
DOCUMENT RESUME

ED 382 180 IR 017 117

AUTHOR Bell, Benjamin; Korcuska, Michael
TITLE The Goal-Based Scenario Builder: Experiences with

Novice Instructional Designers.
INSTITUTION Northwestern Univ., Evanston, IL. Inst. for the

Learning Sciences.
PUB DATE 95

NOTE 14p.; Paper presented at the Annual Meeting of the
American Educational Research Association (San
Francisco, CA, April 1995).

PUB TYPE Speeches/Conference Papers (150) Reports
Research /Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Authoring Aids (Programming); *Computer Assisted

Design; Computer Assisted Instruction; Computer
Interfaces; *Computer Software Development;
*Courseware; Models; Multimedia Instruction; Tables
(Data)

IDENTIFIERS Examples; Goal Based Education; *Interactive
Systems

ABSTRACT
Creating educational software generally requires a

great deal of computer expertise, and as a result, educators lacking
such knowledge have largely been excluded from the design process.
Recently, researchers have been designing tools for automating some
aspects of building instructional applications. These tools typically
aim for generality, resulting in interfaces with limited, generic
styles. An alternative, appropriate for more complex, interactive
software, is to provide tools with special purpose task models. A
prototype authoring tool for interactive educational software, called
Goal-Based Scenario Builder, is illustrated, and a mode of
interaction called Guided Case Adaptation is described. Goal-Based
Scenarios (GBS)'provides an engaging task through which learners can
master a set of target skills. This case-based approach to software
design involves the user, and creates an interactive dialogue in
which the program and designer collaboratively apply adaptations to a
retrieved case. The Investigate and Decide GBS model is applied, and
its five phases are outlined: problem, do, decide, communicate, and
wrap-up. An example dialogue is presented. An early prototype of this
tool was tested by graduate students in a first-year seminar in
creating their own GBSs. An informal evaluation of the tool based on
student reactions provided early indications that the tool makes
prototyping easier, and that it supports a fairly wide range of
applications within the limits set by the model. A table summarizes
GBSs created in the prototype testing, and two figures illustrate the
application. (Contains 15 references.) (MAS)

Reproductions supplied by EDRS are the best that can be made
from the original document.

The Goal-Based Scenario Builder:
Experiences with Novice Instructional Designers1

Benjamin Bell

bell @ils.nwu.edu

Michael Korcuska

korcuska@ils.nwu.edu

The Institute for the Learning Sciences
Northwestern University

Evanston, IL 60201

Abstract

U S DEPARTMENT OF EDUCATION
Office of Educationist Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reptodisced as
received from the person or agentsation
or visiting it
Minor changes have been made to implore
reproduction Quaid),

Points of Iew o opintonsstated in this docu-
ment do not nOCOSIStily repf11411n1 official
PERI position or poky

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Benjamin Bell

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).-

Creating educational software generally requires a great deal of computer expertise, and as

a result, educators lacking such knowledge have largely been excluded from the design

process. Recently, researchers have been designing tools for automating some aspects of

building instructional applications. These tools typically aim for generality, resulting in

interfaces with limited, generic styles. An alternative, appropriate for more complex
interactive software, is to provide tools with special-purpose, rather than general, task

models. We illustrate a prototype authoring tool for interactive educational software, called

Goal-Based Scenario Builder, and describe a mode of interaction called Guided Case

Adaptation. We present an example dialog, and summarize a pilot evaluation of the tool.

keywords: Authoring systems, Interface design, Intelligent multimedia systems,
Graphical user interfaces.

Introduction and Motivation

Building interactive software can be an arduous task, requiring expertise in both an
application's domain and its user interface. Recently, researchers have been designing tools

for automating some aspects of building interactive applications. These tools typically aim

for generality, attempting to cover a broad class of interactive programs in many domains

by relying on weak models, resulting in software whose interface has a limited, generic

style.

