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Foreword

The Research and Development (R&D) series of reports has been initiated

1) To share studies and research that are developmental in nature. The results of
such studies may be revised as the work continues and additional data become
available.

2) To share results that are, to some extent, on the "cutting edge" of
methodological developments. Emerging analytical approaches and new
computer software developments often permit new, and sometimes controversial
analysis to be done. By participating in "frontier research," we hope to contribute
to the resolution of issues and improved analysis.

3) To participate in discussions of emerging issues of interest to educational
researchers, statisticians, and the Federal statistical community in general. Such
reports may document workshops and symposiums sponsored by NCES that
address methodological and analytical issues or may share and discuss issues
regarding NCES practice, procedures, and standards.

The common theme in all these goals is that these reports present results or discussion
that do not reach definitive conclusicns at this point in time, either because the data
are tentative, the methodology is new and developing, or the topic is one on which
there are divergent views. Therefore the techniques and inferences made from the data
are tentative and are subject to revision. To facilitate the process of closure on the
iIssues, we invite comment, criticism, and alternatives to what we have done. Such
responses should be addressed to:

Emerson Elliott

Commissioner ,

National Center for Education Statistics
555 New Jersey Ave. NW

Washington, D.C. 20208
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Abstract

Model-based methods for analysis of surveys with stratified clustered design are discussed and applied
te the 1990 NALEP Trial Stat> Assessment. The principal advantage of the model-based methods is in
statistical efficiency, and computational simplicity for regression analysis. Model-hased methods dispense

with the replicate weights which forn a large part of the survey data.

Seme kry words:  clustering, regression, stratifieation. variance components,
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1 Introduction

Just like other large seale surveys, those comprising the 1990 Math Trial State Assessinent Program have a
complex sampling design several features of which invalidate statistical analyses hased on routinely adapted
assumptions. A large part of this report is coneerned with efficient estimation of the mean of proficieney
for a population of stidents within a state, aud of the standard error of siel estimators, that take aceount
of the salient features of the survey design.

We briefly sun.marize these features of the simpling design and indicate our approach. The students
in the sample are associated with (meqgaal) sampling weights: they are clustered within schools. and
schools are assigned 1o groups which for the purposes of analysis are regarded as strata, Fael stratum is
represented in the sample by a sinali miber of schools (two for wmost strata), and most selected schools
are represented by 200 30 students, The smanpling procedures at the school level (selection of sehools) and
within a scleefed school are conditionally independent given the selected schools.

The design waght is the reciprocal of the probability, intended by the sampling design. of selecting
a given student into the survey. Tt is the procduet of the (intended) probability of sclecting the sehool.
and of the (intended) conditional probability of selecting the student given selection of his/ler sehool.
Nonresponse of schools and individual students is catmpensated by adjusting the weights. This adjustiment
is not precise e the sense that the adjusted weights are not reeiprocally proportional to the conditional
prababilities of inclusion in the survey. given that the population of inferest contains non-respondents.

The adjnstment depends on the sample drawn, and it is therefore meaningfl to regasd the adjusted
weights as random variables. For cach subjeet we consider the (unknown) average adyustinent over all the
sanples that conld have heen drawn, and the actual adjnstiment calenlated hased on the drawn sample
aed its pattern of non-response The variation over the hypothetical samples of the normalized difference.
or the log-ratio, of these two quantities is an informative simmary of the weight adjustinent.

The onteome variable is the proficicney score. This seove is defined by reference to a0 madel relating
the student’s ability and item characteristies to the prohability of correet response, see Mislevy (1981) for
details. The proficiency seore is itsclf estimated fronm the stidents’ responses to cognitive items. A set of
five crchangcable estimates of the proficiency score. called the plausible valees, are defined Tor ench student.
In addition 1o the general proficieney scale for mathematics subseales are defined {or five content areas
within the domain of mathematics, The report focuses on the general proliciency scores, hut the methods
presented are also applicable to the subscores. The inethads used to obtain the prolicieney scores and therr
actual values arve aceepted without eriticisn.

The computational algorithms deseribed in this report are implemented in the statistieal package Splns
(Becker, Chambers, and Wilks, T98%), and some of then are documented in the Appendix. The prineipal
advantages of Splus over statistical software established in quantitative educational rescareh (such as SPSS.
GLIM, or SAS) are flexibility (in both interactive and bhateh modes), ease of development of complex
programs (functions), high quality graplies. and integrity of the enviromment generated by the defined

data. functions, and other objects,
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2 The sampling design

The original intention was to draw from the population of cighth-graders i each participating state or
territory a sample of 105 schools and 36 students fron each selected school that has more than 35 cighth-
graders, and all the students from schools with fewer than 35 ecighth-graders. In some states a simadl number
of schools were ineluded in the sample with certainty, and a larger yumber of students was drawn from
cach of these “certainty” schools. For states (or territorics) with fewer than 105 schools each sehoo! wouid
be included in the sample. fn states with an appreciable proportion of students in small schools (*small’
meaning fewer than 20 cighth-graders). aggregite units (sets of sehools) containing more than 20 students
would be the units of sampling. Several factors intervened in this design. including non-cooperation of
schools (school districts) and non-response of students, nﬁ(l incotiplete and inacenrate information relevant
to the sampling frame. Some states and territortes (such as, Delaware, Guam, and Virgin Islands) have
fewer than 105 schools. Allowing for non-response and small schools, it was expected that the sample for

each state wonld comprise at least 2000 students from at least 100 schools.

2.1 Elements of the sampling design
2.1.1 The sampling frame

The sampling frame (the list of schools in the state) was construcied using several official sourees, such
as NCES Common Core of Data and Quality FEducation Data, Ine. The friame consisted of a list of all
schools in the state that have eighth-grade students, the (estimated or exact) number of cighth-graders,
or the exact muuber in a previous year, and the stratifving variables, defined for the sehool distriet or
another administrative unit: urbanicity (city, suburban, and “other’), median honschold income (grouped
ordinal categories). and. where prevalent, minority enrollment (high enrollment of black and/or Hispanic
stirdents). See Koffler (1991) for details.

Schools with fewer than 20 ecighth-grade students (small” sehools) were either attached 1o seliools in
their geographic proximity to form iits witlh more than 20 students or aggrepated into units with 20 or

more students each,

2.1.2  Selecting the schools

A naturat ordering of the strata was defined. combining urbanicity and minerity enrollment. The sclools
were sorted in acserpentine” order, from the lowest median income to the highest in the first stratum, from
the highest miedian income to the lowest in the next stratun. and so on.

[n some of the states a small mnnber of schools, €7, were ucluded i the sample with certainty. The
rest ol the schools are referred to as non-certainty schools. From the sorted list of non-certainty schools a
systematic sample was drawn, with a randoin start, probability proportional to school cnrollment, and step-
length sudfi as to ensure that & schools would be selected. For most states (' 4+ & = 105, This systematic
sampling scheme is best illustrated as follows: The non-certainty schools are represented on a straight line

by segments of lengths proportional to cighth-grade enrollinent. A step-length s for a systematic sample

12
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Figure 1: Weighted systematic sampling of schools.
Notes: The schools are delincated by short ticks, the groups by long ticks. The sampled points are indicated by

long dotted ticks (points (1. #2,...). Median income level (three categories) is indicated by asterisk. Phe segments

of the selected schools (containing the sampled points) are underlined.

from this line is set. and the start is chosen as the point in distance £; from the origin. where £, is a draw
from *he uniform distribution on {0, s}, Further sampled points arce £ + ks, b o= 1.2 N~ 1. where
K is the desired number of points: s is chosen so that K is the length of the segment corresponding to
all the schools. The schools which correspond to the segments containing the selected pomts are inciuded
in the survey. Figure 1 illustiates this sampling procedure. In the diagram each of the 39 "schools’ is
represented by a segment delineated by short ticks. The urhanicity-by-minority categories are delineated
by longer ticks, and the points drawn by systematic sample of size 10 are indicated by long dotted ticks.
The segment of the corresponding school is undertined. The asterisks under the segments indicate the
median incone categaries for the schools.

Arrangements for substitution of the non-cooperating schonls in the sampte are deseribed in Koffler

(1991).

2.1.3 Replicate groups - stratification

The design of the survey for a state has a number of features that cannot be explicitly modelled. The

reforence’ model that is considered by the NAEDP analysis staff as well as by other rescarchers is that

13




Table I Clustering structiure of the New Jersey sample.

Groups Nubers of selected students within clusters
| — 29420 ERE 22426 23+19 25423 30423 39427

81 23424 25429 28 21424 20428 264-24 25
15 21 26426 20427 26 26429 29426 23422 22
220 2N 2R428 29426 22425 26423 206425425 L3+ 11 21426
2900145 28423 22426 26428 22420 22421 27425 22455
360 42 23423 23419 2225 2342 28427 21426 28426
4319 20420 20426 20-.26 25423 28420 21425 54427
5 53 27424 28424 27427 D427 +25

Notes: Eacl entry of the table contains the numbers of selected students within th. clusters in cacl group 1 - 53,
For example, grovp | has a cluster with 29 and one with 20 students in the sample. Gronps 26 and 53 have three

chisters each in the sample. The count for the certainty school is printed in boldface.

of a stratified weighted clustered sampling. The “strata” in this context are defined after selection of the
schoals. To avoid confusion with the strata defined by crosselassification of urbanicity, median income, and
ninority composition we refer to then as replicatc groups. 1t was decided that each state would have 56
replicate groups (with a few exceptions). The procedure of forming replicate groups is deseribed in Kofficr
(1991 and justified in Johnson and Rust (1992}, Mosi of these groups comprise a pair of clusters, ot hers
rave either three or just one cluster. For operational convenience, cmpty replicaie gromps (containing no
clusters) are deelared =0 that the total mumber of groups is 36, The main purpose of this is 1o have a

wiiform format for the user tapes for all the states and terrifories.

' 2.1.4  Selecting students

Fhe selhiool districts were requested to conmpile lists of all the eighth-grade students in the selected schools,
Froni each selected sehool witl enrollment of more than 33 cighth-graders a random sample of 30 students
was drawn without replacement. From schools with fewer than 36 students all students were ineluded in
the sanple. In order to ensure that each student had approximately the sante chance of being included in

the sample, schools with fewer than 20 students were “thinned’ (preselected): they were excluded from the

sampling frame with probability inversely proportional to the total number of students in small sehools.

Forexample, the New Jersey sample is deseribed by the clustering strueture of selected students within
schoals. and of the selected scliools within groups, given in Table 1. The sample contains one eertainty
school (i stratinm 19} with 60 sclected stidents of whom six did not cooperate with the survey. A few
simall schoals were aggregated into clusters containing at least 20 students each. Most elustors have hetween
20 and 30 stidents an the sample. Fhe sanple comprises 2710 students from 104 elusters (consolidated
schools) in 53 gronps: two groups are represented by three clusters each and four groups by one clnsier
cacl. T the process of selecting the sample of schools tiree small sehools were “thinned” out. Fhere are

three enipty groups {31 through 36).
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Figure 20 Adjusted weights for New Jersey.

Notes: e horizontal axis is the cluster index (1000 101) and the vertical axis is the adjusted sampling weight.

Duplicate values of the weight in a cluster are represented by a single dot.

2.1.5  Sampling weights

Fach sehoal (not cluster) is associated with a school-lercl design (base) weight and each student with a
studont-leeed (within-school} design weight. The sampling of students is conditionally independent of the
satnpling of schools. given the selected set of schools, and so cach students desisn sampling weight is
cqual to the pradinet of these two weights. After the sampling procedure and administration of the survey
questionnaire the students” weights are adjusted for non-response. Figure 2 contains a plot of these adjustcd
weiphts for the New Jersey sample. Note that the weights have littie variation within clusters: in fact. most
clisters have only two distinet and in most cases pot very different calues of the woight, There aee three

clusters with weights abont three times Larger than the rest of the elustors,

2.2 Proficiency scores

The student gquestionnaire contains items of four kinds:

o sucio-dernographic and hackgronnd

o attitudinal

o cosnitive,

o experieniial
The backaround itams probe the family environment and the educational leve L of parents. Mtitnelinal itemns

relate to student’s Tamitiarity with calenlators and computers, to pereeption of usefulness of mathematies,

Q
e
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and the like. Questions about mathematics classes taken are an example of experiential items. Cognitive
items are mostly multiple choice items, and are scored as correct or incorrect. Based on these scores a
number of {sub-)scales are defined (Measurement, Data analysis and statistics, Gieometry, and the like),
Ouir discussion is restricted to the compositc scale, based on all the cognitive items.

Yor a given scale a proficieney score is defined for each student. It is estimated from the item-level
scores by an iteme-response method (see Lord, 1980, and Mislevy, 1985, for background). The estimation
is strengthened by incorporating (conditioning on) information contained in the student- and school-level
hackground variables. The proficiency scores are subject to uncertainty, and they are represented for cach
student by a set of five plausiblc valucs.

The teacher questionnaire contains items about the teacher’s qualifications, teaching methods, and
abont emphasis on elements of the curriculum.

Figure 3 presents a compact graphical summary of the proficiency scores and final weights. The profi-
ciency scores are represented by the first set of plausible values. The plots on the left-hand side sununarize
the distribnution of proficiency: at the top its values are plotted. and the within-cluster means are joined
by a solid line; at the bottem the within-cluster standard deviations are plotted. The right-hand plots
sununarize the association of sampling weights and proficiency. At the top the two sets of quantities and

at the hottom their within-cluster means are plotted.

2.3 Notation

In general, we use capitals to denote gnantities that refer to the population. and lowercase characters
to denote sample gquantities. For example, N stands for the population size (number of students in the
population). and n for the sample size (number of students in the sample). The proficiency score for
student 7 (in the population) is denoted by Y. For students in the sample we use three indices, ijk. for
student 7= 1o oonpeineluster j = Eoooomgingroup b = 10 0 0K and by g, we denote the proficiency
score of student ik Tmplicitly, we have introduced njp as the number of sampled students in the cluster
Jk and e as the nmuber of sampled clusters in group &, The population counterparts for ny, and g are
denoted by N (number of students in claster jh, j = 1o M) and M, respectively, The proficiency
scores and the adjusted (final) ~<ampling weights for the sampled students are denoted by yiyr and iy,
respeetively. For the plausible values we use another index. it = 1., .. 5050 that y, 1 is the plansible value
h for student ijk.

Model parameters are also denoted by lowercase, such as g, and their estimators are denoted by the
same characters with “hats™, sueh as g When there are several estimators for a single parameter they are
distinguished by an (adeditional) index. In notation we do not distingnish hetween an estimator (a function
of the data. considered as o random vartable) and an estimate {(the realized value of the estimator for the
drawn sample). The sampling variance of an estimator, say g, is denoted by var(p). and the estimate and
estimator of this variance is denoted by var(p).

For random variables we use Jowercase Greek characters a, 3.0 . g and for parameters j (mean). a®

(variance). p feorrelation). © (variance ratio), and the like, The expectation of a random variable, say 7.

16
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15 denoted by E(4). When it is necessary to distingnish hetween taking expectation over the samples and
over the students this is explicitly stated.
Vectors and natrices are denoted by bold characters, Latin for constants. Groek for random vectors

and matrices.

3 Model-based estimation of standard errors in stratified clus-
tered sampling

In this section the model-based method of Pottholr, Woaodbury, anag Manton {(1992) is implemiented for
estimation of the population and subpopulation means in the stratified clustered sampling design used in
the NAEP State Assessiment Program. The method relies on a superpopitlation approach and has several
features of the standard analysis of variance.

In the previous section we identified the following features of the sampling design:
Losainpling weights:

2. clustering (students within schools):

J. stratification (replicate gronps):

I non-response;

aoindirect measnreinent (estiniation) of the onteome.

We consider first models and estimation procedures that accomodate cacly of these features on thetr own,

and then constriuet a todel that contbines all of these featires.

3.1 Modelling features of the design

3.1.1  Sampling weights

Let Yoo i= 1.2, ..., obe the proficienes scores for the population of N students (say. in a state). The
population mean is defined as
— Zz )’
= v
{the simunation is over the entire population). When proficiency scores are available only for the sampled
students, o7 = 12000 on the population mean is comunonly estimated by the weighted mean
>
M
oo it ()
>
!

(the sunmnations are over (1o sampled students), where w, 15 the sanipling weight associated with stident

£ When the weights e, are constant, equation {1} comerdes with tlhe unwerghted mean.,
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In this case the common (non-zero) value of the weights is irrelevant for the estimator in (1). More generally,
applying a (positive) constant multiplicative factor on the weights (that is, changing w, to (" for some
(" > 0) does not affect the estimator of the mean (1).

For equal weights the sampling variance of the estimator (1) is estimated by

Z,‘(.’/i - /’)2.

var(p) = —

A natural extension for unequal weights is the equation

Var(y) = M (2)

ST, =1

g )
Equation (2) is not invariant with respect to constant multiplicative factors of weights. and so a ‘reasonable’
chotce of normalization for the weights w, is essential. In one normalization the sample mean of the weights
is cqual to unity. that is, Y Cw, = u. or (" = n/3" wi. Another choice is defined by the requirenment
that the total of the weights be equal to the total of the squares of the weights:

Z Cuy, = Z ('311';') .

!

that is, " = 3w/ Y ;w?l. For a probability random sample the total of the weights normalized in
this manner, (3, w,)?/ 5", w?. is referred to as the effective sample size (Potthofl ¢f al., 1992). For this
normalization of weights the estimator in (2) is unbiased.

The sample size n is greater or equal to the effective samyple size ny . Their ratio. n/ny. is veferred to

as the design ffeet duc {o weights, 1t is equal to nnity when the weights are constant.

