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Abstract

Inclusion of irrelevant variables in a cluster analysis adversely affects subgroup recovery.
This paper examines using moment-based statistics to screen variables; only variables which pass
the screening are then used in clustering. Normal mixtures are analytically shown often to
possess negative kurtosis. Two related measures, 1 and coefficient of bimodality b, are also
‘examined.

A Monte Carlo study compared the screening measures to no selection, De Soete’s
(1988) ultrametric weights, and Fowlkes, Gnanadesikan, aud Kettenring’s (1988) forward
selection procedure. Screening based on kurtosis degraded recovery and is not recommended.
In contrast, screening on m or on b improved recovery over both no selection and forward
selection, and screening performed as well as ultrametric weights. Combining screening with
ultrametric weights performed extremely well. All methods were found to be somewhat sensitive
to other typeé of error.

Screening variables appears a viable alternative to both ultrametric weights and forward

selection. The potential advantages and disadvantages of screening are considered.

Keywords: Variable selection; Cluster analysis of two-mode data; Kurtosis; Hierarchical

clustering; Euclidean distances.
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1. INTRODUCTION

Applications of cluster analysis commonly involve trying to isolate relatively
"homogeneous subgroups of individuals from a collection of entities hitherto thought to be

homogeneous. Thus, this paper adopts the view of cluster analysis as the attempt to "unmix a
mixture of distributions" (e.g., Titterington, Smith, & Makov, 1985; McIl.achlan & Basford, 1988).
Clusters .'re the homogeneous distributions which are mixed, and applications of cluster analysis
attempt to identify relatively homogeneous subgroups within a more heterogeneous population.

The first step in such an analysis is to select the necessary entities and variables. Meehl
(1979) emphasized the use of clinical insight into the domain of interest, and standard sources
.on cluster analysis such as Everitt (1980), Lorr (1983), and Aldenderfer and Blashfield (1984)
merely state that the variables should be theoretically relevant. Yet, cluster analysis is useful as
an exploratory technique; the domain of interest may be known, but the specific variables which
separate putative subgroups are not known prior 1o the analysis.
1.1 The Problem of Irrelevant Variables

The usual response of applied researchers is to include all possible variables, in the hope
that the dimensions upon which subgroups differ will be represented by one or more of these
variahles. Unfortunately, such a shotgun strategy is counter-productive. In the process of
clustering, the two-mode (variables by encities) multivariate data zre converted to a single-mode
(entities by entities) univariate similarity measure, such as Buclidean distance or Q-correlation.
Including irrelevant variables acts to introduce noise into the similarity measure, obscuring
subgroup structure. Everitt (1980) reports that algorithms such as single and centroid linkage
produced similar results when used with similarity data containing error as they did when used

to cluster unimodal data. This renders such methods erfectively useless, as it is impossible to
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interpret such a solution (Donoghue, 1987). Milligan (1980) found that the addition of

irrelevant dimensions resulted in the lowest recovery rates for all of the clustering algorithms he

studied. He concludes that "a researcher should be particularly cautious when selecting variables

to be used in the clustering process." (1980, p. 341).

The deleterious effect of irrelevant variables is aggravated by attempts to deal with
other problems. Fleiss and Zubin (1969) noted that standardization of variables (to remove
effects of variable scale) has the effect of decreasing between-groups spread compared to those
variables which do not contain subgroups. This implicitly assigns larger weights to variables
which do not measure the between-groups difference, making the subgroups harder to isolate.
Simulations by Milligan and Cooper (1988) and Barton (1993) have found that standardizing
variables can adversely affect recovery by cluster methods. Attempts to deal with problems
caused by computing Euclidean distances from non-orthogonal variables (e.g., Donoghue, 1993)
produce similar problems. Hartigan (1975) reports decreased recovery when using Mahalanobis
distance, and Rohlf (1970) and Chang (1983) discuss problems in clustering based upon principal
compornents scores. However, techniques developed by Art, Gnanadesikan, and Kettenring
(1982) to estimate the pooled within-g’ouﬁs covariance matrix may alleviate this problem
(Donoghue, 1994). In addition, clustering procedures recently have been proposed which
combine multidimensional scaling and/or variable weighting with specific clustering algorithms
(De Soete, DeSarbo, & Carroll, 1985; DeSarbo, Carroll, Clark, & Green, 1984, DeSarbo,
Howard, & Jedidi, 1991).

12 Methods to Deal with Irrelevant Variables
A few general suggestions have appeared which address the problem of irrelevant

variables. Unlike those just cited, these methods are not tied to the clustering algorithm used,

-3
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and so are applicable across a variety of clustering algorithms. Fowlkes, Gnanadesikan, and
Kettenring (1988) suggested a forward selection procedure to determine which variables to
include in a cluster analysis. At each step, their method selects the variable which maximizes
Pillai’s trace criterion from MANOVA. For each analysis, expected values of the statistic are
obtained by Mont= Carlo methods, i.e., 100 draws of n entities from a spherical, p-dimensional
normal distribution. Forward selection stops when the increase in the trace statistic is less than
the expected value. The method is computationally intensive, with the amount of computation
increasing with the square of the number of variables.

Milligan (1989) examined the use of a variable weighting procedure (De Soete, 1986,
1988) to deal with irrelevant variables. The method selects weights such that the distances

computed from the weighted variables mazimally satisfy the ultrametric inequality:

This is equivalent to requiring that all sets of three points lie on an acute isosceles (or
equilateral) triangle. Johnson (1967) and Milligan (1979) demonstrated the relationship
between the ultrametric inequality and .nany commonly used hierarchical clustering algorithms.
Milligan (1989) found that using the ultrametric weights improved cluster recovery when the
data contained one, two, or three irrelevant dimensions. The amount of computation for this
method increases with the cube of the number of entities; Milligan reports that the method

required too much computation to complete an addition simulation condition in which datasets

contained 250 entities.
1.3 Moment-based Variable Screening
Some researches have suggested screening variables based upon the shape of the

distribution. For example, Morris et al. (1981, cited in Fletcher & Satz, 1985) have noted that
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normally distributed variables are not consistent with the presence of subgroups in the sample,
and Fletcher and Satz assert that the distribution of the variables must be skewed (19835, p. 49)
in order for the variables to be consistent with the presence of subgroups. While this paper was
in preparation, a study by Bajgier and Aggarwal (1991) was published which compared the
power of a variety of univariate distributional tests to detect balanced mixtures. Testing for
negative kurtosis was the most powerful of the methods they examined.

