in Table 8, however, show that the standard errors

of both MH D-DIF and STD P-DIF paralleled the corresponding empirical variability quite well.

Table 9 gives the medians and ranges across the 15 items for the three types of standard

error estimates. For MH D-DIF, the ET standard error tended to be slightly smaller than the

empirical standard deviation, while for 57D P-DIF, the El' standard error tended to be slightly

larger. For both MI-I D-DIF and 577) P-DIF, the range over items of the ET standard error was

slightly smaller than the ral.ge of the empirical standard deviation. For both the MH and

standardization statistics, the mean standard error across replications tended to be slightly larger

than the empirical standard deviation.

;;;; ---
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Insert Table 9 about here.

7.3 Analytical Perspective on the Standard Errors of DIF Statistics

The standard error findings described in this paper are consistent with the analytical results

in Zwick (1993). Those results are briefly summarized here.

The MH D-DIF and STD P-DIF statistics use different metrics to compare the item

performance of two population groups. In MH D-DIF, the ratio of two odds is examined,

whereas the STD P-DIF statistic is based on the difference between two proportions. Both

statistics are, of course, more complicated in that they involve conditioning on a matching variable

and include special weighting functions. To understand the variability of DIF statistics, it is useful

to start by considering a simpler but analogous problem: Suppose that there is no stratification

(i.e., K = 1) and we are concerned with a sample proportion, p, for a single population. We can

compare the variance of this proportion to the variance of the logit of the proportion. The variance

of a sample proportion, under the binomial model, is n--in(1 z), where is the population

proportion. The asymptot:c variance of logit (P) =1n [P 1(1- f))] is [nr(1- 10]-1 (Agresti,

1990). These variances are estimated by substituting P for 7r.

Two related facts are worthy of note here. First, the variance of P and the variance of

logit(P ) are inversely related. Second, when P = .5, the estimated variance of P is maximized

while the estimated variance of logit(P) is minimized. Zwick (1993) shows that, when the Rasch

model holds and there is no DIF, the exact variance of a Taylor series approximation to the MH log

odds ratio is equal to

1
P7

Var(In(amll)) = {I{ "71
n

irk (1 -7rk)} ,
k=1 + nFk

-4!0 W4, - ,r-. 4,411/1: ,-:4. ,M1
.
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where nk is the probability of a correct answer in stratum k. This expression is obviously similar

to the expression for the asymptotic variance of a logit. Each of the K terms will be minimized if

the stratum probability of a correct response on the item is equal to .5; the variance becomes large

under departures from this condition. The 13 = .5 condition is similar to the situation that occurs

in a CAT, when items are administered to examinees of an appropriate, and thus rather narrow,

ability range. Large departures from this condition occur on the pretest. These findings appear to

explain both the differences between the CAT and the pretest standard errors and the differences

between the MH D-DIF and STD P-DIF standard errors.

8. Summary:

This study yielded several practical findings abot., the analysis of DIF in CAT and CAT

pretest items:

An elaborated method of obtaining the matching variable for pretest items, which involved prior

calibration of these items, did not produce results superior to those obtained with the simple

matching variable presented in Zwick, Thayer and Wingersky (1993). The new DIF statistics had

correlations of nearly unity with the previous results, and the standard errors were slightly larger in

the new analysis. Therefore, the simple approach presented earlier is recommended.

The standard errors of MH D-DIF and STD P-DIF for nR = 500, nF = 100 did not greatly

exceed those for nR = 900, nF = 100. The increases in the standard errors relative to the nR =

900, nF = 100 conditions were consistent with theoretical estimates based on the reference and

focal group sample sizes. Using the simulation results obtained in this study and in ZTW as a

starting point, it should be possible to use analytical means to predict the standard errors for

various sample size combinations.
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Both empirical and theoretical results indicated that the standard errors for MH D-DIF and STD

P-DIF are related to the proportion correct on the item. When the proportions correct within the

score strata are close to .5, which is consistent with CAT administration, SE(MH D-DIF) tends to

be small, while SE(STD P-DIF) tends to be large. Departures from this condition, which are

sometimes extreme for the pretest items, tend to increase SE(MH D-DIF) and decrease SE(STD

P-DIF).
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Footnotes

1 A second calibration method was initially considered which featured item administration and

calibration procedures more similar to those that have been developed for ETS CATs. In addition

to the steps involved in the implemented pretest calibration, this method required that a set of

"anchor items" be used to link the pretest items to an existing scale. Because of errors of equating,

this method would have necessarily led to results inferior to those obtained with the optimal

matching variable. Because the simple method used in ZTW was found to produce essentially the

same results as those obtained with the optimal matching variable, there was no reason to pursue

additional metho& that required calibration of the pretest items.

