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PROGRAM CONTROL AS A SET-THEORETIC CONCEPT

by J. R. Jefferson Wadkins

A point does not move, a circle does not shrink, a number does not change its value, and a
function does not decrease. Each of these mathematical entities is a set; it is static; it takes no action; it
does not change; it just sits there being a set. Nevertheless, the notion of variable mathematical entities
is present in most mathematical activities and permeates the teaching of mathematics.

Thus teachers feel no shame in saying things like "as the point (r,A) moves from right to left on
this curve, the circle with radius r shrinks...", because they are justifiably confident that the language they
use, which employs the notion of variable mathematical entities, can be converted to the static language
of set theory in the context of axioms for a complete ordered field. While there are purists who frown
upon use of "variables" in seriou., mathematical discourse, most mathematicians are comfortable with
such phraseology because of the existence of precise semantics that legitimize these notions in terms of
set-theoretic concepts from which the purist might prefer never to emerge.

1.0 PURPOSE AND MOTIVATION FOR THIS PAPER
Precise proofs of program correctness and precise proofs in calculus are arguments about static

entities. Both are typically introduced with teacher as actor and students as spectators, but there is an
implicit understanding that students are only being "exposed" to these techniques. The answer to the
ever-present, student-as-spectator question, "Are we responsible for this on the next test?" is almost
always negative in both cases. However, there is a vast difference in how introductory courses handle
intuitive notions consistent with corresponding precise ideas.

In typical beginning calculus courses, the notion of "variable" is employed to give plausibility
arguments for fundamental theorems that are seldom stated in such courses very precisely, and seldom
justified with epsilon-delta arguments; but students do gain an appreciation of the fundamental nature of
such theorems by constantly taking part in both home-work exercises and classroom activities that
employ "variables" to reason about specific applications of those fundamental theorems. Although there
is a programming notion used in introductory courses for other purposes that could be used to give con-
vincing arguments for both fundamental theorems of program correctness and instances of their
application to code written by beginning programmers, use of this intuitive notion in teacher presen-
tations which give plausibility arguments that code segments satisfy their informal specifications would
seem to be relatively rare.

That programming notion is "program control", an entity used by both neophytes and
professional programmers for "desk checking" of code before testing it. The readiness of mathematics
teachers to use hand-waving arguments in calculus presentation., as opposed to the hesitancy of
computer science teachers to use the notion of "program control" in their classroom presentations, is
probably best explained by the fact that "real variables" have a widely understood logical basis, while
"program control" is often thought to be a mere heuristic, unrelated (indeed, contrary to) precise proofs
of correctness about static entities employing the weakest-precondition predicate transformer.

Use of "program control" provides a short and simple argument for a fundamental theorem of
program correctness', which Edsger Dijkstra stated without proof in his seminal 1975 paper [1] and
whose proof, using the symbolism and tools of the formal predicate calculus, is outlined (as the answer
to three exercises) taking up more than two pages of densely packed symbolism in The Science of Prog-
ramming by David Ones [2].

The purpose of this paper is to provide operational semantics for imperative programming
languages that legitimize the phraseology used in the statement and proof of our version of that fun-
damental theorem. We would venture to claim that both the statement and proof of our version of this
theorem (as given in the next section) can be made understandable by, and convincing to, typical
beginning students who have no preparation other than what is typically offered in the first half of CS1
-- and that this can be accomplished with very little effort on the part of the teacher. This is clearly not
the case with even the statement of the theorem in the development of either Dijkstra [1] or Gries [2].

That argument and that theorem is given at the beginning of Section 1.1.

1
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Motivation for the research that culminated in this paper was two-fold. The first was a question
posed to this writer by a high school teacher in 198844] The second was a number of rewrites by David
Gries of arguments offered by this writer during collaboration on a paper [3] in 1989-90. The question
from the teacher, Alexander Z. Warren, arose when he and two other high school teachers of computer
science were asked to review an earlier paper on loop invariants by this writer. (The collaboration on
[3] was kindled by Gries' review of the earlier paper.) The earlier paper was intended to convince those
high school teachers of computer science who were also teachers of mathematics that the mysterious
concept of a loop invariant could be easily comprehended if they considered it merely the induction
hypothesis for an induction proof that the loop accomplishes what the programmer intended. Warren's
otherwise positive reaction to the paper was tempered by worries about an argument in that paper
referring to program control. Those worries are best summarized by the question, "What are the
axioms?" Additionally, the rewrites by Gries during collaboration on [3] always resulted in exclusion of

any reference to program control. Those repeated exclusions coming after Warren's tantalizing question

led to this writer's determination to validly give the answer, "The same as those for set theory." Our
paper here does provide the validity for that answer.

1.1 A FUNDAMENTAL THEOREM OF PROGRAM CORRECTNESS
Several phrases used in the following theorem and its proof are normally undefined, but intui-

tively appealing. We here contend that programming students would not question the validity of their

use any more than mathematics students question the normally undefined, but intuitively appealing,
phraseology of "variables". The purpose of this paper is to give precise meaning to the questionable
phrases used in this section.

1.1.1 Theorem: In some program containing no goto's, let Expr denote an expression that is a function
of the program variables, let c be a number, let Pcct and Inv be statements about current values
of program variables, and let W denote the following loop.

1:

2:

3:

4:

while <guard> do
begin

<body>

end

(1) A sufficient condition that W terminate is that, during any execution of W,

(i) both <guard> and <body> terminate,

(ii) no program variable changes value as a result of any evaluation of <guard>,

(iii) the statement "Expr c" is true each time program control reaches <guard>,

and

(iv) whenever program control reaches line 2, if v0 denotes the value of Expr at that

time, then the value of Expr is at least v0+1 the next time program control

reaches line 3.

(2) A sufficient condition that Post be true whenever program control reaches line 4 is that

(v) (Inv and not <guard>) implies Post

(vi) Inv is true each time program control reaches <guard>. and

(vii) during any execution of W that terminates, no program variable changes value as
a result of any evaluation of <guard>.

Proof of (1): Let E be any execution of W, and assume (i), (ii), (iii), and (iv). By (i), program control
must reach line 3 subsequent to any time during E that it reaches line 2; and, by (iv), the value
of Expr must increase by at least 1 each time <body> is executed. Expr has some value v0 the
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first time program control reaches <guard> during E. By (iii), "v0 c" is true at that time.

There are only finitely many adjacent intervals of unit length beginning at v0 and ending at a

number that is at most c, so <body> can only be executed finitely many times during E

(perhaps zero times) -- for, otherwise, because of (ii) and (iv), the value of Expr would have to

increase beyond c during some -.:.recution of <body>, rendering assumption (iii) false. Thus, it

must also be true that <guard> can only be executed finitely many times; so E must terminate,

which completes the proof that W terminates.

Proof of (2): Let E be any execution of W that terminates, and assume (v), (vi) and (vii). We must

show that Post is true when program control reaches line 4 at the end of E. Because of
termination, there is a last time t that program control reaches <guard>, and since Inv is true

each time program control reaches <guard>, Inv is true at time t. Also "not <guard>" is true

at time t -- because, otherwise, t would not be the last time program control would reach
<guard>. Thus by (v), Post is true at time t. By (vii), no program variable can change value
during the execution of <guard>, so since Post is a statement about current values of the
program variables, Post must still be true when program control leaves <guard> the last time
during E and then reaches line 4 as E terminates. q.e.d.