In this paper, three variable screening strategies are developed and examined. Section 2
examines the meaning of univariate kurtosis, and its relationship to bimodality. Section 3
examines the kurtosis, and two improvements to the kurtosis, the m-index and the coefficient of
bimodality b. Section 4 gives the design of a simulation study to examine these methods.
Section 5 reports the results of the simulation, and compares the screening measures to two
alternatives from the literature. Finally, Section 6 contains discussion of the potential
advantages and disadvantages of screening, and Section 7 presents suggestions for further work.

2. THE DISTRIBUTION OF A MIXTURE

Mixtures are expected to have multiple modes corresponding to the individual subgroups.
Finucan (1964, p. 112) noted, "a bimodal curve in general has also a strong negative kurtosis." A
series of notes in The American Statistician also suggest this (Darlington, 1970; Chissora, 1970;
Hildebrand, 1971), but they also point out that kurtosis is not necessarily negative for bimodal
distributions. In addition, Eisenberger (1964) has examined the conditions under which a
-mixture of two normal distributions will be bimodal or unimodal. Distribution B in Figure 1 is
such a unimodal mixture of two normal distributions. In 1939, Fisher asserted that distributions
such as B had a lower kurtosis than distribution A, the standard normal distribution. Finucan

(1964) proved this assertion, as have others from different points of view (Marsaglia, Marshall,

W
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& Proshau, 1965; Ali, 1974). As a result, kurtosis is often inierpreted as a measure of whether
the distribution is sharply peaked or flattened out compared to the normal distribution. Yet,
Kaplansky (1945) demonstrated that the kurtosis need not be related to the distribution’s
peakedness, and Ali (1974) and Johnson, Lietjan and Beckman (1980) have argued that kurtosis
is better conceived of as a measure of the thickness of the tails of the distribution. Distributions
which have thicker tails than the normal take on positive values of kurtosis; those with flatter
tails take on negative values. Balanda and MacGillivray’s (1988) review concluded that "it is
best to define kurtosis vaguely as the location- and scale-free movement of prgbability mass
from the shoulders of a distribution into its center and tails, and to recognize that it can be

formalized in many ways." (p. 111)

Insert Figure 1 about here

A mixture of normal distributions may be unimodal or bimodal. In some cases unimodal
mixtures of normals can have lower kurtosis than a single normal of equal mean and variance.
Bimodal distributions generally may have negative kurtosis, although not always. Hence, there
appears to be some connection betw;een negative kurtosis and mixtures. Thus, we next consider
the kurtosis of a mixture.

3. KURTOSIS OF A MIXTURE
The measure of kurtosis, g,, is the fourth moment about the mean normalized by the

variance squared, and compared to the normal’s normalized fourth moment (which is 3):

g, = -3 (1)

&&

where M, is the kth moment about the mean. The kurtosis of a mixture of normal distributions

I
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is given by:

3 var[of + (py - w) ] -2 Y &, (p; - p)t
_ Gom = 773 , (2)

G 2 G 2
PRI R PRI Ok
J=1 J=1

where var is the variance over subgroups and 7, is the proportion in subgroup j (the derivation
of (2) is given in the Appendix). There are three competing processes working to determine the
kurtosis of a mixture. Heterogeneity of the within-group variances inflates the kurtosis, as do

differences in the sizes of the subgroups. Differences in the subgroup means work to decrease

the kurtosis.
The form of (2) allows two properties to be easily demonstrated:
A) Common Mean: When the subgroup means are identically equal to g, all of the
- (i - w)* terms drop out, and the kurtosis of the mixture is non-negative, g, > 0.

- B) Homogeneous Variances: When the subgroup variances are identically equal to

o’, the kurtosis is a function only of the subgroup means. In this case, g,, will be
less than zero, provided that the 7; are not too dissimilar. Thus, the kurtosis will
be negative whenever the variance of the squared differences of the means (g,- - uy
is less than two—thirds of the sum of (y; - p)*. While this expression has no simple,
intuitive meaning, it will be true whenever the subgroups are relatively similar in
§ size, for example if the ratio of the sizes is less than 3:1 in the two subgroup case.
Assuming normality of within—group distributions, platykurtosis (g,, < 0) indicates the
presence of subgroups. Unfortunately, the converse is not true. Thus, kurtosis may be used as a

- relatively stringent screening measure. The inferences which may be made (in the absence of

\‘l ‘ 1-‘?.
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sampling error) are summarized in Table 1.

Insert Table 1 about here

The screening test based upon kurtosis may be improved by including the information
about the variable’s skewness. Such a correction is particularly attractive because kurtosis ic
most powerful in situations in which the overall distribution is nearly symmetric (in Table 2, cell

III and cell I when the ; are similar). The suewness, g, is defined as:

M.

g9 = [M2]33/2

For a mixture, this becomes:

G G
3 m505 (ks = p) + ) ms(py - p)?
F=1

5=

G ’ G

Y w05+ Y wy(py - p)?
=1 T

The factors of unequal within—group variances and unequal mixing proportions (#;) induce

Gin = 3/2

skewness in the mixture distribution. Thus, incorporating a correction for the skew will make

the test more powerful.
The kurtosis is always bounded below. This lower bound is usually given as:
822 -2

However, the actual lower bound (Stuart & Ord, 1987, p. 115) is:

g +32g87+1. (3)

This suggests the index m:

m =g2"g12’ (4)
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which has 2 uniform lower bound of -2.0 for all variables.