2 When n is equal to zero, both 15R and o are undefined. When this occurs, the standard ETS

DlF software implements an imputation procedure proposed by Holland, (Mc Hale, Dorans,

Holland & Petersen, 1988). A modification of this procedure which takes into account the special

nature of the CAT-based analyses was used in this study.

3 This approach was proposed by Charles Lewis.

4. The values of SE(MH D-DIF) and SE(STD P-DIF) depend on the target sample sizes (e.g.,

nR = 900, nF = 100); they do not depend on the sample sizes on which the ET estimates are based

(in this case, 25,000 per group). The ET sample sizes determine the precision with which the

target tables reflect the generating probabilities, but the degree of this precision does not affect the

magnitude of the statistics that are computed using the target tables. An empirical verification of

this was obtained in a related study, in which DIP results were obtained for ET sample sizes of

25,000 per group and for ET sample sizes of 60,000 per group. Although the standard errors of

the ET estimates (not presented in the current study) varied across the two analyses, the values of

SE(MH D-DIF) and SE(STD P-DIF) for the target tables were nearly always identical to two

decimal places across analyses.
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Appendix: Example of the Expected Table (ET) Approach to Estimation of D1F Statistics

Consider the following hypothetical results for a single item, assuming that there are only

two levels of the matching variable. The first step is to use all the data available for the item to

construct a 2 x 2 x 2 frequency table (because K. 2 here). Then the cell frequencies for the

reference group are divided by the total number of reference group examinees and the frequencies

for the focal group are divided by the total number of focal group examinees, producing the

following 2 x 2 x 2 table of probabilities:

Low on Matching Variable

Right Wrong Total

Reference .2 .1 .3

Focal .2 .2 .4

High on Matching Variable

Right Wrong Total

Reference .5 .2 .7

Focal .4 .2 .6

Now suppose that target tables are needed for the nR = 900, nF = 100 condition. The reference

group probabilities are multiplied by 900 and the focal group probabilities are multiplied by 100,

producing the following table for use in DIF analysis.

Low on Matching Variable

Right Wrong Total

Reference 180 90 270

Focal 20 20 40

High on Matching Variable

Right Wrong Total

Reference 450 180 630

Focal 40 20 60
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Table 1

True and Estimated Item Parameters for Pretest Items

Item b d a L aa

1 -1.30 -.70 .97 -1.32 .14

2 -1.30 -.35 .90 -1.42 .14

3 -1.30 0 .89 -1.33 .14

4 -1.30 .35 1.06 -1.35 .14

5 -1.30 .70 .93 -1.38 .14

6 0 -.70 1.13 .08 .19

7 0 -.35 1.09 .04 .15

8 0 0 1.04 -.04 .15

9 0 .35 1.23 .06 .19

10 0 .70 1.07 -.07 .13

11 1.30 -.70 1.13 1.26 .16

12 1.30 -.35 1.06 1.38 .16

13 1.30 0 1.21 1.20 .16

14 1.30 .35 1.24 1.35 .17

15 1.30 .70 .92 1.28 .13

aln the LOGIST program, estimated c parameters are set to a common value for items on

which the c parameter cannot be estimated accurately. This applies to Items 1-5.

Note, All a parameters are 1 and all c parameters are .15.



Table 2

Median Residuals for Three Pretest Matching Variables

Item

Reference Group (nR = 1,000)

Old Optimal Approximate

Focal Group (nF = 1,000)

Old Optimal Approximate

1 -.21 -.11 -.12 -.33 -.45 -.21

2 -.19 -.24 -.12 -.25 -.26 -.18

3 -.18 -.23 -.13 -.18 -.15 -.20

4 -.18 -.25 -.11 -.10 -.05 -.21

5 -.20 -.24 -.12 -.03 .09 -.19

6 -.09 -.07 -.13 -.27 -.34 -.19

7 -.17 -.15 -.15 -.30 -.34 -.22

8 -.16 -.11 -.11 -.18 -.19 -.21

9 -.18 -.15 -.14 -.19 -.15 -.19

10 -.20 -.26 -.12 -.12 -.01 -.22

11 -.14 -.04 -.13 -.19 -.22 -.20

12 -.26 -.24 -.14 -.19 -.19 -.20

13 -.14 -.04 -.13 -.18 -.21 -.20

14 -.14 -.15 -.14 -.17 -.15 -.19

15 -.13 -.11 -.13 -.07 -.15 -.22
Median

across items -.18 -.15 -.13 -.18 -.19 -.20

Note. Each residual was computed by subtracting the true score (equation 4) from the matching

variable (equations 1-3). The standard deviation of the true score was about 13 for the reference

group and 12 for the focal group.

