
DOCUMENT RESUME

ED 380 507 TM 022 874

AUTHOR Hester, Yvette
TITLE Least Squares Procedures.
PUB DATE Jan 95
NOTE 24p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (Dallas,
TX, January 1995).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches/Conference.Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Goodness of Fit; *Least Squares Statistics;

*Matrices; *Regression (Statistics)
IDENTIFIERS Nonlinear Models; *Parametric Analysis

ABSTRACT
Least squares methods are sophisticated mathematical

curve fitting procedures used in all classical parametric methods.
The linear least squares approximation is most often associated with
finding the "line of best fit" or the regression line. Since all
statistical analyses are correlational and all classical parametric
methods are least square procedures, it becomes imperative to
understand just what the least squares procedure is and how it works.
This paper illustrates the least squares procedure, starting with one
independent variable and one dependent variable and generalizes to
"n" independent variables with vector and matrix notation. Graphical
representations and small heuristic examples are given. A brief
generalization to nonlinear squares is presented. (Three tables and
three figures illustrate the analysis. An appendix gives software
commands for analysis. Contains 3 references.) (Author)

Reproductions supplied by EDRS ore the best that can be made
from the original document.



U.S. DEPARTMENT OF EDUCATION
Otte a 01 Educatbonal Rwarch and Improvement

E0111.:;ATIONAL RESOURCES INFORMATION
CENTER (ERIC)

07/his document has been reproduced as
received Iron, the person or organization
originating it

0 Mmor changes have been made to improve
reprO4UCtOn ClUa lay

Points of new or °whorls slated m thisdocu-
ment do not necessarily represent official
OEM oosthon or pohcy

PERMISSION TO REPRODUCE THIS
MAT RIC.. HAS BEEN GRANTED B'r

vErre. E-57-64

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Least Squares Procedures

Yvette Hester

Texas A&M University

Paper presented at the annual meeting of the Southwest Educational Research

Association, Dallas, TX, January 26, 1995

2



Abstract

Least squares methods are sophisticated mathematical curve fitting

procedures used in all classical parametric methods. The linear least squares

approximation is most often associited with finding the "line of best fit" or the

regression line. Since all statistical analyses are correlational and all classical

parametric methods are least squares procedures, it becomes imperative to

understand just exactly what the lea c squares procedure is and how it works.

This paper illustrates the least squares procedure, starting with the simplest

case of linear least squares with cue independent variable and one dependent

variable and generalizes to n independent variables with vector and matrix

notation. Graphical representations and small heuristic examples are given. A

brief generalization to nonlinear least squares is presented.
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The least squares method is a mathematical curve fitting procedure. The

linear least squares approximation is most often associated with finding the "line

of best fit" or the regression line. Since all statistical analyses are correlational

and all classical parametric methods are least squares procedures (Thompson,

1994), it becomes imperative to understand just exactly what the least squares

procedure is and how it works.

The purpose of this paper is to illustrate the least squares procedure,

starting with the simplest case of linear least squares with one independent

variable and one dependent variable, and generalizing to cases which better model

reality. Algebra, matrix Of-. bra and calculus will be employed to some extent,

with explanation at each step for following the logic. Examples with small data

sets are given to help make the procedure more concrete.

Linear Least Squares

In the simplest case, the linear relationship between one independent

variable and one dependent variable is considered. Thinking conceptually about

correlation, the question might be posed, "How well does a line catch all the points

in a scattergram of data?". Thinking conceptually about the line catching those

points, the question is, "How can the equation of the line that does the best at

catching those points be found?". This line is the least squares line in which the

sum of the squares of the vertical distances from the data points to the line are

made as small as possible or minimized. The line must be the best fit for all the

points simultaneously. Figure 1 illustrates a line closest to four data points and the

distances whose sum of squares is to be minimized.

Insert Figure 1 here

3

4



Note that if all the points were to lie exactly on a straight line, any two of those

points could be used to determine the equation of the line using the point-slope

form y y1 = b(x x1), where (xi ,yi ) is any one of the points on the line and b

YIis the slope of the line given by b = Y2
, with (x2 ,y2) as another point on

X2 x1

the line. Since all points almost never lie exactly on a straight line, the least

squares procedure is invoked to determine the equation of the line of best fit.

