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Models for scoring missing responses to
multiple-choice items

N.T. Longford

Abstract
This is a critical evaluation of the rulis for coding and scoring

of missing responses to multiple-choice items in educational tests.
The focus is on tests in whizh the test-takers have little or no moti-
vation; in such tests omitting and not reaching (as classified by the
currently adopted operational rules) is quite frequent. Data from the
1991 NAEP Reading Assessment of 17-year-olds are used in analy-
ses and illustrative examples. Alternative rules for scoring based on
hypothesized behaviour of the test-takers are proposed.

Some key words: EM algorithm; item-response theory; missing data; mixture

models.
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Introduction

No amount of effort and ingenuity expanded on instructing and motivating

test-takers can ensure that they dilligently attend to each item and respond

accurately to background and experiential items, and respond to cognitive items

to the best of their ability. This problem is particularly prevalent when the

test-takers have little or no stake in the outcome of the test administration.

Lary-scale educational surveys, such as NAEP, NALS, and the like, are cases

in point.

While accuracy of the responses to background questionnaire items can to

some extent be improved by cross-referencing of the items, information about

knowledge of the correct response to an item is very fractured. If a test-taker

fails to respond to an item he/she might or might not have responded correctly

had his/her acumen been applied to the item fully. The pattern of responses

may provide some clues about this hypothetical response. For instance, if the

neighbouring items (the previous and the next ones) were responded to, it is

very likely that the item in question was attended by the test-taker, but he/she

did not know the response. If a sequence of consecutive items is not responded

to, it is likely that the items, with the possible exception of a few items at

the beginning of the sequence, were skipped (not attended/inspected). On the

other hand, non-missing responses with a regular pattern (e.g., the first response

option marked for each item) imply that the test-taker either did not inspect

the test items (except possibly a few items at the beginning of the test), or did

not apply his/her acumen in responding to them. Of course, such patterns can

be detected, at least in principle, by direct inspection of the responses.

This paper offers a critical evaluation of the rules for coding and scoring

of missing responses to multiple-choice items in the National Assessment of

Educational Progress (NAEP). Although a number of issues are discussed in

the specific context of NAEP, most of them are applicable to other large-scale

educational tests in which the test-takers have little at stake.
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The next section describes the opemtional rules and conventions for coding

and scoring of responses to cognitive items in NAEP, and outlines the steps in

processing of these scores. The following section considers alternative schemes

for incorporating missing responses in item-response models using the EM algo-

rithmic approach. Then some of the mental processes that may lead to missing

responses are discussed.

Operational rules for classification and scoring

A typical multiple-choice item consists of a reading passage (instruction) con-

cluded by a question, and a small number of response options, one of which is

correct and the others are incorrect. The items are organized in blocks, each

block administered under standardized conditions common to all test-takers.

The conditions usually include administration time and availability of tools,

such as calculators or dictionaries. For instance, test-takers may have 40 min-

utes to respond to a block of twelve items. A test may consist of several blocks,

each timed separately. In the pencil-and-paper mode of administration there is

a natural ordering of the items. An integral component of the item (block, or

test) is the instruction or suggestion how to respond when the correct response

is not known. For example, the test-takers may be instructed not to respond at

all or to select a response arbitrarily when they do not know which response is

correct.

In NAEP, as in most other educational tests, the response, or its absence,

to a cognitive multiple-choice item is classified as

correct (C)

incorrect (N)

omitted (0)

not reached (NR)

multiple response (M).
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The response to an item is classified as omitted if it is missing, and at least

one of the later items in the block has a presented response (correct, incorrect,

or multiple). Each response from a contiguous sequence of missing responses

to items which contain the last item of the block is classified as not reached.

Multiple responses to an item can be effectively dealt with by randomly selecting

one of the marked responses, assuming that the test-taker narrowed down the

range of possible correct answers to these options. The selected response is then

classified as either correct or incorrect. When each marked response is incorrect

the selection is irrelevant.

