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Compares factor analysis and Rasch measurement. Shows how
they: 1) address the same data, with different interpretations of
numerical status, 2) use the same estimation method, with
different measurement models, 3) solve the same problem, with
different utility. Factor analysis is faulted for 1) mistaking
stochastic observations of ordered labels as established linear
measures and for 2) failing to construct linear measurement. How
to use Rasch measurement to replace factor analysis is developed
for a dichotomy and shown for a rating scale example.

Factor Analysis

Input datum x, is a test score, Likert rating or MCQ
response of persons n=1,N to items (or tests) i=1,L. The raw
data are expected to be sufficiently linecar to allow eguating
incommensurable item origins and scales by subtracting local
means and dividing by local standard deviations.

The sample standardized data for Factor 1 become:

Zni1 = (Xni - mi) /si

N N
my = Exni/N SJ? - E (Xn1 — mi)z/ (N - 1)

This item scale equating expects complete data. Only
persons with usable responses to every item can participate.
When data are missing, they must be feigned or incomplete persons
(or items) deleted. Deleting persons alters the interpretation
of the standardizing sample. Deleting items alters the

construct. Pair-wise deletion to estimate correlations biases
factors.

The model fo. Factor 1 is:

2
Zpgg = UpiVig + €nyiy ep;;~N(0, 031}

{u,, n=1,N} is a vector of person "factor scores",
predicted for persons by Factor 1.

{v, i=1,L} is a vector of item "factoxr loadings",
the regressions of {u,} on the data from items i=1,L.

1A short version of this mss. was delivered at the Mid-Western Educational
Research Association Annual Meeting, October 13, 1994.
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The residual from Factor 1 is:
Zp31 = UpaVig = €ng1 ™ 2pi2

Whether this residual is all error e,;,~ N(0,0?)

or in addition to error implies other factors is presumably
unknown.? When an additional factor is suspected, Factor 1
residuals are used for seeking Factor 2 and so on. Matrices of
decreasing residuals {{z,}} for j=2,M are extracted ia turn to
calculate the M factor model (Thurstone, 1947):

M
Zoy - ; u,viyy + € e ~N(0,0%) (4)

Since there is no objective basis for a "right" number of
factors nor a "theoretical® value for “"error" o¢? to factor down
to, factor analysts default to conventions like: Stop when
factor size (sum of squared factor loadings) becomes less than
one. Stop when successive factor sizes level off. Stop after
two or three factors, because anything more complicater is
impossible to replicate.

The simplest way to obtain optimal values for person and
item vectors {u,;} and {v;} for each Factor j is to minimize:

N L
Y Y (zpy - Uny0iy) 2 (5)

n-1 i-1

.

This "direct factor analysis" (Saunders 1850, Cattell 1852,
MacRae 1960, Wright and Evitts 1961) is a principal component
decomposition (Hotelling 1933) of a "sample standardized" data
matrix into j=1,M item vectors {v; i=1,L} and M corresponding
person vectors {u, n=1,N}.? The results are comparable to
Thurstone centroids (1947).

Decomposition to identify each Factor i
accomplished by initializing at u,;=1 for ali and iterating
through equations:

N
Vi = 21 UpyZniy/ N
n-

. N N
renormed by C? = ¥ uly/N Uy = u,/C sothat Y ui; =N

n=1 n~-1

until successively smaller changes in {u,} become uninteresting.

2 Should another factor be expected, the most efficient approach is to
analyze each subset of expected-to-be-singular items separately and to defer
comparing any resulting "variables"™ until their construct definition and
quantitative representation is established.

‘principle component decomposition is the core of most contemporary factor
analysis and multi-dimensional scaling programs.
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Standardized factor score u,; is tl.e value predicted by
Factor j’s regression on "independent" variables i = 1,L with

regression coefficients {v}.
Factor j results are:

a) Factor j Size (variance "explained"):

L M
G~ Y v with M< JL:Gj <L (7)

=i
b) Factor j Loadings (regression coefficients):

¥
Vig - zglﬁuznﬁ/N of factor scores u,; on residuals {{Zm}}.
n=

c) Factor j Standard Scores (zero mean, unit variance):
L
Uy = 2:1 VisZa1;/G; predicted by regression coefficients {vy}

from residuals {{2z.}}-.