3.1.2 Clustering

Clustering is usnally represented in statistical inodels by a non-negative cerrelation among the obs rvations
within a cluster, or by cluster-specific “effects™  deviations of within-cluster meaus (or other summaries)
from the corresponding population summary. These two model approaches are essentially identical, and are
often used interchangeably. In the latter aproach we have a decomposition of the variance of the onteomes
into its within- and hetween-cluster components. These we denote by off. and @} . respectively. 'The
variance ratio 7 is defined as 7 = o3, /ofy- . The within-cluster correlation is equal to (p =) o,/ (ofy +0%) =
/(1 + 7). '

[t is intuitively appealing to assuine that the onteomes of students within a classroon: are positively
correlated becanse stirdents in a elassroom share the same educational processes and experiences. The size
of this correlation exacts an influence on the estimators of the population mean. This can best be illnstrated
by considering two extreme cases, If the outeomes for students within a school are perfectly correlated,
that is, they are equal, then the outconies for the students from a school are perfectly summarized by the
data for any one of the students. If the saimnple comprises 2 students from m schools (1n < n) there are
only m ‘essential’ observations, not n. On the other hand., if the within-school carrelation vanishes there

are n essential observations. In intermediate cases (small positive correlation), it is reasonable to expect

T—_ﬁ




that the sample at hand is as informative (its samiple mean has as small a samipling varianee) as a random
; sample of somewhat smaller size. The ratio of these sample sizes is referred to as the desegn fJeet duc to
| clustering.

The sampling variance of the arithmetic mean p =5 .y, /n is equal to
il |

oy TN, .
var(p) = TZ 1+ - nj | e (3)
J )

it is an increasing function of the correlation p. and of the variance af.. Note that there may be more
efficient estimators of the populaticn mean than the arithmetic mean j = Z,.j yij/ Z‘, nj. in particular,
when the clusters have a wide range of sample sizes. In an alternative estimator the influence of an
outcome (its weight) from a large cluster would be smaller than from a small cluster. Clearly, for an
officient «.iimator these “weights™ have to depead on the within-cluster correlation p.

Clusters may have unequal within-cluster variances. Then equal within-cluster covariances across the

clusters do not correspond to equal variance ratios.

3.1.3 Siratification

Stratification is an important device for reduction of sampling variation of the estimates from sample
surveys. It can be interpreted as a partitioning of the target population into an exhaustive set of non-
overlapping subpopulations cailed strata. and carrying out a separate sample survey for each stratun.
The population mean and other quantities of interest can be estimated by combining the corresponding
estilmates for the strata. The target population may exhibit substantial variation, but variation within
cach sfrafum may be much smaller. The parameters referring to a stratum can then be estimated with
high precision, even if such estimates are hased only on a fraction of the sample.

Clearly, a key to successful stratification is in identifying a small nuimber <f strata with distinet stratum
means or, mmore generally. attributes and characteristics strongly associated with the variables of interest.

We adopt the approach of the NAEP operational analysis and regard the 56 replicate groups as the
strata. In standard survey practice strata are defined for the target population (or the sampling frame)
prior to sampling. 1o avoid confusion with the stratification of schools in NAEDP. defined by median income,

nminority composition, and urbanicity, we use the term group for each of the 56 replicate groups.

3.1.4 Adjustuient for non-responsc and poststratification

Having been seleeted into the survey, individual students or entire schools may refuse to cooperate, If it
is feasible within the practical constraints, a non-cooperating school is replaced by a *substitute’ which
matches the selected school as closely as possible on several attributes (for instance, on the stratifying
variables and the enrollment). Characteristics of the non-cooperating students are not known, and therefore
a scheme for their replacement by cooperating students is not feasible. Instead, the sampling weights are

adjusted to take account of the ‘missing’ observations. In decisions about (approximate) sample size due
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account is taken for the expected proportion of nen-cooperating students, as well as for differences between
estimated and actual within-school enrollnients and for a number of contingencies.

An important consequence of non-cooperation (nonrespanse) is that the weights, proportional to the
reciprocals of the probabilities of being selected into the sample are not proportional to the reciprocals of
the probabilities of inclusion in the sample. When nonresponse is informative, us g these design weights
would result in biased estimation. The design weights are therefore adjusted for nonresponse:; for details
ol weight adjustiment in NAEP Trial State Assessment, sce Kofller (1991). Since the adjustment depends
on the sample drawn. the weights are random variables (a different sample nray result in a different weight
adjustment even for a student included in both samples). Of course. a student responding in one survey
might not respend in a hypothetical replicate of this survey: however, we have no information about the
consistency of the pattern of nonresponse.

As a maive model for weight adjustment we consider an underlying mean weight for caclt student,
averaged over all possible samples (or all those in which the student would be inclided in the samnple). Sinece
weights are invariant with respect to constant multiples and are proportional to recipracals of probabilities

it is advantageous to nse the logarithm scale. For each subject § we posit the madel

lOg( Wie) = lOg( i)+ e {1)

wheve wy o is the sampling weight assigned to student 7 when sample s is drawn, w, is the geometric mean
of the weights for student 7, taken over all the samples s, and {4; ¢} 1s a random sample from a centered
distribution. "The variance var(s, ), taken over the hypothetical samples s is a measure of how influential
the nonsesponse is. The clustered nature of the weight adjustment can be incorporated by a variance

component model:

. () () -

log(wijk.«) = loglawiji) + 755« + Yija.e (5)

Trere (2071} ke
where {73} and {+]
of ihe weights for student 7jk.

r ) . . .
i<} arc two mutunally independent random samples and w4 is the geometric mean

In surveys that are carried ont on well-rescarched target popnlations it is advaimtageous to adjnst the
design (sampling) weights so as to bring them into accord with information about the target population
external to the survey (various ‘official” sources, censuses, and the like), This is referred 1o as poststratifi-

cation. Poststratification is not applied in NAEP State Trial Assessment.

3.1.5 Estfimation of proficiency

The proficiency scale is defined in relation to the cognitive items. The proficiency of a student is estimated
using item-response niadels; see Koffler (1991) for details. and Mislevy and Bock (1982) and Lord (1980)
for background. In order to adequately represent the variation of the estimators of proficiency for each
student the proficiency is represented by a set of five draws from the estimated posterior distribution of

the proficiency. Specifically, the item-response method used (Mislevy and Bock, 1982) vields an estimated
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distribution of the underlying parameters, from which five random draws are obtained and a set of five
plausible valucs is calenlated based on the drawn values. Estimation of proficiency scores is iniproved by
conditioning on several background variables. For details. see Johnson and Allen (1892, Chapter 11) and
Mislevy and Sheehan (1991).

[n general, estimation of any paranteter is carried out for cach plausible value (five analvses), and the
mean of these estimates is adopted. Formally, let y = {y,p 1y be the v x 5 matrix of plausible values for
the entire sample, and pp h = 1.0 5, be the estimator based on the Ath set of plausible values. Then
the mean jo = 5", uy /5 is the adopted estimator.

To emiphasize dependence on data we write py = pi(y,,) where y, denotes colunm f of y. Note thal
for estimators lincar in the data, such as the weighted mean, g is equal 1o the same estimador using the
within-subject means of the plausible values, that is = j1(y). where ¥ is the vector of row-wise means of
y.

For estimation of the sampling variance the estimators of the mean of the sampling variances from the

five analvses is supplemented by the variance of the estimates;

var(p) = E{var ()} + vary () (6)

(the subscripts s and h indicate averaging over samples, and over the five sets of plausible valies, respec-
(E\'l‘l}').

I as instructive to consider a plausible vadue gy, as a sum of the overall (subpopulation) mean, p.
deviation of the student’s proficiency y, from the mean g & = y — p. and Jleviation of the plausible
value from the proficiency, iy = g — yi . Assuming that these two sets of deviations, {8} and {z,,}. are
independent, a desirable property of any procedure for geuerating plausible valies, the proficiencies {y, },
have smaller variation than the plausible values {4, Tor any h. The difference is the variance of the

plausible values around the proficicuey score,

var(yn) = var(é,) 4 var(e,p).
Note that for the within-student means of plansible values y; we have
var(y) = var(é) + Z var(<; )/5.
H
These means exhibit more variation than the proficiency scores: the variance of the latter is var{#,). 1t is
therefore not appropriate to carry out a single analysis using the student-wise means y, .

3.2 Randomness and conditioning in inference

In surveys, as in statistical practice in general, we are interested in sampling distributions of estimators. An
orthodox view of the sampling distribution of an estimator in a survey is to consider the distribution of the
estimates of a parameter in a large (infinite) number of (hypothetical) replications of the survey. The goal

i a typical estimation problem is to make inferenee about such a distribution, hased on a single realization
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of the survey, Clearly, features of the survey have to he utilized to compensate for lack of replication.
For a survey with a complex sampling design, non-response. and iimiperfect reliability of the response (for
instance, due to measurement or estimation error}, a hypothetical replication will have different students
and schools 1 its sample, it may have a different sample size (different munbers of stadents and schools),
but even the response/outeome of che student who happens to be selected in both survevs will be different
{students’, or indeed, our responses 10 even the most nbiguitous survey items are known not to he perfeetly
reliable).

Unconditional inference, averaging over a large number of hypothetical survevs, i1s often a tall order,
and i practice inference is conditioned on the selected sample. 1t is meaningful, we believe, to consider
conditioning on the sample that wonld lave heen obtained had eacl selected school and iudividual Tally
cooperated. Such a conditioual inference is difficult to conceptualize becanse selection of the students ix
conditional on selection of their schools, {(some) schoaols that refused to cooperate were substituted by other
schools in the survey. and so on, Moreover, » school that failed to cooperate iu the realized survey might

coaperate in a hypothetical replication of the sirvey,

3.3 Jackknife

This section describes the jackknife method used for estimation of population and subpopulation means
and their standard errors. The jackknife is a general method for reduetion of hias of estimators and for
estimation of their smupling variances, We deseribe the jackknife method as applied to NAEP State Trial
Assessment.

The mean proficieney for the state s extunated Ly the weighted niean

y
2‘—:”1- Wijkthyk (_)
/l = -k i}
Zilk Wk

Compntation of the sampling variance of this e<timator presents problems arising from complesity of
the sampling design: equal probabilities of selection, clustered sampling design and adjustinent for
NONTESpONSe,

Fach of the K = 56 replicate gronps {whether enipty or not) is associated with .« pscudoanalysis carried
ont on a pscudosample. In groups with more than one cluster the clusters are assigned order (first, second.
ctel) at randon I group & contains two elusters then the pseudosample for pseudoanalysis & is created by
replacing the first cluster wm gronp & by the other cluster in the gronp. This is equivalent to donbling the
weiehts for all students in the second eluster, For groups with three elnsters the first cluster is removed,
and the weights for the students in the other two clusters are multiplied by 1.5, Thus, each student in the
saruple is assoaated with & 4 1 = 37 roplicale waghts, Phese weights are given i the NAEP dataset. If
poststratification were applied the replicate weights would have to be adjusted by poststratification of the
psendosatuple, When carried out operationally, this represerr s a substantial computational load.

The kth psendoanalysis evalnates the esthator (7) using the Ath set of replicate weights: we denote

this estimator Ly % The jackknife estimator of the mean g is defined as the arithmetic mcan of the
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pacudocstimalors %),

>t

‘The sampling varianee of gy is estimated as the sum of squares of Jdeviations of the pseudoestimators ptF)

(%)

I

from the jackknife estimator gy

var(py) = Z(/l‘“ - py)*: (4)

*
sce Wolter (L985) for details. Note that for estimation of the population mean only groups with two or
more clusters contribute to the sum of squares in (9). However, for subpopulation means the same ordering
of clusters is used. and if the subpopulation is represented only by one non-cmpty cluster in the dataset
which happens not to he the first cluster, the group does make a contribution to the sum of squares in (9).
In practice the estimator (7) is used instead of (8), and (9) is used as the estimator of sampling variance
of {7). In brief. the jackkuife is used only for sampling variance estimation.

The jackknife method given by (&) and (9) appears to be easy to implement, although the size of the
dataset is substantially inflated by the replicate weights. In NAEP Trial State Assessment (he studen(s®
records have length of about 1700, but two sets of replicate weights take up more than 800 cohnnns.

Note that instead of the weighted mean (7) other statistics or estimators can he used as the “parent’
method for the jackknife. Ordinary regression is an important exaunple.

Onr study focuses oicmethods of estimation of the popnlation mean. and of the ssunpling varianees of
these estimators, that depend on the design only throngh a single set of weights, the clustering, and the

stratifieation.

3.4 Model-based methods

This section deseribes the model-based approack of Potthofl of af. (1992), as applicable to the NAEDP Trial
State Assessnient. I general, an estimator for the quantity of iuterest (say, the ratio estimator for the
population mean) is considered. and its sampling variance is expressed as a funetion of the modelled features
of the design. Typically. these features include clustering and stratification. Chiss ering can be represented
by one or several variance components and stratification by stratuim-specific means {parameters),

For the NAEP State Assessient we consider the superpopulation model

g = /lk‘+b_)k+51]k‘ (10)

where the group means {gg} are unhnown constants and & p and g are nntually independent random
variahles with zero expectations and respective variances oy aud oo The within-clnster variances (’f'\'jk

T . “» . . B it
are positive and unkuown, and the hetween-cluster variance aj; 1s a non-negative constant. Note that o,

is the covarianee of two observations in the same cluster:
o . .
cowQie D) = o (i #£ 1) (1)
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Often a comimon within-cluster variance is considered, ado = ab. . This is pot a realistie assumption for
T i
NARP State ‘Trial Assessment, however,
We consider the weighted mean. or the ratio estimator,
Z.;jk Wajkjk

= = 12
g Liﬂ:“'i)k (12)

Assuming (10) and appropriateness of the weights, that is, they are proportional to the reciprocals of

smupling probabilities, yr is an unbiased estimator of the superpopulation mean

ML

m = - . (1)
i
where 1V = z,) Wy and W= Yoo Ve We denate e = Z; Wijk, fix = H'ﬁ.‘ S Wikt b and
e = H'k"l S, Wipklhgk - Note that g, and g are unbiased estimators of py .

2.4.1 The sampling variance of the mean

Following Potthoff «f al. (1492} we consider the weighted means jijx as aggregale observations. We use the
Hj qaqr

effective sample size” nonalization of the weights: we set

[R5

gk

Wk = g Wk (1)

] ”:)L
se that .
-

N 2 _ 1k =
2 Wiy = E Wik = ET‘—[_,—— (15)
f ' —1 " ajk

and denote this tatal of weights by 14 6. Ina general context, Potthoff «f al. (1992) refer to ny yx as
the “offective sample size’. to smphasize a conneetion with the number of “degrees of freedom’™ of cortain
viaranee estimators, see Seetion 342, For NARP ng e can he interpreted as the effeetive sample size ol
cluster jh. although these quantities cannot be compared across clusters. A counterintuitive example arises
when there is a cluster with a large number of students, cach with very small weight. and another cluster
with a small number of students, cach with very small weight. For non-empty clusters 1<y jx < njk
and 14, approaches these extremes when the cluster contains a single observation with dominant weight
(nagn = 1) and when all the weights are almost constant (ng4 jx = nj). The latter is the case in the 1990
Math ‘Trial State Assessment,

The within-cluster weiglited mean is

Z, Waijkhjk

o = S LIt (16)
Najk
and its varlance is
/ o

l " o T 9 9 i (TH' ik
. _ U 2 ] 2 0 J -
var(e) = = | A eh ) Wi,k | = ot (17)

Mgk ) : Nk

The statistics joyp are mutually independent linear components of the estimator (12):

Q . 15
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2k Wokitye
I '

no=

We define the effective eusier sample size as

and the nonnatized weights as

W .
wngr = i
Z]k' jl‘

Now
Dok UH kI k
ji= e—_—
np
and the sampling variance of JUis
- _ Z 2z 2 Jk
var(pu) = —-5 Wk fop+ —=
ny Najk

o 2 2
T RS 2k TRk D Ly
— o .

Ny nn L_;L-ij

Flins the sampling variance of 1 depends on he vartanee components an and a7 0 The next section

li ! n Wk

deals with estimation of these varianees, Alternatives, discussed later, inelude imputing values for these
variances and applying smoothing techniques to improve estimation of vir(1) by pooling information across

sithsaniples,

3.4.2  Estimation of the variance compounuents

0 7 . . g - - .
Pheve are 3700 i+ 1 unknown variance parameters {rrf‘-_ﬂ.} and o in (%), The within-cluster variances
(T‘("-M. can Le estimated as the weighted within-cluster corrected sums of squares

J

— ”'.-\.:_;L'(.’/IJ‘: _/’;L')'J- (19)
7)_.1__,‘- — 1 :

H

UA gk

]

They are anhiased estimators of T

i —
L(".-LJL‘) = Z‘ W eV (Y ie) = ng JeNar(ye g I/’Jk)
Nage—1 ;

(20)

2
= ke

I a common within-cluster variance o2. is assumed the weighted snms of s vares {t,¢} can be pooled:
Y £ i )k I
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o Anage = Drae
= Z]l J J (21)

Z)k l)_.g.’,k- — 1

is an unbiased estimator of the common within-cluster variance oy . ‘Fhe definition of the effective sample

sizes n gy jp 1s motivated by unbiasedness of the ¢ timators in (20) and (21). Also. these estimators have
approrimalc distributions 2 with the degrees of freedom given by the denominatars. see Pottholl f al.
(1992).

For estimation of the between-cluster variance a3y we consider weighted within-group sums of ~quares:

vy = Zujk(/ljlx'—'/lk):)' (22)

Ik

where {u,1} is a suitable set of non-negative coefficients {weights). The expeciation of vy is

E(rp) = Z wyi Avar() + var(pg ) = 2eon (g i) }

jk
= Zuﬂ.('ﬂ.\'ar(/zﬂ.). (23)
2k

where .
20 2, W
— 4+ — 5.
1 1S hkj

e = 1=
The development thus far imposes no restriction on the coeflicients u, . Obvious choices for them are the
totals of sampling weights, 1451 and the effective sample sizes, n g 4.

For u,e = W (23) simplifies to

1> al.
. . IS 9 Wk .
Blrg) = Y (W - =& [ah+ =), (2)
i I8 Nat
gk L
A drawback of the scheme based on uye = ny g,y s that the effective within-cluster sample sizes NAk

cannot be compared across clusters, and may be very misleading when the sampling weights have a large
between-cluster component of variation. Neither of these choices for {u;} takes account of the differing
within-chuster variances (r;"y‘“_ or of the diffeiential contributions of the clusters to the within-group sum
of squares vp in (22).