A correct response is scored one point, and an incorrect one no points. An

`omitted' response to a multiple-choice item with K response options is scored

1/K. A 'not-reached' response is regarded as non - informatively missing, given

the pattern of responses up to the first item of the 'not-reached' sequence. With-

out delving into technical details, this can he interpreted as follows: Suppose

test-taker T has the sequence of 'not reached' responses to items I +1, I + 2,

..., M. Then the test-taker's score for a 'not reached' item J (I < J < M) is,

in essence, equal to the mean of the scores for item J of all the test-takers who

have the same pattern of responses to items 1, 2, ..., I as test-taker T but who

`reached' item J.

An objective of the test administration is to make inferences about the pro-

portions of the test-takers who know the correct answers to the items, about

summaries of other variables for such test-takers, and to make inferences about

proficiency scores underlying the subject area represented in the block. The pro-

ficiency scores are linked to the probabilities of knowing the correct responses.

The class of methods for estimation of proficiency scores is known as item-

respcnse theory.

We classify the test-taker's knowledge of an item as

knows the correct response (K)

does not know (DK).

4
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Table 1 describes the relationship of the response categories to the knowledge

categories under some simple but realistic assumptions. The response of a test-

taker who does not know the correct response may fall into either of the four

categories. A test-taker who knows the correct response either does select the

correct response or abandons the block before reaching the item. This model

has two important aspects. First, no intermediate states between 'knowing'

and 'not-knowing' are considered. Second, the knowledge state is assumed not

to depend on extraneous factors, such as the time elapsed while the item is

attended, experience with the previous item, and the like.

It would be useful to classify 'not-reached' responses according to whether

the item was attended or the block was abandoned prior to the item. The

former would be more appropriate to classify as an 'omit'. Thus, a sequence

of 'not-reached' items may start with one or several (missing) responses even

though the items were inspected.

The current classification of responses relies on the assumption that the test-

takers attend to the items in a linear fashion, that is, in the order of presentation.

The scoring rule is based on the assumption that the 'omitted' response to an

item was given after inspection of the item, while a 'not reached' response was

given without inspecting the item. This assumption is clearly fallacious. For

example, the response to the last item can never be classified as 'omitted', even

though it is feasible that a test-taker inspects the last item and fails to respond

to it.

In large-scale administrations of educational tests used primarily for survey

purposes, such as NAEP, proficiency scores for individual test-takers are of lesser

importance than mean proficiency scores for subpopulations. In such settings

proficiency scores for test-takers are at best intermediate steps in estimating

(sib- )population summaries, such as means. An alternative strategy would be

to bypass this intermediate step and estimate the (sub-)population summaries

directly, taking into account the uncertainty due to non-response. This would

make the issue of imputing responses for individual test-takers moot. Such non-



response could be integrated in a framework of inference in which the fact that

only a fraction of the entire population is tested is regarded as another source

of uncertainty.

The next section summarizes item-response models for tests with multiple-

choice items. This is followed by an outline of a formal probabilistic mixture

model for missing responses, disti,iguishing between types of missingness. Then

an EM algorithm for estimation with such a model is described.

Item-response models

Item-response models describe the relationship of the probability of knowing the

correct response to an item to the proficiency of the test-taker and the properties

of the item. Typical item-response models assume that each of a sample of

J test-takers responds to each of a set of I multiple-choice items. There is

no formal provision for missing responses. In the implementation for NAEP,

scores are imputed for the missing responses as indicated in the previous section.

A particular challenge addressed by the item response models is the diffused

character of the data. By its nature, each item is an imperfect representation

of the tested domain (Critical Thinking, Arithmetic, or the like), the score for

a presented response to each item is very coarse (zero or unity), and even this

score is contaminated; a test-taker may guess the correct answer by chance, with

a non-trivial probability.

This line of thought naturally leads to the discussion of incomplete informa-

tion and the EM algorithm. In the EM algorithmic framework a hypothetical

complete data set is considered, and the dataset available, the incomplete data

set, is formed from the complete one by discarding part of the data. It is advan-

tageous to select the complete data set so that if it were available, its analysis

would be relatively simple. Estimation of the model parameters using the in-

complete data is then accomplished by iterations of the EM algorithm. Each

iteration comprises two steps. The E-step involves, in essence, estimation of

the missing data which complement the incomplete data, and the M-step is
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the algorithm applicable for the complete data, in which the missing data are

replaced by their 'estimates.'