As with kurtosis, a plausible selection rule is to use variables for which m < 0. There is
no simple expression for (4) in the presence of mixtures. However, it does have several
desitable properties. It has an expected value of zero for a single (nonmixture) normal
distribution. Under the condition of homogeneity of subgroup means, it reduces to the kurtosis
of the mixture, and again has a nonnegative expected value. Similarly, under homogeneity of
subgroup variances, the value is negative for most cases.

The coefficient of bimodality b in SAS (1985) also incorporates the bound in (3):

gr +1

g, *+3

b =

The coefficient is bounded, 0 < b < 1. The manual suggests that values "greater than 0.555 may
indicate bimodal or multimodal" distributions (1985, p. 272). No explanation is given for this
-value, but it is the expected value of the statistic for a uniform distribution, and assumes that
values larger than this are likely to reflect true subgroup structure (W. S. Sarle, personal
communication, June 11, 1987). To date, no studies have investigated the efficacy or power of
this measure. The expected value of the statistic is .333 for a single normal distribution. Large
values of b suggest multimodality. It will take on values less than or equal to .333 when no
mean differences are present. Also, b is more sensitive than is m; m < 0 implies b > .333.

To illustratc the behavior of g,, 7, and b, the expected values of each were calculated for
a variety of mixtures. Table 2 gives values for each of the measures for selected combinations
of subgroup proportions, means and variances for mixtures of two and three subgroups, and

Table 3 gives the values of each of the statistics for several common probability distributions.
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Insert Tables 2 and 3 about here

Table 3 illustrates a desirable property of the measure m. Its expected value is independent of
the distributional parameters for several of the distributions examined. In the remaining cases it
is a very simple function. This is not true of 4. It is not clear whether this property is more
.important than the slightly greater sensitivity of 5.
4. SIMULATION DESIGN

A Monte Carlo study was undertaken to systematically evaluate the proposed screening
measures on the ability of common clustering algorithms to recover a known subgroup structure.
4.1 Method

Data were generated using a modified version of the algorithm given by Milligan (1985).
This algorithm has been used in a number of studies. Each dataset consisted of 50 observations.
Within a subgroup, observations were drawn from a truncated multinormal distribution, with
observations constrain .d to lie within the range, u; + 1.5 g; in the first dimension. In addition,
subgroup boundaries were well separated in the first dimension. This insured that there was no
-overlap among the subgroups.
Design

The chief variable of interest was the effect of the variable selection/weighting
procedures which were applied to th»  tasets. Four additional factors were manipulated in the
data generation:

1) Number of subgroups (4 levels) -- 2, 3, 4, or 5 subgroups,

2) Number of "core" variables (3 levels) -- 4, 6, or 8. Subgroup means differed on each

of these dimensions.
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3) Density of subgroups (3 levels):

a) equal sized subgroups,

b) the first subgroup was 10% of observations, other subgroups were equal sized,

c) the first subgroup was 60% of observations, other subgroups were equal sized.
These three factors were fully crossed to yield 36 (4 X 3 X 3) conditions. Three replicate
datasets were generated per condition, for a total of 108 base datasets. Each of the base
datasets was then modified according to seven error conditions:

4) Error condition

a) No error

b) One normally distributed noise dimension

c) Two normally distributed noise dimensions

d) Three normally distributed noise dimensions

e) Error perturbed coordinates, low error, A = 1

f_) Error perturbed coordinates, high error, A = 2

g) Outlier condition, 10 observations (i.e., 20%) which did not fall within any

subgroup were added to the dataset.

For the error perturbed coordinates condition, the normally distributed error was added to the

original coordinates:

Ejue = Ajip * Aejup

ik ~ N(0, a5

This resulted in a total of 756 datasets. See Milligan (1985) for additional details on the data

generation and error conditions. The variables in each dataset were then weighted and/or

o)
()
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screened using each of the 10 methods listed below, yielding 7,560 weighted datasets. Each
‘weighted dataset was then analyzed by four clustering algorithms, making a total of 30,240
clusterings. For each clustering, the solution for the correct number of subgroups was used as
the result for that method.

Selection Algorithms

Each data set was subjected to 10 variable weighting/selection strategies:
A) No selection,
B)g, < -12,
C) g, significantly < 0. This was determined at & = .05, using the tables in Chen (1983),
D)g, <0,
E)ym < -12,
Fym < 0,
G) b > .555,
H) b > .333,
I) De Soete’s (1986, 1988) ultrametric weighting algorithrn,

J) Fowlkes, Gnanadesikan, and Kettenring’s (1988) forward selection algorithm.

Cluster Algorithms

The 10 weighted versions of each dataset were then analyzed four times, corresponding
to different hierarchical clustering algorithms and measures of similarity. The clustering
methods were: (a) Single linkage, Euclidean distance; (b) Complete linkage, Euclidean distance;
(c) Average linkage, Euclidean distance; (d) Ward’s method (minimum variance), squared
Euclidean distance. The clustering methods were chosen because they are widely used and

average linkage and Ward’s method have consistently performed well in previous studies. For a
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discussion of these algorithms, the reader is referred to standard introductions to cluster analysis
(e.g., Everitt, 1980; Lorr, 1983).

Outcome Measure

The outcome measure for the study was the Hubert and Arabie (1985) modification of

Rand’s (1971) statistic, which will be denoted HA-Rand. The index was computed between each

cluster solution and the true subgroup membership used to generate the data. This index is
based on examining pairs of eniities, and determining whether they are classified into the same
or different subgroups. A value of zero reflects chance agreement with the true membership,
and 1.0 reflects perfect agreement. A study by Milligan and Cooper (1986) supports the
accuracy of Hubert and Arabie’s modification.