Problems with Factor Analysis

1. Raw data {{x,}} are never linear measures. Even test
scores, unless transformed into logits, become increasingly
non-linear as they near their finite limits. When x; is a Likert
rating it is not even cardinal! But ordinal data are not suited
to Equations (1) through (5) and the factor scores they produce
are necessarily non-linear.

2. In view of the non-linearity, the "true score" error
models of Equations (2) and (3) do deal with uncertainty in a
useful way.

3. The necessity for complete data is awkward. Data are
never complete.

4. After each factor is extracted, its residuals {{z,}} are
the data for smaller factors. These residuals contain one sure
effect, the turbulence left behind by the estimation of preceding
factors. Intimations of smaller factors are necessarily awash in
the residual wake of larger factors.

' 5. Without a basis for anticipating a final "error" size for
o?, there is no objective way to decide when to stop factoring.

: 6. Software implementations seldom provide standard errors
; for factor loadings or factor scores.

7. When a "same" set of items is refactored from a new
sample of persons, neither factor sizes nor loadings are ever the
same. Only the most generous fudging allows one to suppose their
factor structure has been confirmed.
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Most factor analysits swallow problems 1 through 6. But
problem 7 is fatal. As the numerical instability of presumed
"replications' emerges, we are forced to retreat from non-
reproducible numbers to nominal conclusions. Person factor
scores are abandoned. All but the relative magnitudes of item
factor loadings is ignored. The only use we make of the factor
analysis output is to classify items according to their highest
factor loading. Person scores for each category of items are
obtained, not from factor scores (even when separate refactorings
are done for each class of items) but by summing the original
standardized (but inevitably non-linear) person responses z; to
the items in a factor class. Whatever the distribution of item
loadings in a factor class may suggest, all items are given equal
weight in this summation of non-linear numerical labels.

Rasch Factor Analysis

why not admit that our data are neither measures nor
cardinal numbers but necessarily begin as nothing more than
labels {{c,}} for nominal qualities - labels which may respond to
an intelligent ordinal scoring x,= 0,1,2,3,, to produce the
ordinal score matrix {{x;}}?

Familiar examples are: rating scales like (strongly agree >
agree > disagree > strongly disagree) which can usually be scored
X; = 3,2,1,0 or at least x; = 2,1,0,0 and MCQ options like
(right > wrong) which can always be scored x,; = 1,0. Even raw
scores (r+l1 > r > r-1) can respond to an ordinal interpretation.

Why not embrace the inescapable initially nominal but
possibly ordinally interpretable status of datum x, and address
it directly for what it is with a probability model for the
occurence of ordered categories (Rasch 1961, Andrich 1978, Wright
and Masters 1982)7?

First, we will show the algebra of this approach in its
simplest form, the use of x,;=0,1 to represent a dichotomy through
which nominal events interpreted as signifying "more" of an
intended variable are scored "1" and nominal events signifying
less are scored "0" (Rasch 1960/1980/1992, pp 62~124).

Then we will illustrate the empirical similarities and
differences between factor analysis and Rasch measurement by
analyzing the responses of 2049 public school teachers to a
"Strength of Principal Leadership" rating scale.

Copyrighte 10 26 94 B.D.Wright,M£SA,5835 Kimbark,Chicago 60637 4
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To begin the algebra for x,=0,1 we will not mistake the
number labeling as a linear measure, but will, instead, recognize
it for the binomial it is -~ a stochastic binomial for which we
have decided, on the basis of our measuring intentions, what kind
of events are "better" for our purposes than others, i.e. what we
decide qualifies as a "right" answer. To set up a counting
system for this preference, we label the preferred (“right™".
answer) event "1% and it’s absence ("not right" hence "wrong"
answer) w“ow,