An EM algorithm, as applicable to 'omitted' and 'not reachccl', would involve

`estimation' of these missing responses (i.e., evaluating the conditional probabil-

ities of the correct responses), and these conditional probabilities, given the data

and current estimates of the model parameters, would be used in place of the

missing data. This is not a feasible proposition, though, because fitting an item-

response model (even with complete data) is computationally rather demanding.

In the EM algorithm such a model would have to be fitted once in every itera-

tion. Also, missing information appears to be handled rather inefficiently in this

algorithm. An 'omitted' response is usually assumed to correspond to not know-

ing the correct response with certainty, yet this is not reflected in the complete

data set of the EM algorithm.

In the M-step a function of a missing data point is replaced by the condi-

tional expectation of that function (as opposed to the function of the conditional

expectation). For instance, let p be the conditional expectation imputed for a

missing response. Then the square of this missing data point would be replaced

in the M-step by the conditional expectation of the square, (1 p) .02 +p 12 = p,

not by p2.

As an alternative, consider the complete data set comprising of the binary

outcomes K (knows the correct response) and DK (does not know). Now the

M-step consists of a relatively easy task of fitting a two-parameter item-response

model, and estimating the (population) probabilities of guessing, i.e., the con-

ditional probabilities of correct response given that the correct response is not

known. The E-step consists of evaluating the conditional probabilities of know-

ing given the (presented or missing) response, and the current estimates of all

the parameters.

Such an E-step requires a model for missingness that relates the probabilities

of knowing to the missing responses. If the present classification is taken at face

value, a model is required only for 'not-reached' responses.

7
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Missing response mechanisms

Several reasons for not responding can be readily identified. First, a test-taker

may be uncertain about which response to mark, and ends up not marking either

of them. An extreme version of this behaviour is when a test-taker inspects each

item cursorily, and then responds only to the items for which he/she is confident

of knowing the correct responses. Of course, the test-taker's judgement about

his/her ability to identify the correct response may not be accurate. Next, a

test-taker may be discouraged from continuing by a sequence of items for which

he/she does not know the correct response. Also, a very bright test-taker may

be discouraged by too easy items. Thus, it is feasible that a test-taker who did

not attend to an item does know the correct response, and would have responded

correctly, had he/she attended to it. Conceivably, a test-taker may know the

correct response to several items, but identifying the responses requires such

effort that he/she is not prepared to attend to them fully.

In practice, the cause of a missing response is not known. Partial informa-

tion is available when linear order of attendance to the items is assumed. For

instance, if a contiguous sequence of items is not responded to, it is likely not

to have been attended to. If a response is missing but the responses to the

preceding and following items are not, the missing response is likely to be the

consequence of not knowing. However, in a sequence of missing responses to

consecutive items, the first few responses may be due to not knowing, and the

rest due to not attending. The point at which the block was abandoned is not

known.

Clearly, information about attendance of items would enhance information

about knowledge of the items, and would promote a more appropriate classi-

fication of responses. In other words, it would reduce the amount of missing

information. This could be arranged, for example, by asking the test-takers to

mark a box after inspecting the item. Of course, test-takers might mark such

a box without inspecting the item. Also, instructions about such boxes may
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confuse some test-takers, or distract them from the principal goal of the test.

In computer-based administration the issue of attending items is moot because

the time elapsed while an item is displayed on the screen can be recorded. Nev-

ertheless, an item may be displayed for a long time, without being attended

to (for example, the last item 'attended'). The order in which the items are

presented can also be recorded with the computer administration.

Test-takers could be instructed to use two kinds of symbols: to circle the

response options they believe are correct (one per item), and to cross out those

they believe are incorrect. Now, if the correct response, and no other, is circled,

it is scored one point; if another response is circled, it is scored no points; if a

correct and some incorrect responses are circled, either no points are scored, or

one of the responses is selected at random. Information from the crossed-out

responses would be used only when the correct response is not circled; the test-

taker may have narrowed down the choice of the correct response, or he/she

crossed out the correct response. The score for either response pattern can be

defined in a natural way. This approach opens up possibilities for a variety of

partial-credit scoring schemes.