Computer Programs

Data were generated using a modified version of Milligan’s (1985) program. The
weights for De Soete’s algorithm were computed using his program OVWTRE (De Soete,
1988).! The moment statistics, the Fowlkes, Gnanadesikan, and Kettenring (1988) forward

selection algorithm, and clustering algorithms were computed using FORTRAN programs

written by the author. Accuracy of these programs was ensured through numerous comparisons

of results of subroutines and final classifications with routines from SAS and SPLUS.
Eigenvalues were computed using routines from EISPACK (Smith, Boyle, Garbow, Ikebe,
Klema, & Moler, 1974). Note that the forward selection procedure in Fowlkes, (nanadesikan,
and Kettenring (1988) was developed in terms of the complete link clustering method. For the

present study, the full method of determining expected values via Monte Carlo methods and

! The author is indebted to Glenn Milligan for providing a copy of the source code of his generation
program and OVWTRE.
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then performing forward selection was applied to each of the clustering algorithms.

5. SIMULATION RESULTS

Although ANOVA might seem a natural means to summarize the results, it was not used
for the present study.> The primary independent variable of interest was the
weighting/selection method used in the analysis. The other factors in the design were included
to ensure that their effects were systematically present, anu so would not confound the results
concerning variable weighting/selection. It is more meaningful to airectly examine the
comparisons of interest, using multiple comparison procedures to control overall Type I error
rate. Still, there may be intcrest in the main effects of the other variables in the study. These
are summarized in Appendix Table Al. In general, the effects replicate those in other studies
(e.g., Milligan, 1980, 1989).

The variable screening/weighting methods primarily were compared using a distribution
free ordinal procedure, Cliff’s (1993) method of comparing the order of two distributions.
Ordinal comparisons were performed using a modified version of Cliff’s (1992) program
PAIRDELLI, for paired observations. Two types of ordinal hypotheses were assessed. The first,
based on the inde;( d,, is the proportion of datasets for which one method yielded higher
recovery thén the other method minus the proportion for which it yielded lower recovery; it is
‘the net proportion of datasets with improved recovery. Negative values of d,, indicate lower
recovery for first method. The second ordinal procedure estimates the probability that a

randomly sampled observation from one distribution has a larger value than a randomly sampled

? In addition, a preliminary investigation of the within-cell means revealed substantial heterogeneity of
variance, violating the ANOVA assumption, and making the ANOVA tests suspect.

o
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observation from the other distributior. This results in one of three decisions for each pair of
clustering methods: a) Method A is higher (better recovery) than Method B; b) Method B is
higher than Method A; or c) the methods do not significantly differ. In addition, pairwise t-tests
of means were aiso computed.

The results will be discussed in six sections. In Section 5.1, the minimal requirement of
effectiveness for the proposed screening measures is examined: Does using the measure yield an
‘improvement over no screening? Measures which provide no improvement are certainly not
worth adopting. Next, Section 5.2 compares recovery using the variable screening to two
suggestions from the literature: (a) variable weights to maximize agreement of the distances with
the ultrametric inequality (De Soete’s 1¢ 68 program); and (b) the forward selection procedure
of Fowlkes, Gnanadesikan, and Kettenring (1988). Section 5.3 looks at the robustness of the
screening procedures; how do they perform in the presence of other types of error (perturbed
coordinates and outliers)? Section 5.4 evaluates the effect of combining variable screening with
ultrametric weights. Next, Section 5.5 examines the interaction of the best screening/weighting
methods with clustering algorithms. Finally, Section 5.6 explores the effec’. of variable
standardization on the behavior of the forward selection algorithm.

5.1 Effectiveness

The minimal requirement of effectiveness is that using the variable screening/weighting
method yield an improvement over using no selection. To address this issue, each method was
compared to no selection. These comparisons were made on HA-Rand index values pooled

over all datasets containing 0, 1, 2, or 3 error dimensions. Table 4 summarizes the results of

these comparisons.

ot
o
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Insert Table 4 about here

The three methods based on the kurtosis, g, < -1.2, g, signif. < 0, and g, < 0, yielded
significantly worse recovery than no selection. Negative d,, values indicate that the kurtosis-
‘based measures resulted in lower HA-Rand values for 9-27% of the datasets. This result differs
sharply from the results of Bajgier and Aggarwal (1991), who found kurtosis to be the most
powerful measure for detecting uidxtures. However, Bajgier and Aggarwal only examined
balanced mixtures, i.e., mixtures with equal mixing proportions and equal variances. To
determine whether this accounted for the difference in findings, Figure 2 plots mean HA-Rand
index results for no selection and for each of the kurtosis-based measures by subgroup size.
Consistent with Bajgier and Aggarwal, the kurtosis-based measures function well for equal-sized
subgroups. When the subgroups differ in size, however, these procedures do not function very
well. Overall, therefore, kurtosis-based measures do not meet the b asic test of effectiveness as

screening procedures and will not be discussed further.

Insert Figure 2 about here

As was noted above, unequal subgroup sizes induce skewness in the overall distributions.
Thus, the measures which incorporate information about skewness, b and m, may be more
useful. Table 4 reveals that all four of the screening methods involving b or m yield better
recovery than no selection. In addition, neither the m-index nor b showed a large effect for
subgroup size. The largest effect for subgroup size was a difference in HA-Rand index of
approximately .06; for the kurtosis-based measures the effects ranged from .15 to .30.

Weighting the variables to maximize agreement with the ultrametric inequality yielded
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significantly higher recovery than no selection. The forward selection method did not differ
from no selection in the ordinal comparisons. However, paired t-tests indicated that forward
selection did yield a significantly higher mean HA-Rand index than no selection. The
differences in these results will be examined in more detail in the next section.
52 Comparison with Other Weighting/Selection Methods
Pairwise comparisons of the 7 remaining methods® were made on HA-Rand index values
for analyses of all datasets containing 0, 1, 2, or 3 error dimensions. Shaffer’s (1986)
‘modification to the Bonferroni correction was used to maintain familywise Type 1 error rate of

a=0.05. Finally, these pairwise relations were converted into ranks, based upon the number of

methods which were significantly higher than a given method versus the number of methods

which were significantly lower. These results are summarized in Table 5.