Note on a theorem parallel to Theorem 1.1.1: It should be clear that the argument indicated above is

easily adjusted to form the proof of the parallel theorem obtained by substituting ".>_-" for and

substituting "at most v0 -1" for "at least v0+1" in (iii) and (iv), respectively, of part (1) of

Theorem 1.1.1. This substitution comes close to Dijkstra's use of "variant function", which Gries

calls a "bound function". However, there is a difference: for our theorem, "c Exp. 2.: 0" is an

invariant, whereas in the Dijkstra-Gries approach, the bound function (which corresponds to our
Expr") is only required to be nonnegative up until the final evaluation of the guard; upon

termination, the variant function (bound function) is allowed to have a negative value. Finally, a

variant function (bound function) is required to be integer-valued, whereas c Erpr has no such

restriction.

Note on the proof of (1): It should be clear that the proof of (1) goes through if any arbitrary posit:Are
number d were substituted for the increment 1 in the "v0+1" of (iv) in the statement of Theorem
1.1.1, and in the "v0 -1" of the "parallel theorem" just discussed. (The real numbers form an
Archimedean field.) However, the only practical effect of such a substitution known to this

writer is in using the invariant inequality "Expr 0", where Erpr = log2(k+1), in the proof of
termination for any loop that uses "k := k div 2" to make progress toward termination -- in

which case the decrement to k from 2 to 1 res: 'ts in only a decrement to Expr of log2 3 log2 2,

which equals loge (312) < 1. Termination ca t/e proved in such a case using either k (if proof

of termination is the only goal) or Ilog2(k+1)1 (if an expression that counts iterations of the
loop is desired). Thus, there seems no good reason to complicate matters in the statement of a

theorem claimed to be understandable to the most novice of programmers.

For writing code, the real value of Theorem 1.1.1 lies in the following corollary, which provides

a programming template for the construction of a loop with a built-in proof of its correctness just by

writing two segments of straight-line code to fit given specifications, i.e., without having to visualize a

repetitive process.

1.1.2 Corollary: Using the notation of Theorem 1.1.1: In order to write correct code for a loop
intended to establish assertion Post, it is sufficient that

(1) a Boolean program expression, <guard>, and a statement Inv about the program variables be
chosen such that <guard> terminate: , and has no side effects, and such that the implication

"(Inv and not <guard>) implies Post" is true,

(2) code be written as an initialization that terminates and makes Inv true in line 1,

3
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(3) a number c and an expression Expr be chosen such that

(i) "(<guard> and Expr s c) implies Expr+1 :5_ c" and

(ii) the already-written initialization also makes "Expr :5. c" true in line 1, and

(4) code for <body> be written that

(iii) terminates and contains no goto,
(iv) increases the value of Expr by at least 1, and

(v) has the property that if "<guard> and Inv and Erpr :5_ c" is true when program control
reaches line 2 during any execution of W, then "Inv and Expr -5_ c" must be true the next
time program control reaches line 3.

This Corollary follows from Theorem 1.1.1 and its argument is in the same spirit as the
argument for the Theorem, and it is omitted.

While the purist might argue that the wording of the Corollary encourages operational thinking
in the process of creating a loop, as opposed to the static reasoning used in the predicate-transforma-
tion approach, such operational thinking is restricted to two segments of straight-line code (the
initialization and the body), a restriction that would certainly move the student in the direction of static
reasoning and away from the total dependence on the vision of repetitive processes that usually permeate
the teaching of loop creation in introductory courses.

2.0 THE OPER! FIONAL SEMANTICS
Section 1 presented the fundamental theorem and its proof using terminology that might be

considered plausible but not rigorous, intuitive but not precise. This Section 2 provides precise
operational semantics for imperative programming language systems in terms of set theory. Section 3
provides the translation of the words and phrases of the fundamental theorem and its p:-,of in Section 1
into the precise set-theoretic terns of Section 2, thereby refuting the natural conjecture that the theorem
and its proof is "plausible but not rigorous, intuitive but not precise".

The only prerequisite for understanding the technical development of the operational semantics
here is a high level of mathematical maturity. Although the mathematics is elementary, the extensive
mathematical shorthand that is employed presents an intimidating facade that might be expected to
prevent any but the most interested reader to gloss over the details of the proofs and definitions.

In mathematics we often have two choices for development of a system: 1) choosing axioms and
definitions that state many of the properties objects satisfying those premises should have, but some-
times the price paid is an inordinate complexity in the proof of some fundamental theorems based on
those premises; 2) choosing premises requiring more complexity in early development, but the reward is
sometimes to make the proof of some fundamental theorems simpler.

To begin: The approach taken by Dijkstra in [1] using the weakest-precondition predicate
transformer makes definition of his guarded-command language very straight-forward, without need for
any concept of execution. A comparison of the proof of his fundamental theorem (as given in Gries [2])
with our proof of the corresponding Theorem (our Theorem 1.1.1), or with the reader's own plausibility
argument for our version, shows the price paid for the simplicity of his early development. The price we
pay here for a simple proof of this fundamental theorem is a heavy layer of complexity in the develop-
ment of operational semantics from the axioms of set theory.

2.1 PREVIEW OF THE SEMANTICS
Many phrases appearing in Theorem 1.1.1 need precise definition, but the offending phrase that

is most fundamental is "program control". In our development, "control" is a function taking ordered
triples (S,s,p) into other such triples, where S is a string of "tokens", s is a "state", and p is a "position".
A state is a function from the nonnegative integers (intuitively, the addresses in the memory of an ideal
machine) into a set of "values" stored in ROM, with each "program" having some final segment of
addresses available beyond ROM; a program is a finite sequence of tokens; and a position in the
program is one of its subscripts.

For the stated purpose of this paper, the only programming construct needing definition is a
loop. However, in our development, the syntactical form of a loop is the same as that of a simple
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conditional; and until we specify how such a construct is executed, there is no way to tell which is which.
An execution is a sequence of ordered pairs in the domain of "program control", which is a function,
derived from the system-defined function called "control", that maps pairs (s, p) of states and positions
into other such pairs. The position of the first term in the execution of a program is the position of the

first token of the program. It is a theorem that, for any state s and any program P, there exists a
unique execution of P with (s, 1) as its first term; and, in general, if there exists any execution of
progari segment S with (s, min. Domain. S) as its first term, then that execution is unique.

Our use here of "Domain. S " indicates that we consider S to be a function, and we do indeed
make strong use of the viewpoint that a sequence is a function whose domain is a segment of the
integers and that a function is a set of ordered pairs no two of which have the same first element.
While there are other legitimate points of view, the basis for the semantics to be given here is set
theory, so every object used in the development is defined to be a set:

For this development, we must distinguish between strings and sequences. Execution is only de-

fined for program segments, which are sequences whose domains can differ, depending on their positions
in parent programs. Yet a programming construct should be defined without reference to where it
appears in a program, and should be distinguishable from its particular appearance in a program. The
mechanism we use for this purpose is to define a string as an equivalence class of finite sequences with
each member of a given class having the same length and the same terms in the same order. In this

way, given a programming construct as a string, each appearance of that construct as a program segment
(a sequence) is a member of the equivalence class that is the string. Conversely, given a subsegment of

a program, there is a unique equivalence class, i.e., string, containing that subsegment as a member.

2.2 BACKGROUND NOTATION, CONVENTIONS, AND POINT OF VIEW
Because the view of a function as a set is so fundamental to our development, we state again for

emphasis the characterization of functions already indicated.