Models for missing responses

Let cki be the probability of abandoning the block of items immediately after

item i 1 (at the beginning of the block, for i = 1). That is, the response to

item i 1 is C or N, unless i = 1, and the responses to items i 1, ..., I, are

all missing. Let fi = 01 and, recursively,

fi = fi-i + (1 fi-i)0i-i;

L is the (cumulative) probability of abandoning the test at any point prior to

item i. Further, let ri be the conditional probability of being able to respond

to item i correctly, given that the item is not reached. Suppose the decision

to abandon the block is not influenced by the abandoned section of the block

and that the conditional probability of knowing the correct response, given not

9
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reaching, does not depend on the item at which the block was abandoned. In

some contexts it is reasonable to assume that ri < pi , where pi is the probability

of knowing the correct response. That is, those who do not reach have lower

probabilities of knowing the correct response than those who reach the item.

Let be the conditional probability of knowing the correct response given that

the item is reached;

i
firiPs =

Further, let oi be the conditional probability of omitting, given that the item is

inspected (reached) and the correct response is not known. Thus, the (uncon-

ditional) probability of omitting is

(1 fi)(1 pDoi

Next, let ci be the conditional probability of guessing the correct response given

that the item is reached, the correct response is not known, and the item is not

omitted. Then the probability of the correct response is

Pi(C) = (1 AAA + (1 12'0(1 oi)cd,

the probability of an incorrect response is

Pi(N) = (1 fi)(1 p`i)(1 oi)(1 ci),

and the probability of omitting is

Pi(0) = (1 fi)(1 pDoi

Note that Pi(C) + Pi(N)+ Pi(0) + A = 1.

Identification and est' ation

Clearly, the probability ri cannot be identified. The remaining four param "ters

associated with item i, fi, and cannot be identified from the counts of

correct, incorrect, omitted, and not reached responses, because the counts have

> ;
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a fixed total. Test-takers who did not reach item i have abandoned the block

earlier (at item i' < i), omitted item i and all consequent items in the block, or

omitted a contiguous sequence of items containing item i, and then abandoned

the block.

There are no omissions at the last item of the block because all no-responses

are classified as not reached. Also, no-responses near the end of the block are

more likely to be classified as not reached because the chances of inspecting and

not knowing each item at the end of the block increase.

It is instructive to consider two subsets of the responses to item i:

test-takers who responded to the last item;

test-takers who failed to reach the last item but reached item i.

In the Reading blocks the latter subset tends to omit more and have lower

proportions of correct responses to most items, even after conditioning out the

omitted responses. Figure 1 contains the plots of proportions correct, incorrect,

and omitted, for the two subsets and each item. The solid, dotted, and dashed

lines join the respective probabilities of correct, incorrect, and omitted responses

for the items. The thick lines represent the subset of test-takers who reached the

last item, the thin line those who reached the item i, but not the last item. The

diagram supports the hypothesis that the present classification of 'not reached'

represents a mixture of two distinct behaviours:

inspected and did not respond;

abandoned prior to reaching the item.

There are several ways of ensuring identification of the probabilities asso-

ciated with item i. For instance, if the conditional probability of omit given

response to the previous item and no response to any of the following items

(i.e., not reached starts here) were known probabilities of omission would be

estimable.

11
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Conditional independence of the responses, given item and test-taker is a
key assumption in all standard item-response models. Not reaching represents

an important violation of this assumption. Also, it is conceivable that a re-

sponse is more likely to he omitted after an omission, and that not reaching

is more frequent among those who tend to omit more. These hypotheses can
be informally tested by suitable summaries, such as those in Figure 1. Another

important departure arises in tests in which speededness is an issue. Test-takers

who work slowly and dilligently may respond well to the earlier items, but run
out of time and not reach the later items. Conceivably, had they had plenty of

time, they would have responded even to the later items better than test-takers
with the same responses on the earlier items who did reach the end of the block.

In Figure 2 the relative proportions of the test-takers who failed to reach the
end of the block are plotted for each block. In the left-hand plot the proportion
scale and in the right-hand plot the logit scale are used. Notable are the steep
drops at the end of most blocks. This implies, as conjectured by Wainer (1985),

that among those test-takers who are classified as 'not reached the last item' a
large fraction did attend the last item.