The within-cluster weighted means g0 have an approximate normal distribution, and so the squared
deviation (sj5 — i )? has a \*-like distribution. FThus var{(si;c ~ px)?} is approximately proportional to
the square of the expectation. The optimal choice of w,p is given by the set of coeflicients for which the
variance of vy is minimized (subject to a constraint, sucl as Y-, ZJ ujr is equal to a constant). Assuming.
for the moment. that a3, is known. and ignoring the interdependence of the squared deviations, we obtain,

using {(17). the optitual cocfficients

|
Uy = - o = . (253
) Uyeloy 4 oo ajin)
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I'he within-cluster variances oy, can be replaced by their estimates in (19). In the absence of an estimate

of @3, a guess has 1o be used. Tt turns out that the accuracy of this giess is not eritical: for instance. setting
oy = 0in (25) is often adequate.

As an alternative, the reeiprocals of the contribntions to (23) can be calenlated nsing an estimate of
iy obtained by one of the other methods. In principle, this recursive algorithm ean be applied nntil
convergence, but chianges after the first iteration are unmimportant.

g - ) . . v
Ihe between-cluster variance o is estimated by the method of moments:

9 _ er = 3 upkl e s
o= . E : (26
Z,,t: Ukl gk
Note that {7 = 0 Lolds only when scratnm & s represented in the sanple by a single cluster. Vor
J A A A
suel a custer and stratum gp = g and gy = g, and so these elusters mmake no contribution to the

sum-of-squares tatistics rqa or .
In Marh 1990 Trial State Assesstnent most groups contain two clnsters. As an alternative to the

estimator (22) the following class of statisties for estimation of the between-cluster varrance can be nsed:

re = L (e = prox)” {(27)

ko >2
where the summationis over all groups with at least two clusters, and {uy } are suitable weights (constants),
A group with a single cluster in the sample canniot contribute to estimation of the hetween-cluster variation.
andd <o the ouly apparent loss is due to the gronps with more than two clusters. The anly advantage of

(27 over ep o in (22) s relative computational simplicity. For a gronp with two or more clusters we have

o ]

2 2
, 2 = . U . ™~ Wk Do
E(ine = pan)” = E var(fe) = 205+ ) ———. (28)
- = Ak
=1 ="
and o
P
— . oUWk
E(ry) = 2 we b 2o, ok ‘5 —_— . (29)
2 ‘ I N
ko, 2! PR .
This. together with (21). yields a class of moment estimators of a3 :
. < =2
a9 IQ_Z‘L' Uy L}:] Nk ,
op = ; . (30
2 ZL- Uy

where the summations for b are over groups with at least two clusters in the sample. In analogy with the

schemes for rp we consider the following choices for the coefficients wy.:
o the within-gronp total sampling weights 187 .
o the total of the effective sample sizes ng e + 1400,

e weights inversely proportional to the expected sum of squares in (2% under 7. = 0.




Table 2: Coelficients for the within-group sums of squares rg and ra.

.\*:?I%d ty (C) va  (B)
1 W W
I Nark + Nk Nk
11 (20} + ) ohei/nas) LU kody + oy /)
R as 111, with o3 in place of a7 N as 11, with a3 in place of o

Note: Fstimators of the between-cluster variance % are referred to by the combination of the sum of squares (55Q)
used B or C and the method (choice of coefficients). I I 11, or R.

Alternatively, the variance ¢ can be estimated by (30) using one of these sets of weights. and then
reestimated using the weights inversely proportional to (28). Of course, this recursive estimation scheme
can be used until convergence is achieved. However, after one such iteration the change in oy is usually
unimportant. The motivation for these sets of cocfficients is analogous to their counterparts for {26).

The choices for the coefficients uji in rp and uyg in v are suminarized in Table 2. Examples of these
estimators are given in Section 3.5. We refer to the estimators of a3 and to the estimators of the sampling
variance of sz by symbols *B” (based on (30)) or *C" (based on (26)). and T (coefficients 1y or W), I
(coofficients 14,k or 4 1k + n4,2). T (reciprocals of the expected contributions to v or vp assuming
o = 0). and "R’ (reciprocals of the expected contributions calculated for 0% estimated by the method I).
Thie estimates of the variances 0';')‘-‘“_ and % are substituted for their true values in the identity for the
variance of yo. (18).

If we insist on interpretation of o as a variance then negative values of a% are not admissible. If for
each negative value of (30) the estimate of o is set Lo zero, as is often done in practice. the resulting
estimator is biased. especially when the tene value of the parameter o is close to zero. Oun the other
hand. x = o} can be interprefed as within-cluster covariance, see (11). and then its negative values are
admissible. The minimum within-cluster covariance » that can be realized for a cluster of size Njp is
—1/(\,x = 1). Note, however, that the sample cluster size njx may be much smaller ¢ van the population
cluster size N1 a negative estimate of the covariance & may be realizable for the sample selected from

the eluster. but not for the entire population of the cluster.

3.5 Examples

The jackkuife and model-based methods for estimation of the mean are illustrated on a few examples
using the data from New Jersey and Oklahoma. Adjustment of the weights due to nenresponse is ignored

thronghout the seetion, but it is explored in the next section.
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Table 3: Jackknife analysis. FEstimation of the population mean of proficiency scores.

New Jersey Plausible values Overall
1 2 3 ! 5
Weighted mean 269147 26912 269 .37 206910 200.65 26916
Jackknife mean 20948 26013 20937 264,12 269.65H 26947
JK stand. error 1.01 1.07 1.03 1.06 1.0 .05
Oklahoma
Weighted mean 2062.95 262.71 262.78 262.71 26263 2062 76
Jackknife mean 263201 262.71 262.71 202.68 262.60 26273
JIK stand. error 123 1.27 1.21 [.214 .22 [.24

3.5.1 TPopulation mean

Estimation of the population mean by jackkuife is summarized in Table 3 for New Jorsey and Oklahoma,
I essence, separate jackknife analyses are carried ot for each plansible value, and the estimators based
on the piausible values are combined into the *Overall” estimiator which takes acconnt of variation due to
estimation of the proficiency scores. The estimate of the population mean proficiency is the average of the
estimates of the miean based on the five plansible values. The sampling variance of the estimator of tle
population mean is estimated using (6). The estimates for New Jersey are based on 2710 students from
101 elnsters, those for Oklalioma on 2222 students from 108 clusters.

The differeneces between the weighted means and the Jackknife estimates of the means are inconse-
quentiali note however. that the differences for Oklahonia appear to be consistent, though negligible, For
most purposes the statistics based on plausible values T 35 are of no interest. and their summaries in the
right-most cohnmn of Table 3 are used.

Model-hbased estimators of the standard error of the weighted mean are summarized in Table -1 for
the four estimators based on each sum-of-sqnares statistie, ve and vy The estimators Bl and C1 require
least computation. owing to simpler equations for estimation of o3 and the estimators BR and CR most
(almost twice as nreh as B and 1, respectively). For completeness, the second row of the table contains
the pooled estimates of the common within-elnster variance al..

The cight sets of estimators of the standard error are within a range of 0.01, but they differ from
the Jackknife estimate by abont ¢ 15 (almost 13 per cent). Based on this analysis we cannot arbitrate
whether suel a difference is dite to sampling, variation of the estimator of the standard error, or whether
the jackknife and todel-hased estimators have different biases (or indecd, whether the jackknife 1~ unbiased
aud model-hased estimators ar- not)

Fable 5 summarizes model-based estimation of 1he population mean for Oklahona. C'ontrasting the

analysis for New Jersey the model-based estimates for Oklahoma are very elose to the jackknife estimate of
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Table -1: Model-based estimnators of standard error of the weighted mean.

New Jersey

Plausible values Overall
1 2 3 { 3
Weirghted mean 204947 209,12 20937 264 40 26965 26016
oy 679.69 - 665.84 665.89 GTR.RO 6GT.7H G71.54
Method BI
o3 99,36 10017 47.83 10010 %26 100.04
Standard error 1.1¢ P21 L7 119 P 1.19
BII
L4 97.6% 99.25 9111 98,46 96.85 96.78
Standard error L iS 118 1.14 LK LT L7
BIII
iy 101.21 1G7. 11 0182 107410 1050 103.07
Standard error .20 1.22 116 1,22 el 1.20
BR
3 96.85 19,24 90.20 a97.59 G20 4602
Standard error L7 (N 1.1 LN 117 117
CI
oy 10710 10829 100.07 10132 103.91 10§20
Standard error 1.22 122 (B 114 1.21 1.21
ClI
n'f, 161 10416 99.50 0971 10135 10111
Standard error 1.21 1.21 116 L9 .19 L.14
l CIII
i, 103.0-4 102.55 91.00 49,64 100.30 an.92
I Standard error 1.20 1.26 115 119 [ I.1a
| CR _
Lt 101.53 104.91 05.24 100.65 102.02 [O1. 4
Standard error 1.21 1.21 1.16 119 1.20 114
Notes: Fstimation of the population mean of proficiency scores for New Jersev, The methods are deseribed in the
toxt and in Table 20 4 i the pooled estimate of the within-clnster vatiance: 63, is the estimate of the between-
cluster variance. Phe estimates are given fer cach plansible value and for the proficienes score (cohtmn "Overall™).
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Table 5: Model-based estimators of standard error of the weighted mean. Estimation of the population
mean of proficiency scores for Oklahoma.

Oklahoma
Plausible values Overall
| 2 3 4 5
Weighted mean 262.95 262.74 262.78 262.71 262.63 262.76
al 651.75H 672.11 675.53 678.81 652 18 666.68
Aethod BI

(r';} 114.60 119.77 112.67 116.81 114.08 115.58

Siandard error 1.22 1.25 1.22 1.24 1.22 1.23
BII

(r',“), 118.12 123.49 116.43 121.29 117.10 119.28

Standard error 1.24 1.26 1.24 1.25 1.23 1.25
BIII

o 103.71 111.82 101.29 113.47 104.88 107.03

Standard error 1.18 1.22 117 1.22 1.18 1.20
BR

rr';'f 120,18 10958 114.54 118.70 115.25 117.65

Standard error 1.25 1.25H 1.23 1.24 1.23 1.2
CI

(r';', 121.29 128.09 | 1R.91] 120.82 119.20 121.66

Standard error 1.25 1.28 1.25 1.25 1.24 1.26
CIlI

(r',“), 119.13 125.64 117.22 119651 116.28 11916

Standard error 1.24 1.27 .24 1.24 1.23 1.25
CIlx

n-';', 121.86 123.86 120.10 122.52 11949 122.56

Standard error 1.26 1.27 1.25 1.26 .24 1.26
CR.

rr';', 121.11 125.58 118.95 120.73 [18.50 121.58

Standard error 1.26 1.27 1.25 1.15 1.2 1.26
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the standard error. The pooled estitnates of the within-cluster variance for New Jersey and Oklahoma are
alike. as are the between-cluster (within-group) variances, The latter variances are very large. considering
purposeful grouping of the clusters into groups. For example, the estimated within-cluster correlations for
Oklahoma. using method 1, are around 11558/(115.58 + 666.68) = 0.15 . Without adjustment for group
(stratification) these correlations are much larger (around 0.35).

The elapsed time for the analysis producing the eight model-based estimates displayed in Tables 1 and
5 ix less than twice the elapsed time for the jackknife analysis.

Of principal interest in Tables 4 and 5 are the right-most columns (Overall’) giving estimates that take

account of inaecuracy in estimation of the proficiency scores.

3.5.2 Subpopulation means

Table 6 displays the estimates of the nicans for a selected set of subpopulations in New Jersey. The
subpopulation is characterized by the questionnaire item, and response: for instance. (183.2) in the first
colunn of the table signifies the subpopulation of students who responded 2" (Graduated from high school)
to iten number 183 (Parent’s educational level). For cach subpopulation the corresponding sample size
and number of (non-enpty) clusters are given. The standard errors estitnated by jackknife are given in
parentheses underneath the associated estimate. For the model-based methods the standard errors are
given in parentheses, and the estimated between-cluster variances in brackets. The methods B (for pairs
of clusters) differ from their method C counterparts. but the differences are insubstantial in comparison
with the estimators within a methed, especially for small samples. To conserve space, only results for the
niethod € are given.

There appears to be considerable agreement between the jackknife and model-based estimators of the
standard errors. especially for larger datasets (with more than 1000 students). On the other hand, among
(he estimated standard errors for small datasets there are considerable differences. It is feasible, however.
that they merely refleet substantial sampling variation. Tor instance, the dataset for itcm and response
(28.2) (Asian American students), contains 131 students. 14 of whom are in a single cluster: of the retnaining

56 non-cmpty clusters only 16 contain more than two students. and none rontains more than six.

3.6  Adjustment of weights for nonresponse

For purposes of statistical analysis. adjustment s commonly interpreted as a perturbation of the sampling
weights. The adjustinents for astudent m the sample drawn may be different from the adjustinent in a
different sample in which the student is also selected. This ereates problems with all methods that rely
on the sampling weights being constants fixed prior to selection of the sample. A simplistic approacl to
dealing with such adjustment is to ignore the stochastic nature of the adjusted weights (their variation
over samples), and procecd with the analysis as if the adjustiment of weights took place prior to sanple
weleetion. This approach is certaindy justificd when the weights are altered only marginally. This is the

case i the New dersev dataset bt not in the dataset for Oklahoma. In this seetion we show, thougli.




Table 6: Jackknife and model-based estimates for a selected sef of subpopulations: New Jersey.

New Jerscy

Item Students Weighted Method C
and and mean Jackknife
response clusters and o). I II IiI R
279.19 2795 19 - 28 (1.3:
281 1780/95 £ro. 18 o (1) (1) (1:28) 5)
662.56 (1.06) [67.50] [60.63] [81.29] [90.74]
240.79 2:10.83 2.34) 2.12) 2.
28 9 308/6 1 21(3 l. 2 1()‘ E i:: (—2 12) EZ 3(3) (3 202
397.61 (2.30) [73.73] [52.84] [76..17] [110.41]
296.97 296.99 5.0- .17 5.23) 4.8
9% 131 /57 2—('; .x G ().(),1) (5.17) (.) 21.5) .('I—bS‘)
(55.03 (4.92) [116.13] [ 90.92] (160.63) [ 17.96]
270.25 27921 2.20) 2.01 1.99 1.97
311 656,/25 S e (2:20) (200 Lo L)
719.71 (2.36) [72.66] [h8.70] [55.28] [53.68]
973 7¢ 9718 5. 57 57 58
., 7005 274.79 271.81 (1:5) (157 ) (1.57) (1.58)
690.37 (2.10) [63.62) (66.69) [67.39] [65.101
25887 25H8.849 70) T 70 5
183.2 6337102 28R 2o, (1.76) (t) (L.76) (1.56)
57 1.80 (1.59) [138.10)] [127.06) [139.69) [95.13]
281.38 281.38 110 1.36 1.42 1.41
1831 12257104 ot - (1-10) 1.36) (1.92) (141)
716.87 (1.35) [ 96.56) [ 89.30] [100.87] [ 98.19]
281.73 IRT 4.48 3.8 1.19 1.
1931 386/ oo N L8 (4.69) L) L02)
515.23 (1.13) [36-1.58] [277.57] [322.51] [306.86)
27297 273.00 2.11 2.05 2.49 2.60
193.2 677/61 212407 o (240 (2:05) (249 (2.50)
560.91 (2.55) (150.16] [110.76] [221.61) [223.46)
, _ 265 .80 265,83 (1.89) (1.85) (1.98) (2.006)
193.3 1316/91 . - - . - a0 op
‘ 580.20 (1.97) [193.71] [183.92] [212.05) (233.36)
s 0130 ‘fo"l‘.:m 261 r (3.6%) .():;‘.72) (4.59) (:?.2?)
520584 (1.61) [ 79.00) [ 36.80] [127.87) [103.27)

Notes: For cach method the estimates of a3 are given in brackets, []. and the estimated standard errors in
parentheses (). The items and response options arc: 28 Derived race/ethnicity (1 White, 2 Black, 4 Asian):
1 Minority stratum;

183 Parents” educational Ievel (2 Graduated from high school, 1 Graduated from college):

193 Teacher's gradnate major (1 Mathematios, 2 Fdneation. 3 Other, 9 Missing).
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Figuee i Stident-level weight adjustment factors for Oklahoma.

that this approach involves trivial imprecision even for Oklahoma. so long as the adjustment of weights is
worthwhile.

The design weights have two nltiplicative conrponents, school- and student-level design weights, The
schiool-level weights are propartional to the reciprocals of the probabilities of inclusion of the school m
the samiple, assunting that all schools would cooperate. Note that these weights refer to scliools, not to
chisters. The student design weights are proportional to the conditional probabilities of inclusion in the
sample, given that the school is inclnded.

Adjustment of these weights due toonon-response also has two multiplicative components — one for
clusters and one for students. In the New Jersey dataset there are only three different cluster-level ad-
Justiment facters: 1000 (no adjustinent). 1027, and L6, for 16, 37, and 21 clusters, respectively, The
student-level adjustient factors are i the range 1016 1150, with mean and median equal 1o 1.06, and
sample standard deviation equal to G.021 In sinimary. the adjustinents of (he weights (produet of the
school- aud stndent-level adjiust ments) are i the ranege 1.016 1171 with mean and nedian equal to .08
and standard deviation equal wo 0.0:32.

In contrast, in the dataset for Oklahoma (108 schools with 2222 students), where the non-response was
uneh higher (about 20 per cent at student level}, the adjustiment of weights is mach more substantial.
The design weights (hoth school- and student-level) are constant within schools. and <o are the sehiool-level
adjustinents, The student-level adgestinent factors have 35 distinet values, twao in most clusters, These
factors are in the range 1.00 195, see Figure 1.