2.2.1 Note: A relation is a set of ordered pairs. A function is a set of ordered pairs no two of
which have the same first element.

We assume as familiar the usual notation for sets. As logical shorthand: "3 - a" denotes "there
exist(s) - such that"; "V" denotes "for each"; and "A" denotes "and". We use two kinds of definitions.
One we call "Definition", wherein we define the meaning of a statement in terms of statements already
defined. The other we call "Notation", which provides a new name to a set that is already defined. In

"Definition", we use as shorthand for "denotes" whenever later reference is needed for a long expres-

sion. In "Notation", we also use "E-a" whenever new symbolism is defined in terms of already-defined
symbolism; and there we sometimes use the concept of a "class" for aggregates that are in a sense too
large to be sets. This is for notational convenience; we perform no operations on such classes; so we
need not worry about b-inging down on our development the wr ah of such things as Russell's Paradox.
Finally, we employ the label "Observation" for theorems whose proof either follows directly from
immediately preceding definitions or is a completely standard and well known exercise in mathematics.

Each observation that we make facilitates understanding of a later definition, theorem, or proof.

2.2.2 Notation: "Set" denotes the class of all sets.
"Relat" denotes the class of all relations.

V S e Set, "#S " denotes the cardinality of S.

V r e Relat, "Dom. r " and "Rng. r" denote the domain and range, respectively, of r.

Z gm { nIn is an integer} A Z+ im E Z In> 01.
V rn e Z, V n e Zu{co}, if rz e Z then .2,"E{IceZinz-5.kc_n} Am..nmsZ,^

A if a = co then Zmn {k E Z fit < lc} A Z,4* ME Zma).

Actually, for convenient notational purposes, we shall recognize "classes" too large to be sets, but
these could be eliminated from the development without loss of accuracy.

5
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2.2.3 Observation: Z+ = Z11° A V m,n E Z, Z, = m.. n.

2.2.4 Convention: V k E Z, k-1-= = co+k = co -k = co > k.

Although the following notation is fairly standard, it seems appropriate to state it specifically.

2.2.5 Notation: V S, T E Set, "f: S T" is a statement and

f : S <=> (f is a function A Dom./. = S A Rng.f T )

A Ts NE { f f:S
A 2s aa {T e Set I T S}.

V n e Z, V S e Set,

if S c Z+ A S 0 then "min. S" denotes the minimum of S

A if #S E Z+ then "max. S " denotes the maximum of S.

2.3 SEQUENCES AND STRINGS
As already indicated, the view of a sequence as a function is not just a matter of taste; it is

fundamental to our development. In the following definition, we restrict the meaning of "an infinite
sequence" to mean "an infinite sequence with domain the nonnegative integers". These are the only kind
of infinite sequences that we need in this paper. By restricting the meaning to the subject matter at
hand, we can offer succinct comments to the reader, which are also technically true, but which would be
technically false in more general contexts. On the other hand, the following definition also expands the
meaning of "a finite sequence" to include functions whose domains are arbitrary segments of the integers
-- not just the nonnegative integers. This expansion of the usual meaning of "a finite sequence" allows
us to handle in the general case what would otherwise be special cases.

2.3.1 Definition: (sequences)

s is an infinite sequence 4.) (3 A e Set s : Z0+ A)

s is a finite sequence 4.) (3 m, n E Z0+ A 3 A E Set s: m.. n A)

2.3.2 Notation: V A e Set,

Seq.A sr= {s I s : Z0+ . A}

A Fsq.A s={ s I s is a finite sequence A Rng..s c A}

AVSE Fsq.A,
SEG.sw{tIOstcsAVkEZ,Vi,jEDom.t, ifi<k<jithenkEDom.t}

For general functions, we often use "f. c" to denote the standard "f(c)" in order to minimize
nested parentheses, employing parentheses only for functions with more than one argument or to avoid
ambiguity. We generally use 7c. whenever f is a sequence. (If f is a tuple, we also use f to denote the
cth component of f.)

2.3.3. Definition: (equivalent sequences)

,{
A E Set A s,t e Fsq. A

s is A-equivalent to t 4=> A #s = #t

A V I. E 0..#S-1, Smi, Dom. 4i = train. Dom, 1+;

2.3.4 Observation: v A E Set, "is A-equivalent to" is an equivalence relation on F.) A.

6
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2.3.5 Definition: (strings)

{
A E Set A Str (::: Fsq. A

Str is an A-string <=:, A V s, t e Fsq. A,

(s, t E SP' <=> s is A-equivalent to t)

As previously indicated, program constructs will be defined as strings of tokens. These
constructs are most easily remembered an-1 recognized as the concatenation of singleton strings whose
defining token is a mnemonic identifier. The notation "S ^ T " is used for the concatenation of strings S
and T, and is precisely defined as follows.

2.3.6 Notation: V A E Set, STR. A G{ x 1 x is a nonetnpty A-String}

A V S, T e STR. A, S ^ T denotes the set defined by:

,c3SESA3tETu e S"T <=> D II = SUt A #11 = #5 + #t

A min. Dom. u = min. Dom. s A max. Dorn. s + 1 = min. Dom. t

2.3.7 Observation: V A e Set, V S, T, U E STR. A, S ^ T e STR. A A S^(T^ U) = (S^ T) ^ U.

In addition to the difference between sequences and strings, one should recognize that every
finite sequence into a given set A has a unique A-string containing it. This idea is embodied more
precisely in the following observation, which justifies the notation that follows it.

2.3.8 Observation: V T e Set, V S e Fsq. T, 3 Str e STR. TDSE Str A V Ste STR. T, if S e St then St = Str.

2.3.9 Notation: V T E Set, V S E Fsq. T, [S] denotes the unique member of STR. T such that S e [S].

2.4 IMPERATIVE PROGRAMMING LANGUAGE SYSTEMS

In the definition of "imperative programming language system" given below: Sets Tk, Val, Rel,
and VAL will represent tokens, values, relation :, and Valu {co}, respectively. A "program" is a member of
Fsq.Tk with certain properties. A "state" is a member of Seq.VAL. FVal. P and ADR. P represent,
respectively, memory locations in ROM where finitely many values are stored, and locations (out beyond
ROM) allotted to program P for its use. A position in the program is an element of the program's
domain, i.e., a subscript of the program. The domain of the "control function", Ctrl, is the Cartesian
product Fsq.Tk x Seq.VAL x Z +. We use the projection functions St and Pos to pick out the state and
position, respectively, from a given member of that domain. This motivates the following notation.

2.4.1 Notation: V Tk, VAL e Set, V (S s, k) E Fsq. Tk x Seq.VAL x Z +,

St (S s, k) E s A Pos (S ',s, k) = k.

An "imperative programming language system" is a 14-tuple whose first three components,
Tk (tokens), Val (values), Rel (relations), and last component, Ctrl, were discussed in the preceding para-
graph. The next four components are stare, stop (two tokens), tru, and fats (two values): The other six
are functions: OprCorr, Corn, Compat, Rcvr, v, and Loc. These building blocks of programming systems,
outlined in the table below, involve (a) receivers (strings that can legitimately appear on the receiving

We refrain from appending "e" to these names to remind ourselves that these are just abstract
values not known a priori.



end of an assignment statement ), hence Rcvr ; (b) values, hence v ; (c) locations where values are
stored, hence Loc; (d) rules of type compatibility, hence Compat; (e) commands, hence, Corn; and (f) a
mechanism for determining operational correctness, hence OprCorr, where "S is operationally correct in s"

means (intuitively) that S causes no error during execution either of the compiler or of the program
containing S -- provided s is the "state of memory" when S is encountered in either execution (this does

not prevent the execution of S from being nonterminating).