Models for omission

It is reasonable to assume that test-takers have varying 'propensity' to omit
an item. Also this propensity may be associated with proficien less able
test-takers are more likely to omit. It is important to distinguish two kinds
of probabilities related to omission. The absolute (unconditional) probability
of omission is bounded by zero and the probability of not knowing the correct

response. The conditional probability of omitting, given 'do not know', can

attain any value in the range [0,1]; for instance, a test-taker may omit every
item for which hejshe does not know the correct response.

The frequencies of omission vary a great deal from item to item. There is

a perceptible trend toward higher frequencies for later items, with the obvious

exception of the last (and sometimes also the penultimate) item.

12
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Insight into patterns of omission can be gained by summarizing the pat-

tern for each test-taker, and by crosstabulating the type of response (presented

response/omit/not-reached). Table 2 contains an example. There is a positiVe

association of omitting consecutive items. Those who omit an item are more

likely to omit the next item also. Note that the table contains 'structural' zeros

as in the row 'not-reached'. If a test taker does not reach an item he/she fails

to reach the next item also. Also, omission cannot be immediately followed by

`not reached'.

The number of omits iG very small for most items. Table 2 is unusual in

that it has relatively large entries in each cell (other than structural zeros). The

number of omits at item 6, almost 40 per cent, is extemely high. Other blocks

contain at most one item each with omission rate higher than ten per cent. The

omission rates for most items are less than one per cent. Nevertheless, positive

association of omission behaviour is transparent; those who omit an item are

more likely to omit the next item also. This hypothesis can be formally tested by

evaluating the log-odd ratios for all the contingency tables (such as in Table 2)

which have sufficiently large entries, by pooling these tables (or all the tables),

or by application of the Mantel-Haenszel method for estimating the common

log-odds ratio. For example, the log-odds ratios for the 2 x 2 contingency tables

for pairs of items with more than 10 omits each are 0.92 (items 1 and 2), 1.09

(5 and 6), and 1.67 (9 and 10) in block C (comprising 11 items); 1.87 (3 and 4),

2.91 (4 and 5), 0.09 (6 and 7), and 1.52 (7 and 8) in block D (9 items); 3.13

(4 and 5), 1.79 (5 and 6), 2.57 (7 and 8), 3.11 (8 and 9) 1.65 (9 and 10), and

1.12 (10 and 11) in block E (12 items), and so on. Note that the log-odds ratios

are large even for the penultimate pair (the log-odds ratio for the last pair is

always equal to zero because responses to the last item are never classified as

`omitted').

This provides clear evidence that test-takers differ in their rates of omission.

Similarly, it can be observed that lower ability test-takers and those who do

not reach the last item (`abandon' the block) tend to omit more frequently.

13



Naive estimates of these rates are tainted by the imperfect classification of item

responses.

Alternative IRT models

In this section alternative treatments of missing responses are proposed. The

alternatives aim at improved classification of missing responses.

EM algorithm with the three-parameter IRT

We adopt the working assumption that had each test-taker responded to every

item the three-parameter IRT model would be appropriate. Thus the probability

of a correct response is modelled by the equation

P;Rti = C) = + (1 )logit-1(ai + bi8t), (1)

where logit(p) = log{p/(1 p)} for p E (0, 1), so that logit(x)-1 = exp(x)/{1 +

exp(x)} for x E (co, +oo). The proficiencies Ot for test-takers t = 1,...,T are

either assumed to be unknown constants, or a random sample from a given dis-

tribution (usually the standard normal). The item parameter vectors (ai,bi,ci),

i = 1, ..., I, are either assumed to be unknown vectors of constants, or are a

random sample from a trivariate (usually normal) distribution with unknown

mean vector and variance matrix. The quantities (ai, bi, ci) are interpreted as

difficulty (related to the probability of 'IC' for the average test-taker), discrim-

ination (related to the increment of the probability of 'IC' for an infinitesimal

unit of proficiency), and the (conditional) probability of guessing (given 'DK'),

respectively.

Missing data, that is, 'omits' and 'not-reached', create an obvious problem,

primp.rily because missingness is associated with the knowledge state, and this

association is not fully specified. For instance, an 'omitted' response implies

`DK' with certainty, but a 'not-reached' does not. However, a 'not reached'

response may in fact be an omitted response.