The error model which follows is not the ill-suited linear
error (true score) model of factor analysis (Equation 2) but a
binomial probability model P, for the occurrence of x,=0,1
(Equation 8) which, because of its formulation (Rasch 1960):

1) Obtains the parameter separability necessary for
constructing objective (additive conjoint) measurement (Luce
and Tukey 1964, Perline, Wright and Wainer 1979) and

2) Has Fisher sufficient statistics (1922) for linear person
measures B; and item calibrations D, which combine additively
as (B,~D;) (and therefore construct the linearity we need for
subsequent quantitative analysis) to govern the
probabilities of x; = 0,1

The necessary and sufficient model is:

109 ' Pny1/ Ppyy) = By-Dy Xpg = 0.1
from which

Ewni = Ppyy Vini = Pnil(l'Pnil) = PpiiPpio

Xn

Parameters for this model, as with factor analysis (5), are
estimated by minimizing:

N L N
E E (Xni‘ Exni) z

n~1l i-1

but now Eng = Bpys = €xp (B,-0;) / [1+ exp (B,-D,) ]

o ~

rather than E_ . = un

N
zni V;




With this Rasch approach to X, we get not only least-square
(the implementation here for maximizing likelihood) estimates of
linear person measures B, and linear item calibrations D; along
the single common measurement line (variable) which they
conjointly define, but also a stochastic basis, the binomial
error variances p, P, for estimating relevant standard errors
for B, and D, and for evaluating the probabilities of residuals:

Yni = Xni~Pniz Zpi < yni/vpnilpnio Eops = Y Vong = 1 (10)

This enables a detailed misfit analysis which, in turn,
allows a partition of the full matrix of residuals {{z;}} into
those many 2, which are observed to be no greater than the
probability model expects, say lzq! < 2, and hence, in "all
probability", of no immediate empirical interest and the,
possibly interesting, subset of remaining, more extreme
residuals, say !2,,| > 3, which are sufficiently improbable to
invite further investigation and reconsideration as possible
evidence of a second variable.

It is only when improbable residuals emerge that there is an
empirical incentive to loock for a presumably unexpected second
variable.*

Should we decide to venture further, the improbable
residuals tell us exactly where to look. No need to accumulate
confusion by wallowing through the full matrix {{z,}} or by
subsequent factor rotations which are, after all, directed by the
largest residuals. We already knov from the residuals in hand
which particular items (and also which persons) do not fit into
the construction of the first variable. Should there be another
useful, albeit unexpected, variable in these data, it will be
most directly accessible among the original (rather than
residual) person responses to the subset of items which misfit
the first analysis.

To seek a second variable j=2, therefore, we concentrate on
just the data for the subset of misfitting items.’ We apply the
Rasch probability model again, not to the whole matrix of
residuals {{Z,}}, but only to the submatrix {{x,,i€ej=2}} of
original ordinally interpreted responses of persors to this
subset of items. We estimate a new set of linear item
calibrations {D,} for just these misfitting items along with a
new set of additive conjoint person measures {B,;} on this newly
defined "Variable 2".

‘¢ In a sensible research, of course, a "theoretical” incentive would

dominate most “"empirical” results. There would be a set of well-designed items
which were intended to define a single variable. The "empirical® question would
narrow to finding out whether any of thece well-intended items failed to perform
usefully and, if so, with which particular persons and possibly "Why?".

S The ¢focusing provided by identifying items manifesting improbable
residuals is analogous in purpose and conaequence to the item clustering by which
factor rotation is guided.

Copyright® 'O 26 94 B.D.Wright,MESA,5835 Kimbark,Chicago 60637




To find out whether unexpected Variable 2 brings cut any new
information, we plot Variable 2 person measures {By} against
Variable 1 person measures {B,}. The shape of this plot shows us
in detail the extent to which we have found a useful second
variable and also for which of these persons it may actually
provide new information.