To generalize from the distances illustrated in figure 1, suppose that there

are n data points and that a somewhat linear relationship is expected. The least

squares line can be found by minimizing the sum

(1) (d1)2 (d2)2 ...+ (dn )2 = di2
i=1

The equation of the regression line is given by y'= bx + a, where b is the slope

of the line and a is the y-intercept. The y-values lying on the regression line

corresponding to a particular xi are denoted y, since they are the predicted

values and not the observed y-values for that x. In other words, the y'-values do

not correspond to the points that actually appear in the scattergram, unless the line

catches them exactly, but are the y-coordinates of the points on the line. Each

vertical distance is the difference in the y' and the .y values. Using the

substitution y'= bx + a, each distance can be written as,

= yi' yi = bx; + a yi, for all n

The difference can be written as yi'yi or as yi yi' without changing the

following results. The substitution changes equation (1), the sum to be minimized,

to
n

\ 2
(1)' (bx, + a yi)2 + (bx2 + a y2)2 +...+(bx,, + a yn)

2
= (bx; + a yi) .

f=1
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The ordered pairs (x1,y1),(x2 v2)5,(Xri,..Vn) are all known, since they are the

actual data points. The unknown values b and a in the equation are left to be

found.

A calculus technique will be used to minimize equation (1)1. Since there

are two unknown variables, b and a, in the equation, partial derivatives will be

taken and set equal to zero to solve. This technique from calculus will allow us to

both minimize the one equation and solve for the missing values using linear

algebra. If the following assumptions are met, then the ordinary least squares

approximation is the best (most efficient) linear unbiased estimator (BLUE). The

four assumptions are (1) !d x-values, (2) homoscedasticity, (3) error terms

are uncorrelated (no autocorrelation), and (4) error terms have zero mean

(Hamilton, 1992).

For ease of notation, let (1)' = . The partial derivatives of f are

= *xi + a yi)(x1)+2(bx2 + a y2)(x2)+...+2(bx + a yn)(x,i)
.3)

= 2E(x,)(bx, + a y)

= 2(bx1 + a + 2(bx2 + a y2)+...+2(bx, + a yn)

=2 E(bx, + a y1).
i=i

Com.,:ining like terms and setting the partials equal to zero:

= 2(bExi2 + x; Exiyi). o
i=1

-6---3 =2(biXi +na 0



Writing the partials in simplest form yields a system of two equations and two

unknowns.

Using the method of elimination by addition for solving systems and the

multiplicative constants n (i) and E (ii ), one equation is obtained.

b(2/ nb(Exi2)=(ixiriyi) n(ixiyi)
i=i i=i i=t i=1 i=i

To solve the resulting equation for b, factor b out of the first two



Solving (ii) for a yields:

(3) a=
n

Eyi b(Ex;
=i

n

i=1 where b is as above.

The linear least squares equation or the regression equation for n data points is

y`=.V+a, where b and a satisfy equations (2) and (3) derived above, and

yields the line of best fit for a particular data set. Equations (2) and (3) above

are referred to as the normal equations. As the normal equations suggest, find b

first, then use (3) to find a.

Example 1

Suppose a teacher is interested in the relationship between the number of

classes a student has missed over a semester and the grade the student received in

the class. The data are found in table 1.

Insert Table 1 here

The number of absences is represented by the independent variable x and the

grade for the course is represented by the dependent variable y. Figure 2

illustrates the scattergram of the data.

Insert Figure 2 here

To find the least squares equation for this example, equations (2) and (3) are

used to calculate b and a. The calculations are presented in table 2.

Insert Table 2 here
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Substituting from table 2 into equation (2),

702 480 222
b = = .4.676 1200 524

Since the slope of the line is negative, the graph of the line will fall from left to

right. The scattergram suggests that a falling line is appropriate. Substituting

b = .4 and values from table 2 into equation (3),

a =
27+10.4

=3.74.
10

The y-intercept of the line is 3.74 and the equation of the least squares line or

regression line is y'= 3.74.4x. The least squares line is illustrated on the

scattergram in figure 3.

Insert Figure 3 here

The Matrix/Vector Approach

In order to move to a more general case, the notation of vectors and

matrices is adopted. The simple case already considered will be adapted to the

new notation for clear understanding. Taking the general equation for the vertical

distances di= ya'yi = bx, + a each distance can be written specifically as

la +bxl yi
a +bx2-- )12

a +bx yn



1 xl

1 x2
This set of equations decomposes into the matrix A = and the vectors

1 x...

y1

U =[b] and y =
a y2

_Yn

Then the linear least squares procedure finds u, and

therefore b and a, so that lAu yl is minimized.

Matrices have dimension (row by column). The matrix A has dimension

n by 2, written n x 2. The column matrix or vector u has dimension 2 x 1 and

the column matrix or vector y has dimension n x 1. The distance lAu

suggests the matrix multiplication of A and u. This product matrix can be found

because the matrices satisfy the linear algebra rule that the number of columns of

the first matrix must equal the number of rows of the second matrix. The resulting

product will also be a matrix and will have dimension equal to the number of rows

of the first matrix by the number of columns of the second matrix. In this case,

that resulting matrix would have dimension n x 1. In order to subtract two

matrices, which is the operation that must be performed next, the two matrices

must have exactly the same dimension. Since the column matrix y is n x , it is

important to the procedure for the resulting product matrix Au to also have

dimension n x 1, which it does, as shown above.