FUNCTION TAKING TO INTUITION

OprCorr (S, s) tru if S is operationally correct in state s

fals otherwise

Corn (S, s) tru if S is a command in state s

fals otherwise

Rcvr (S, s) tru if S is a receiver in state s

fals otherwise

v (S, s) some if S is an "expression" (a Val- valued function of

value the receivers) in state s

co otherwise

Loc (S, s) some if S is a receiver in state s

address

00 otherwise

Compat (S1, S2, ss) tru if Si, S2 are type-compatible "expressions" in

state s

fals otherwise

The intuition behind the requirements labelled (1) - (8) in Definition 2.4.2 below is indicated as follows:

1) 00 is not a value, every value is a string of tokens, and Rel is a set of relations between values.

2) Every value is operationally correct in every state and has itself as value in any state.

3) Every command is operationally correct.

4) A receiver in a given state is operationally correct and has its value stored in a location

determined by that state.

5) Every value is compatible with itself; any two type-compatible strings are operationally correct;

and two strings compatible with some value are compatible with each other.

6) Every value has a compatible receiver in some state and is stored in the location for that

receiver determined by that state.

7) A program is a finite sequence of tokens, always starting and ending with start and stop,

respectively; Ctrl stops at stop; its states have finitely many values stored in ROM; and Ctrl will

not map any state or position in a segment out of its program.

8) Everything in Rel has a Boolean representing it.

A minimal example demonstrating the consistency of the following definition is in Appendix 1.

Choosing "receiver of values" as primitive avoids the issue of whether things like "A[2]" are
"variables".

4:7 117,72 ,
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2.4.2 Definition: (imperative programming language systems)

3 Tk, Val, VAL, Rel E Set A 3 start, stop e Tk A 3 tru, fats Val A VAL = Valuleol

A 3 Op;Corr : STR. 77c x Seq. VAL {tru, fall}
A 3 Corn : STR. 77c x Seq. VAL {tru, fall}
A 3 Compat : STR. Tk x STR. Tk x Seq. VAL {tru, fats}
A 3 Rcvr : STR. Tk x Seq. VAL {tru, fats}
A 3 v : STR. Tk x Seq. VAL VAL

A 3 Loc : STR. Tk x Seq. VAL Zo+U{co}

A 3 Ctrl : Fsq. Tic x Seq. VAL x Z+ Fsq. Tic x Seq. VAL x Z+

L = (27c, Val, Rel, start, stop, tru fats, Op:Corr, Corn, Cornpat, Rcvr, v, Loc, Ctrl )

1) A start stop A tru fats A CO Val c STR. Tk n Rel c 2vaixvd

A V (S,$) E STR. Tk x Seq. VAL,

2) if S E Val then OprCorr(S, s) = tru n v(S, s) = S
3) A if Com(S,$) = tru then OprCorr(S, s) = tru

L is an

imperative

programming

language

system

4) A if Rcvr(S, s) = tru then OprCorr(S, s) = tru n si,(s.$) = v(S, s) E Val

5) A V c e Val, V s e Seq.Val, Cornpat(c, c, s) = tn.(

A V S1, S2 E STR. Tic

if Compat(S 1 , S2, s) = tru then Compat(S2, S1, s) = tru = OprCorr(S1 , s) = OprCorr(S2, s)

A if Compat(S 1 , c, s) = tru = Compat(S2, c, s) then Compat(S1, S2, s) = tru

6)AVcEVa/, 3 (S, s) e STR. Tk x Seq. VAL

Rcvr(S, s) = tru A Cornpat(S, c, s) = tru A v(S, s) = c = S Loc(s, 3.)

7) A if (PL is the set defined by

P E Fsq. Tk A min. Dorn. P = 1 A Pl = start A P = stop

PEPS
A 3 s E Seq. VAL OprCon-([P], s) = tru

then 3 ADR : CPL. {Z,+ m E Z4-} A 3 ST : PL 2seq.vAL A 3 FVal : 01, 2va'

VPeeL,Vse Seq.VAL, Ctrl(P, s,#P) = (P, s,#P)
A ti e FVal. P, 3 a e 0..nzin. Dom. ADR. P-1 s e ST. P, sa =c
A V (S s, k) E Fsq. Tk x Seq. VAL x Z +,

St. Ctrl (S s, k) e ST. P A Pos. Ctrl (S s, k) e Dom. P

8) A V R E Rel, V s E Seq.VAL,

if RCV. s m{S I Rcvr(S, s) = tru} A
EXPR. sm{SI v(S, s) e Val A 3 n e Z+ f : (RCV. s)^ STR.Tk A S e Rng. f }

then 3 b : (EXPR. s)2 EXPR. s

V E1, E2 E EXPR. s, if (v (El , s), v(E2, s)) e R ) then v(b (El , E2), s) = tru

A if (v (El , s), v(E2, s)) R ) then v(b(E1 , E2), s) = fats

13
9
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The following notation focuses attention on several sets that depend on a given state s : UNIT. s,

RCV. s, COM. s, EXPR. s, BE. s, and TypeEquiv. s. Their names are intended to suggest "units",
"receivers", "commands", "expressions", "Boolean expressions", and "type equivalence", respectively. Intui-

tively: a unit is operationally correct in the state; receivers and expressions we have already characterized;

a Boolean expression is one whose only values are trot and fats; and type equivalence is a relation on

-dues. It seems difficult to characterize what "command" should mean. A first thought might be a
string S of tokens for which there is a state s such that the execution of S begun in state s would result

in a change of state. However, that would exclude the empty command, as well as loops and condition-

als whose bodies consist of the empty command. Thus, we only specify that there must be a way to
determine whether a given string of tokens in a given state is a command or not.

Also defined below is a very important function, PC p , which is called "program control in P".

"St " and "Pos", defined earlier as projections from a triple Cartesian product, are here overloaded to
designate projections from a double Cartesian product as well.

2.4.3 Notation: IPLS denotes the class of all imperative programming language systems.

V L IPLS, V s E Seq. VAL,

A if a L2 A Vat a.' L3 tru L6 A OprCoir r--= L8 A V ---- L12 A LOC L13 A Ctrl a L14

then
ADR, ST, FVa1, RCV. s and EXPR. s are defined in Definition 2.4.2

A UNIT s {u E STR. Tk OprCorr(u,$) = tru}

A COM. s z {C E STR. Tk I Com(C,$) = nu}

A BE. s = {b E EXPR. s I v(b, s) E {tru, fats} }

A TypeEquiv. s = {(u, w) E Val x Val Conzpat(u,w,$) = tru}

A V P E eL, PCP denotes the function such that PCP : ST. P x 1..#P ST. P x 1.. #P

A V (s, k) E ST. P x 1..#P, PC ,(s, k) = Crrl(P, s, k)

A V (s, k) E ST. P x 1-#P, A St(s,k) = s A Pos(s,k) = k

2.4.4 Theorem: Every Re/-relationship has a Boolean expression for that relationship, and type equivalence
is an equivalence relation. More precisely, let L E IPLS, P E (PL, , Val si L3 , tru a- L6 ,

R E Rel L3, and s E ST. P.