The school-level adjustinent factors arcanuch less tmportant . Essentially, there ae three distinet values
of the factor: for 60 schools (1195 student<y the factor is equal to 1.00: for 12 schools with 805 students the
adjustinent factor is 1015 L.OIG: and for the remaining 6 schools (132 sticdents) the adjustiment factor is

L1G. New Jersey and Oklahoma represent two extremes among the states participating in the 1990 Math
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Trial State Assessment in terins of nonresponse and consequent adjuslmonl:

Approaches other thau jackknife to inference from survey samples regard the adjusted weights as design
weights, ignoring the stochastic nature of the adjustments. We explore whether such an approacl is justified
for the model-based estimators by a Monte Carlo study in whicli the sampling weights are perturbed by
random terms with suitably chosen dispersion. Instead of the realized weights iy we consider a set of

e Cwel S A .
perturbed” weights, w, . generated by the model

log( u':;z,) = logluyj) + 8‘1"; ) :’L"Q . (31)
where {c‘j'{ "} and {:’f}"k)} are twn mutually independent random samples from A(0. o7 ;) and (0 e ().
respectively. and w}j is the inean weight for student ijk. averaged over all the samples. The choice
of values for the variances o2 5 and o2 (. is discussed below. Note that (',\’p(b;; "} and v,\’p(;’:;l'k') are
essentially different from the weight adjustiments: if they were not, weight adjustment would have no
stochastic component. The model in (31) assumes independent deviation factors for clusters and students,
hoth log-normally distributed. This assumption cannot be checked because the “true” weights 115;2 are not
known. Also, the weights {u],,} are defined subject to a multiplicative factor constant for a sample. In
(31) a suitable constant factor is assumed. There is no evidence of dependence of the applied school- and
student-level adjustiment factors.

We adopt the “working” assumption that the sampling weights are unbiased estimators of a fixed multiple
of the reciprocal of the sampling probabilities. and that the adjustiment of the design weights at hoth cluster
and student levels has the following properties. Each adjustnient factor has two components: adjustment
of bias of the design weights, and a random component. We assuime that the variation of the random
component is of the same order as the variance of the bias of adjustinent, that is, the adjustient is
reasonably cfficient. This suggests the choice of school- and student-level variances a2, and 2 - of the
same order of magnitude as the sample variances of the logarithins of the adjustment factors.

The adjustment factors for New Jersey are so small, that even for an unrealistically large perturbation of
weights the weighted means have observed variances negligible in comparison with the estimated sampling
variance of the estimator for the population mean. We chose the variances a2 = 0.03% for schools and o =
0.17 for students. To illustrate this perturbation, the basic descriptive statistics of (he adjustment factors
are compared with a random sample from the distribution used for perturbing the sampling weights. The

hasic descriptive statistics (mininum, median, mean, maximum, and standard deviation in parentheses)

for the school-level adjustment (on log-scale) are:
0.000. 0.018. 0.027. 0.0145. (0.018)

The same statisties for a random sample of size 104 (the number of schools) from the distribution generating
the perturbation factors is

0.002,  0.044, 0.037. 0.157. (0.031)

The carresponding statistics for the student-level adjustiments and perturbation are

0.016, 0.058, 0.056. 0.040, (0.022)
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and

0.000,  0.080,  0.06&, 10.394.  (0.060)

Thus the simulated perturbation changes the weights nueh more than the realized djustment for nonre-
spouse.

One hundred sets of perturbed weights were generated for the entire sample and several subsamples of
the New Jersey dataset. The mean and standard deviation of the sinalated estimates of the population
mean are 26943 and 0.2035, respectively. The jackknife and ratio estimates of the population mean are
26947 and 26916, respectively. For subpopulations the corresponding differetices are also trivial. lor
example, the mean of the simulated estimates of the mean proficiency of the Asian American students
(131 students in 57 clusters) is 296.91 (standard deviation of the simulated estiniates is 0.47). while the
ratio and jackknife estimates are 296.99 and 296.97. respectively, The estimated standard error of these
estitnators is aroud 5.0. The variation in the estimates of the sampling variation is also unimportant.

A similar analysis for Oklahoma yields somewhat larger differences. The jackknife and ratio estimates
of the population mean are 262.91 and 262.95, respectively, and the mean of the simulated estimates
is 262.77 (the standard deviation of these estimates is 0.30). The corresponding means for the Asian
American students (36 students in 25 clusters) are 286.47 (ratio estimate), 286.57 (jackknife), and 286.49
(simulation). The differences among these means are trivial in comparison with the substantial sampling

error. The impact of perturbation of weights on the estimated sampling variance is also trivial.

3.7 Association of weight adjustment and proficiency

A simpler. though incomplete, way of assessing the influence of the weight adjustment on the estimate of
(sub-)population means is based on exploring the association of the weight adjustinent with the proficiency,
For simplicity we consider the first plausible vakie as a representation of the proficiency. The estimate of
the population mean for New Jersey, based on the design weights, is 269.28, 0.21 lower than the rafio
estimate based on the adjusted weights. For Oklahoma, the design-weight sample mean is 262 95, 0.26
lower than the adjusted-weight sample mean. Such differences are no longer trivial although the biases
incurred are in no way consequential.

Influence of the weight adjustment on the estimate of the population mean is a result of association of
{he school- and student-level adjustment factors with proficiency. Figure 5 displays the plot of the school-
tevel adjustment of the weights against the school-means of proficiencies (left-hand panel) and the plot of
student-level adjustment against the proficiencies. The school-level adjustments are positively associated
with mean proficiency - “better' schools were more likely to decline participation in the survey. On the
othier hand. student-level adjustment is negatively associated with proficiency. Students with lower ability
are more likely to abstain from the survey. Since the school-level adjustment is on a much narrower scale,
the overall adjustiment is affected only very moderately by the school-level weight adjustiments.

For subpopulations the impact of weight adjustment varies depending on the stochastic mechanism of
‘selection” of the subpopulation. For example. the weighted means for urbanicity stratum 1 (442 students)

in New Jersey are 238.01 and 238.14 for the design and adjusted weights, respectively: for students who
27
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Fignre 50 Association of eluster- and student- Jevel weight adjustment facrors with proficicney: New Jorsey

responded 37 (nndecided) ta the iten abont 1ieir perception ol mathenatios (535 students) these meins are
2A0.R0 and 259,28, Such differences are simall fractions of the corresponding estimated standard deviations
of the weighted means. The correspoding differences for Oklahoma are only imarginally larger.

I conelusion. weight adjustments have a <mail. althongh pereeptible. impact on estimates of (he pop-
nlation and ~subpopulation nicans.

The adjustient of the sampling weights for Oklahoma is comparable to the pertirhation of e sehool-

9

fevel weiahts D A G and of 1he student-level weights by AT(0, 0.025).

3.8 Multivariate outcomes

i ey tosee that both the jackknife and the model-hascd niet hods have direet extensions for mmlvivariate
outeonies: Fstimation of the population mean is earried ot component-wise, and the smmpling varianee

niatrix of the veetor of estimated means for the jackknife is
-~ - (h I8 T
var(my) = E (" g ym'™t = )7,
1

using the notation analogons to that in (). For 1 he maodel-based methads all the equasions i Secetion 3.1
i “ |

apply.widi the varnanee components replaeed by the carresponding varanee mat riees,

3.9  Modelling approach

I this seetion we consider an adaptation of the maximmm, likehhood method Tor extimation of 1l popi-

lstion cnean. Tor fture referenee we consider ordinary regression instead of the population niean,

L
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A well established approach to regression analysis of data from surveys with complex design relies on
a superpopnlation model in which survey fertures are typically represented as differences among sampling
units. [ the ease of simple regression it is natural to consider regression of g on e with cocllicients varying

aeross the elisters, and dillerences (unknown constants ar Tunetions) among the groups:

‘I/;.', o= (l_’, vt ['_7 ;‘.,1"., I 4 '-'"J" . (g‘_)|

where (ayen boe) ~ N4 ) X and a0 ~ .\-(”.ﬁ:f,‘.). independently, Usnally, submaodels of (32
defined by vonsteaints. siuch as Xy = ¥ b = I»L.'_ and the like, are considered. Realistie snhmodels often
<Ull eontain A large mumber of parameters, one for cach group. so as to rellect substantial hetween-grouye
dillerences. To consider the population mean. set by, =0 in (32},

For the case of constant weights, e, = 1 tting such madels: says by maxinmm likelihood (ML) ix
carried ant by iterative procedures the complexity of which depends essentially o the mumber of estimated
parneters. For unequal weights the erossproducet statisties requiired for ML are replaced by their weightedd
versions  Interpretation of the estitates, as well as of the inodel parameters, is problematie hecause they
have to he cambined to abtain quantities that relate to the target population. A simple adaptation due o
Harville (1974 adjusts Tor the bias of the maxinmaon likelihood estimator of a variance due to ignoring the
rearession paramieters (or the population mean). This method is called the restrieted maxinnm likelihood
(RN,

The principal disadvantage of the modelin (32) is that no distinetion is deawn herween saonpling ervors
and imperfect deseription of the association in the target popuiation. On the other hand, the model-hased
procedures appear not to cater for separate components of vanation stemming from the dustered nacnre of
the target population. This deficieney ean. in prineiple, he resolved by defining more complex population

sunnnaries suel as measures of hetween-eluster variation.

4 Simulations

The parpose of the simulation stndy deseribed in this seetion is 1o compare the properties of the jackknife
and the proposed model-based estimators, The mean squared errars of the estimators o the (sub-)-
popnlation means are of principalinterest. Tisnnunary, the niodel-hased estimators are moch more efficient,
in terms of mean squared eprors. than jackknife, and the differences among the model-based estimators are
relatively unimpaortant. We note, however, that the comparison is somewhat unfair 1o the jackknife sinee
the data are simulated aceording ta the model caowhich the alternative methods e based. fnopartienlar,
weieht adjustient is ignorcd in the <immlations.

Weo consider a dataset, sueh as the set of all students in the New Jersey saples with thetr saanpling
werghts, elusternse, strueture. and stratilication/greuping, and roplace the cuteome variable by a set of
vilues wenerated g the model in (10, with realistic values of the parameters {of et aq o and {p )

Thos, the gronp-mieans {7} are deawn independently from AC250087 3 and the within-cluster stan-

dard devintions {oy e} are deawn indepewdently frone (V0 Vg The sets of gronp means and 1he

"q
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Figure 6: Comparison of the estimated and simulated witliin-cluster log-variances.
Notes: “Comparison” k. k = 1..... 5. is the plot of the ordered values of tie logarithins of the simulated within-
cluster variances against the ordered values of the logarithms of the estimated within-cluster variances for the kth
~et ol plansible values. The five simulations are mutually independent.

within-clnster varianees are cotmmon to all datasets within a set of simulatious. but different student- and
cluster-level deviations are drawn independently for cach siinulated dataset .

For example, for the entire sample X, = 10, 17 = 10, V3; = 40, and rr';', = 100 generate datasets
with features similar to those of the survey dataset. Ignoring the within-cluster variation of the sampling
weights, the estimates of the within-cluster variances {cr;""-_ﬂ:} have the (r;"y_ﬂ.-umlliplo of the ¥ distribution
with 14,5 — | degrees of freedont.

The plots in Figure 6 compare the estimates {(r;“)‘-_jk} for the five sets of plausible values for the New
Jersey dataset with five mutually independent sets of simulated estimates of the within-cluster variances.
drawn as realizations of the distributions rr'fyﬂ. x \}‘:,\.,k—l/(”""-’k = 1), where the variances rr%-‘}k are
drawn from 4V Uy The empirical distributions of the estimated aud simulated variances appear to
have comparable featyres.

For a set of generated proficieney seores the jackknife method, with the replicate weiglits from the

survey, and the model-hased methods were applie 1. The following estimators were evaluated.

e the weighted menn:

A

40




Table 7 Summary of simulation of nodel-based estimators.

Lstimator Minimum Mean Median Maximium St. dev. Deg. fr.
Wid mean 248144 250.273 250.292 252.672 1167
Jack. 1mean 248144 250.275 250.285 252.655 1.200
Jack. var. 0.720 1.351 1.328 2.251 0.340 31.6
1 var 0.657 1.106 1.372 2.265 0.320 3R
Claj 32.231 100.285 97.044 180.142 29.002
CH var 0.657 1.-102 1.365 2.257 0.319 38.6
Clloj 32.231 09,5606 96.157 179.413 29.003
CHIE var 0.633 1412 1.396 2.367 0.324 380
Cll o3 30.0-43 100.815 99.150 189.343 20145
('R var 0.631 1.-403 1.378 2,257 0.319 387
'R U'j} 20,820 100.031 97.550 179.392 29.005
C'100 var 0.639 14IR 1.392 2.288 0.317 401
('100 (T';’, 30.550 101.333 9R.725 182.211 LR .BO8
REML var (.631 1.403 1.378 2.257 0.319 BT
REML o7, 20.830 100.032 97.550 179.393 29.005
@5 mean GOY.96H 667 077 (G67.641 712,931 21.5061

Notes: The estimators of the sampling variance of the weighted mean are denoted by the method (for instance. CR)
and the svmbol “var”in the first column. The estimators of the between-cluster vartance arc denoted by the method
and the ssmbol a%. The estimator of the common within-cluster variance is given in the iast row of the table (for
all methods ¢ arate within-cluster variances arc estimated for cach cluster). The group means, commnion to the
cet of simulations, were generated from A°(230.10). The within-cluster deviations were generated from centered
pormal disteibutions with standard deviations drawn from #(10.40). the between-cluster deviations were generated
from A‘(0.10). All the random draws were mutunally independent. The standard deviations were common to the
cimulations, but the (random) deviations were drawn independently for cach replicate. Cne hundred replicates were

sinntlated.

o the jackknife mean:

o the within-cluster variances:

o the Letween-cluster estimates: af . ad ;. ali- i a2 go- calculated as af o with weights hased
on a3y = 100, and ol . aniteration of the weighted Fisher scoring algorithm deseribed in Section

3.0;

o the estimated sampling varnanees of the estimators of the between-cluster varianee,

Table T contains a stmmary of a sct of simfations for the population mean. For each estimator (a
row of the table), the minimume, imean. median, and maxinum realized value are given, as well as the

standard deviation of the realized values. The quantities in the extreme right colmm (degrees of frecdom)
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are diseussed below,

The weighted mean (ratio) and the juckknife estimators of the population mean are almost identjcal.
Their apparent bias (from (lie superpopulation mean of 230y s dne (o (e uncertainty arsociated with
the sinlated gronpelevel deviations which are constant across the sinmlations. I'he (rue varianee of {he
weighted mean estimater can be caleulated by substituting the generated values of the variances (r;"v_“_ in
the equation (18): jts valne, 1,389, implies that the jackknife estimator of the sampling variance (nean
L35 median 1.33) has a negative bias. while t]he model-hased estimators have positive hiases. However,
the contributions of these hiases to (he mean squared errors of the estimated varianee are negligible. Also,

the bias in estimation of the hetween-clustor variance (ag; = 100} is trivial in comparison with the sampling

varance of the estimatar.

The model-hased methods CECHL CHI and CR.were introdinecd above. The me hod denoted as CHO
e Fable s analogous to CR. hut the weights g eoare caleulated using ah = 100. This means that the
weights wy would he optimal if'n;"‘-_“. were equal to their estimates, and afy = 100, Further, REML stands
for the weighted version of the restricted maximum likelihood mcthod deseribed in Section 3.9, Since a
eood starting solution is nae.] (77 front miethod CR) anly one iteration of the Fisher scoring algorithni is
apphed: preliminary exploration showed thia fur her terations chiange the value of fhe estimate of a3, by
less than 0.1,

M the estimators of the sampling variance of the weighted mean appear to be downward hiased: {1»
observed vavinnee of the estiniator of 1he meanris LT s f 1S The estimator (00 nearly matches this
value {its observed mean is TAI8). and the of her model-hased estimaiors are only marginaily more Liased.
The jackknife estimator of the sampling variance lies by far the largest bias. Furthermore, the observed
standard deviation of the jackknife estimator i~ shightly higher than its model-based counterparts, so that
s mean squared error is also the highest. The comparisons of the stapdamd errors (square roots of the
sainpling varianees) fead 1o the same canelnsions,

Thuss there s hittde 160 choose hetween (e mardel-hased estimators of 1he sampiin variance, perhaps
with the exeeption of the estimator C100 whiel, assines known between-eluster varianee . 1t is enconraging,
though. that not knowing this variance eanses anly marginal Joss of efficiency. The model-hased estimators
have almost identical distributions and they are also very highly correlated. e additional computatiar
mvolved in the method CR makes only amargmal contrilimtion 1o (e efficieney,

However, for several simulations the differences between the estimates are considerable, as can he seen
i the pairwise plots of e sets of estinmatos e Fignre 70 Fhe methods CR ansd CHO0 ape not represented
i the plots so as to achieve liigher resolution and clarity.,

The fimodel - hased ) o1 tiators of a3, are also very similar and n nally highly correlated. The ostimators
appear io be unbased. althongl ther distribntions ape semewhat skewed. Note the substantial uncertainty
metheir estimation: their obserye standard deviations are aronnd 29, If s surprising that the (100
estimator has the Targest hias: lavever, it olserved s apd deviation (25 X1y and its mean squared error
(25810 e the siallest

Anintmtively appealing way of comparing the efficieney of the estimators of the sampling variance is
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2

by fitting \? distributions to the empirical distribitions of the estimators. Then more degrecs of freedon
A g g

1

o the fitted \* distribution imply higher efficiency. The method of moments estimator of the degrees of

freedom is given by the equation

- 2 X (mean estimate of varianee)? .
df. = ( i i (4:9)

variance of the nis.c.

These degrees of freedom are given in the extreine right columu of Table 7. Iy evaluation of this
estimator we ignore the bias of the variance estimator. Not knowing a3, is associated with loss of np ro
degrees of freedonn and using the jackknife method with an additional loss of 6.5 degrees of freedon.

The model-based estimators are mutually highly correlated: the correlations among the estimittors €[],
CHECRCH0G, and REML are 0.990 or higher. the correlations of these estiniators with the ooligator C
15 0981 or higher. The correlations of the jackkuife estimator with the model-based estimat s are 0.500
or Ingher: the highest correlation is with estima’or €] (0.865).

The set of 100 shuulations was repeated with the sanie sinnilation paranieters nsing a different sanple
of simnlated group deviations. Although substantially different values of the observed means 16 st
deviations were obtained, their pattern, and conclusions about ellicicirey. were the same. For instanee, in
one case the jackknife estimator of the sampling varianee of the weiglited mean liad the least bins, b
m ail cases it was associated with 20 - 39 per cent loss of elliciency vis-a-vis cither of the wcdel- higed
estimators,

fu vonelusion. the jackknife method does not deliver on its promise of aubiased estinialion of the
saunpling varianee, and the efficiency of this estimator is also inferior o it= nodel-based counterhar=. e
imodel-based methads do not involve any appreciabile loss of clficiency due to anknown hetweeh eluster
variance. There appears to be little payofl for the set of 36 replicate weights required for the jackknife
estimation. which are dispensed with in the model-based niethods.