Insert Table 5 about here

Table 5 also presents mean recovery for each number of error dimensions. When there
are no error dimensions, m < 0 yields similar recovery to no selection, while m < -1.2 gives
somewhat worse recovery. Screening based on the test of normality, m < 0, recovery is
somewhat affected by the addition of error dimensions, but less so than no selection. On the
other hand, screening based on the uniform distribution (7 < -1.2) yields similar results for all
.numbers of error dimensions. Overall, in the presence of error dimensions, however, both the
normal and uniform tests yield HA-Rand recovery values higher than those for no selection.

The pattern of results for b, the coefficient of bimodality, is very similar to that for the m-index,

* Kurtosis-based methods are not discussed due to their poor performance in the comparison with no
selection.

O
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although the normality test (b > .333) provides only minimal improvement over no selection.

In comparing the relative effectiveness of the screening measures with the ultrametric
weights and forward selection procedures, Table 5 reveals that recovery using the ultrametric
weights did not significantly differ from the screening methods based on a uniform distribution
(b > .555 and m < -1.2), but outperformed both methods based on a normal distribution
(b > .333 and m < 0). The paired t-test results indicated that screening based on m < 0 did
not differ from the ultrametric weights, but screening based on b > .333 was still worse. Based
on the ordinal comparisons, the forward selection method was found to yield lower cluster
recovery than all four of the variable selection methods using b and m. However, based on the
paired t-test results, the forward selection method is superior to selection based on b > 333,
and did not differ from the other methods.
| A word is in order concerning discrepancies between the rank orders derived from the
ordinal comparisons and those implied by paired #-test of the means. Forward selection has a
noticeably higher mean than selection based on & > .333, yet the ordinal comparison indicates
that recovery for forward selection is significantly lower. This seeming paradox points out the
different questions addressed by the two comparisons. The ordinal method compares
differences in direction, but the means take into account the size of those differences.
Examination of the differences in the individual solutions confirms that b > .333 yields more
cluster solutions with HA-Rand that is higher than forward selection than vice versa. However,
forward selection occasionally produces a solution which is much better, giving forward selection
a higher mean. Thus, both are legitimate answers to the question: Which method is better?

'53 Robustness to Other Types of Error

An additional issue in comparing the methods is their sensitivity to other types of error
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contaminating the cluster structure. Milligan’s cluster generating program ‘ncludes three
additional error conditions: (a) data perturbed by adding an error to each coordinate, low error
variance; (b) data perturbed by adding an error to each coordinate, high error variance; and

(c) including an additional 20% (i.e., 10 cases) which do not lie within the boundaries of any of
‘the clusters (i.e., outliers and intermediates). These conditions will be referred to as,
respectively, low error, high eiror, and outlier conditions.

Table 6 gives the mean HA Rand index and ranks based on ordinal pairwise
comparisons of the methods for each of the error conditions. For all conditions, & > .555 and
m < -1.2 yield much lower recovery than other methods, indicating that these selection methods
degrade cluster recovery in the presence of error other than spurious variables. On the other
hand, variable selection methods based on normality, b > .333 and m < 0, are relatijvely robust,

and show little difference in cluster recovery from that of no selection.

Insert Table 6 about here

5.4 Combined Methods

Variable selection based on the m-index and the coefficient of bimodality b are effective
in reducing the effects of spurious dimensions. Variable weighting based on the ultrametric
inequality is also effective. This section examines the effectiveness of combining the two
strategies, selection and ultrametric weights. Variations of the forward selection method were
not considéred; forward selection is extremely computationally intensive, and corabining the
method with other techniques was not feasible for the purposes of this study.

Each of the datasets was reanalyzed. First, one of four variable screening m. thods

(m < -12,m < 0,b > 333, or b > .555) was applied. The variables passing the screening were
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then analyzed using De Soete’s (1988) program to determine the variable weights. If no
variables passed the screening, all variables were used. The weighted distances were then
computed and analyzed by the clustering algorithms, as described in the Method section.

In order for the combination of weighting and screening to be effective, the results of the
combined methods must be superior to both weighting alone and screening alone. Table 7
summarizes comparisons of the combined methods to (a) screening alone and (b) using only the
ultrametric weights. Although most of the methods show improvement, the combination of
‘weights and screening based on m < -1.2 yielded worse recovery than did either method alone.
The negative values of d,, and the ordinal z-test indicate lower recovery for the combined
method, although the paired #-test indicates that the combined method yields a higher mean
than does m < -1.2 alone. This pattern of results suggests that the combined method often
yields somewhat lower recovery, but occasionally does much better than screening alone.
Combining weighting with screening based on b > .555 yielded increased recovery in a net 2-3%
of the datasets, and gives higher mean recovery, although the overall comparison of distributions
does not significantly differ from screening alone. Finally, combining weighting with either of

the two methods based on a normal distribution (m < 0 and b > .333) clearly improves

IeCovery.

Insert Table 7 about here

Table 8 summarizes the results of applying the combined procedures to datasets with 0,
1, 2, or 3 error dimensions. In addition, results for five additional methods (No Selection,
ultrametric weights, forward selection, and the unweighted versions of m < -1.2, and b > .555)

are repeated from Table 5. Overall, best recovery was obtained for m < 0 with weights and

ol
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b > .555 with weights. Although the ordinal test indicated that the latter did not differ from the

unweighted version, the mean for the combination method is much higher. The profile of
means for b > .555 is impressive; there is virtually no effect of increasing from 0 to 3 error

dimensions. On the other hand, 2 < 0 shows a modest effect of increasing error dimensions.

Insert Table 8 about here

Table 9 presents the results for the other error conditions: low error, high error, and
20% outlier. The combined method based on b > .555 shows considerable sensitivity to the
other types of error, and is uniformly among the three methods with the lowest recovery. The
combined method based on m < 0 is much less sensitive to the other types of error, and does
not differ from ultrametric weights only for the low error or high error conditions. Comparison
with Table 6 reveals that the means are very similar to the unweighted version for these two

conditions, aithough the combined method does appear to be somewhat affected by the presence

of outliers.