14
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This problem can be formulated within the EM algorithmic framework, see

Dempster, Laird, and Rubin (1977). A hypothetical complete dataset is con-

sidered, in which each test-taker responds to each item (and each response is

classified as either 'C' or 'N'). Tile observed (available) data is referred to as the

incomplete dataset. Missing data, the complement of the incomplete data, can

be thought of as the hypothetical responses of the test-takers to the items that

they failed to respond (had they responded their responses would have been ...).

The EM algorithm is an iterative procedure, with each iteration comprising

two steps, denoted E (expectation) and M (maximization). The M step is

the computational procedure for the complete dataset, in which the functions

of the missing data are replaced by their conditional (posterior) expectations

given the current estimates of the parameters and the data. These conditional

expectations arc evaluated in the F ;tep immediately preceding the M step.

In the context of responses too multiple-choice items, the E step involves

modelling of the hypothetical responses to replace the missing ones. First,

the hypothetical (coraplete-data) responses attain values of zero or unity, and

so their distributions are completely determined by conditional probabilities.

Thus, the task at hand is to establish the conditional probabilities of correct

(hypothetical) response for all the missing responses.

In the model implied by the current operational procedures, each 'omit'

corresponds to not knowing, and so the test taker would have chosen a response

option (out of K choices) at random. However, the test: taker may be able

to eliminate some of the options, in which case the (hypothetical) chance of

a correct response would be higher than 1/K. In principle, the estimate of

the guessing parameter ci in (1), can be used as the posterior probability of

correct response for item i. However, these probabilities are usually estimated

with considerable sampling variation; the data contain only limited information

about the guessing parameters.

The first missing response in a sequence of 'not reached' is likely to be an

`omit' (the item was attended), say, with probability ri, the second response in

15
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such a sequence is somewhat less likely to an 'omit'; its chance is less or equal

to min(ri, ri4.1). Assuming that ocurrences of omission are positively correlated

this probability is greater than riri.+.1. Responses further down the sequence are

`omits' with diminishing probabilities.

Not reaching is assumed to be non-informative. That is, the chance of the

correct (hypothetical) response to an item that has not been attended is the

same as the chance among test-takers with the same proficiency who did attend

the item. The proficiency estimates would be available from the previous M

step, or from the starting solution.

Evaluation of the various joint probabilities of correct response is enabled

by the conditional independence structure of the responses.

The EM algorithm described in this section is computationally very demand-

ing because its M step is in itself a complex iterative procedure (often slow to

converge). Even though later iterations of the EM algorithm may comprise a

single iteration of the M step, a large number of iterations may be required,

especially when a lot of responses are missing.

The next section presents an EM algorithm based on a different complete

dataset. Its principal advantages are that its M step is considerably less complex

and the E step is more flexible.

Knowledge states as the complete data

In the EM algorithm described in the previous section the dichotomous format

is 'forced' on the complete data. It seems counter to intuition that an omitted

response (which implies 'DK') is converted into 'C' with a certain probability,

instead of incorporating the information that the test-taker does not know the

correct response. This line of thought naturally leads to considering a different

EM algorithm, in which the knowledge states (`Ic and 'DK') are the complete

data.

Now the M step involves the two-parameter item-response model

{pi(6t) = } P(Rti = K) = logit-1(ai + bi00,
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obtained from (1) by setting ci = 0. This model is much easier to fit, with item

parameters ai and bi and proficiencies Bt random or fixed, than that in (1).

The E step involves estimation of the knowledge state given the response.

Omitted and incorrect responses correspond to 'DK' with certainty. When

the response is correct or not reached there is a lot of uncertainty about the

knowledge state.

Models for correct responses

In the E step of the EM algorithm outlined above the conditional probabilities of

knowing given the response (other than incorrect) have to be evaluated. For that

a probabilistic model relating response categories to knowledge states must be

posited. In brief, the conditional probabilities of correct responses, as functions

of the item, test-taker's proficiency, response category, and possibly some other

features, have to be specified.

Suppose test-taker t responded correctly to item i. If he/she has low profi-

ciency, it is likely to have been a good guess; a test-taker with high proficiency

most likely knew the correct answer. In general,

P(Rti = K I C)
pi (BO

+ (1 ci)Pi(Ot).