4

k.4
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Table 3

Means and Standard Deviations of DM Statistics

Statistic

nR = 500, nF = 500 nR = 900, nF = 100 nR = 500, nF = 100

Old New Old New New

MH D-DIF -.02 (1.35) .04 (1.36) .02 (1.25) .05 (1.25) .05 (1.28)

SE(MH D-DIF) .41 (.04) .42 (.04) .64 (.05) .65 (.05) .69 (.06)

SID P-DIF x10 .00 (.88) .02 (.86) .00 (.88) .02 (.86) .02 (.86)

SE(SAD P -DIF) x 10 .33 (.03) .34 (.02) .49 (.05) .49 (.04) .52 (.04)
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Table 4

Correlations of Pretest DIF Statistics and True DIF (ad)

for nR = 500, nF. 500.

Old

MHD -DIF

New

D-DIF

Old

577) P-DIF

New

SID P-DIF ad

Old MH D-DIF

New MH D-DIF

Old 5-11.) P-DIF

New STD P-DIF

ad

1

1.00

.99

.99

.94

1

1.00

.99

.95

1

1.00

.91

1

.92 1

Note, "Old" statistics are from the ZTW (1993) study; "new" statistics are from the present

study.
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Table 5

Correlations of Pretest DIF Statistics and True DIF (ad)

for nR = 900, nF = 100

Old

MHD-DIF

New

MID -DIF

Old

STD P-DIF

New

STD P -DIP ad

Old MN D-DIF

New MH D-DIF

Old STD P-DIF

New STD P-DIF

ad

1

1.00

1.00

.99

.92

1

.99

1.00

.93

1

1.00

.91

1

.92 1

Note, "Old" statistics are from the ZTW (1993) study; "new" statistics are from the present

study.
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Table 6

Expected Percent of "C" Results for Old and New Mailing Variables

Item

Nominal

Statusa

nR = 500, nF = 500

Old New

nR = 900, nF= 100

Old New

nR = 500, nE.= 100

New

1 C- 97.7 93.0 70.9 58.8 56.6

2 B- 25.7 20.1 13.6 11.9 11.6

3 A 0.0 0.0 0.2 0.1 0.2

4 B+ 4.2 8.7 4.6 7.2 7.1

5 C+ 79.7 82.1 46.9 50.4 46.3

6 C- 67.1 62.6 21.3 20.4 21.5

7 B- 6.1 5.3 3.3 3.6 4.0

8 A 0.0 0.0 0.1 0.1 0.1

9 B+ 2.4 5.4 2.6 3.6 4.0

10 C+ 75.8 83.4 37.5 41.3 40.1

11 C- 0.7 1.0 0.8 1.1 1.4

12 B- 0.1 0.2 0.4 0.6 0.8

13 A 0.0 0.0 0.2 0.2 0.2

14 B+ 0.3 0.4 0.7 0.7 0.8

15 C+ 13.1 11.4 6.0 4.4 5.1

aThis column gives the ETS DIF category to which the item nominally belongs. A minus sign

indicates that the item is easier for the reference group, while a plus signs indicates that it is easier

for the focal group.
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Table 7

Distribution of Standard Errors of DIF Statistics
with Optimal Matching Variable

SE(MH D-DIF) SE(STD P-DIF) x 10

nR =900, nF =100 nR =500, "F =100 nR =900, np. =100 nR =500, nF =100

Lowest .60 .63 .42 .45

25th %ile .62 .65 .46 49

Median .63 .67 .50 .53

75th %ile .69 .72 .53 .56

Highest .78 .84 .55 .58
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Intercorrelation of Standard Error Estimates for DIF Statistics

1. Mean SE(MH D-DIF)

over replications

2. Er SE(MH D-DIF)

3. Empirical SD of MH D-DIF

4. Mean SE(STD P-DIF)

over replications

5. Er SEWED P-DIF)

6. Empirical SD of STD P-DIF

1 2 3 4 5 6

1

.99

.82

-.59

-.55

-.54

1

.81

-.59

-.56

-.55

1

-.51

-.42

-.14

1

.98

.77

1

.81 1

Note. nR = 900, nF = 100. ET estimates are based on 60,000 cases per group.

4
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Table 9

Comparison of Standard Error Estimates for DI.F Statistics:
Median and Range over 15 Items

MH D-DIF
Median Range

SID P-DIF x 10
Median Range

Mean SE over replications .67 .23 .50 .13

ET standard error .63 .19 .50 .13

Empirical SD over replications .65 .21 .48. .15

Note. nR = 900, nF = 100. ET estimates are based on 60,000 cases per group.
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