Goneralizability of these conclusions was explored by further simnlations n=sing different paranmeter
valnes and different datasets, The jackkuife estimator of e sampling varianee is particularly Vilpersble
when the between-cluster variance (7';} is large: the loss of eflicieney for o";'f = 150 is about #) percent,
while for o3, = 50 it is around 20 per cent. The choice of the distribition for the between-gronps ifferenees
dors not appear to affect the properties of the estimators. The estimators of of; have negligible bias, and,

agrecing with intuition, ave sampling variances increasing witly .

4.1 Estimators for subpopulations

OF partienlar impartanee are the relative performances of the studied estimators for sinaller sauples or
suhpopulations. We deseribe in details the simulations for the subpopulation of Hispante students (Fesponse
)

Btodtem 28) in the New Jersey sample. There are 363 Hispanie students in the sample: they are loeated in

B elusters within 52 groups in the sample. The distribution of tle Hispanic students across the elystors is

compacty sunmarized - Table X0 A Targe mimber of elusters contam only one to three Hispanic stucents,

while oo lesy elnsters Hispanie students form a HIAJority.
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Table 8 Dictribution of Hispanie students in the New Jersey sample

Stundents within clusters

<

Students 2 3 4

] 6 7 3 10 11 12 13 11 16 17 y
C'lusters 27 16

)
10 3 T ) 3 1 1 2 2 2 ! i 2

[

—

Note: The second row contains the numbers of clusters which have the numbers of students given in the same

column. For instance, 27 clusters have one Hispanic student cach.

Several values of the model-based estimators of a3, are negative {up to 12 per 100 sinulated valies).
and. for the purpose of caleulating the weights ujp. they are truncated to zero throughout. The results of
the simulations are given iu Table @ in the same format as ‘Table 7.

The observed variance of the weighted means is equal to 551 The estimators CR and REML. come
closest to matehing this value. followed by (100 which assmmes known variance oy equal to the corre-
gponding sinntlation paraneter. The price for unbiasedness is very high, though: both C'R and REML have
much higher mean squared errors than the jackknife (2.20). or the other model-hased estimators (1.88 for
100, 1.95 for CI1. 2.06 for C1, and 2.12 for CI). The Jdegrees of freedom loosely veflect the efliciencey of
the estimators. although upward biased estimators appear in a somewhat petter hght. The difference of 0.7
degrees of freedom between the estimators C100 and C11L that can be attributed to information about o7, .
appears to be trivial in comparison with the diflerences among the least biased and jackkuife estimators
on one hand, and the estimators CE CH, and (11 on the other hand.

The loss of efficiency due to not knowing a3, is quite moderate. even thongh estimation of o7 is
associated with a lot of uncertainty. However, if an incorrect value of o, is assunied for the estimator
C100. a substantial loss of efficiency is incurred. For exaniple. assuming that o3, = 150 when in faet
afy = 100 yields i severely biased estimator withimean squared error comparable to the jackknife. In small
subsamples the sanpling varianee of the weighted mean is more strongly intluenced by o, than in the
eutire smuple. For example. the sampling variance of the weighted mean sinlated using o3, = 70 is about
one half of the sampling varianee simulated using o3, = 150.

In all datasets the assumption of equal within-cluster variances {(03y-) is associated with substantial loss
of efliciency.

These observed properties were canfirmed m simulations based on several other subsamples with sizes
130 500, In general. the jackknife estimator is biased and its sampling vanance is larger than that of
the model-based estimators, with occasional exception of C'R. The estimator Cl1T s the most eflicient one

for some subsamples (following C100), but perfors rather poorly for others, though never worse than the

jackknife. 'The performance of the estimators CLand CH bs mineh more consistent: Cl s uniforimly more

efficient than CI. but the difference is nnimportant in comparison with the improvement these estimators
represent over the ather methads, The jackknife is least conmpetitive for the sinallest datasets {losses

eflicieney of up to 15 per cent) and.aronically. for the entire sample. Ineflicieney of the jackknife for larger

:;54 5
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Table 92 Sammary of simulation of model-based estimators for Hispanic students.

Lstimator Minimum Mean Median Maxinnum St. dev. Deg. fr.
Witd mean 243.00 248.75 248.78 255.99 2.35
Jack. mean 2:12.94 218.76 218.78 255.98 2.3
Jack. var. 1.86 1.92 1.58 13.26 2.11 10.9
'l var 2.19 1.89 1.62 11.30 1.96 12.5
1 ey, 0 112.59 97.34 381.13 RO
¢l var 1.88 5.33 1.490 1057 1.9 15.1
Il o}, 0 89.47 6&.11 383,11 77.05
CHI var 210 5.73 5.34 11.20 2.10 15.0
Cll a3, 0 127.78 111.45 383.04 8514
C'R var 1.93 5.12 1.78 16.64 2.8 7.3
CR o}, 0 11191 96.78 107.29 97.20
109 var 3.73 5.23 1.90 12.69 1.86 15.8
100 o, 71.18 109.90 $9.20 130.66 8161
REML var 1.93 H.42 4.7¢ 16.63 2.83 7.3
REML o3 0 114.90 96.87 138,36 97.24
o mean 413.20 683.69 669.80 10-49.21 106,12

Notes: The same notation and layout is used as in Table 7. Three hundred replicates were simulated, using the
simulation parameters given in Table 7.

samples may be due to not using within-cluster information.

5 Smoothing techniques

The model-hased method of estimation of the standard error of the mean proficiency for a subpopulation
involves estimation of the cluster- and student-level variance components a% and {rrf‘-ljk}, For small
subsamples, especially those with only a fow strata represented by more than one large cluster. the estimates
of these variances have large sampling variances. Clearly. estimation of these variances is the Achilles heel
of the model-based methods; it is exceedingly inefficient when a large numiber of subsamples is analyzed
because information about the variances contained in the analyzed subsamiple could be complemented by
the other subsamples.

Althougl it is not reasonable to assume that all the subsamples have the same between-cluster variance
a3y, suitably selected sets of subsamples may share a common variance o3 . Then estimation of o3 can
be strengthened by averaging the estimates of a? across the subsamples. In this process of averaging

more weight can be given to larger subsamples. Also, the weights may vary depending on the analyzed
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subsaniple. Sehemes motivated by shrinkage estimation or empirical Bayes methods may be particularly
useful. In a tvpical such scheme cach variance for a subsample is estimated as the weighted mean of the
variances for the entire set of subsamples. with the weights associated with each subsample held constant.
except for the analyzed subsample which is given more weight.

Care has to be exercised in averaging the estimated within-cluster variances for a cluster because
subsamples may have substantially different within-cluster variances. Each cluster within a subsample can
e considered as an informatively selected subsampte. The change in the within-cluster variances is greater
the more closely the variable on which the selection ix based is associated with profic.ency. Inany case,
cstitnation of the within-cluster variance is simple {(hased on the sum of squares v 1), and a variety of
~chemes of pooling information across subsamples and/or clusters can be devised.

The inflnence of the sampling errors associated with estimation of the variance components can be
further reduced by the fellowing scheme. The sampling variance of the estimator of a subpopulation mein

i~ a linear Nimetion of the variance components:

o R Gt 2 .
var(p, ) = S, 00+ L-"wi;k”wjl; : (31)
jk

where S,n and 8,0 are Minctions of the sapling weights:
[ rlyk $ ~

| I 1
Sy = = o

T ij H(uk
i 9 ) i

§ S‘_A “:_;k//”‘l-“ _ I a Sl “.1._)1.'

ik B = o
Z:JL'H:IJK' (ZJK'Hq_jk)

Lhe subseript o = 1o {is added 1o several guantities in (31) and throughout this section to cimphasize

ther depemdence on the analyzed subsample (dataset). For the estintied sampling variances var(ge, ) for

subpopulations a we consider the regression equation

o . 2 . 2 - a-
\""r(/ld) = '\(l.'.'”]f + Z‘H-l.ljk("n'.);‘- +Za. (h)
gk

where ¢, a = 1, .. A are subpopulation-specific random terms and a3, and {rrf{~“,} are sets of varlanees
cotmmmon across the subpopulations. The termn 74 consists of two components: the error of estimation.
Varlyn — var(n. and the modet deviation var(ji) = Sy [, =5 8 g The ‘regression” parameters
ar(ye) —var(p. / Syt kSO - APessIOi pari :
iyl o omay be asaied known or unkuown. T the latter case they ean be estimated by standard
regression methods,

This, given a st of estinates of the sampling variances var(y, ). and assuning conminon variance
components actoss the subsamples {a}. these estimates can be “improved’. or smootlied, by fitting the

linear model (35), and declaring the fitted valies

varlp ) = N, !”;f + Z Sa 1}k”$$'.,ll- . (36)
ik




where the estimates of the varianee components are obtained by a weighted least squares fit wih weights
reflecting differential precision of the estimators var{y,). Since there are a large mumber of clusters it is
expedient 1o sebstitute the estimates (7;-"-._’1. for the corresponding variances in (34) thus obtaining a simple
regression on a3y with nointercept. To take account of differential precision of the estimated variances
var(yp) (estimated. say, by jackknife) suitable regression weights, such as the sampie size, cluster saniple
sizeoor their lincar combination can be applied. Stability of the estimate of the common hetween-eluster
variance a7, can be explored by varying (perturbing) the regression weights.  An important diagnostic
cheek for appropriateness of the model in (34 is that the regression intercept, if estimated., is close to zero.
The smoothed estimate of the sampling variance is the fitted value (36). where the variances are either
estimated exelusively from the subsample to which they refer, by a regression {connnon to all subsamples),
or as a compr aise of these two approaches (sueh as an empirical Bayes approach).

Extensions and scveral adaptations of this approach are casy to devise, for example. by introducing
different vartznees o3 for disjoint subsets of subsamples. The regression equation in (31) can be auplemented
by other data snmmaries (not only linetions of the sampling weights). as well as by anintereept term. thns
ohtaining a better fir. althongl the original interpretation in terms of a common hetween-chister variance
wanld no fonger apply,

A important concern pertains to normality and homogeneity of the “error’ termis 7, Instead of the
rearession of = = Vir) = ST wed o on S o0 we may consider the Fegression

—r 4t

S /Saw = o+l (37)

mowhich the assmnption of Lisd. for 27 = 2,/5, 4 may be more palatable, Now the common variance a3,
i~ estimated as the mean of the qnantities 2, /5, 5. As an alternative. a snitable transformation of z, can
be applicd: in partienlar, if tiin(z,) is positive, log-transformation leads to the geomalrie average of 3, as
an estimator of o - A transformation may also be applied to a/San.

Of conrse. the method outlined in this section can be applied to another model for the onteon .. which
would Tead to a relationship between sanipling variance and a different set of summaries of the datasel
The method requires an estimator of the smnpling variances. The jackknife or @ model-based estimator
can be nsed,and it is then improved by the smoothing.

Animportant issue i application of these methods is identification of subsets with equal (homogenecons)
withm- and hetween=cluster varianees. Detailed nnderstanding of the educational, social. behavioural, and
ceanoinie processes relevant to the target population may promote an intelligent choice in this myriad
of sinoothing sehemies, An interesting aption is that of combining the estitnates of the variances based
ona subsample with the estimates of varianees (their means) from the other subsamples. The mixing
proportions should depend o the (elfective) sample size(s) of the analyzed sihsample. Snel a selieme,
motivated by cmpivieal Bayes e thods, has o areat potential but roquires earefil exprrimentation and

finc-tiing which are hexond the scope of this project .
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6 Regression with survey data

Ordinary regression provides an easy to interpret assessment of association of one variable (the response)
with a set of other (crplanatory) variables. "The standard least squares method for estimation of this re-
aression function is applicable when the following assumptions are satisfied: the values of the explanatory
variables are under control of the experimenter/analyst, the outcomes are generated by a process which
assigns values of the response conditionally independent and wormally distributed with constant (condi-
tional) variance given the relationship to the explanatory variables (regression function), and the regression
function is linear in the -xplanatory variables. In general, the assumptions of conditional independence
and of nen-informative s .. ction of subjects are crucial for validity ef the inference based on the regression
estimator.

In regression analysis using survey data there are two distinet challenges: definition of the estimated
quantity. and taking account of the features of the sampliug design. For conceptual clarity we consider first
the hypothetical situation in which the values of the response ¥ and of the (single) explanatory variable
N denoted respectively by ¥, and X; 7 = 1......N, -~ available for the entire population. With such
data we would calculate the regression slope as

4 - SN, =Y _ NTESL ALY =AY
' SN - N Ny, NP - N

where X = V7UST N, and Vo= NP Y are the respeetive population means of X and ¥ all the

. (38)

summations are over i = 1L......N. Since our inference is conditional on the target population. we regard
i (38) as an unknown constant.
As an alternative. we may consider a construct (latent) variable Y. observed or measured indirectly

and subject to random deviation (error) by the variable Y. and suppose that Y7 is lincarly related to A

Vo= o+ 3N,

H

If the values of X, and Y, were available for the entire population .7 would, under certain standard assump-
tions. be a good” estimator of .37,
The (residual) variauce of the deviations ¥, = Y7 is estimated as
. ) 1

- = = =_— = —.,-"J. "E
a o RS f(), a—3N;) (39)

where = Y = X3, We emphasize that the variance o i (39) is a constant or an estimator. depending
on the adopted perspective. The varianee of 3. as an estimator of 3*_is o/ {S4X, = X)) and would

it~elf he estimated l)}‘

-1

LR Y AVERS L (-10)

We consider estimation of the gquantities (38) (40} based on a stratified clustered sample fron the
tarset population. Our approschis based on estimation of the population means AN S V0 M S S o

NSOV N Cand Yo for whieh imetheds discussed i Seetion 3.4 are applicable.
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population simmnary N7UST O we nse e stanstie

A< the estimator of the

S‘.'&, ll‘,~g.J'.,;.._!/.,;-
Ty o= == R (11
group k). In

where the sunnmations are over all the sampled clenentary nnits istudents 7 in cluster Jin
CLOY hased ona randonn sanple.

order to find the approximate) distribution of the estimmators of (384
statistie Fgois the

woe pequire the covarianee ~structure of the estimators of the population means. The

estimator (12) applied to the product XYY Ts sonpling mean and sarianee are Jerived in Section 3.1,
For the prodiuet XY we consider the est mator
Sy = - - *

- :
K‘-"’-‘ PR )

it~ eXpectation I~

Ecry) = covir w) = EoriEoyg,
Flevoviriamee can o expeessidd in terins of sarianees:
(i)

cover.y) {variN =+ Y =i V) - vargy )

o —

Phisisunhk [y, thesgl,

Notethat s ancunbiased estimanor of XY oy when o and g are oneorrelntod
when Noand Y e associaned, The bias is il when covery sl soedlor theas VY

The sampling varianes of 2y is
.'.IF:I.'[.'.i . :P:I.l'_'/l}‘" DR

varfry = ocovia Y gt - By

Evalnation of the covarianee eon (e g% is in general not stenehtforsard . 1 e assumptions of nor-
nadity of the means e and g ave adopted, then shis covarianee is a function of means. the covarianee, and
propertios of the conditional distributions

the varianees of o and y The derivation, given below, nees il

nnder normality assumptions.

The conditional distribution of & wiven yis

. " \
R LI et U REI Be
o . e

where yoand a0 with the appropriate subseriptC) o staned for the expeoetations and Goosivarianees of -
and g Neoww
I':(.l'._ 7R B o A ) -
aned henec takime expectationg aver ol assunmme theo 1 s ormmatly disrrhnted, s hain
Ewryy = B, TR Ol i
, f’ . .. P .,~’-‘."'
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[he cdhier terms m the estimnator

> ARRY ST 3 Wy

P

= 5 — (]
AL kT s th

A
(s the <aample total af saonpling werzht=y ean bo oltamed from the sampling means snd varsnees of o
ioand ther covarimee

The expectations and varanees of the o rator and dencminator in ¢80 are fonnd by the Tollowing
e thod, Lot orssand s De threee normatly distribnted candonm variables with respective means g, g

and poomiel ceo-hvarianees X0 (snbseripts a. boand e Then

varia, = ) o= Bl - o)) = {E(r, - rrra)e

)

ADIURS /l;‘: + NN N o4 /1;,.“,.,. + i

Ny i

=2 N0 = 2= 2 N = gy« Yo
— T N e s e = 2y g )
B L L SR P I LI DR S TN
=N =2 X 2 (16}
as
Lhe equation for the dononrinator s obtamed from 160 by setting o2 0 (V= S0 = 8 0 X
amd oo
TR R L NS R F1E AITIRIN FTTR M

Finadly, todetermne thie nonents cof the ratio in 013 we require the covarianes of the mmerator avd
denominator. A exact wethed appears tovoquire considerable cffort stnee moments of various nen-linear
functions ol the data are required - On the ohier handy especially b 3 is positive, the carrelation of the
mwerates sund dencaninater s Tikely o beovery hieh aed the distribution of the ratio can be estingted by
nnpnting one or several realistie vadnes of ths correlation,

We wrtte the estimator ¢ 151 as

(17

where wy and w are constants. the pespective expectations of the numerator and denominator in (15).,

awl wy and 2y arc contered random vanables with respective vatianees @7 and @3 and covarianee s Let

i i~ mmeh simaller than g, with high

preom oy dyayay e the corpelation of = and =00 Supgqeose |,

probabaliee o U 20 ahat s e s smedber thaa o for o= 120 Then Tram the axpansion
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(ignoring the higher-order terms). we have

)
Uy (AR [UENIR
o~ — e ——— —_—
BV~ Tt
(18)
2 osud u
. i . 1
var(.3) = 5 + ——1] — 209 — .

ll§ U'z “:3

These equations can be supplemented by further terms invelving higher moments of the random variables

71 and 72 . The values of these moments are not determined by the variance matrix of (4,,42) unless
normality is assumed. However, the assumptions of normality are palatable for large sample sizes.
Note that unbiasedness of the numerator and denominator in (45), as estimators of their respective

population counterparts. does not imply unbiasedness of .3, not even when ¢4 = 0.