Because we have independent standard errors for each linear
measure on each variable, the statistical status of the
differences (B, - B,) for each of the n=1,N persons can be judged
objectively by comparing them with their estimated standard
errors:

(B,,~ Bp,) /{SE%; + SEny = Ty =~ N(0,1) (11)

Extension of the dichotomous Rasch model to the ordered
response categories x,~0,1,2,3,,,m,,,® of rating scales, partial
credits, grades, ranks, raw scores, counts and to models with
additional facets for raters and tasks is straightforward
(Wright & Masters 1982, Linacre 1989).

An Empirical Example

We will illustrate the empirical similarities and
differences between factor analysis and Rasch measurement by
using both methods to analyze the responses which 2049 Chicago
public school teachers gave to the 13 item "Strength of Principal
Leadership" rating scale on page 8 of the Consortium on Chicago
School Research questionnaire "Charting Reform: The Teachers’
Turn, 1994".°¢

The 13 rating items in Figure 1 were written to define a
single line of inquiry which produced a single measure of .
perceived "Strength of Principal Leadership" for each of the 2049
teachers. The methodological guestion then is: Are these 13
items used by these 2049 teachers in a way that enables the
construction of a reasonable and useful single measure?

[Figure 1]

The three items about to be exposed as diverging from the
coherent core defined by the other 10 are marked [A], [B] and [C]
in Figure 1.

Figure 2 is the factor analysis scree plot of principal
component eigenvalues for these data. Some factor analysts might
conclude, at this point, that the 13 items work together well
enough to define a single 13 item factor and stop. The scree
plot, however, does hint that components [2] and [3] may be a bit
too large.

The research from which these data cone is supported by the Consortium on
Chicago School Research under the direction of Anthony S. Bryk and Penny Sebring.
The factor analyses were done with SAS by Stuart Luppescu. The Rasch measurement
analyses were done with BIGSTEPS by Winifred Lopez.

Copyright® 10 26 94 B.D.Wright,MESA,5835 Kimbark,Chicago 60637 7




[Figure 2]

Figure 3 is a Rasch measurement item misfit plot for the
same data. Here the salient misfit of items [A], [B) and [C) is
unequivocally distinct.

[(Figure 3)

Figure 4 is the table of varimax factor loadings. Factor
analysts who rotate these data will not miss the exceptionality
of items [A), [B] and [C] and, after studying their item text,
will have some useful ideas as to why these three items might not
follow the mainline defined by the 10 item core.

[Figure 4)

Figure 5 is the Rasch measurement item calibration table
listed both in misfit and in measurement orders. Here we see for
each of the 13 items not only its fit statistics in mean square
and standardized form but also its raw score point-biserial and
relative "difficulty to be agreed with", its "unpopularity" as it
were.

(Figure 5]

Figure 5 shows that items [B] and [C] are 0.4 logits harder
to agree with (1.04 and 0.99 versus 0.61 logits) than the next
vhardest" item. Their texts share a close, personal supervision
of teacher by principal. This supervision could be supportive
but it is more likely to be restrictive. Indeed the verb
ngupervises” is viewed by many as counter—-collaborative. Thus
these items are not only hard to agree with but also ambiguous
with respect to the spirit of increasing egalitarian
collaboration which dominates the hierarchy of the 10 core items.

Item [A], "Principal makes all finai decisions." at the
other end of the line (at -0.77 logits) is the item easiest to
agree with but also emphatically counter-collaborative.

once the text of these three items is examined and
understood in terms of the pro-collaborative tenor of the 10 core
items, it is easy to agree with both factor analysis and Rasch
measurement results and to remove these three items from the
definition of this "Strength of Principal Leadership" variable.

Indeed, at this point we may find ourselves wondering why we
included these three items in the first place. We may also
wonder, now that we see the construct evolution of the variable
defined by the 10 core items, whether it would not be useful to
rename this variable "Strength of Principal Support for
Collaboration®.

Do you see how useful the Rasch measurement information in
Figire 5 can be for confirming a decision to set aside the three
aberrant items and to identifying the construct evolved by the
hierarchy of the 10 core items? Other parts of the standard
Rasch measurement output are equally useful.