Insert Table 9 about here

5.5 Interaction of Variable Screening with Clustering Methods

An additional question of interest is whether the variable weighting/screening methods
differed in usefulness for the different clustering algorithms. To address this issue, the mean for
each clustering algorithm was computed for six of the eight methods listed in Table 6. Screening
based on b > .555 and m < -1.2 were omitted. For each of the clustering algorithms, the
omitted methods showed a very similar pattern to other screening methods, which also yielded

higher recovery. Means for the average linkage algorithm are plotted in Figure 3. Results for
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Ward’s method are shown in Figure 4. Recovery for the complete linkage algorithm is

portrayed in Figure 5 and means for single linkage are plotted in Figure 6.

Insert Figures 3 through 6 about here

There were few large interactions between clustering algorithms and the variable
weighting/screening methods. The notable exception is the behavior of forward selection for the
single linkage algorithm. For the othe.r algorithms forward selection appears to have little to
recommend it; using forward selection with average linkage yields recovery which is uniformly
5 lower than that of any other method, including no selection. On the other hand, the method

gives uniformly high recovery when used with single linkage clustering, and is the best method

for that algorithm. Other method by clustering algorithm interactions were relatively small.
5.6 Behavior of the Forward Selection Method

The relatively poor performance of the forward selection method of Fowlkes,
Gnanadesikan, and Kettenring (1988) was unexpected. Results presented in their paper
-indicated that the method was very effective, if somewhat computationally intensive. The
datasets in their study tended to have variables with similar variaunces. In this study, both within-
group and overall variances were allowed to differ rather widely. The forward selection
procedure standardizes each of the variables by its total variance in order to remove spurious
scale effects from the computation of eigenvalues used in the selection. Milligan and Ccoper
(1988) and Barton (1993) have found that this method of standardization can adversely affect
recovery by cluster methods.

Of the methods used in this study, only the forward selection procedure used

standardized variables. To investigate whether this difference nught have caused the unexpected
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performance of the forward selection data, the datasets were reanalyzed. Only those variables
selected by the forward selection procedu:e were included in the analysis, but the variables were
not standardized in forming the Euclidean distances. Table 10 compares results from this
method with the standardized version of forward selection, no selection, ultrametric weights, and
the two best combined methods for screening and weights. Forward selection was adversely
affected by variable standardization; standardizing variables leads to lower recovery in almost
9% more datasets than vice versa. Comparisons with other methods reveal that without
standardizing variables, forward selection is superint to no selection, and ordinal comparisoris
indicate that it does not differ significantly from the other methods. Mean comparisons indicate
marginally better recovery than ultrametric weighting alone and marginally worse recovery than
screening based on b > .555 combined with weights. Means for each number of irrelevant

dimensions are presented in Table 11.

Insert Table 10 and Table 11 about here

6. DISCUSSION

Replicating the work of other authors, the inclusion of irrelevant dimensions was found
to severely degrade cluster recovery. This paper examined the usefulness of moment-based
univariate statistics to screen variables. Only variables which pass the screening are then used in
the clustering. Results for screening based on the kurtosis measure g, were very poor. For
subgroups of equal size, g, functioned fairly well, but did very poorly for unequa! sized
subgroups. Thus, it appears that the results of Bajgier and Aggarwal (1991) do not generalize,
and screening based on g, cannot be recommended for applied clustering.

In contrast, screening based on the index m and on the coefficient of bimodality b
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functioned well. Both measures provided increased recovery over no selection and forward
selection, and versions of each (m < -1.2 and b > .555) performed as well as the vltrametric
weights. However, there is evidence that all of the weighting/selection methods are sensitive to
types of error other than spurious dimensions. Selection based on b > .555 and m < -1.2 were
most severely affected, although forward selection and ultrametric weights were also affected.
Selectior: based on b > .333 was least affected, followed by m < 0.

Combining variable screening with ultrametric weights performed very well. Two
combinations specifically, m < 0 with weights and b > .555 with weights showed improved
cluster recovery in the presence of irrelevant dimensions. However, the combined methods

(particularly b > .555 with weights) were sensitive to types of error other than irrelevant

dimensions. The combined method based on m < 0 was better, although it does appear to be

somewhat more sensitive to outliers than either screening alone or ultrametric weights alone.
However, procedures have been developed to identify outliers prior to clustering (e.g., Barton,
1991). The use of such procedures may further improve the performance of the combined
methods.

One limitation of the present study is that the overall sample size, excluding outliers, was
held constant. It is possible that the various variable selection/weighting methods examined
here may be dependent on this aspect of the data. Further work should examine the extent to
which this is true.

These results indicate that variable screening based on b and m are viable alternatives to
‘both the ultrametric weighting method and the forward selection method. It is worthwhile to
briefly consider‘ the relative advantages and disadvantages of screening, compared to the other

methods. The advantages of 7 and b are ease and speed of computation, ready availability, and

“o
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potential applicability to a wide variety of clustering methods. Potential disadvantages include
the large sampling variability of higher moments, the dependence on the mixture model of
clustering, and the potential of univariate methods to fail to identify variables which, although
individually providing little information, as a set yield large subgroup separation.

* 6.1 Potential Advantages

The measures m and b are based on the moment statistics, the skewness and the
kurtosis. Thus, they are simple and quick to compute, and the amount of computation in
examining a given dataset increases linearly with the number of entities and with the number of
variables. In contrast, both ultrametric weights and forward selection are computationally
intensive, making their use problematic for large datasets. Computation for the ultrametric
weighting algorithm increases with the cube of the number of entities, while computation for the
forward selection method increases with the square of the number of variables. Indeed, well
over 95% of the computational effort of the simulation results reported here were devoted to
the forward selection method.