This approach may not be effective for building complex interactive systems. An

alternative approach is to provide tools which use special-purpose, rather than general, task

models tailored specifically to the target software, which may have complex and

'Paper presented at the annual meeting of the American Educational Research Association, San Francisco,
CA, April, 1995.

1

2

idiosyncratic interfaces. Moreover, in interacting with such a model, a designer should

have access to example instantiations of the model (i.e., other software programs created

from that model).

The remainder of this paper presents a prototype tool, called Goal-Based Scenario

Builder, for supporting the design of a specific type of instructional program, and
summarizes a pilot evaluation of this prototype tool.

Goal-Based Scenarios and the paradigm of Investigation

People learn something because it helps them achieve some goal. Goal-Based Scenarios

(Schank, 1994) provide a framework for computer-based instruction in which the learner is

engaged in pursuing a goal, within a simulated environment, in order to master a set of

target skills. The central tenet underlying the Goal-Based Scenario (GBS) framework is

that skills are best learned when embedded within an engaging task, a position shared with

other situated approaches to instructional technology (e.g. Bransford et al., 1990; Brown,

Collins, & Duguid, 1989; CTGV, 1990). Goal-Based Scenarios also represent a
methodology for the design of such programs (Schank, Fano, Jona, & Bell, 1994), so that

any program created within this framework will be a piece of software which observes

important design conventions.

An example of a GBS is SICKLE CELL COUNSELOR (Bell, Bareiss, & Beckwith,

1994), an exploratory hypermedia system designed for the Museum of Science and
Industry in Chicago. This program provides the museum visitor with a basic understanding

of genetics, and in particular, of Sickle Cell Disease, by allowing him or her to play the role

of a genetic counselor, assisting clients who are considering having children, but are

worried about the risk of Sickle Cell Disease. We performed three pilot evaluations of

Sickle Cell Counselor, the results of which are described in (Bell, Bareiss, & Beckwith,

1994). The data from those evaluations suggest that the underlying architecture could help

frame effective instruction in other domains.

Articulating this architecture resulted in a specialization of the GBS framework

callers Investigate and Decide. The name of this model captures its investigative nature -

e.g., in Sickle Cell Counselor, performing lab tests, asking questions of experts, and so on

- and also highlights the reason behind the investigation some central decision which the

student is faced with, which requires some supporting knowledge the student must acquire.

The Investigate and Decide GBS model specifies five phases. In the Problem
phase, students are introduced to the role they will play in the simulation. In Sickle Cell

Counselor (SCC), for example, users are told that they will be acting in the role of genetic

counselors. The Do phase is where the principal investigation activities associated with the

task take place, which in the case of SCC includes viewing blood samples and performing

an electrophoresis test to establish the clients' genotypes. The Decide phase is where

students interpret data gathered in the Do phase in order to reach a decision (e.g., by using

the Punnett Square in SCC). In the Communicate phase the student conveys that
decision to agents in the program, as in the case of SCC where the user advises the clients.

The Wrap-Up phase offers some closure to the interaction by demonstrating the effects of

the student's final decision; in the case in SCC, the clients return "a year later" to talk about

the ultimate outcomes.

The utility of articulating this model lies in its potential as a blueprint for new

GBSs. A specialized design tool built around such a model stands in contrast to more

general approaches described below.

Approaches to software design tools

General-purpose authoring tools such as Hypercard and Authorware are intended to
facilitate the mechanics of design, but not the more critical work of constructing a coherent,

effective program. A better tool might allow the designer to create individual components of

a course, supplying an abstract sketch of a complete program (e.g. Murray & Woolf,

1992). Better still would be a tool which would offer examples of successful solutions to

design problems, and would provide sufficient guidance to ensure that the resulting course

is pedagogically sound. In other words, the tool should be general-purpose, but only to a

point: the tool must support a user in creating a program which is properly conceived.