6.1 Residual variance

The residual variance a? can be estimated by the same approach. Ignoring the degrees of freedom in
regression for the population. N/(N = 2) = 1, we have

< ey 2
o XY - \'Y)

vt (19)
where the bar over variables X' and Y and their functions stands for corresponding population mean.
The naive estimator of a” is constructed by replacing each population mean in (19) by its (Jackknife or

model-based) estimator. The mean square Y2 — Y'? is estitnated without hias by y2 — y? — var(y). The

denominator of the fraction in (49) is estimated by r? — 32 = var(t), and the numerator by

(Ty = 2y)” = var(Ty — ry).
To obtain the expectation of this estimator we consider the expectations of the numerator and denom-

inator in (49): the former is

E{(F7—oi)?} = var(zy - ry) + (E(T7 - ry)} . (50)

and the latter is derived in complete analogy with the mean square for Y.

6.2 Implementation

The estimation procedure deseribed above requires estimation of the sanipling variance matrix of the means
of N ¥, X% XY, and V2 This can be accomplished by jackknife. the model-based, or, in principle, any
other method. The extension of both for multivariate statistics is discussed in Section 3 8. The estimated
moments are then substituted for the “true” moments in (46) applied for the numerator and denominator
of the regression estimator 4, the estimators of (39) and (40). The estimator .3 can be (approximately)

corrected for bias using equation (18).
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Note that the methiod deseribed in this section is applicable for any <unpling design sinee it s hased

on the expectations and covariance structure of the population nieans of eertany variables.

6.3 Regression with jackknife

The jackkuife inethod disenssed in Seetion 3.3 b a strajahitforwanl extension to ardinary rearession.
I essence. we replace the mean as the “parent’ method by the weighted regression. and subjeet cach
caniponent of the regression vector estimate (the intereept and slope in the case af sinple regression). as
well as the residual variance, to the jackkufe estimation.

Thus, tn NAEPR Trial State Assessment an ordinary regression is fitted for comlbanation o cach set of
replicate weights tand the final sampling weights) and plansible valnes o total of 575 =285 FeEreSslons.
The sets of estimates of the regression parameters and of the residual varianees are then summarized 1o
obtain the jackknife estimates of these parameters. Althongl rebatively casy ta implament this praeedure
demands a Lot of computing time without necessarily providing an effichnt estimatar of the standard errors.
A short-ent, nsing the jackknife as deseribed above for the first plaasible vidueaud estimating the residual
varianee from the regressions with the final weights for the other fonr plansible valies s used inoperation

This way ouly 61 regressions have to he fitted.

6.4 Example

For illustration we constrnet a regressor variable as the total of all the now-nnssing responsea to atenis
D31 238 (I Math elass how ofton do you ). Fach of these items is seored an the Likert =eale (1
5. ordinal). Data from 2171 stwdents (80.1 per cent of the smnpler from 101 elusters. who responded to
cacl item are used in the analysis. The jackknife analysis. involving 57 < 5 = 283 weighted least squares
regression fits, is susnmarized in the top panel of Table 100 The jackknife estimates of the intereept, stape,
and residnal varianee are aiven for each plansible value. and the estimates for the profieieney seores are
given i e right-most cohimmn.

The resnlts of the model-hased regressioit method are given in the hettom panet of Table 10 ..].lll')' arein
close agreement with the jackknife method. The estimated correlation ol the minerator and deronmator
of 3 in (1%) ix equal to 0400 but even for imputed correlanons of zero and ity the resnlts are ot
wibstantially Jifferent. Table 11 displays the resulis for the proficieney scores, sunmnarizing the analyses
for each plansible vabhie, To explare the influence of the anputed correlanon. the resnlts are gnen for
correlations 0,02 1. The standard errors of the slope extimator are affected a great deal By the cleaee
ol the correlation, bt for the estimates (intereept, slope, and residual varianee) the chajee of the correlation

15 not eritical. This suggests a simplification of the Taylor expansion method presented i Section 6.

6.5 Multivariate and multilevel regression

The model-based methad for simple regression ean serve as an ontline for extensions to nmltivariate and

multilevel regression, In the former, the population regression parameter is defined as




Table 100 Regression analysis using the jackknife and model-hased methaods: New Jersey data.

Plausible valne Prof.
Parameter 1 2 3 1 5 viahe
Jackknife
Intereept 2:30.03 230.02 220,63 2350.33 22664 22434
g 1103 1101 [11 1346 1.521 1426
YO
Hlop (0.227) (0.218) (0.218) (0.225) (0.235) (0.235)
Res. variance 10-12.05 1031.51 101588 10-13.62 TO1R8.37 103647
Model-based method
Intereept 2:30.03 229.02 22962 23016 226G 61 220 28
Slon 1A07 1106 1418 1.:345 J.H2R f.132
ol (0.221) {0.216) (0.219) (6.223) (0.2:36) (0.232)
Res. varianee 101012 102851 101317 10-10.57 1018333 103641
Note: The estimated standard errors are given in parentheses,
-1
B = (XTX) X'y, (51)
where Xois the N ox p (population) matrix of the regressors ((he population design matrix), and Y is the

N oD veetor of the onteomes for the population. Each total of crossproduets in (51)
the corresponding ratio estimator and the samnple covariances can he ol

using the formula

VAN(FTTs + T3 ) — ar(Fis) - Var(rary)
2

COV(TTT. Faiy) =

the variance matrix of the sample counterpart of (31),
N
3 = (xTx) xTy.
can he approximated by the multivariate version of the delta method. et

A

Il

(v +£g)"(11| + 1),

cov{es . er), for two rows of g9 hy By 40 = covlen o) and set By = var(e, ).

Assupning that | es | is mateh smaller than us we have the expansion
le) < <

J 1

O
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can be estimated by

ained from the sampling variances

where F1Fs denotes the ratio estimator of the popilation mean product of X'y Ny, The expectation and

where uy, are the expeetations and €y the deviations from the expectations of the mnnerator (h = 1) aud

denominator (h = 2) i (51). We denote the covariance matrices for row b of e, with e by Yoy =




Table 11: Regression anaivsis of the proficieney on a constructed variable using the model-based method:
) A A 8
New Jersey data.

C‘orrelation

Parameter 0 0.2 0.1 0.6 0.5 1.0
[tercept 22445 20037 220.20 229021 22013 220.01
Q] 1.-426 1130 1.-432 1431 1.53% [IRR N
AR
~el (11.252) (0.212) (0.232) {0.221) (0 20%) (0.191)
Res. variance 103610 1036, 12 1036 .11 103616 103618 103654
Notes: The construcred variable is deseribed i Section 6.4, The resnlts are given {eor imputed values of the
correlation 0, 0.2, ... 1.
B = {I- u._T'e-_. -+ 11:,"5'_:11._7'5'_, - (11;111; + 11515; )

1 ]

-1 -1 - — -— —
~ uj'uy +uite, —ullesu;tuy ~ u; Yequlle .

and so 1the miean and varianece matreis of B are approsimated as

E(}‘}) ~ ll.;llly—ll‘:,..l{'I‘(H;]E'_’llg).(I‘(II‘ZIE'_:]'_‘) ..... fl'(ll-;iE-_']],)}
\'ar(,[t}') ~ u;"fE'-—A—AT+B>u._T;.

wilere A is the po« pomarrix with eolunmms Egl,;.ui,'lul. and B s the po pomatrex with elements
ir (u._TznluiTu._TiE-_, I R N A T

For nultilevel regression a number of data sumiaries. various within-cluster snms of squares and
crossproducts, are required. An alvorithig for maxinizimg the log-likelihood for the population can be

nsed, with the population quantities replaced by their sample counterparts, The equations for such an

algorithim involve complex finetions of the snmmaries, and, as a consequence the delta method leads 1o
unwicldy equations, in particular for estimation of vanances and covariances. Nevertheless, the outlined
approach can eastly be applied witheut bias correctzon and derivation of the sampling varianee matrix of
the extimators, The nnpact of the unknown covarianee or correlation matrix can be explored Ly imputing
~everal extreme values of the matrin, suely as the matrix of 72eros or other singnlar matriees. The same

approach can, e prineiple, e applicd to struetural model equations and factor analysis.

7 Two-stage clustered sampling design

Jhis section derives the cquations for the method of Potthofi of ol {1992) Tor the two-stage (three-

level) elustered samphng desien. Hoansos, for instanee, when the replicate groups m the 1990 NMath

Q 5&)
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Triad State: Assessment data are associated with variation. The NAEP Assessment for USA employs a
stratified probahbility clustered sample with two stages of clustering. This section extends the model-based
methads to sueh sampling desigus. \We present fiest the details for the two-stage chistered design with no
stratification.  Incorporating stratification is relatively straightforward hecause it merely corresponds to
collating independent information across the strata,

We e the term group” for the same aggregate samnpling units (replicate groups) as above, even though

these units are now associated with rendom variation. \We consider the model

hyk = mtap+ &+ 550 , (52)

where {ogde {50 tye. and {z,,1 ), are 2+ Ny mutually independent random samples from centered dis-
tributions with respective variances w?. 72, and {(r;’k}ﬂ.. These variances are referred (o as cariance
componcits. ‘The covariance of two observations in the same cluster is r° + w”? and the covariance of two
observations [rom the same group but different clusters is w®. Since these covariances can, in principle, be
negative, it is meaningful. thongh counterintuitive. to consider negative *variance” components, so long as
the variance matrices tor the sample and the target population are non-negative definite,

This model differs fron that for the stratified clustered sampling only by the assumptions for the group
deviations ag . I Section 3.1 these deviations are assumed to 'be nnknown constants (fixed). whereas
here we assume them to he a set of i..d. random variables. As in Seetion 3.4 we do not assume specific

distribntions for the random variables in (52). We focus on the ratio estimator of the popal tion mean for

7

i 2k 2 2 Wijklk
ok, o Wik

We define the stage-level weighted sample means

z, Waayeliyk

I =
NGk
1 = —_.
gk
\\|l(‘l'('
1
Wk = = "k
>_‘1 ”i_)l:
W
H[(Ji_- = ——-—,—HJA-:

ZJ ‘I‘]‘]\'

Wow = 32w and 1. Y:. Woecamnd iy o= 30wy e and iy = Z_) wy i are the flretive sample

scies ol students within sehoolsand seliools within strata’. Note also that ny 6 = 5 u Age and apge =

H
.

}J! v Inanalogous notation. the popalation weighted sample mean is expressed as
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\\'l](‘l'(’ we k= ‘l‘t-k/z_) e
= yt + oy and

Further, we denote
realized values of y, ¢ and pg . respectively.

respectively.

rye ¥ . . - 2
Fhe moment method of estimating the variance components o=, 7

ANOVA-like (weighted) sums of squares:

I - =

Ak najr—1

'Ry = Z“J‘ (je = p1)? (53)
ve = Z (e — ).

The sets of weights {ujc} and {wu:} can be

1o = Zk 11‘{'.*. forh =12 and II' =

ZL e xl’k

H
N

IRITE
ok = g+ ap 40, so that jje and g are estimators of the

These estimators are conditionally unbiased given gy and jog.

cand {o5 }) 1 is based on the following

S waik(ie — 1yx)?

k
arbitrary non-negative nunthers: their choice is . scussed below.

tions of the variance components; then

First, we evaluate the expectations of these statistics as (linear) fune

linearly combine them and solve the resulting moment equations by setting these statistics equal to their

expectations.

For derivation of the expectations of the sum-of-squares statistics i (33) the following identities are
| 1 \ g

useful:
Z; WA jkSeji
Hyk — e = —
”.-l.;k
3 . / ) Z WA k- 1)k
Loy Bk \6-7" + MLk
e — jy =
np ok
Z U pogktk Z wn Z ALk e
Zk We ko | O g + -—-’n— . RIS T
. Z" Wek ENTINS
o= = A Lk
N Nee
Henee
(7.'
-~ i _ _,A
E{(je — ') = —
Ak
. i’
. Lo U I ®hjr o
h’{(/lk - /lk' ).} = B Z‘ 3 )k
N ”U,k ] n 'l._)k
2 “ e i
, w " T we . ] Ui g o W ok o
Blt—pt = a Ny S S Tk
Mee n( ik "y Yy Nk
(H1)
A7

[T+
Q J
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Nede that E{(y = g7} = var(e e o) and Edos — ™} = ot |

For the within-school weighted <o of squares we have

| . "
Etry,o0 = -—————E{ T WA el e = T Ry s = )

Ny ke —

— '__’a'/lj,, =y } L A T }

stiee = e = Soand ST ow ety o= cv =y stpe - o Phinss i an nnbiased estimator

| (T.;"(_

Using the decomposition

e = [l )

|
i
(]
—
=
I
=
]
'
=

" =
R L L L T T B T LV T
= gy = — /l_'.i}

we obitan

FJ!I“ R = ;.——Y‘

o s - :
SROT | N

Ny
P 3 7 A —
Ly R PP
; . Il", \ 7 .:;-“.u ”l .4___, K
When N7 = e 030 Simplitic < 1o
- DNy e
S P L
. . /
I = '
+ "\4 _—'—l?l-“lln:-—--'_’u¢.;i—~“-’,,,",
NI u.\_,;-l : A Bkl

B

tHa)

()

Note that although 570w v = s oo estrietive conditin, Tocans Gt poses tolatinve weights on the

clusters withim strata’. the celative weighting of the strnra” can b eompensate din the linear eonubimation

of the gronp level sams of wquares v borv, = 0 0w b
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where ne = ng s the school-sieple size e gronp & Note that the “degrees of freedom” appear in this

cquation. The wdentities

iy - —

can he nsed to xpross 3545 0571 in s of the sanpling weights wpy e and their stage-level totals 10,

and W
By simifar operations applied 1o the between gronp snm of squares we obitain

Eirey = - f(n,- + IIL e - L’z‘ Wy

N
¢ ¢

. (Y—« " 2 T B | S e
- T T e Uy + — E —-— Uj.
\L]‘ [T 1y ok n . N

2
fTJL.
- " = . (58)
R L z z_, L {5
n;. e — 1Ny Ny
I A _7 -
We cnn assimne, withont loss of ceersdivg, thar 37w = a0 then
. . [ '_’F‘;, U, 5ty 1
Eiro I O B T R R
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R |
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For example. the caeflicient of 72 in (59) is equal to

| o )
e | WY =SS
2 WY L“ W . ’“)

When the group-level totals of weights are constant then (59) furdher simplifies to

E(re) = (KN =1 +[_\‘.Z-__ Z 2;:1111_,1 2 )

NQ n,“ NA Jk

where R is the number of groups.

7.1 Estimators of the variance components

The within-school variances are estimated by v ¢ . If schools share within-school variances. the statisties
v4 5k can be combined to form an estimator of the conumon variance, For instance, if all schools within a

; - . ”
group have a common within-school variance oy then

1
= 2 _(naje—lrajy
Zj Nagk — 1 ZJ: !

- . . “9
1s an unbiased estimator of ;.

In general. we have

=
5
1
!

Dyt + Z Z Dp 03,
kg
Dew? + D(".’Tg + ZZ f)<‘.JK‘”,‘;JL--
L

where the coefficients Dp . Dp . Deooand D are as in (55) ancg (58), or their special cases. Moment

=
~
=
-
I

estimators for the schoal- and group-level variances are the sotutions of the pair of lines * cquations

Z Sktnk

k

Z siDppr’ + Z Sk Z ‘T;Jk
k k )
e = Dew?+ Y Dewtt+ YY) Doty (60)
k kg

where s are a <et of non-negative constants:

e Zk Skt — Zx- Sk z; ";',k
Yook ik
— ZL‘ [)(v.‘:‘r"! -~ Zk ZJ /)('_Jl'ﬂ:;!‘.

o = —L (6]
Do {G1)

[

The weights we- ¢ appear to he natural choices for the coefficients s . The estimates of the variance compo-

nents are then substituted for the true values in (54) to obtain an est jmate of the sampling variance var(;)
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of the population mean estimator . Using different sets of weights for the moment matching equations,
estimating some of the variance components by smoothing techniques involving multiple regression opens

up a variety of possibilities which require further research.

7.2 Stratified two-stage clustered design

For purposes of statistical analysis the design of the NAEP surveys is deseribed as a st ratified two-stage
weighted sampling design. Thus, within each gronp a small number, nsnally two. pronary sampling wnits
(PSU) is selected” (i reality, a different stratification is used. but after selecting the primnary sampling
units they are paired into replicate pairs of PSUs). Then clusters (schaols. or “consolidated” schools) are
selected fromm each so]or‘lv(i PSU, and finally students are sampled from cacli selected school.

Sinee within cach group we have a two-stage clustered design, the estimators of the varianee components
and of the sampling variance of the mean carry over to stratified design, with suitable weights for combining

the within-stratum estimates of the variance components.

8 Summary

The report deseribes a class of madel-based methods for estimation of the population mean in stratified
clustered sampling. Tmportance of the adjustment of weights is assessed by an approach considering the
sampling variation of the adjusted weights and its (variance) conponents. The methods are non-iterative,
and the resulting estimators are more efficient than the jackknife estimators for a variety of datasets
obtained from the 1990 Math Trial State Assessment. The methods can he extended to two-stage clustering.
A general method for estimation of more complex population summaries. such as regression coefficients. is
outlined, 1t i based on the estimators of the population means. applied to various quadratic functions of
the explanatory and ontcome variables. There are no distribntional assuniptions in model-bascd methods.
apart from normality of the saimple means. Model-based miethods nse only the final adjusted weights: the
replicate weights can be disposed of. thus radically reducing the size of the dataset and simplifying data
handling procedures. The principal advantage of the model-based methods is in efficicney and small bras
of the estimators of standard errors for the population mean. Contrary to theoretical claims, the (NAEP)

aperationally implemented jackknife estimator of the sampling variance iz not unbiased.

al
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9 Appendix. Data analysis with Splus

This section describes and docutients funetions and programs written in Splus for processing and analysis

of 16990 Math Trial State Assessment data.

9.1 Data input

The data were obtained from the User Tapes and in the process of transferring them to the San-Workstation
on which the analysis would take place only a subset of 120 variables was selected. They included all
the resampling weights. plausible values for the composite proficiency scores. information about student
hackgronnd. and a subset of responses to cognitive and attitudinal items. The file containing this dataset
18 named NJ.dat for New Jersey. and similarly for other states.