A more general linear least squares case would involve two independent

variables and a dependent variable. The data points or ordered triples for n

observations would look like (x11,x21,y1 ),(x12 , x22 v 2),. 5(X1n ,x2n jn) The

researcher might wonder whether the y values are linearly related to the x

values. Each distance would be written



A

S

I . I 11 s s

I I 11 I i I . s
..-.

I

1 Ø I I -I

.5 I 1

I

5 I . I I 1 I- .5 6 1

4 O II I

I 4

I I I

Se P o

s i P o

i

1 I i
r

4

s

O . 1 I 0 6

I . 5 5 4 6 4



- (n x(k +1))

Checking dimensions for multiplication of the matrices yields AB as an (n x 1)

product ,matrix. The linear least squares procedure will minimize the difference

IAB Yl. If the columns of A are linearly independent, then the difference

(I/ y) is uniquely determined, A' A is positive definite (and therefore,

nonsingular), (Seber, 1977), (A'A)-1 exists and

(*) B=(A'A)-1 A' Y,

where A' denotes the transpose of A. The general normal equation(s) above

minimizes the difference 1AB YI. An indepth discussion of terms used in the

above reference and the derivation of (*) are beyond the scope of this paper.

Example 2

Suppose a teacher is interested in whether math SAT scores, scores on a

high school math achievement test, and the grade received in a first college math

class are linearly related to college grade point averages for mathematically gifted

students. The data for 10 hypothetical students are found in table 3.

Insert Table 3 here

The independent variable X1 contains the ten math SAT scores, the independent

variable X2 contains the ten high school math achievement test scores, the

independent variable X3 contains the ten first math course grades and the student

grade point averages are represented by the dependent variable Y. The matrix

representation for this example is



1 670 10 4 3.82

1 630 9 4 3.74

1 610 9 4 1.84

1 570 9 3 3.34 bo

1 700 8 3 3.26
A= Y

1 640 6 2 2.35 b2

1 630 7 2 3.03

1 610 8 3 3.05

1 570 10 4 3.76

1 550 8 2 2.72

where B is the matrix of constants to be found by the linear least squares

procedure. The difference to be minimized is

AB 10x4)B Y(4x1) (10x1) )(ioxi) YOoxi)

The column matrix or vector B is found by using equation (0), Since the

inverse of A' A must be found, the computer algebra system MAPLE will be

implemented for computational ease. The inverse of a (2 x 2) or (3 x 3) matrix

can easily be ccmputed by hand, but since A' A has dimension (4 x 4) the

computations are best left to the computer. As equation (*) is implemented, the

step by step matrix products will be given.

Equation (*) requires first that the transpose of A be taken. The

transpose of any matrix is found by switching the rows and the columns. Let the

columns of A be the rows of A' and the rows of A be the columns of A' .

Then,
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A' =

1 1 1 1 1 1 1 1 1 1

670 630 610 570 700 640 630 610 570 550
10 9 6 9 8 6 7 8 10 8

4 4 1 3 3 2 2 3 4 2

Next, the product A' A must be found. Note that since A' has dimension (4 x

10) and A has dimension (10 x 4), the product can be formed and the resulting

matrix will have dimension (4 x 4). To perform matrix multiplication, "pour" the

rows of the first matrix down the columns of the second, multiply like entries and

add for a total entry.

A' A =

10 6,180 81 28

6,180 3,838,800 49,990 17,370
81 49,990 675 239

28 17,370 239 88

The inverse of the above (4 x 4) matrix must be found. Recall that the inverse

must exist because the columns of the product matrix are linearly independent and

the matrix itself is positive definite. MAPLE finds

2,376,803 -26,141 -56,867 223,069
40,143 401,430 13,381 40,143
-26,141 163 243 -2,077

(A' ii
A \

i
I

-7--

401,430
-56,867

2,007,150

243

66,905
6,114

401,430
-8,104

13,381 66,905 13,381 13,381
223,069 -2,077 -8,104 36,506
40,143 401,430 13,381 40,143

To find the inverse of a matrix by hand, augment the matrix with the identity

matrix of the same dimension and perform Gauss-Jordan elimination. This

process can get messy as demonstrated by the fractional entries above.