General-purpose tools vary in scope and structure. Two classes relevant to this

discussion are interface generation tools and authoring environments for intelligent tutoring

systems (ITSs). Since creating a user interface tailored to an application can be a
programming-intensive task, an aim of interface generation tools is to automate (entirely or

partially) the interface construction process. Such tools share the goal of creating custom

interfaces from parameters supplied to a model by the designer. A number of model-based

interface generation systems have been reported in the literature, including HUMANOID

(Szekely, Luo, & Neches, 1993), MECANO (Puerta, Eriksson, Gennari, & Musen,

1994), and GENIUS (Janssen, Weisbecker, & Ziegler, 1993). Although these tools differ

in many respects, they each attempt to generate an interface based on a declarative
description of the desired presentation and behavior of the interface. Each of these
approaches aims for generality, attempting to cover a broad class of interactive programs in

many domains. One problem is that these tools rely on generic models of interfaces

(usually form- or menu-based). A consequence of this approach is that the range of tasks

3
4

these tools can support is limited (the above examples support the design of browsing and

editing applications, for example).

A second category of tools supports the creation of Intelligent Tutoring Systems

(e.g., Macmillan, Emme, & Berkowitz, 1988; Murray & Woolf, 1992; Russell, Moran, &

Jordan, 1988). Tools in this category are somewhat specialized in that they are restricted to

designs for instructional systems, however, they still aim to support the creation of any

possible kind of instruction. In doing so, these tools fall short of being truly useful,
general-purpose tools for several reasons. First, they lack the knowledge required to
dispense design advice about the structure of an end-user's activities, or about the elements

which would populate these activities. Second, these tools provide generic (and therefore

limited) interfaces, so as to apply to a wide range of tasks, since the alternative is to include

a large catalog of interfaces, which introduces complexities associated with indexing a large

collection of complex artifacts and with generating appropriate retrieval strategies. Third,

the design guidance these tools provide is in terms which are general enough to
accommodate any program; in other words, some of the tool's value as a knowledge-based

design aid is sacrificed in pursuit of generality.

We adopt an alternative approach by providing a tool which uses a special-purpose,

rather than a general, task model. To augment the model, we introduce an exemplar which

works in concert with the model to guide the design process. This mode of interaction,

called Guided Case Adaptation, is described in the following section.

Guided case adaptation as a GBS design method

Case-Based design research, specifically, work in case adaptation, has focused primarily

on automating the adaptation process (e.g., Hinrichs & Kolodner, 1991; Kass, 1989). An

alternative is to involve the user, creating an interactive dialog in which the program and

designer collaboratively apply adaptations to a retrieved case. This approach is appropriate

for domains in which cases are likely to be quite complex and design knowledge difficult to

codify. Moreover, when a model can be leveraged to systematize such a dialog , the
process becomes one which can be termed Guided Case Adaptation.

It is the dynamic among the designer, model, and exemplar, which characterizes

this mode of interaction. While an instructional designer could, in theory, instantiate the

abstract design model directly to create a GBS, we believe this would be extremely difficult

in contrast to adapting a specific instance of that model. On the other hand, if the designer

were confronted simply with an artifact such as Sickle Cell Counselor, he or she would

lack sufficient guidance as to which aspects of the program are likely to be relevant and

adaptable. Our approach, therefore, combines a specific example (Sickle Cell Counselor)

with an abstract model of GBSs to guide the designer's adaptation process.

This mode of interaction is well-suited the design of GBSs for two reasons: First, it

does not require a system to possess deep, operationalized knowledge of design goals and

of which specific design choices best satisfy them. Instead, such design choices are made

by the user, aided by an example GBS augmented with design rationale. Second, the user

is able to observe the adaptation process incrementally as each alteration is applied. This

enables a user to make each decision in a logical sequence, observing its effects on the

emerging artifact and its consistency with prior design choices.

What still remains to be seen, though, is how a program can convey to a designer

the twin notions of, on the one hand, the abstract model of Investigate and Decide GBSs,

and on the other hand, a specific exemplar from this class. The program which does this is

called GRS Builder and is the focus of the next section.