The data are input into the Splus enviromuent by the following Splus expressions:
i ) 8

Ncols _ 120

NJdat _ matrix(scan("NJ.dat"),ncol=Ncols,byrow=T)

The function scan “seans’. or reads. the dataset and temporarily stores it in a veetor: by default. two
numbers are separated by one or several spaces. one or several carriage returns, or their combination. This
defanlt can casily be overruled. The fanction matrir with the argument byrow="7"shapes’ this vector into
amatrix with Neols cohnmns by filling up its clements row by row. There are reasonable defaults if the
veetor lias alength which is not a multiple of Ncols, and the nser is inforined about it by a warnmg.

The mzmber of students in the data is ascertained as the number of rows of the matrix N Jdat:

Hstud _ dim(NJdat)[1]

Next, we sort the students by the schools and by strata. The scalars Njack and Npair are the indices
(eolmm rrmbers) for the stratum and the school within the stratuim. Knowing that there are at maost

thres senools within a steatum, the students can be sorted on the variable
3 stratum number + school number within stratmn
First. 1o case the burden of typing complex expressions we define an Splus funetion «ls:

cls _ function(ci,c2)

NJdat(,c1]}¥%*Ymatrix(c2)

This funetion has two arguments: 1 should he a veetor, a iist of colurmm indices of NJdat. and e2 4 veetor
of the same length as 1. The function returns the linear comhination of the eolnmns el of N/dat with

coclficients e2. The veetor ¢2 has to be reshaped into a matrix beeanse Sphis distinguishes hetween veetors
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and matrices with a single colmmn or row. The value of the function ¢ls is a vector even though it is
senerated by a matrix operation.

Sorting of the data is accomplished by the following expressions:

# VNpair and Njack are the column indices

# for the replicate and jackknife

Npair _ 12
Njack _ 11

# sort records by schools

NJdat _ NJdat[sort.list(cis(c(Npair,Njack),c(1,3))),]

The hash "#° causes the rest of the line to be regarded as a comment. The function serf.list returnsg the
permutation that wonld sort its argament in ascending order. This permutation is then applicd to the rows
of the matrix NJdat. The selection of columus of NJdat can he affected by an expression between the last
cotma above and the closing bracket 1. No expression behind the comma is interpreted as *all columns’,

F'or convenience, it is uscful to caleulate the delimiters of the schools in the data. We index the schools
by integers 2., . where school s represented by records 1,200 .00y, school 2 by ny + 1.0, ny A+ ne.

and so on. We refer to nj as the school sample sizes.

Bot _ seq(Nstud)[!duplicated(cls(c(Npair,Njack),c(1,3)))]
Top _ c(Bot[-1j-1,Nstud)

Cnt _ Top - Bot + 1

Nclu _ length{Cnt)

In this sequence of expressions ol is assigned all the indices (components of the veetor 1,2, ..., N stud),
for which any vahie of the linear corubination of replication and jackknife indices occurs for the first time,
The exelamation mark U stands for negation. and the function duplicaled returns a logical vector (vector of
17s and sy indicating whether the valne of the component of the argument is equal to that of a previons
('um[;nnvm. Thus. Hoel contains the indices of the first students from each school. Top is set to the indiees
of the Iast students {rom each school, Cnl to the number of students from each school, and Nelu to the

nuber of schiools tn the dataset ({ength returns the number of components),

9.2 A data summary

The following expressions give the selected varable names and tabnlate the categorical variables and
compute quantiles and standard deviations for the quantitative vanables. Note how the funetion pasts is

nsed for generating a set of sinnlar names {character strings).
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# Tabulating the NJdat data
# Tabulation

Vnames _ c("Sex'","School","Race","IEP","LEP",
'"D.Sex","D.race","Urb.Stratum","Min.Stratum"," Inc.Stratum",
"Rep.Grp.1","Drop.Grp","JK.Fac","Weight",

paste("SRWT",seq(1,56)),

"Orig.WT”,"Num.Cor","Par.Ed.","Single.P",“Sch.Math",

"Perc.Math" ,"T.Cexrtf","T.Und.¥j","T.Grp.¥j","T .Math.Crs",
"T.Emph.No.","T.Emph.PS","S.Policy","Problems", " "BO0O3501A",

""'BOO36014A","BOO0S0O1A", ""BO00S034A",""BOO0S04A", "BOO0SO5A",
paste("M",10100+seq(1,8),"B"),

"M810201B", paste("M",10300+seq(1,3),"B"),
paste("MPRCMP",seq(1,5)),
paste("T023",c(201,301,302,311,312,307,308,313,401,402,
411,412,407)))

length(Vnames)

quanti c(1,2,3,seq(13,72),75,seq(103,107))

categ _ seq(1,120) [~quanti]

MJTAB _ list()

for (i in categ)

NJTABL[i]] _ TBL‘1)
for (i in quanti)
NITABL[i]J] _ c(mean(NJdat[,il),quantile(NJdat[,i],

c(0,.1,.25,.5,.75,.9,1)), sqrt(var(NJdat[,i])))

"Done'"

The content of the st VJTAR s, naturally quite extensive, and therefore we repraduce only a small

section of it giving the sunumary for a categorieal and a quantitative variable,

$"Sch.Math , No. 75'":
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Mean Minimum 10Y%, 25Y% Median 75% 90Y% Maximum St. Dev.
3371.8 -25021 -14404 -268 4920 11410 14875.5 19804 10445.4

$"Perc.Math , No. 76":
1 2 3 9
725 1392 555 38

Variable No. 795 i~ the School level math mcan logil score (multiplied by 10000). No. 188 on the User

Tapes. and No. 76 is Student’s perecption of mathematics, No. 190 on the User Tapes.

9.3 Jackknife

In this section we present an Splus function for jackknife estimation of subpopulation imeans. Specifically.
we consider estimation of the mean proficiency for a subpopulation given by a condition described in terms
of the variables in the dataset. The vector of values of this (logical) variable on the sampled students s
the argument of the Splus function Jackf. The default argument is 7', that is. the entire population,

The fumection starts with extracting the dataset for the subsample corresponding to the cubpopulation
(NTd). and the sample size of this subsample (nStu). The permancut assignment symbol "<< =" has the
offeet of its left-hand side to be written in the directory available at the entry into Splus. Other objects
created within the function are femporary: with the exception of the last expression of the function they are
not available after the function is successfully evaluated. If an error occurs during evaluation. the directory
reninins intact.

The objects bol, fep anid cnt are the analogues of the vectors Bof. Top and ot for the subsaniple. The
object Twl (1otals of the weights) is a vector of length Njr (number of strata + 1), and its components
are the total of adjusted weights (the first component), and the totals of the jackknife replicate weights for
cach pseudoanalysis. Cwef is the index of the adjusted weights, and the adjusted weights are followed by
the jackknife replicate weights in each record of the dataset.

The permanent assigniment of Twl, as well as of NJd, is essential because these objects are used in
anothier function: the function jhmean evaluates the sample mean or the jackknife pseudo-means for a
set of plausible values. The indices for the analysis (sample or jackknife) and for the plansible value are
encoded in the argument j. The function jkmean is used via the apply function to create the vector of
these means. The function apply lias three arguments: an array A, an integer 7. and a funetion fo The
funetion s applicd to cach subplane of the i-th dimension of A. In our case. 1 is a columu vector of
integers 0.1, ..., Njr o« Npr—1(Npris the mimber of plausible values, equal to 5). Tor a given integer
the associated pseudo-analysis and the plausible value are given by integer division (% /%) and remainder

YY), respectively: see the declaration of the fanetion jkmean. The values returned by the apply function
) ! ) J ) ppy
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using jhmcan are reshaped into a N jr x Npr matrix: it contains the sample and pscuda-means (rows) for
the sets of plausible valnes (colunmns).

The function ssq colleers the results of the Vpr jackknife analvses: the sample {welghted) means. the
Jackknife estimates of the means, and the jackknife estimates of the sampling variances. Sinee the decimal
placing was ignored at the input. division by 100 and 10000 brings the results onto the appropriate seale.
The function is then applied to cach column of sbar. that is. for each plausible valne, thus generating a
3% Npromatrix.

The matrix svars is augmented by the means across the plausible values and its third row (sampling
variance) is augmented by the observed varianee of the sampling variances. Finally, the variances are
transfornied to standard errors {deviations), labels are attached to the rows and colimns of sears, and the

finetion returns a list cantaining:

¢ mmbers of students and sehoals:
s counts of students within schools;
s the matrix srars;

o uzer. systen and elapsed tomes for evaluation of the funetion (note that the valine of sfarf is assigned

by the first expression of the fnetion).
) |

Tlie expressions constite-ng the function ghmean are enclosed i braces £ Tor fetions containing, a
stngle expression. such as phmean and ssq, the braces are redundant .

The following is wn example of using the function gkmcan. The jackknife analysis is perforined for the
subpopulation of all students who (wonld have) responded AT (Cstrongly agree’) 1o the question ahout

student’s pereeption of mathematies (variahble Noo 199 in the user tape).

JKre762 Jackf(NJdatl,76])==1)
JKre762

The first expression is an assignnient: the seeond, quoting the name of ¢ he ahject displays the object

L:i\'t‘!l ln'lu\\'i

$Students.clusters:

[1] 725 104
$counts:

(1] 8 4 410 612 710 5 3 9 713 4 6 6 1i 6 1 i4
(21] 9 811 5 3 1412 4 2 6 8121112 4 6 5 5 6 10
(4t1] 6 7 2 713 v 13 5 9 3 5 4 5 4 2 31011 8 3
61 11 3 6 6 5 414 6 5 7T 2 8 6 61011 6 8 7 10
(81 711 712 8 5 5 2 2 4 4 5 815 9 6 5 5 g §
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[101] 4 8 3 9

$estimates:
P.vl. 1 P.vl. 2 P.vl. 3 P.vl. 4 P.vl. 5 Ov-11
Weight. mean 278.837 279.592 279.516 279.910 279.732 279.717
JK. mean 279.828 279.579 279.501 279.905 279.718 279.706
JK. st.erxr. 1.681 1.707 1.722 1.659 1.727 1.707

Thus. the subsample contains 725 students from 104 schoals (cach sehool is represented i the subsan-
ple). The mean proficieney is 279.71 - the difference between the jackknife and ratio (weighted) estimates
i< trivial The estimated standard error of the jackknife estitnator is 1.71.

# Jackknife analysis for subsets

# cases selected by seval

# 1990 New Jersey state trial assessment

# The function requires only the dataset NJdat

# and the logical vector

# for the selected subset, e.g. Jackk{(NJdat(,74]==2)
# (!%) or the vector of subscripts

# Censtants to be set

# Cpr ... the first column of plausible values

# Cpr = 103

# 1p ... number of Plausible Values

# lp = &6, and Ip=seq(i,lp)

# Cwt ... the column o' weights (followed by the JK weights)
# Cut = 14

# Njr ... number of "SUs

# Njr = §7

# The default is the entire dataset (2710 students)

Jackf _ function(seval = T)

{

1
=1
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start _ proc.time()

t select the students

NJd <<- NJdat[seval, ]
nStu <- dim(NJd) [1]

# the delimiters for the clusters

bot <~ seq(i, nStu)['duplicated(¥Jd[, c(Npair, Njack)] %=
matrix(c(1, 3)))]

top <~ c(bot[-1] - 1, nStu)

cnt <~ top ~ bot + 1

# the total weights

Twt <<- apply(¥JA[, Cwt:{Cwt + Njr - 1)1, 2, sum)
# analysis for each replicate and plausible value
jkmean <- function(j)

{

i3 <= § W% (mir)

sum(¥3d[, Cpr + j /% Njr) * Nld[, cut + 3j1)/Twt(jj + 1]
}

# Jackknife means

sbar <- matrix(apply(matrix(seq(0, Fpr * Njr - 1)), 1, jkmean),

Njr, Npr)

#  jackknife results (means and variances) for each pl. value

ssq <~ function(yb)
c(yb[1]1/100, mean(yb[-11)/100, sum((yb[-1] ~ yb[1])~2)/10000)

svars <- apply(sbar, 2, ssq)
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# variance --- standard error

svars <- cbind(svars, apply(svars, 1, mean))
svars[3, 1p + 1] <- svars[3, 1p + 1] + 1.2 * var(svars[2, J)

svars[3, ] <- sqrt(svars{3, 1)

dimnames (svars) <- list{c("Weighted mean", "JK. mean",

"JK. st.err."), c(paste("P.v1l.", Ip), "Ov-11"))
# results

list (Students.clusters = c{nStu, length(cnt)), counts = cnt,

estimates = svars, proc.time=proc.time()-start) }

9.4 Model based estimaticn

The Splus function 1 Cmg listed below exccutes the set of model-hased estimation procedures deseribed in

Section 3.1,

# Function for model based estimation of NAEP data subsets
# Filename NS.md (started 6/8/92) ---  method based on
# Potthoff et al. JASA, 1992

# cases selected by seval
# 1990 New Jersey state trial assessment
The function requires only the dataset HNJdat

and the logical vector

for the selected subset, e.g. Jackk(NJdat[,74]==2)

#* K B R

(11) or the vector of ~~ipts

# Use function TBL to tabulate a NAEP variable

# Constants to be set

# Cpr ... the first column of plausible values
# Cpr = 103

# 1lp ... number of Plausible Values

#

lp = 5, and Ip=seq(i,lp)

03




# Cwt ... the column of weights
# Cut = 14

# Njr ... number of PSUs

it Njr = 67

# The default is the entire dataset (2710 students)

# STR ... column of the stratifying variable, default ...
d STR = 11
# other option ... STR = 9 (4 strata)

VCmg <- function(seval = T,STR=11)
{

start <- proc.time()
£ select the students

y <- NJdat(seval,c(Npair,Njack,STR,Cwt,Cpr+Ip-1)]

str <- y[,3]
nStu <- dim(y)[1]

# the delimiters for the clusters

bot <- seq(1, nStu)['duplicated(yl[, c(1,2)] Y%xY
matrix(c(1, 3)))]

top <- c(bot[~1] - 1, nStu)
cnt <- top - bot + 1
Ncl <- length(cnt)

clu <- rep(seq(1,Ncl),cnt)

w <~ y[,41/1000
y <~ y[,4+Ip)/100

# stratifying variable (student- and cluster-level)

# recode to strata 1,2, ..., nstr

cstr <- unique(str)
str <- match(str,cstr)

Str <- str(topl]
G /0
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nstr <- length(cstr)

# the delimiters for the strata
Sbot <~ seq(1,Ncl)[!duplicated(Str)]
Stop <~ c(Sbot[-1]-1,Ncl)

Scnt <~ Stop-Sbot+i

# total weight

W <— sum{w)

# sample means

Wmn <~ t(y)Y*Vnatrix(w)/w

# within-cluster means

tcls <- cbind(tapply(w,clu,sum), tapply(w~2,clu,sum))
for (i in Ip)

tcls <- cbind(tcls, tapply(y[,il#*w, clu, sum)/tcls([,1])

# normalized weights and effective sample sizes A

# estimate of the within-cluster variance

nA <- tcis[, 1] 2/tcls[,2]

S2w <<- matrix(0,Ncl,1lp)

for (i in Ip)

S2wl,i] <<~ tapply ((y[,il~tclslclu,2+i]) 2*w, clu, sum) *

tcls[,1]1/tcls[,2] / (naA-1)

S2W <- apply(S2w([nA>1,],2,mean)
S2wlnA==1,] <<- s2y

# within-stratum totals, only when more than 2 PSUs

Snb <- SQw/matrix(nA,nrow=length(nA),ncol=lp)

—




Snb <- Snb{Sbot,]+Snb[Stop,]

SnA <- nA[Sbot]+nA[Stop]
Swt <- tcls[Sbot,1]+tcls[Stop,1]

# Dbetween—cluster sums of squares
difs _ (tcls[Sbot,-c(1,2)]-tcls[Stop,-c(1,2)]1)"2

v2I <~ t(difs)%*Ymatrix(Swt)
v2I1 <= t(difs)¥%*Ymatrix(Sna)
v2III <~ apply(difs/Snb,2,sum)

# Dbetween—variance estimates

BI <- (v2I - t(Snb[Sbot!=Stop,])%*Ymatrix(

Swt [Sbot {=Stopl))/sum(Swt [Sbot!=Stop])/2

BII <- (v2II - t{(Snb[Sbot!=Stop,])%*Y
matrix(nA[Stopl+nA[Sbot]) [Sbot!=Stop,])/
sum(nA[Sbot!=Stop]l)/2

BIII <- (v2III - sum(Stop!=Sbot))/apply(i/Snb[Stop!=Sbot,],
2,sum)/2

# reestimate

Swr <- 1/(matrix(2+v2I,nrow=length(Sbot),ncol=1p,byrow=T) +
Snb)

V2R <- apply(difs*Swr,2,sum)

BR <- (v2R - apply((Swr*Snb)[Sbot!=Stop,],2,sum))/

apply(Swr[Sbot!=Stop,],2,sum)/2

# within stratum totals
stra <- rep(seq(1,length(Scnt)),Scnt)
ucls <~ cbind(tapply(tcls[,1],stra,sum),

tapply(tcls[,1]~2,stra,sum))

for (i in Ip)
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ucls <~ cbind(ucls,tapply(tcls[,i]*tcls[,2+i],stra,sum)/
ucls[,11)

difs <~ (tcls[,2+Ipl-ucls[stra,2+Ip])~2
# estimates based on W_jk and ni
Excl _ -Sbot[Stop==Sbot]

Wecom <- tcls[,1] - tcls[,1]"2/uclsistra,1i]

vbI <- t(difs) Y%*% matrix{tcls([,1])

CI <~ (vbI - t(S2w)¥*%matrix(¥com/n4))/sum(Wcon)

Weom <- 1 - 2%tcls[,1]/ucls(stra,i]l+ucls([stra,2}/ucls[stra,1]"2
vbII <~ t(difs) %*% matrix(nh)

CII <- (vbII - £(S2w)%*Ymatrix(Wcom))/sum(Wcom*na)

vbIIT <- t(difs[Excl,])%*Ymatrix(na[Excl]/Wcom[Excl1])
CIII <~ (vbIII - apply(S2w[Excl,],2,sum))/sun(ni[Excl])