The components of 7 and b, the skewness measure g, and the kurtosis, g,, are widely
aveilable as standard descriptive statistics. Thus, these measures may be adopted easily by
researchers. The ultrametric weights require alternating two multivariate optimization problems,
a task which may well be beyond many applied researchers. The method is not widely available,
ie., in statistical packages, although De Soete (1988) has a program to compute the weights.
The forward selection procedure is even harder to implement. Determining the expected value
of the trace statistic requires drawing multiple multivariate samples, performing a MANOVA
decomposition of the results of clustering each sample, and computing the resultant eigenvalues.

This is only moderately demanding in an interactive statistical environment such as S-PLUS or

S
)
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GAUSS, a major undertaking in FORTRAN or C, and borders on herculean in a statistical

package such as SPSS or BMDP.

The measures m and b are suggested based on analysis of the mixture model of
clustering. Thus, use of the measures is justified with other types of clustering algorithms, such
as iterative partitioning algorithms (i.e., k-means) or direct application of finite mixture models,
although the empirical utility of using the methods in these settings has yet to be established.
The ultrametric weights, on the other hand, are closely tied to hierarchical clustering. The
proofs by Johnson (1967) and Milligan (1979) specifically relate to hierarchical clustering. There
is no logical reason to expect uitrametric weights to improve clustering by nonhierarchical
algorithms, although it may be empirically found to be useful. The forward selection method is
closely related to the normal mixture conception of clustering. Thus, its application is logically

valid, although some operational details of the application of the method would need be to

resolved.
6.2 Potential Disadvantages

The relationship of the variable screening measures to mixture models may also be a
disadvantage. Ultrametric weighiing may apply in other conceptions (e.g., graph-theoretic) of
hierarchical clustering. In these cases, the mixture model conception may not make sense. The
utility »f m and b would have to be established empirically in such situations. Similarly, some
applications of cluster analysis are inherently hierarchical (e.g., evolutionary biology), and again
the use of the screening measures would have to be established empirically.

Another potential disadvantage of the screening measures is their dependence on the
third and fourth moments about the mean, which are rather poorly estimated in samples. This

raises valid concern over the degree to which m and b may fluctuate simply due to sampling
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variation. The simulation results presented in Section 5 offer some encouragement along these

lines. Each dataset contained a total sample of 50 entities, yet both measures were successful in
screening irrelevant variables. Still, more knowledge about the variability of these screening
measures would be helpful.

Finally, a potential disadvantage in using univariate techniques such as m or b or the
forward selection procedure is that a linear combination of two or more variables may provide
good separation between subgroups, while neither of the marginal distributions reveals much
separation.* There is a danger that the screening may drop such variables, and so lose
information about the subgroup separation. It is unknown how the uitrametric weighting

method would be affected by such a combination of variables. The forward selection procedurs

-may be less prone to this type of behavior. It is based on a MANOVA test statistic, and is

sensitive to subgroup separation based on linear combinations. However, if neither variable
provides sufficient univariate separation for inclusion, the forward selection procedure will not
detect that the pair provides good separation. It remains for future research to determine how

adversely affected the weighting/selection methods are by such combinations of variables.

“ The author would like to thank an anonymous reviewer for pointing out this possibility.
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7. CONCLUSION

Taken as a whole, the results of this work are promising. The screening measures m and
b were successful in alleviating the deleterious effect of including irrelevant variables. Both
‘measures provided increased recovery over no selection and forward selection, and versions of
: each performed as well as the use of ultrametric weights. The success of the combination
variable screening and ultrametric weights commends the use of these combined techniques; the
-combination yielded better recovery than either method separately in a net 2.4-6.7 percent of the
datasets analyzed. However, it is not known to what extent these findings are sensitive to

: specific aspects of this study. This is especially true of the distribution of the irrelevant

VA L

variables, and the structure of the subgroup separation. Clearly, more work along these lines is

- warranted.
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Table 1

Effect of Mean Differences and Within—group Variance on

the Kurtosis of Mixtures of Normal Distributions

; i K F
ey Yy 8 <0
of =’ 8 =0
: (unless =; very different)
ey V)
o’ # o >0 not determined
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Table 2

Screening Measures for Selected Two and Three Subgroup Mixtures
Two Subgroup (0, ¢, 7, m,)* g m b
1,1,.1..9 051 .044 330
1,1,.3,.7 -.111 -132 353
1,1,.5 5 -.500 -.500 400
1,1,.7, .3 -.607 -.868 527
1,1, .9 .1 4.140 -1.044 .866
1,4,.1,.9 .061 .050 268
1,4,5 .5 272 .085 435
1,4,9.1 5.417 =725 843
Three Subgroup (0%, 0%, 0%, ™y, T
T3)
,1,1,3 4 3 -.664 -.664 428
,1,14,.1 .63 343 203 341
,1,1,3 6 .1 1.941 051 585
,1,1,.1.1 3 474 270 346
,1,1,.1 8.1 395 395 295
,1,43 4 3 355 -.008 407
1,1,4,.1 6 3 230 378 296
1,1,43 6 .1 3.529 663 579
,1,4.1.1 8 -.018 -.036 341
1,1,4.1 .8 .1 1.756 1.516 261
1,413 4 3 -.873 -873 470
,41.1 6 3 .380 378 296
1,413 6.1 345 -495 550
,41,.1 .1 .8 .854 738 289
,41.1 .8 1 -336 -.336 375

* u, = 1, u, is determined such that the overall mean = 0;° u, = 1, u, = 0, p, is determined such

that the overall mean = 0.
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Expected Values of Screening Measures for Selected Distributions