A Case-Based Tool for Constructing Investigate and Decide GBSs

GBS Builder is a prototype implementation of the guided case adaptation approach. It is

intended for use by a domain expert or teacher. To illustrate the way a user interacts with

GBS Builder, we present an abridged sample dialog (a more detailed example appears in

Bell, Kedar, and Bareiss, 1994). To set the stage for the session, consider the designer to

be a high school chemistry teacher, who wishes to teach students about the molecular

makeup of various compounds by engaging them in the role of Arson Investigator. In the

emerging GBS, the student seeks to determine whether or not a fire was set intentionally,

by looking for evidence of accelerant chemicals in samples taken at the scene.

Getting started: the Problem phase

The program elicits input from the designer one phase at a time, as specified by the model.

The interaction during each phase proceeds first by previewing the elements the designer

will be asked to specify, then by assisting the designer in the actual adaptation. After a

phase is introduced, each subphase is processed in sequence. The first such subphase in

the example is introduced as follows:

In the ATTRACT USER STAGE, you will specify:

a title for the GBS

a prompt for how to begin

one or more movies introducing problems the student can choose from

To define, e.g., the prompt, the designer types into a text window, as shown in Figure 1.

5

:a Ito I*1 lad IMP Ifterhmo b. I wig. I. Ilioy

GM MOM ells* prompt

rarverrtrolle Ihe wry
du:walk:a a =

U., in ...
Tona 1 or.11.1 so*

hal. 8Wriali11,11.1, Ur.

Figure 1. Specifying a startup prompt

Defining an activity screen: the Do phase

MI Pk (1!) .;

During the Do phase, students acquire information on which to base the decision posed in

the GBS. Although the Do phase is more complex than the Problem phase, the model still

guides the designer through what amounts to adaptation. An abstract model of investigation

defines the relationships among elements and how the end-user interacts with them.

The designer need only provide labels and pictures for instantiating this abstraction

as a specific investigation. The model defines a typical investigation in this class of GBSs

as including steps for acquiring a sample from a specified source, selecting a test to be

applied to that sample, performing the test, and obtaining the test results. In the Arson

Investigator example, the designer wishes to specify an investigation in which the student

extracts a sample of drapery fibers and performs a chromatography test to determine

whether the sample contains accelerants. Figure 2 illustrates the designer specifying a video

to depict a sample being collected.

This brief example illustrates that using the tool to create a new GBS is possible. To

begin understanding whether the tool was useful, we conducted an informal study of
graduate students using this tool, which we discuss in the following section.

6 7 BEST COPY AVAILABLE

.1"

Insert a movie.

This movie should show how
sample 1 is extracted.

Current Find-physical -evidencewe

Select Placehoklerl

Atm

t ',Pr CI153-.

Figure 2. (Detail) Specifying how sample extraction appears in the Do phase

A Pilot Evaluation of GBS Builder

The GBS Builder is intended for a particular audience (instructional designers and
teachers), and for a particular purpose (the construction of Investigate and Decide GBSs).

We therefore wanted to test the validity of a number of assumptions we were making about

our users, and to discover whether some design changes we were considering would, in

fact, be beneficial. To help answer these questions we organized a pilot study of GBS

Builder, in which first-year graduate students participating in a seminar were assigned the

task of creating GBSs using the tool. The aim of this pilot study was to determine how

valid our basic assumptions were and to gather formative data in support of on-going

development of the tool. The questions addressed by this preliminary study were:

What range of ideas can be tailored to fit the tool?

Do highly specific tools encourage the production of better software?

Does the tool effectively support the prototyping process?

Does the tool embody a level of specificity that designers find comfortable?

Is the guidance provided by the tool appropriate for the intended audience?

7 BEST COPY AVAILABLE
8

Description of the Experiment

Twenty-one students enrolled in the seminar (19 were first-year graduate students and 2

were undergraduate seniors). They were shown demos of SCC and of GBS Builder. They

then paired into 10 teams and each was asked to design and implement a GBS, using GBS

Builder. After three weeks of design work, each team's preliminary design was critiqued

by the faculty member running the seminar. After three more weeks, each team showed its

final product. As part of the required work, each team prepared a short paper summarizing

their experiences in building a GBS and in using the tool.