The first half of equation (*) has now been found. To proceed, the

product of the inverse matrix and A' is found. The product will combine a (4 x

4) matrix and a (4 x 10) matrix, to form a (4 x 10) matrix. Even simple
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operations such as matrix multiplication can become complicated. The computer

algebra system MAPLE computed the following product matrix:

(A'A)-i A' =

-188,378 28,929 -18,335 20,554 -49,556 126,311 -18,149 28,867 24,344 20,378
40,143 13,381 40,143 40,143 13,381 40,143 40,143 13,381 13,381 40,143
1,973 -263 208 7324 352 483 449 -137, -429 -701

401,430 133,810 200,715 200,715 66,905 401,430 401,430 66,905 133,810 401,430
4,419 -3,639 1,549 1,753 -5,287 341 -2,621 -441 2,567 28,929
13,381 13,381 13,381 13,381 13,381 13,381 13,381 13,381 13,381 13,381

-13,186 6,478 -12,994 -4,610 -2,433 17,281 -4,954 3,798 2,528 -12,650
40,143 13,381 40,143 40,143 13,381 40,143 40,143 13,381 13,381 40,143

The last product to be formed is that of the above matrix with the matrix Y. The

result will be the matrix product (A' A) -1 A' Y which contains the unknown

constants in the column matrix B and the solutions to the linear least squares

normal equation(s).

B

-.21747

.001265

.194196

.340553

Thus, the linear least squares equation for example 2 is

y' = -.21747 +.001265x1 +.194196x2 +.340553x3.

Nonlinear least squares

A brief discussion without examples of quadratic least squares minimum

differences and general least squares minimum differences will be related to the

linear least squares discussion above.

If data represented by the ordered pairs (xi ),(x2Y2),.. (x. ) has been

collected and the researcher expects a quadratic relationship between the x and

y values, the distances are represented as
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b0 + bixi + b2x12 yi

b0 + b1x2 + b24 y2

too + bix + b2x2 y

Consequently, the matrix decomposition looks like:

A

1 xi Xi2

1 x2 X22

2
Xn

bo

B=

b2

Y=

Yi

Y2

The difference to be minimized is the same 1AB Y 1, where B is found through

the least squares procedure.

In the general setting, for data given by tuples

the researcher might expect the x and y values to be related by

y = bifi(x) + b2f2(x)+...+ b,,,f,(x) where the constants bi are to be determined

and the functions fi(x) are the expected relationship between x and y values.

The system of distances takes the form

{bifi(xi) + b2f2(xi)+.+b,f,, (x1) yi

bifi (x2 ) + b2 f2 (x2 )+... -: bmfm (x2 ) y2

bifi (X ) + b2 /2 (X,7)+...1- b,f, (x,, ) y
Set

de"
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A= fi(x2) i2(x2) fm(x2) b?

fi(xi) f2(xi) fm(xi)

f2(xn) fm(xn)_ b,

Y= Y2

and again minimize IAB Yl.

Least squares procedures am sophisticated mathematical curve fitting

procedures used in all classical parametric methods (Thompson, 1994). Calculus

and linear algebra tools are implemented throughout the procedure. For large

amounts of data, computer algebra systems, such as MAPLE or statistics

packages are useful for carrying out computations. Small data sets are helpful in

making the linear least squares procedure concrete and enabling computations to

be done by hand.
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Table 1
Data for example 1

Student Number of absences Grade in the class Ordered pair

(x,) representation

1 2 B (2,3)

2 2 B (2,3)

3 5 C (5,2)

4 2 C (2,2)

5 3 C (3,2)

6 0 A (0,4)

7 3 C (3,2)

8 8 D (8,1)

9 0 A (0,4)

10 1 A (1,4)

Note: A = 4.0, B = 3.0, C = 2.0, D = 1.0, F = 0.0

Table 2
Computations for the formula to find b for example 1

n

Ix,
i=i

(±1 Xi

i=1

n

1Y,
i=1

n

xiyi
i=i

n

I Xi2
1=1

n n

ExiIiYi
i=1 1=1

n

flE xiyi
b.!

n 2nE xi
i=i

26 676 27 48 120 702 408 1200
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Table 3
Data for example 2

Studen

t

Math

SAT

score

H S Math

Achievement

Score

First Math

Course

Grade

College

Grade Point

Average

Ordered

4-tuples

1 670 10 A 3.82 (670,10,4,3.82)

2 630 9 A 3.74 (630,9,4,3.74)

(610,6,1,1.84L

(570,9,3,3.34)

3 610 6 D 1.84

4 570 9 B 3.34

5 700 8 B 3.26 (700,8,3,3.26)

(640,6,2,2.35L

(630,7,2,3.03)

6 640 6 C 2.35

7 630 7 C 3.03

8 610 8 B 3.05 (610,8,3,3.05)_

(370,10,4,3.76)9 570 10 A 3.76

10 550 8 C 2.72 (550,8,2,2.72)

Note: A = 4.0, B = 3.0, C = 2.0, D = 1.0, F = 0.0



"' :4,51;:?;.

1

Figure 1
Illustrates a line "closest" to four data points and the vertical distances whose sum

of squares is to be minimized.
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