(1) V El, E2 E EXPR . s, if Compat(E1 E2, s) = tru

then 3 bx e BE. s v(bx, s) = tru b 04E1, s),v(E2, s)) E R ).

(2) 7ypeEquiv. s is an equivalence relation.

Proof: See Appendix 2.

2.4.5 Definition: (types)

s e Seq.VAL

T is a type in s <=>

T is an equivalence class determined by TypeEquiv. s



.

2.5 PROGRAM EXECUTION AND PROGRAM CONSTRUCTS
We now define an execution of a program segment as a sequence of pairs in the domain of the

program-control function PCP , where P is the program in which the segment appears. Intuitively, execu-

tion starts at the initial token of the segment and moves under program control either forever or until
reaching either the last token of the program or the token just beyond end of the segment.

2.5.1 Definition: (executions of segments) Let L E IPLS, P E PL , and S E SEG. P.

E is an 3 n Zo+U{co} A 2 s c ST. P

execution <=:, E: Zon+1 ST. P x 1..#P n E0 = (s, min. Dom. S) A Vie Zon, EH.1 = PCP

of S A V lc E Z+, ((Pos. Ek = #P e Dom. S or Pos. Ek = max. Dom. S +1) <=> k+1 = #E )

E is an execution of
(E is an execution of S n #E E Z2+)

S that terminates

2.5.2 Notation: V L /PLS, VPE TL, V S e SEG. P,

Exec. P. S = { E I E is an execution of S}

A EXEC. / ufFrPc. P. S ISE SEG. PI
A EXp s {( (S, s), E) E (SEG. P x ST. P) x EXEC. P I St. E0 =snEe Exec. P. S}

2.5.3: Theorem: Given program P and state s, there exists an execution of P beginning in s ;
given segment S of P, if there exists an execution of S that begins in s, then that execution is
unique, so relation EXp is actually a function. More precisely:

Let L E IPLS, P E PL , and S e SEG. P.

(1) V s E ST. P, 3 E E Ern. P. P St. E0 = s.

(2) V El ,E2 E Exec. P. S, if St. EL) = St. E20 then El = E2.

(3) EXp : Dom. EXp EXEC. P .

Proof: See Appendix 2.

Note in the following definition that, even though we choose to name delimiters so as to suggest
a while-loop, there is nothing inherent in the definition to distinguish the construct being defined from
an if-then-endif construct.
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2.5.4 Definition: (citadels)

Let L IPLS and Tk L2 .

W e STR. Tk

A 3 s E Seq. VAL 3 while, do, end while, sp, b, C E UNIT. s

W is a

citadel

in L

# {while, do, endwhile, sp} = 4 A V SeqTok E whileuclouendwhileusp, #SeqTok = 1

W = while ^ sp ^ b sp ^ do ^ sp ^ C ^ sp ^ endwhile

AVPE6'L, if WrISEG. P 0

then 3s EST.PDW,CECOM.s Ab EBE.s

2.5.5 Notation: V L E IPLS,

if Tk L2

then Citad. L = { W E STR. Tk W is a citadel in L}

A V WE Citad. L, V s E Seq. VAL, V while, do, endwhile, sp, b, C E UNIT. s,

if W = while ^ sp ^ b ^ sp do ^ sp ^ C ^ sp ^ endwhile

then Guard. Wmbn Body. W =--- C.

We now :refine a loop as a citadel with a certain kind of execution. That execution E
determines a state sequence St and a position sequence Pos whose terms are the first and second
elements of the sequence E of pairs. Intuitively: The term of St when Pos is at while is the same as the
term of St when Pos is next at do (no side effects), and if the value of the guard in those states is false,
then Pos moves to the first token beyond endwhile and execution terminates. Otherwise, Pos moves to
the first token of the body., St is then subject to change as Pos varies through the body to endwhile and
back to while; and the process is repeated. If St has no term in which the value of the guard is false
when Pos is at while, then the execution is infinite.

In the following definition of a loop: The sequence s() denotes that subsequence of the state
sequence St consisting of those terms where Pos is at while; n denotes the number of iterations of the
loop, and n E Zo+U{o}; Sum. k denotes the number of steps in the execution of the kth iteration of the
loop; and sum. k denotes the sum of the steps in the individual parts, with 13(k) and -y(k) denoting the
number of steps in the execution of the guard b' and )ody C', respectively. Note that the length of each
of the units while, sp, do, and endwhile is 1; so the number, sum. k, of steps in each iteration of the loop
begun in state s(k) is the sum of

1 (for sp),

#EXp(b% s(k), (for guard b)

3 (for sp, do, and sp),

#EXp(C s(k)), (for body C) and

3 (for sp, endwhile, and while).

12
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2.5.6 Definition: (while-loop commands) Let L E IPLS, W E Citad. L, b = Guard. W, C = Body. W,

tru L6, and fals = L7.

V P e cPL, V W b', C' E SEG. P,

if W' E W b' E b C9 e C POS. while E min. Dom. W '

A POS. do EE POS. while +1+ #b' +2 A POS. endwhile = POS. do +1+ #C ' + 2

then V E e Exec. P. W

3 n E Zo+U{co} 3 s(') : Zon ST. P = St. E0 A E = EX p(W s(Q>)

A if n E Z0+ then b e BE. .0') n v(b, s(n) = fals

A if n > 0
then V k E Ze, b E BE. s(k) A W, C E COM. s(k)

A if 0. k = #EX(b', s(k)) E Z+ A -y k = #EX(C s(k) E Z+

A Sum. k = Zk--1)=0(1+(p. j)+3+(74)+3)

then V k E v(b, s(k) = tru n E s,. k = (S(k), POS. while )

E(Sum. k) +1 = (s(k), POS. while +1)

A V i E k, = EXp(b', s(k)

W is al

loop

A E(Sum. k)+1+(E3. k)+1 = (S(k), POS. do -1 )

E(Sum. k)4.1.,(0. k)+2 = (S(k), POS. do )

E(Sum. k)+1+(p. k)+3 = (S(k), POS. do +1)

A Vie 1..7. k, Epan. EXp(C 9, s(k))

A E(Sum. k)+1+(13. k)+3+(7. k)+1 = (s(k+1), POS. endwhile -1 )

E(Sum. k)+1+(13. k)+3+(ry. k)+2 = (0+1), POS. endwhile

A if n E Z+

then E sum. n = (s(n), POS. while )

A E(sunt. n)+1 = (s(n), POS. while+ 1)

A Vie 1..fl. n, E(sum. )+1+i = EXp(b', Po) ,

E(.cum.)+14.0.,0+1 = (s(n), POS. do-1)

A E(Sum.n)+2+0.n)+2 = (s(n, POS. do )

E(s...)+1+(8. n)+3 = (sw, POS. endwhile +1)

#E = 1+(Sum. n)+1+(/). n)+3

13
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2.6 PROGRAM ASSERTIONS AND CONDITIONS
We distinguish between "assertions" and "conditions". An assertion is a Boolean expression; a

condition is a set of states. For every assertion Q , there is a condition consisting of those states s for
which v(Q, s) = au. (The converse is not necessarily true.) While at first thought, restricting assertions
to be Boolean expressions in the programming language might seem too restrictive, existential-quantifier

and universal-quantifier assertions over very large, but finite, sets can be considered shorthand for multi-

ple disjunctions and conjunctions, respectively. This tact seems more than adequate for making
assertions about program code to be executed on finite machines. (All program states s might have

s, = co V i > m, for some m.)