Results

The teams created ten GBSs using the GBS Tool. The resulting GBSs encompassed a wide

variety of domains and student missions, which indicates that the tool can accommodate a

fairly broad range of ideas. This variety is, however, somewhat misleading. Because the

authors were experienced computer programmers (in some cases at least) they were able to

circumvent some of the tool's specificity and create programs that were not strictly
Investigate and Decide GBSs. Since we intended the tool to be able to create only
Investigate and Decide GBSs, we need to take these departures into account in order to

accurately judge how wide a range of domains the tool supports. To do this we classified

the programs constructed by the authors into three groups: those GBSs which closely

followed the structure of Sickle Cell Counselor (classified as investigate and decide), those

which preserved the browsing aspect of SCC but omitted the testing element (classified as

browsing systems), and those which provided a simple simulation in lieu of running tests

(classified as simulation GBSs). Summary descriptions of the GBSs appear in Table 1.

GBSs in the Investigate and Decide category represent programs that the tool is intended to

support. The other two categories contain programs which are meaningful departures from

what the tool is intended to build.

As the table indicates, there was a wide variety of domains even within the
Investigate and Decide category. This sheds positive light on the question of how wide a

range of ideas the tool could support. It is difficult to say whether or not the tool helped the

authors create effective educational software. Formal evaluations of these programs were

not performed, since creating them took the entire length of the seminar. We did perform a

limited evaluation, in order to assign grades for the seminar. The programs on the whole

were interesting to use and presented coherent scenarios. A problem shared by the GBSs

was a vague notion of the instructional goals, although one pattern which emerged was that

the GBSs which remained closest to the Investigate and Decide model had the clearest

8

instructional goals, and those which ventured furthest from the model were interesting as

games but did not seem to be teaching much beyond how to "win". This provides some

preliminary support for our belief that the constraints imposed by a highly specialized tool

will help designers produce educationally effective software.

Table 1. GBSs created using GBS Builder

GBS Type Title Mission
Investigate & Decide Aztec, P.I. advise curator about objects'

authentici
Cardiac Counselor advise clients at risk for heart

disease
Eimronmental Decision Maker take action at a polluted site
Public Health Advisor advise mayor about outbreak of

illness
Secret Caves of El lora find solution to archeological

problem
simulation Crash Course determine driver at fault in traffic

accident
Diver Down help plan scuba dives

browsing system GBSex counsel clients about
contrace s tion

Rats to Riches advise investors
Scandal! draft news story about a scandal

In addition to creating their GBS, each team was asked to record their reactions to

the tool, and to offer suggestions about improving its design. Ten papers were submitted

describing each team's reaction to the tool and suggestions for extending the tool. In

general, teams reported that they liked the basic structure of the tool and that using it
yielded a speed-up during the initial design phase. This helped answer the question of
whether the tool made the prototyping process easier.

The teams also reported suggestions for changing things which they did not like

about the tool. The most common suggestion (60%) was to make it easier to build
programs that did not follow the Investigate and Decide instructional model. This is
reflected in some of their comments:

"It would get very confusing if you could not directly map the elements of your
design to Sickle Cell."

"Ease of Use for mapping directly to Sickle Cell: 5; Ease of Use for any deviation
from the Sickle Cell Design: 1."

As a solution to this problem, several teams proposed making the tool's internal

data structures more open to modification. We attribute this reaction to the makeup of the

subject group. That is, the team members were experienced programmers, and, we believe,

eager to display their creative talents even when (or perhaps especially when) this meant

operating beyond the intended functionality of the tool. Since our true intended audience are

educators and instructional designers, and since our aim is provide a tool which maintains

the boundaries implicit in the model, we do not regard the proposed solution as
appropriate. More important is the problem the teams faced, namely, that the Investigate

and Decide model was not appropriate for all their ideas. This problem emphasizes two

important issues. First, it makes it clear that many initial designs will need to be tailored to

fit the tool and that the tool should support this process. Second, it implies that tools to

support instructional models other than Investigate and Decide will need to be created.