81 82 m b
] 1-2p 1 -6
Bernoulli (p) 0 - p) (1 - p) 2 1
Binomial (2,p) 1-2p 1 - 6p + 6p* 2 1 -4p + 4p® + np - np®
al {1, 2
P vrp(l - p) np(1 - p) n 1-6p + 6p> +3np - 3np®
- 2 - 2
Geometric (p) 21 P 6 + lp_p 2 _Z%
P R -9 +p
1 m+ 1
Poisson (m) —‘/mi n 0 3m + 1
Exponential (A) 6 2 .556
Normal (4,0%) 0 0 .333
23k 12 4 k+8
X ) . 2 k 3k + 12
6 6 n -4
t@ 0 n -4 n-4 3n -6
Uniform (a,b) 0] -1.2 -1.2 .556
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Table 11

Comparison of Forward Selection Using Unstandardized Variables with Other Methods

Number of Error Dimensions Paired
Overall jj| Ordinal | t-test

Method 0 1 2 3 Mean Ranks Ranks
m < 0, 969 963 949 937 954 1* 18
weights
b > .555, 962 962 961 962 962 2:0¢ 18
weights
b > .555 942 942 939 939 941 Qe S
Forward Selection, || .986 | .948 942 .936 .953 4> Kia
Unstandardized
b > .333, 967 954 940 929 948 4 44
weights
Ultrametric 062 937 938 .926 941 6= 6
Weights _
m < -1.2 948 937 930 .920 933 7hée 7
Forward Selection, || .966 927 925 920 934 8t 7
Standardized
No Selection 984 | .917 877 852 .908 ll 8f 9

“=iefiti Methods with common superscripts do not significantly differ from one another. Ranks are based on
the number of methods that were significantly lower.




Variable Screening

45

Appendix

Let X be distributed as a finite mixture composed of G distributions with mixing

proportions w; (j=1,G), ie.:

FX) = éﬂjﬁ-(x)
We will be particularly interested in the norm; mixture model, in which each of the subgroup
distributions f(X) is ~ N(u,07). Let p be the grand mean of X (i.e. p = Imy). Let M, be the
kth central moment for the mixture, and M, is the ¥* central moment for subgroup j:

M, = &(X — p)*. Finally, by the linearity of the expectation operator, note that:

G
ZIfD] = ¥, ELAD)]
51
where & is the expectation with respect to the distribution of subgroup j.
Kurtosis

For a mixture, the fourth moment of the mixture distribution is:
G
- 4
M, = ;“jg;(x ol )
]=

G
My= 3 E(& - u) + @ - w)f
=

Expanding the binomial and taking expectations yields:

G (] G G
M, = E“qu + 42 “jM3j(P'j - p) o+ 62 “jc'? (Pj - p)2 + Eﬂj(l.lj - P')4
j= i1 J=1 71

Similarly, the second moment is:

G G
My = Yooy + Yoy - p)f @)
=1 =1

C
<7
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Using (1), the kurtosis of the mixture is:
G G G , G
E"iMli + 42 ﬂjM3j(P'_j - B) o+ 62 R;0; (P'j - P')z + En,-(u,- - wt
gz = Jj=1 Jj=1 j=1 j=l _ 3
G G
[En.o? + Y om(n - p.)zl2
i ALY
1 i
Let k = g, M,2 Then expanding and collecting like terms yields:
G G %
k= _zl:“in - 3[1.21 njcj)
1: =
G
+ 42 niM3j(p'j - P')
51
G \ G AYA: 1
+ 63w, - B - GLE “1“})LE (1 = W )
=1 j=1 j=1
G G 2
+ E“i(“j - P')4 - 3(]2 nj(l‘j - P')z)
i j=1
g G 4 G G
k=Y nM;-3) mo; +4) nMu(p - p) - 2) w(p; - p)
j=l J=l =t j=1
+ 3var[o]] + 6covlo], (u,~w)] + 3var [(n;-p)’] (B)

4 G G G
= Zn]‘Mq - 32 ﬂiO; + 42 “jM3j(p'j - W)+ 3var[o} + (P'} - l-‘)Z] - 22 ﬂj(l"'i - l")‘
j=1 j=1 j=1 j=1
The above expression (B) is valid for any distribution which has the first four moments. Making
.explicit use of the fact that the subgroups are normal, M,; = 3¢ and M;; = 0 for all j. Making

these substitutions:

G
k= 3varfo] + (w - W] - 23 (s -
j=1
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and hence:
, G
3var[o; + (8; - W’ - 22_; (e - B
& = G G = (€
Yoma + Y w - W]z
1 1
Skewness
The skewness of a variable is:
¢
Zn]. &X-p)?
g = g 3
M, |°
G
j;lnj g[(X-p.j * (P‘j - I"')]3
B G ) G 13
[ RS ILACESDS r
i in
G G ) G
;z:;ﬂ,-ng + 3)};1‘ LI H(TETY j_;lﬂ,-(uj - X
8 = G . po 3 . D)
[}:n,-oj DL AR b
j=1 j=1
Assuming within—group normality, this reduces to:
G ) G
3y moi(p; - 1) + E;n,-(u,- ~ py’
& =~ = — - (E)

G G
— 2 _ 2 (2
2 ™% * ;ﬂ,(uj K

-7

[
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Table Al

Main Effects for Design Factors in the Simulation Study

Number of Subgroups Mean Std.
2 848 348
3 925 .189
4 915 197
5 876 219
Number of Core Variables Mean Std.
4 810 295
6 914 228
8 950 .190
Number of Error Dimensions Mean Std.
0 928 217
1 894 244
2 879 259
3 864 268
Subgroup Sizes Mean Std.
Equal 949 153
60% in one subgrcup 862 302
10% in one subgroup .862 257
Clustering Algorithm Mean Std.
Average Linkage 912 222
Ward’s Method .906 244
Complete Linkage 876 253
Single Linkage 871 270

L: @)

wJ
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Table A1 (cont.)

Weighting/Selection Mean Std.
No Selection .908 214
il Ultrametric Weights 941 178
Forward Selection .934- .149
m<0 930 191
m < -1.2 933 187
b > 333 .920 200
b > .555 941 171
g <0 839 311
g, signif. < 0 816 343
g <-12 750 354

.
<D
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