2.6.1 Definition: (conditions and assertions) Let L E IPLS and P E TL.

C is a condition of P <=> C c ST. P

Q is an assertion about P in s e ST.P A Q EBE.$)

2.6.2 Notation: V L /PLS, V P E , V s E ST. P,

ASSERTP s = {Q E STR. 7k I Q is an assertion about P in s}

AVQE STR.Tk, if tru 1.6

then CONDI, Q = {s e ST. P I QE BE. s A v(Q, s) = tru}.

2.6.3 Definition: (assertions true at a position) Let L E IPLS, P E GL , and tru = L6.

Q is always true at
Q STR.T1c k E Dom. PAEE Exec. P. P

position k during
AVsEST. P, V i E Dom. E, if Ei = (s, k) then s E CONDp .Q

execution E of P

3.0 TRANSLATION
It only remains to indicate how the appealing operational language in the statement and proof

of Theorem 1.1.1 can be translated into set-theoretic terms. Phrases that translate directly from the
definitions in Section 2 are omitted here, e.g., "execution E terminates" means "#E E Z24 ".

The context of the statement of Theorem 1.1.1 is that of "any execution of" a loop in some

program, so we can assume that we have a program P in which the loop W appears. Thus, "during
any execution of W", means "V E E Exec. P. W", where W' E WnSEG. P; and we are considering an
arbitrary execution E of W'. The loop W of the theorem fits the designation of a citadel in Section 2
provided we make the following identifications.

The loop W in the theorem The loop W in Section 2
while while

<guard>
do begin do
<body>
end endwhile

Note that, in order to make this identification, we have to consider the 8-character string 'do begin' as

a string of length 1 (i.e., an equivalence class of singleton sequences having the form {(k, do begin)},

where k E Za+) -- because do is defined in our development as a string of length 1, i.e., equivalence
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class of sequences of tokens, each such sequence of tokens being a singleton set. Other spaces and
carriage returns appearing in the loop of the theorem are identified with "sp" in our development.
We assume that the W of our development fits the definition of a loop as given by Definition 2.5.6.

3.1 THE STATEMENT OF THEOREM 1.1.1
The meaning of the various phrases used in the statement of Theorem 1.1.1 are indicated as

follows.
"an expression that is a function of the program variables" is a member of

n{ EXPR. s(k) I k e Dom. s(')}.
"a statement about current values of the program variables" is a member of

n{ ASSERTp . s(k) I k E Dom. se)).

As indicated in these two interpretations, we consider s(*) to represent the sequence of states
with domain Zon given in the definition of a loop in Definition 2.5.6, and we let W', b', and C' be
members of SEG. P such that W' E W, b' E b, and C' e C.

Note that E EXp(W', so)).

n<guard> and <body> terminate" means

"V k e Dom. se), #EXp(b), s(k)),#EXp(C ',s(k)) E Z2+ " .

"no program variable changes value as a result of any evaluation of <guard>" means

"V k E Dom. se), if EE = EXp(b',s(k)) then St. EE EE = St. EEx. DOM. iEn

For each statement S, "S is true each time program control reaches <guard>" means

"V k E Dom. se), S e ASSERTp s(k) A s(k) E CONDp S".

"Expr is an expression that is a function of the program variables" means

"Expr E n{ EXPR. ss 3 k e Dom. s(') s(k) = ss } ".

" 'Expr 5. c ' is true each time program control reaches <guard>" means

c Val x Val A c e Val

AVke Dom. se),
v(Expr, s(k)) e Val A Compat(Expr, c, s(k)) = tru E EXPR. s(k)

A 'Expr -.5 c ' E ASSERTp s(k) A s(k) E CONDp .'Expr < c ' ".

"whenever program control reaches line 2, if v0 denotes the value of Eypr at that time,

then the value of Expr is at least v0+1 the next time program control reaches line 3"

means

"V t E Dom. E,

if Pos. E, = min. Dom. C '-1 A v(Expr, St. E,) = v

A tt = min {i e Dom. Eli>tA Pos. E1 = max. Dom. C ' +1}

then v(Expr, St. Ell) to+1".

3.2 THE PROOF OF THEOREM 1.1.1, PART (1)
Some of the phrases used in the proof of Theorem 1.1.1 have already been translated above.

Other phrases not yet translated that are used in the proof of Part (1) are indicated as follows. (The
sequences /3, ry, and Sum used below are those with the same name designated in Definition 2.5.6 of a
loop.)
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"program control must reach line 3 subsequent to any time during E that it reaches
line 2" means

"v k e Dom. s(*), if (sum. k) +1 + k) +3 E Dom. E

then (sum. k) +1 +($. k)+ 3+ (y. k)+1 e Dom. E"

"the value of Erpr must increase by at least 1 each time <body> is executed" means

k E Dom. s('), if v(<guard>, soo) = tru

then v(Expr, s(k+1)) 1 + v(Erpr, s(k))"

"Expr has some value vo the first time program control reaches <guard> during E"

means

"3 vo E Val D Compat(Expr, v , s())) = tru n v(Expr, so:1)) = v°".

"<body> can only be executed finitely many times during E" means

"3 m e Zo+ D if (sum.m)+1+(6.m)+3 E Dom. E

then Pos. 4,,..)+1+(ft. m) +3 mm. Dom. C '-1"

"the value of Expr [increases] beyond c during some execution of <body>" means

"3 k E Don, s(*) D v(Expr, s(k +1)) > c"

"<guard> can only be executed finitely many times [during E]" means

m E Zo+ a (sum. m)+1+(3. m)+4 e Dom. E

3.3 THE PROOF OF THEOREM 1.1.1, PART (2)

The meaning of the various phrases used in the proof of part (2) of Theorem 1.1.1, not
already translated above, are indicated as follows.

"there is a last time t that program control reaches guard [during E]" means

"3 t e Dom. E D Pos. E, = min. b' A t = max {i e Dom. E I Pos. E, = min.Dom. b'}".

"Inv is true at time t [which is the last time program control reaches <guard>

during E]" and 'not <guard>' is true at time t" and "Post is true at time t" means
"v(Inv, Po) = tru" and "v(<guard>,s(71)) = fals" and "v(Post, so)) = tru".

"Post must be true when program control reaches line 4" means

" v(Post, so)) = tru A St. E Dom. E = .0)".

This completes the translation.

4.0 SUMMARY
The goal of this paper was to legitimize the use of the appealing operational language used in

the statement and proof of Theorem 1.1.1 by defining "program control" and other operational concepts
in terms of set theory. There were two key elements in the development of these definitions. One was
a distinction that is not often made, and the other was a unifying use of a definition not often insisted
upon. The distinction was between sequences and strings, with strings defined as equivalence classes of
sequences. The unifying use was of the definition of a sequence as a function, a function as a relation,
and a relation as a set. Since a sequence is a set, set operations can be performed on a sequence, e.g.,
taking its cardinality, taking its union with other sequences, using a sequence as the domain of a

function, etc.
Once the definition of an imperative programming language system was developed, all of the

familiar terms used in discussing programs and programming could be defined as sets. In particular, all
of the language used in Theorem 1.1.1 and its proof could be defined in set-theoretic terms. The two
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most prominmt such terms were "program control" and "execution of a program segment". Program
control in a 2articular program turned out to be a function mapping each pair consisting of a position
(in the program) and a state into a (possibly different) pair also consisting of a position and state.
Execution of a segment of a program turned out to be a sequence of terms in the domain of program
control for that program, with a terminating execution being such a sequence that is finite.