The next most common reaction (50%) was that the tool needed to provide guidance

which was more conceptually-oriented and less interface-oriented. This was exactly the

kind of guidance we suspected the tool would need but which we had not, at the time, been

able to include. The tool used in the experiment guided authors through a step-by-step

adaptation of the exemplar GBS, but did not attempt to explain the overarching concepts

governing the individual steps. This interface guidance fell short of the kind of conceptual

guidance the subjects said they wanted to see, with the reported consequences including

losing focus on content design, and losing track of the overall flow because editing
proceeds one screen at a time. The comments below are typical:

"There is nothing in the tool which allows you to see the control flow of the GBS.

Something like a flow chart would be useful."

"Without an outline or some other a priori structure the tool can be confusing."

Implications for the GBS Builder Tool

Results gathered from the seminar suggest several issues regarding the tool, which can be

broken down into three categories:

interface construction

alternative models

task-level guidance

10 1

Interface construction

As a practical issue, students in the study reported that working through each item in the

interview script was useful for the first pass, but became cumbersome as a way to "zoom

in" and change particular parameters. Our proposed solution to this is to allow items on the

screen to be selected for editing; items which do not have a corresponding screen element

may be listed in a separate window for selection. The tool development team is
implementing this and other interface improvements.

Alternative models

Of more theoretical interest is the desire on the part of the graduate students in this study to

work "outside of the tool", that is, to design programs which did not necessarily observe

the structure of the model. In fact, 40% of the design teams omitted portions of the model

or reordered or combined steps internal to the model, and 60% of the teams added parts to

the model.

One solution to alleviate this problem is to augment the templates by providing

variant paths, e.g., optionally skipping subphase-level steps, or reordering steps.
Providing some local flexibility could allow the tool to accommodate a broader range of

programs while preserving the intent of the model. We had recognized before the
experiment that this kind of local flexibility would be a desirable feature for the tool to

have, but it is difficult to anticipate what flexibility designers will actually want. One of the

most important results of the experiment was, in fact, to clarify precisely which local

variations would be most useful.

The approach which the subjects in this study supported, though, was to redesign

the tool to accommodate a variety of models. A problem with this idea is that the tool

supports the design of a specific class of GBSs. This tool is specialized, not only in the

model, but in the various editors, interview scripts, and other support features particular to

this class of GBS. Attempting to revise the entire tool structure to support each model

would either result in too general a tool, or would amount to the approach we are
advocating, namely, constructing special-purpose tools for each class of GBS.2

Task-level guidance

The most theoretically relevant reactions from the students related to the nature of the

guidance provided by the GBS tool. The need for guidance arises from two sources. First,

in order for a tool to be useful, it must assist a designer in the mechanics of using it.

2This is not to say that tools for different GBS types will not share common elements. We are currently
defining the components each class of GBS will have, in order to isolate the shared components.

Second, because it is very much a special purpose tool, it must also make very clear to the

designer what constraints it will be enforcing, why these constraints exist, and how the

designer can observe them. The GBS tool used by the students in the seminar provided

only the former kind of guidance. That is, the tool offered help regarding what should be

done, and how, but not why.3

The students' reactions to the procedural emphasis of the guidance provided a

strong indication that the tool should adopt a more global stance in guiding the design

process. In particular, the data which the program asks the designer to provide should

describe the emerging GBS in conceptual terms, not just in terms of its interface. This is

the most significant result from this pilot study, and so the question becomes how to

change the tool to provide conceptual guidance. We believe that encoding knowledge about

the task into the tool will allow GBS Builder to offer more conceptual guidance. This

work is ongoing in a number of projects at ILS.

Conclusion

The Investigate and Decide model introduced in this paper serves to package a set of

design principles around which an authoring environment may be created. We presented

GBS Builder, a tool for the creation of a special class of GBSs. The tool steps the designer

through the process of adapting an exemplar GBS, using the model to guide the adaptation.