Copyrighte 10 26 94 B.D.Wright ,MESA, 5835 Kimbark,Chicago 60637
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Figure 6 maps both 2049 teachers and 10 core items onto the
single line of inquiry that the 10 itens define. The line of
inguiry rises from low agreement at the bottom of Figure 6 up to
high agreement at the top. On the left, each teacher is located
at their level of agreement. On the right, each item is located
first at its level of transition from "strongly disagree" to
"jisagree", then at its level of transition from "disagree" to
vagree" and finally, on the far right, at its level of transition
from "agree" to "strongly agree".

[Figure 6]

Figure 7 shows the same data in a different form. Now the
line of inguiry is drawn to increase from left to right. The
exact count of teachers at each level of agreement is given along
the bottom of the upper figure. We can see that ' 27 teachers at
the top of Figure 6 and at the far right of Figure 7 have
"strongly agreed" with all 10 items. We can also see that the
modal group of 333 teachers at a measure of about 1.3 logits is
above the disagree-to-agree transition of even the hardest to
agree with item. 2And we can see that 59 teachers at the far left
of Figure 7 have claimed to "strongly disagree" with all 10
itenms.

(Figure 7)

Figure 7 also shows us something of considerable importance
to our understanding and application of this rating scale as it
was used by these teachers. The spacing beween rating scale
categories (1) to mark "strongly disagree, (2) to mark
"disagree", (3) to mark "agree" and (4) TO mark "strongly agree"
is not uniform (equal) as a Likert interpretation would have it.
values for the expected difficulties of each step are given in
the table at the bottom of Figure 7. The estimated increase in
difficulty from "strongly disagree" at step (1) and "disagree" at
step (2) in expected step meagures is -1.74 -(-3.74) = 2.0
logits. But the estimated increase from "agree at step (3) and
"strongly agree" at step (4) is 4.57 - 1.28 = 3.29 logits. The
second distance is 1.65 times greater than the first. We see
that it is tangibly easier to move up from "strongly disagree" to
"disagree" and so reduce strong disagreenent, than it is to move
up from "agree to "strongly agree", and so produce strong
agreement. Figure 7 also shows us why we might prefer to avoid
factoring Likext scores like 1,2,3,4 as though they were equally
spaced measures.

Rasch measurement alsc shows us useful information about
each of the 2049 teachers. Figure 8 begins this part of the
Rasch analysis by showing the distribution of teacher response
pattern misfit. We see that a substantial number of teachers are
using these 10 items idiosyncratically. Subsequent pages of
output identify these teachers and show u. which items they
prc rided surprising ratings. These diagnostic outputs show us
how teachers use the 10 items and differentiate the many teachers
whose responses are sufficiently col.erent to produce a valid
measure of perceived "Strength of Principal Support for
Collaboration" from other teachers whose response patterns make
unique individual statements. 10
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[Figure 8)

Figure 9 shows the exact and non-linear relationship between
factor scoreg and Rasch measures for these 2049 teachers. Since

the Rasch measures are modelled to be linear and the Rasch fit
analyses expose any failures of data to support the linear
measure construction based on this modelling, it must be the
factor scores which are not linear.

[Figure 9)

Figure 10 summarizes Richard Smith’s use of two-factor
simnulated data to evaluate how well factor analysis and Rasch

measurement detect a second factor. Smith finds that factors of
equal size can only be discerned when they are uncorrelated R«.3.
Against that kind of data factor analysis does better than Rasch

measurement. :
[Figure 10]

Against all other kinds of data. however, particular the
kind of data most frequently encountered in social science
research in which the factors are NOT of equal size and NOT
uncorrelated, i.e. the usual situation where there is first an
intended dominant factor and then an unintended off-shoot,

correlated with the first factor and less well represented, Rasch

measurement does better.

Finally, Figure 11 collects into one summary takle the
considerations which bring out the similarities and differences
between factor analysis and Rasch measurement.

[Figure 11}

Copyrighte 11 1 94 B.D.Wright,MESA,5835 Kimbark,Chicago 60637
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COMPARING FACTOR AWALYSIS AND RASCH MEASUREMENT

Figure 11
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