Models for 'not-reached' responses

It is very difficult to make an educated guess about the proficiency of a test-taker

who abandons the test. The information contained in the responses u, to the

item where he/she abandoned the test has to be relied on. The model underlying

the current operational procedures is that the abandoning is conditionally non-

informative given the test-taker's proficiency. This enables a relatively simple

scheme for imputing for 'not-reached' responses.

The assumption of non-informative abandoning cannot be tested and is not

supported by any educational measurement theory. Inability to respond to an

item, disinterest in the tested subject matter, and the like, are possible causes
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of abandoning the test. Most of such causes are negatively associated with
proficiency.

It is important to make a distinction between 'not-reaching' as used in the
operational classification of responses, and abandoning a test (not attending
any of a sequence of items that includes the last item). The first 'not-reached'
response may be an 'omit'; an 'omit' cannot be followed by a sequence of 'not-
reached'. A test-taker may be less likely to abandon the test immediately after
an item with knowledge state 'IC' than after an item with (IDK'.

These considerations lead to a mixture model for 'not-reached' responses.
For each 'not-reached' response a conditional probability is specified as a func-
tion of the response's position in the sequence of 'not-reached', the last presented

response, test-taker's proficiency, distance from the end of the test, and the like.
Information about the parameters of such a model is very diffuse, or has to rely
on educated guess. For instance, it would be natural to posit that the condi-
tional probability of knowledge state `IC' for an 'abandoned' item is somewhat
lower than the probability given by (2). An 'omit' is more likely to be followed
by abandoning or by another 'omit'. Insight about the relative frequencies of
these sequences of responses (and the underlying conditional probabilities) can
be gained only from large-scale administrations, or possibly, by pooling informa-
tion across such administrations (e.g., of the same test), on surveys of test-takers
(taking into account the low reliability of their responses to questions about their
testing behaviour), and possibly incorporating untestable assumptions.

Estimation of subpopulation means without IRT
Applications of the item-response theory with incomplete data discussed above
highlight the importance of the appropriate choice of the complete dataset. Es-
timation of the subpopulation means of proficiencies can also be looked upon
as an application of the EM algorithm. For the M-step, we consider estimation
of the subpopulation mean with the values of the proficiencies given, while the
E-step comprises estimation of the proficiency values. In practice, the sampling
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variation of the estimated proficiency scores is represented by set of five plausible

values.

The plausible values are an intermediate step in the estimation of subpopula-

tion means. It would be desirable to have models and associated computational

routines that relate summaries of the item responses of a subpopulation to the

subpopulation mean of the ability, on a scale not necessarily identical with the

scale implied by the item response theory. Such an approach would bypass the

computationally tedious estima',..on of the ability of each test-taker and accu-

mulation of random errors in these estimates.

Summary

An approach for incorporation of information about missing responses is out-

lined. It relies on a model relating knowledge categories (know, or does not

know) to the response categories (correct, incorrect, omitted, not reached, mul-

tiple). A computational algorithm is described which requires no new technology

to be developed.
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Table 1: Classification for responses and knowledge. Possible combinations.

Response classes

Knowledge
classes

Response
Missing
response

C N 0 A

K
DK

Yes
Yes

No
Yes

No
Yes

Yes
Yes

Table 2: Crosstabulation of response types for items 5 and 6 in Reading block
C.

Item
Item 5

6 Respond Omit Not
reached

Total

Respond 911 576 11 1498
Omit 16 30 0 46
Not-reached 0 0 27 27

Total 927 606 38 1571
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Figure 1: Proportions of correct, incorrect and omitted for test-takers who
reached and Those who failed to failed to reach the last item.
Each plot represents a block. The horizontal axis of each plot is the item order
number, the vertical axis the observed proportion of correct (solid line), incorrect
(dotted line), and omit (dashed line). The thick lines are for those who reached
the last item, the thin lines for those who did not.
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Figure 2: Proportions of not reached.
Each line represents a block. For each item (horizontal axis) the proportion of
test-takers who reached the item but did not reach the last item, is plotted. In
the left-hand-side plot the proportion scale, and in the right-hand side plot the
logit scale is used.
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