We described this mode of interaction as guided case adaptation, drawing parallels to case-

based design.

An early prototype of this tool was used by graduate students in a first-year
seminar, in creating their own GBSs. An informal evaluation of the tool based on student

reactions provided early indications that the tool makes prototyping easier, and that it

supports a fairly wide range of applications within the limits set by the model. Getting an

initial design to fit the model, though, was problematic in some cases, and examining these

cases proved useful in rethinking some of the tool's design.

References

Bell, B.L., Bareiss, R., and Beckwith, R. (1994). Sickle Cell Counselor: A Prototype
Goal-Based Scenario for Instruction in a Museum Environment. Journal of the Learning
Sciences, 3(4), 347-386.

3Design rationale was provided by a "why?" button, which explained the role of a particular element of the
GBS, but no higher-level justifications were available.

12 13

Bell, B.L., Kedar, S., and Bareiss, R. (1994). "Interactive Model-Driven Case Adaptation
for Instructional Software Design". In Proceedings of the Sixteenth Annual Meeting of
the Cognitive Science Society, Atlanta, GA, 1994.

Bransford, J.D., et al. (1990). Anchored instruction: why we need it and how technology
can help. In R. Spiro and D. Nix (Eds.), Cognition, Education, and Multimedia:
Exploring Ideas in High Technology. Lawrence Erlbaum: Hillsdale, N.J.

Brown, J.S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of
learning. Educational Researcher, 18.(1), 32-41.

Cognition and Technology Group at Vanderbilt (CTGV). (1990). Anchored Instruction and
its relationship to Situated Cognition. Educational Researcher, 19(6), 2-10.

Hinrichs, T.R. and Kolodner, J.L. (1991). The Role of Adaptation in Case-Based Design.
In Proc. of the Case-Based Reasoning Workshop, pp. 121-132, Washington, D.C.

Janssen, C., Weisbecker, A., and Ziegler, J. (1993). "Generating User Interfaces from
Data Models and Dialogue Net Specifications." In INTERCHI '93., (Amsterdam, April,
1993), ACM Press, pp.418-423.

Kass, A.M. (1989) Developing Creative Hypotheses by Adapting Explanations. PhD
Thesis, Yale University. Issued as Technical Report #6, Institute for the Learning
Sciences, Northwestern University, Evaston, IL,

Macmillan, S., Emme, D., and Berkowitz, M. (1988). Instructional planners: Lessons
learned. In Psotka, Massey, and Mutter (Eds.), Intelligent Tutoring Systems, Lessons
Learned. Hillsdale, NJ: Lawrence Erlbaum.

Murray, T. and Woolf, B.P. (1992). A knowledge acquisition tool for intelligent computer
tutors. SIGART Bulletin, 2(2), 9-21.

Puerta, A.R., Eriksson, H., Gennari, J.H., and Musen, M.A. (1994). "Model-Based
Automated Generation of User Interfaces". In Proceedings of the Twelfth National
Conference on Artificial Intelligence, Seattle, WA, 1994.

Russell, D., Moran, T.P., and Jordan, D.S. (1988). The instructional design environment.
In Psotka, Massey, and Mutter (Eds.), Intelligent Tutoring Systems, Lessons Learned.
Hillsdale, NJ: Lawrence Erlbaum.

Schank, R.C. (1994). "Goal Based Scenarios: A Radical Look at Education." The Journal
of the Learning Sciences, 3(4), 429-453

Schank, R.C., Fano, A., Bell, B.L. , and Jona, M.Y. (1994). "The Design of Goal Based
Scenarios." The Journal of the Learning Sciences, 3(4), 305-345.

Szekely, P., Luo, P., and Neches, R. (1993). "Beyond Interface Builders: Model-Based
Interface Tools". In INTERCHI '93, (Amsterdam, April, 1993), ACM Press, pp.383-
390.

13 14