# reestimate

Snb _ 1/(matrix(vbI,nrow=length(nA),ncol=1lp,byrow=T) +

S2u/matrix(nA,nrow=length(ni) ,ncol=1p))
vbR <~ t((difs*Snb) [Excl,])%*Ymatrix(1/¥com[Excl])

CR <- (vbR - apply((S2w/matrix(nA,nrow=length(nd),ncol=1p)*
Snb) [Excl,],2,sum))/apply(Zub[Excl,],2,sum)

# variance of the weighted mean

nB <- W 2/sum(tecls[,1]1°2)

varl <- 1/nB*(BI + t(S2w)%*Ymatrix(tcls([,2])/
sum(tels[,1]1°2))

varIl <- 1/nB*(BII + t(S2w)%*Ymatrix(tcls[,2])/

sum{tcls[,1]°2))
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varIII <~ 1/nB*(BIII + t(S2w)Y*Ymatrix(tcls([,2])/
sum(tcls[,1]1°2))

varR <- i/aB*(BR + t(S2w)¥*Ymatrix(tclsl[,2])/
sum(tcls[,11°2))

varCI <- 1/nB*(CI + t(S2w)%*¥matrix(tcls([,2])/
sum(tcls[,1]1°2))

varCII <- 1/nB*(CII + t(S2u)%*%matrix(tcls[,2])/
sum(tcls(, 1]1°2))

varCIII <- 1/nB*(CIII + t(S2w)%*¥%matrix(tcls([,2])/
sum{zcls[, 1]°2))

varCR <- 1/nB*(CR + t{(S2w)%*Ymatrix(tcls[,2])/
sum(tels[,1]17°2))

# results

indx <- ¢(2,3,4,5,6,7,8,9)

resm <- matrix(c(¥mn,varI,varII,varIII,varR,varCI,
varCII, varCIII, varCR, S2W, BI, BII, BIII, BR,
CI, CII, CIII, CR), ncol=lp,byrow=T)

resm <- cbind(resm,apply(resm,i,mean))
resmiindx,1lp+1] <- resml[indx,1lp+1]+(1+1/1p)*
apply(resm[indx,Ip],1,var)

resm[indx,] <- sqrt(resm[indx,])

dimnames (resm) <- list(

c("Weighted mean", "SE I, "SE II", "SE III",
“"SE R", "SE CI", "SE CII" 'SE CIII", "SE CR",
"Within variance", "BV I', "BV II", "BV III",
"BV R", "BV CI", "BV CII", "BV CIII","BV CR"),
¢(paste{("”Pl.val.", Ip), "Overall'))

list(Students.schools.strata = ¢ ‘nStu, Ncl, nstr),
school.sizes = c¢nt, stratascstr, PSUs.in.strata=Scnt,
Eff.size = nB, estimates = resm,

proc.time=proc.time()~start)

-~
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Phe arguments of the function are the subsample (given by o losical variable, with the entire sanplie as
the default). and the stratification variable (defandt variable Noo D1 variable Noo 5t an the Paer Tapes).
Only the minimal < . of variables is selected into the array g Then the decimal places for the weighis and
plausible values are adjusted. The object Tpis the veetor {123, 15), defined as segilp). wheee Bpis the
nutaber of plausible values, equal to 3.

The delingiters for the clusters are set as in ghmcan bur. additionally. similar delingters are st for the
strata (with respeet toclusters). Some care is necessary becise elnsters and even whole strata may absent
in the subsample

The array fels contains the within-cluster totads of weishts, squared weights, and weighted torals of
plausible vaiues: 0.4 are the within-cluster effective sample sizes. and S s the matrix of estimates of
the within-cluster vanances afy- . Fhe notation for the sum of squares and variance estimator is similar 1o
that in the text The ni-thod based i pairs of PSU's uses the objeets Sua. Sl o2 020 v 20 and so oo,

The ather two methods require within-stratun: totals of weights and means of plausible values, These
are colleeted in the matrix wels. The objeets rborhl vbl1 and so o are the conmterparts of o2 and 20 e 2]
for the two methods, The sets of five ({p) estimates are then sunmmarized in the Tase colimm of the matris
resm. The outpnt of the funcetion i a list containing the clustering stencture of the analvzed subsample,
the estimates, and information about processing time,

Forallustration we give the analysis for response "A7 G the item Stadent's percepleen of mathcmatis.




$Students.schools.strata:

[1] 725 104 53

$school.sizes:

(11 8 4 410 612 710 5 3 9 713 4 6 611 6 1 14
{21] 9 811 5 31412 4 2 6 8 1211 12 4 6 5 5 6 10
[41] 6 7 2 713 713 5 9 3 5 4 5 4 2 31011 8 3
(611 11 3 6 6 5 414 6 5 7 2 8 6 61011 6 8 7 10
[81] 711 712 8 5 5 2 2 4 4 5 815 9 6 5 5 9 &

[10i] 4 8 3 9
$strata:

6 51 102 149 196 244 295 359 410 476 492 541

1 2 3 4 5 6 7 8 9 10 11 12

8i3 868 926 968 989 1045 1101 1147 1195 1273

600 652 677 732 792

i3 14 15 16 17

1301 1347 1404 1445

30 31 32

1963 2013 2067 2125

43 44 45

12212221222232222

18 19 20 21 22 23 24 25 26 28 29
1498 1551 1598 1645 1725 1768 1809 1859 1915
33 34 35 38 37 38 32 40 41 42
2182 2253 2283 2337 2388 2475 2523 2587 2637
46 47 48 49 50 51 52 53 54
$PSUs.in.strata:
[1] 2222222221222
(31 2 2222222222222222222223

$ELff.size:
[1} 74.536
$estimates:

P.vi. 1 P.vl. 2 P.vi. 3 P.vl. 4 P.vli. 5 O0Ov-11
Weight. mean 279.837 279.592 279.516 279.910 279.732 279.717
Wtd. st.erxr. 1.537 1.572 1.525 1.440 1.536 1.5631
Between-var. 102.215 112.575 105.488 81.197 104.311 10*.157
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W.st.err II 1.497 1.5563 1.5156 1.428 1.520 1.511
Btwn-var. II 93.294 108.237 103.124 78.695 100.657 96.801
W.st.err. R 1.716 1.694 1.639 1.53¢ 1.665 1.670
Btwn-var. R 145.696 142.324 132.325 101.063 135.083 131.298
Within var. 643.821 614.549 613.602 679.647 623.104 634.944

$proc.time:

[1] 36.416 4.517 48.0C0 0.000 0.000

Note that the effective sample size is 74.5, much smaller than the number of clusters. 104, The first two
estimates of the standard error are nearly identical (1.53 and 1.51). but differ appreciably from the third
one (1.67) which is close to its jackknife counterpart (1.71).

For the entire sample there is a much closer agreement. The jackknife estimate of the standard error is

1.05, while its modcl-based counterparts are 1.09, 1.18. and 1.085.

9.5 Regression

In this section the Splus functions for fitting regression by the jackknife and model-based methads are
given. The vector rselidentifies the students with complete records (for each variable using in constructing
the explanatory variable), and rvar is the constructed explanatory variable. The function JKrcg returns
the results of a pseudoanalysis. These results are stored in srcg and are returned in a soitable format in

the list JKfit.

# An example with regression

# Select all the subjects

rsel _ (NJdat[,91]<6)&(NJdat[,92]<6)&(NIdat[,93]<6)&
(NJdat[,94]<8)&(NJdat[,95]<6)&(NJdat[,96]<6)&
(NJdat[,97]<6)&(Jdat[,98]<6)

xvar _ WJdat[,91]+NJdat[,92]+NJdat[,93]+NJdat[,94]+
NJdat[,95]+NJdat[,96]+NJdat[,97]+NJdat[,98]

JKreg _ function(j)
{

jw _ jAUN

iy _ JA/ANGr
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# regression of pl.value jy with weights jw

ft _ lsfit(xv,NJd[,Njr+3+jy],NJd[,3+jw])$coesf
matrix(c(ft,sum(NId[,3+jwl*(NJd[,Njr+3+jy]-ft[1]-5t [2]*xv) ~2)/
sum(NJA[,3+jw])))

}

s3q _ function(yb)
c(ybl1],mean(yb[-1]),sum((yb[-1]-yb[1]1)"2))

start _ proc.time()

xv _ xvar[rsel]

¥Jd _ NJdat[rsel,c(Npair,Njack,Cwt+seq(Njr)-1,Cpr+Ip-1)]

¥Jd[,seq(Njr)+2] _ NJA[,seq(Njr)+2]/1000
NJA[,¥jr+2+Ip] _ NJA[,Njr+2+Ipl/100

bot _ seq(1,dim(NJd)[1])['duplicated(NJAL[,c(1,2)]%*Y,
matrix(c(1,3)))]
top _ c(bot[-1]1-1, dim(NJd)[1])

cnt top-bot+1

clu _ rep(seq(1,length(cnt)), cnt)

sreg .. apply(matrix(seq(Npr*Njr)-1),1,JKreg)

sregi _ matrix(sregli,],Njr,Npr)
sregs _ matrix(sregl2,],Njr,Npr)
sregv _ matrix(sregl3,],Njr,Npr)

sresi _ apply(sregi,2,ssq)
sress . apply(sregs,2,ssq)
sresv _ apply(sregv,2,ssq)
svari _ cbind(sresi,apply(sresi,1,mean))

svars cbind(sress,apply(sress,i,mean))
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svarv _ cbind(sresv,apply(sresv,l,mean))

svari[3,1p+1] _ svari3,1p+1] + (1lp+1)/lp*var(svarii2,])
svars[3,1p+1] _ svars[3,1lp+1] + (1lp+i)/lp*var(svars[2,])

svars[3,] _ sqrt(svars[3,])

svari[3,] _ sqrt(svaril3,])

svarv _ svarv[-3,]

dimnames (svari) _ list(c("Intercept", "Jackknife intercept",
"JK. st. err."),c(paste("Pl.val.", Ip),"Overall”))

dimnames (svars) list(c("Slope", "Jackknife slope",

"JK. st. err."),c(paste("Pl.val.",Ip),"Overall"))
dimnames(svarv) _ list(c("Res. var.", "Jackknife res. var."),

c(paste("Pl.val.",Ip),"Overall”))

JKfit _ list(Students.clusters=c(dim(¥Jd)[1],length(cnt)),
counts=cnt, intercept=svari, slope=svars, Kes.variance=svarv,

proc.time={proc.time()-start)[1:3])

JKfit

The program for the model-based estimator is given below, The nesting structure (given by bof. top.
and clu for clusters, and sbol. sipp and senf for strata) is required, but only one set of sainpling weights is

uwzed The notation is sintlar to that i otler Splus funetions and in the text,

# Regression with NAEP State data using Model-based methods

# Filename NU.Reg

# the same data as in NW.reg (jackknife)

# Select all the subjects

rsel _ (MJdat[,911<6)&(NJdat[,92]<6)&(NIdat[,93]<6)&
(NJdat[,941<6)&(NJdat[,951<6)&(NJdat[,96]<6)&

(KJdat[,97]1<6)&(NJdat[,98]<6)

xvar _ NJdat[,91]+NJdat[,92]+NJdat[,93]+NJdat[,94]+
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NJdat[,95]+NJdat[,96]1+NJdat[,97] +NJdat[,98]
# the stratum indicator
STR _ 11
start _ proc.time()
###  xv _ xvar[rsell

NJd _ NJdat[rsel,c(Npair,N¥jack,STR,Cwt,Cpr+Ip-1)]
NJA[,4] _ NJd[,4]1/1000
NJAl,4+Ip] _ NJA[,4+Ipl/100

# clustering

bot _ seq(1,dim(NJd)[1])[!'duplicated(NJd[,c(1,2)]1%%%
matrix(c(1,3)))]
top _ c(bot[-11-1, dim(NJd)[1])

cnt _ top-bot+i

Ncl <~ length(ent)

clu <~ rep(seq(i,Ncl),cnt)
# stratification
# stratifying variable (student- and cluster-level)

str <- NJ4[,3]

cstr <- unique(str)
# recode to strata 1,2, ..., nstr

str <~ match(str,cstr)
Str <- str[top]

nstr <~ length(cstr)
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# the delimiters for the strata
sbot <- seq(1,Ncl)[!duplicated(Str)]

stpp <- c(sbot[-1]-1,Ncl)

scnt <- stpp-sbot+i

# the y-variate (first plausible value) and weights

w <- NJ4[,4]

# total weight

Wt <~ sum(w)

# weighted within-cluster totals for 1, x, y, x°2, xy, y°2

Mfit _ list()
for (i in Ip)
{

yv <= NJA[,4+i]

Tcls _ cbind(tapply(w,clu,sum),tapply(xv*w,clu,sum),

tapply(yv*w,clu,sum), tapply(xv~2*w,clu,sum),

tapply (xvkyv*w,clu,sum),tapply (yv~2%w,clu,sum))
# sample means of x, y, x"2, xy, yo2
WMn <- apply(Tcls,2,sum)/Wt
# regression estimate
nume _ WMn[5] - WMn[2]*WHn[3]
deno WMn[4] - WMn[2]°2
beta _ nume/deno

alph _ WMn[3] - W¥n[2]

sign _ WMn[6] - WMn[3]1-2 - WHn{5] + WMn[2]+«WMn[3]
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strr _ sqrt(sigm/deno/length{yv))

## sampling variance estimation

dt _ cbind(xv.yv,xv"2,xv*yv,yv-2) - matrix(WMn[-1],

nrow=length(xv),ncol=5,byrow=T)

## effective sample size (A)

W2s _ tapply(w~2,clu,sum)
nA _ Tcls[,1]°2/u2s

n

2w <- array(0,c(Ncl,1lp,1lp))

for (i in 1:lcl)
s2wli,,] <- t(dt[bot[il:toplil,])%*%dt [bot[i]:top[il,1/
(nali]-1)

## within-stratum totals

stra <- rep(seq(length(scnt)),scnt)

Ucls <~ matrix(tapply(Tcls[,1],stra,sum))

for (i in 2:dim(Tcls)[2])
Ucls <~ cbaind(Ucls,tapply(Tcls(,il,stra,sum)/Ucls[,1])

Telsi,-1] _ Tcls[,-1]/matrix(Tcls(, 1], nrow=dim(Tcls)[1],
ncol=dim{Tcls) [2]-1)

VrEst <- f(Tcls[,—1]—Ucls[stra,—1])%*Z((Tcls[,—i]-Ucls[stra,—l])*
matrix(Tcls([,1], nrow=dim(Tcls) [1] ,ncel=dim(Tcls) [2]-1))

WCom _ Tcls[,1]-Tels[,1]1°2/Ucls[stra, 1]

sMM _ s2w([1,,]*WCom[1]/nAl1]

for (2 in 2:Ncl)
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sMM sMM + S2wli,,]*wCom[i]/nA[1]

VHat?2 (VrEst - sMM)/sum(WCom)

# wvariance of the weighted mean

nB _ Wt~2/sum(Tcls[,1]1°2)
varm _ S2w[i,,]+*W2s[1]

for (i in 2:Ncl)

varm _ varm + S2w[i,,]*wW2s[1]
varm _ {(VHat2+varm/sum(Tcls[,1]°2))/nB

3.3 varm (5x5) contains the variance matrix for

##  (x,y,x"2,xy,vy"2)
## sampling variaticn of the regression parameter estimate
## numerator variance

nuvar _ varmi{4,4) + varm[1,1)*varm(2,2] + varm[1,2]°2 +
WMn[2] "2*varm{2,2] + WMn[3] "2*varm[1,1] - 2*WMn[2])*varm([2,4] -

2*9YMn{ 2] *varm©1,4] + 2+=WMn[2]*WMn[3]*varm[1,2]
## denominator variance

devar varm[3,3] + 2*varm[1,1]°2 + 4*xWMn([2] "2*varm[t,1] -

4+xYMn (2] #varm{i,2
# the estimated covariance of tlie numerator and denominator

covr _ varm[3,4] - 2xWMn[21*varm([1,4] - WMn[2])*varm([2,3] -
WMn[3]*varm{i,3] + 2*xvarm{1i,1] * (varm[1,2] + WMn[2]*WHn[3]) +

2xWMn[2] "2*varm{i,2]

## expectation and variance assuming COVARIANCE of the numerator

## and denominator equal to cvr, and the estimated covariance
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cvr _ c((~-0.1+seq(11)/10)*sgrt (nuvar*devar),covr)

ebet _ nume/deno + cvr/deno"2 - devar*nume/deno"3

vbet _ nuvar/deno”2 + devar*nume~2/deno"~4 - 2%cvr*nume/deno”3
## residual variance

## numerator

uil _ nuvar + (WMn{5] - WMn[2]*WMn[{3] ~ varm{1,2])"2

## denominator

u2 _ WMn[4] - varm[1,1] - WMn[2]"2

## variance of numerator is 3*nuvar~2

## variance of dcnominator is devar
cvr _ c((-0.1+seq(11)/° #*sqrt(3+devar)*nuvar,covr*sqrt(3*nuvar))

rsig _ WMn[6] + varm[2,2} - WMn[3]-2 -

u1/u2#(1 + devar/u2-2) + cvr/uz"2

paste('covariance ', covr)

paste('correlation '",crre)

"Done"

## sampling variance of the numerator and denominator
nuvar ;devar;

32 estimates and standard errors

rout _ rbind(WMn{3]-ebet+WMn(2],etet,vbet,rsig,covr/
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sqrt(nuvar*devar))

dimnames(rout) _ 1ist(c("Intercept","Slope","St.Err.Sl.",
"Res.var.","Covariance"),c(paste("'Correlation”,
(seq(11)-1),"/10"),"Est.corr."))

Mfit [[i]] _ rout

}

Mfit

## Summarize
MfitS _ matrix(0,5,12)

mns _ matrix(0,lp,12)

for (i in Ip)
{
Mfits _ Mfits + M£it[[i]]

mnsf{i,] _ Mfit([111[2,]
¥

MfitS _ MfitS/1p
MfitSr3,] _ sqrt(Mfits(3,] + apply(mns,2,var)*(1+1/1p))

MfitS
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