Finally, each of the questionable words and phrases used in the statement and proof of
fundamental Theorem 1.1.1 was translated into the precise set-theoretic terms defined in Section 2.
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APPENDIX 1

A MINIMAL EXAMPLE DEMONSTRATING THE CONSISTENCY OF THE DEFINITION OF
IMPERATIVE PROGRAMMING LANGUAGE SYSTEMS

We employ the standard notation of single quotes delimiting terms of sequences to represent
strings, e.g., denotes the string of sequences each of which has length 1 and whose only term is fi, etc.
We use tuple notation for defining sequences, indicating with an initial subscript what the minimum of
the domain of the sequence is, e.g., we use "S = 1(a, b, c)" as meaning "S1 = a A S2 = b A S3 = C A #S = 3",
and we use "S = 0(a, b, c)" as meaning "S0 = a A Si = b A S2 = C A #S = 3".

SYNOPSIS OF THE EXAMPLE

Four tokens, built from sets of integers, form the set Tk of all tokens. Two of them are used to
define start and stop. Another token, a, is used to define the string-of-tokens delimiter sp, which has
length 1. The remaining token is used as the term for constant sequences of various lengths to form
notable strings, two of which are tru and fals, which are also used as the only elements of Val.

Two more notable strings, x and y, form a set Var, intended to suggest "variable". The only
other notable strings are gets and Eq. String gets is used in the definition of two commands (each
suggestive of an assignment statement), and "gets" is intended to suggest "gets the value of". String Eq is
used as the middle unit in strings consisting of the concatenation of other units -- strings intended to
suggest a statement of a relation between the first and last unit. A single relation, ID (the identity
function on Val), is defined and Rel is defined to be the singleton set containing ID.

The only three commands in the system are the empty command, an assignment of y to x, and
an assignment of x to y. The only three possible programs in the system use these commands,
respectively, as their only components other than start and stop. All three programs have the same
address space Z 2+, all store value tru at address 0 and value fals at address 1, and all use location 2 to
store values of receiver x and all use location 3 to store values of receiver y. The definitions of the
seven required functions are designed to satisfy the eight requirements. The function Compat is defined
in such a way that Val forms the only type in the system.

DEFINITION OF THE EXAMPLE

Define: co E O A start = Z+ A stop 7---= Z A a -= {Z+} A t3 = {Z} A Tk E=.- {start, stop, a, 13}.

Note A3.1: start, stop Tk A start P6 stop A STR. Tk = { [t] I tE u(Tk ma- n ) Im, n E Zo+} .

Define: sp 'a' A tru r=" ' /3' A fals tru ^'t4' A x fals" )9' A gets =-= x^'13' A y = gets fr A Eq y^'O'

A Val mi {tru, false} A VAL sa. Va/u{co} A Var = fx, yl A ID -= {(tru, tru), (fals, fals)} A Rel {ID} .

Note A3.2: tru, fats E Val A tru fals A e Val A Val C STR.Tk A VAL = ValUfeol A Rel c raj >< Val

A Seq.VAL =fsls: Z0+ ftru,fals,031 }



Define: Po) a- ,(start, a, stop) A P<2.) = ,(start, a, x, a, gets, a, y, a, stop)
A p(3) = i(start, a, y, a, gets, a, x, a, stop)

A 6' {P(1), Pm, Po)} A STe = {s E Seq.VAL I so = tru n si = fals}
AViel...3, ST. Po = STEP n ADR. a Z2+ A FVal. a Val

E E {S1 ^ sp ^ Eq" sp ^ S2 I S1, S2 E STR. T1c} A COM mi {sp, 'xagetsay' , 'yagetsar'}

Define f, g. STe VAL by: V s = o(tru, fats, s2 , s3 , s4 , E ST.6), f(s) = o(tru, fats, s3 s3 s4 , ...)
g(s) = 0(tru, fals, sz , s2 , s 4 , ...).

Define Ctrl: Fsq.Tk x Seq.VAL x Z+ Fsq.Tk x Seq.VAL x Z+ by:

V (S',s,k) E Fsq.Tk x Seq.VAL x Z +,

if s 6, or s ST.G) then Cni(S',s,k) = (S s, k)

A if S'eense ST.T n S 'k = stop then Ctrl(S s, k) = (S s, k)

AifS'EeAsEST.OA( S ' E {start, a}
or (S ' = Pa) A k E 1..2)
or (S' E {P(2), P(3)} n k E 1..6u{8})

then Ctrl(S s, k) = (S s, k+ 1)

AifS'ETASEST.OAS'E{P2),P(3)}Ak=7

(S f(s), 8) if S' =
then Ctrl(S s, k)

(S ' , g(s), 8) if S ' = Po)

A otherwise, Ctrl(S s, k) (S s, k).

Define Com, Rcvr, OprCorr : STR.Tk x Seq.VAL {tru, fall} and
define Loc: STR.Tk x Seq.VAL Zo+u{co} and

define v: STR.Tk x Seq.VAL {tru, fals}u{co} by:

V (S, s) E STR. Tk x Seq.Val,

tru if S E COM
Coln(S, s)

fats otherwise

tru if S E Var
Rcvr(S, s)

fall otherwise



'4

OprCorr(S, s)
tru if S E ValuVaruCOMu{' start' ,'stop'}ueu E

fals otherwise

if S = x
A Loc(S, s) E--- 3 if S = y

co otherwise.

A if S ValuVart.)E or s sTe then v(S, s)
A if S E ValuVaru EA se STe then

S if S E Val
s2 if S =x

v(S, s) s3 if S = y
tru if 3 S1 , S2 E STR.Tk DS = Si^ sp ^ Eq ^ sp ^ S2 A v(S/,$) = v (S2, s)

fals if 3 S1 , S2 E STR.Tk DS =SI^ sp ^ Eq ^ sp ^ S2 A v(S/,$) v(S2, s)

Define Compat: STR.Tk x STR.Tk x Seq.VAL {tru, fals} by:
tru if v(S/,$), v(S2, s) E Val

V (S1, S2, s) e STR.Tk x STR.Tk x Seq.VAL, Compat(S1, S2, s)
fals otherwise.

Define: L = (Tk, Val, Rel, start, stop, tru, fals, OprCorr, Com, Compat, Rcvr, v,Loc, Ctrl )

A 1: 'L

Requirement (1) follows from Notes A3.1, A3.2.

Requirement (2) follows from the definitions of OprCorr and v.

Requirement (3) follows from the definitions of Com and OprCorr.

Requirement (4) follows from the definitions of Rcvr, OprCorr, Loc, and v.

Requirement (5) follows from the definitions of Compat and OprCorr.

For requirement (6): Let c e Val and define S = x and s = 0(tru, fals, c, c, c,...), i.e, s, =c Vie Z2 +.

The result then follows from the definitions of Rcvr, Compat, v, and Loc.

Requirement (7) follows from the definitions of functions ADR, ST, and FVaI -- all with domain

PL = (5' and from the definition of the function Ctrl.

For requirement (8): Let R e Rel and s e Seq.VAL. Then R = ID = {(tru, tru), (fals, fals)}

Define function b as follows. Let El , E2 e EXPR. s. Then v (El , s), v (El , s) e Val, and:

3 m,k E Z+ 3 fl : (RCV. s)'" STR.Tk A 3 f2 : (RCV. s)k STR.Tk
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El E Rng.f7 n E2 E Rng.f2,

so 3 rl : 1.. m RCV. s 3 r2: 1.. k RCV. s

fl (rl 1 ,..., rl ,,,) = El A f2(r21,...,r2k) = E2.

Thus, define n m+k and define f: (RCV. s) STR.Tk by

r : 1.. n RCV s, f(ri,...,r) sp^ Eq ^ sp ^

and define b(E1,E2) = ,..., r21 r2k).

Then b(E1, E2) = 1 .0" E4 "P(r21,...,r2k) = El ^ sp ^ Eq"sp^ E2 E E, by definition of E.'

Since v(El,$), v(El,$) E Val, v(El ^ sp"Eq^sp"E2,$) E Val by definition of v. Thus

El ^ sp ^ Eq ^ sp ^ E2 E EXPR. s, which shows that Rng. r c EXPR. s, so b : (EXPR. s) 2 EXPR. s.

To prove the two desired implications, let El, E2 E EXPR. s and (v(El, s), v(E2. s)) E R = ID. Then

v(b(E1,E2), s) = v(El"sp^ Eq ^ sp ^ E2,$) by definition of b; and El ^ sp"Eq^ sp^ E2 E E by
definition of E, so

= tru by definition of v,

which completes the proof of the first implication. The proof of the second implication is completely

parallel, and it is omitted.

Note that string b(E1,E2) = El ^ sp^ Eq ^ sp"E2 is well defined, even though fl, fl, rl, r2 are
not necessarily unique, i.e., there might exist f7', f2', rl', r2' with the same properties WITHOUT /7' = f7,
f2' = f2, etc.
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APPENDIX 2

PROOF OF THEOREMS 2.4.4 AND 2.5.3

Proof of Theorem 2.4.4:

Proof of Part (1): Let s E ST. P, El ,E2 E EXPR. s, and Compat(El, E2, s) = tru. By property (8) of

Definition 2.4.2,

(*) 3 b : (EXPR. 3)2 EXPR. s

a V EE1, EE2 E EXPR. s, if (v(EE1, s), v(EE2, s)) E R ) then v(b(EE1, EE2), s) = tru

A if (v(EE1, s), v(EE2, s)) e R ) then v(b(EE1, EE2), s) = fals

Define bx = b(El, E2). We first establish the desired equivalence and then show that bx E BE. s.

If v(bx, s) = tru then v(b(E1 , E2), s) = tru so "(v(E1 , s), v(E2, s)) R" cannot be true, because by line (*)

that would imply v(b(E1 , E2), s) = fals, so tru would equal fals, which would be a contradiction. This

proves of the desired equivalence.

If (v(E1 , s), v(E2, s)) E R then, by line (*), v(b(E 1 , E.?), s) = tru, i.e., v(bx, s) = tru, which proves the

other desired implication, and the desired equivalence is established.

It only remains to show that bx E BE. s. Since bx = b(E1 , E2) E Rng. b g EXPR. s, bx E EXPR. s so we

need only show that v(bx, s) E {tru, fats }. But this follows from an argument parallel to the equivalence

argument just given, because either "(v(E1 , s), v(E2, s)) E R" is true or not, so there are only two cases

to consider. In case this is true, v(bx, s) = mt, and in case it is false, v(bx, s) = fals. Since these are the

only two possible cases, v(bx, s) E {tru, fats} in any case. Thus bx E BE. s, which completes the proof of

Part (1).

Proof of Part (2): Let s E Seq.VAL. By the first conjunct of requirement (5) of Definition 2.4.2,

V c E Val, Compat(c,c, s) = tru,

so (c, c) E TypeEquiv. s, which proves that TypeEquiv. s is reflexive.

Let (c, d) E 7ypeEquiv. s. Then Compar(c, d, s) = tru, so by the second conjunct of requirement (5),

Compat(d, c, s) = tru, i.e., (d, c) E TypeEquiv. s,



which proves that TypeEquiv. s is symmetric.

Let (c, d), (d, e) E TypeEquiv. s. Then

Compat(c, d, s) = nu = Compat(d, e, s) = Compat(e, d, s)

by both the definition of TypeEquiv. s and the second conjunct of requirement (5). By the third

conjunct,

Compat(c, e, s) = tru, i.e., (c, e) E TypeEquiv. s,

which proves that TypeEquiv. s is transitive, which completes the proof of Part (2).

Proof of Theorem 2.5.3:

Proof of Part (1): V s e ST. P, define E inductively by defining

E0 = (s,1)

A Vie 20+, if Ei is defined and Pos. E. #P

then define = PCP . Ei .

Then E E Exec. P. P and St. E0 = s, which is what we wanted to prove.

Proof of Part (2): Let E1, E2 E Exec. P. S and St. E/o = .St.E2o. The proof that El = E2 is by

induction. Define K by:

k E K

k E Zo+

A if V i E 0.. k, i E (Dom. El)u(Dom. E2)

then V i E 0.. k, i E (Dom. El)n(Dom. E2) A El = EZ

0 E K because: 0 e Zo+ and E/o = (St. El0 , min. Dom. S) = (St. E20 , min. Dom. S) = E20

Let k E K and we must prove that k+1 E K. Then k E Zo+, which implies k+1 E Z+, so assume

V i E 0.. k+1, i E (Dom.El)u(Dom. E2)

and we must prove that V i E 0.. k , i e (Dom. El)n(Dom. E2) A El; . Thus we

let i E 0.. k+1

23

27



and we must show that i E (Dom. El)n(Dom. E2) A El = E21. If i E 0.. k then the desired result holds

because k E K, so we need only consider the case where i = k+1.

Case I. k+1 E Dom. El. Then k E Dom. El so, since k E K, k E (Dom. El)n(Dom. E2) A Elk = E2k , so

( *) PCP . El k = PCP E2k because PCJ, is a function.

If we can show that k1 also belongs to Dom. E2, line (*) will convert to Elk+i =

Suppose k+1 e Dorn. E2. Then k = #E2, so by definition of execution of S,

3 kk E Z0+ k = kk+1, so kk E K and El kk = E2kk and

Pos. E2kk = #P or Pos. E2kk = mat Dom. S+1, i.e.,

Pos. El kk = #P or Pos. El kk = max. Dom. S+1, because El kk = E2k, --

and in either case kk+1 cannot be a member of Dom. El, i.e., k cannot be a member of

Dorn. El. This contradicts the fact that k E K (which implied that

k E (Dom. El)n(Dom. E2), as observed earlier). Thus our supposition is false,

so k+1 E Dom. E2. Thus by (*), E7 k+1 = E2k+i, which completes the argument in this rase that

k+ l E K

Case II. k+1 E Dom. E2. The argument here that k+1 E K is completely parallel to that of Case I, and

it is omitted.

'Thus k+1 K in both cases, which completes the proof, by the induction principle, that K = Zo+ . Thus,

by definition of K, Elk = E2k V k E (Dom. El)u(Dom. E2), i.e., El = E2.

Proof of Part (3): We must prove that any "two" members of EXp that have the same first element must

have the same second element as well, so let ( (5,$), El ), ( (S, s), E2 ) E EX p , and we wish to prove

that El = E2. Then by definition of EX), , El , E2 e Exec. P. S and St. El o = s = St. E20 , which

satisfies the hypothesis of (2), so the conclusion holds, namely, El = E2. q.e.d.
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