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Foreword

The Research and Development (R&D) series of reports has been initiated

1) To share studies and research that are developmental in nature. The results of
such studies may be revised as the work continues and additional data become
available.

2) To share results that are, to some extent, on the "cutting edge" of
methodological developments. Emerging analytical approaches and new
computer software developments often permit new, and sometimes controversial
analysis to be done. By participating in "frontier research," we hope to contribute
to the resolution of issues and improved analysis.

3) To participate in discussions of emerging issues of interest to educational
researchers, statisticians, and the Federal statistical community in general. Such
reports may document workshops and symposiums sponsored by NCES that
address methodological and analytical issues or may share and discuss issues
regarding NCES practice, procedures, and standards.

The common theme in all these goals is that these reports present results or discussion
that do not reach definitive conclusions at this point in time, either because the data
are tentative, the methodology is new and developing, or the topic is one on which
there are divergent views. Therefore the techniques and inferences made from the data
are tentative and are subject to revision. To facilitate the process of closure on the
issues, we invite comment, criticism, and alternatives to what we have done. Such
responses should be addressed to:

Emerson Elliott
Commissioner
National Center for Education Statistics
555 New Jersey Ave. NW
Washington, D.C. 20208
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Abstract

Model-based methods for analysis of surveys with stratified clustered design are discussed and applied

to the 1990 NAEP Trial Stat.' Assessment. The principal advantage of the model-based methods is in

statistical efficiency. and computational simplicity for regression analysis. Model-based methods dispense

with the replicate weights which fon' a large part of the survey data.

.tionu kry words: clustering, regression. stratification. variance components.
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1 Introduction

Just like other large scale stir eys. hose comprising I he 1990 Mat II Trial St ate Assessment Program have a

complex sampling design several feat tires of which in\ alidat st at istical analyses hased ()It rout inely adopted

assurnptions. A large part or Ihis report is concerned with h ,fficient estimation of the mean of proficiency

for a population of student, wit 111a a and of I he standard error of such estimators, that lake account

or I lie satitlit r,atiirt,,t III!' survey design.

\A'e briefly sim.inarize these feat ures of the sampling design and indicate onr approach. 'Hio sl inlents

in the sample are associated svith (une(fual) sampling weights; they are clustered within schools. and

schools are assigned to groups which for the purposes of analysis arc regarded as st rata. Each si rat 11111 is

represented in the sample by a small number of schools (two for most strata), and most selected schools

are represented by 20 30 students. The sainviling procedures at the school level (selection of schools) and

\V"Il hill a sc(«-.1«( school are conditionally independent given the selected schools.

The (I( tr.( !fib I is the reciprocal of t he probability, intended by the sampliing design, of selecting

;1 given student into the survey. It is I lie product of the (intench.d) probability of :;elect log the school,

aml of the (intended) conditional probability of selecting the st Ink lit given select ion of his/her school.

Nonresponse 01 schools and individual students is compensated by adjusting the veighls. This adjustment

is not precis(' III III(' that I he adjusted weights ale 1101 reciprocally proport ional to t In', conditional

prublbdl(les or inclusion nil the survey. 1...:1Voll 1 li:11 the 1°,11111;11.100 or contains nonp...pond,tits.

Lill-1 01,111 drpc1141:, 11 I Ile sail ple dra\' Ii and It is therefore itieanitightl to regard I lie adjusted

weights as U1101011) Varlableti. For each S111).jcel c()115i(ler the ( 1111 kil(iVII) aVerage ;1(1 11:,1 Oyer all Ilie

sii.1111dt'S t that conk! have been and I he act 111'111 calculated kised nit 1 he 111.4 NV11 sample

and its pattern of non-response The"...ariat ion over the hypo! het ical samples of t he normalized difference,

or the log-ratio, of I heso Iwo (plant tries is an informal ive summary of the weight adjustment.

The outcome variable is the pl'uficirlic This score is defined by reference to a model relating

the student's ability and item characterisiir, 1(1 I lir 1/1.01);11)ilily of correct response. see Nlislovy ( 198 I) for

details. The proficiency score is itself estimated from the students' responses to cognitke Ilrllls. .A set or

rivt, trchangraldc ostimatcs of the proficiency score. called t he p/ausriih rain(". are defined f )r each tit

In addition to the general proficiew-y scale for mathematics sulisales are defined for five content areas

within t he domain of mat "File report focuses oil the general prolicwitcy scores, but t lie met hods

presented are 1150 applicable to the subscores. Tho methods uscd to obtain the proficiency sore s and their

;11 tual values are accepted vithout criticism.

'Hie computational algorit Inns clescrihed in this report are implemented in the slat istical package Spins

(Hecker, ('hambers, and NVilks, 198s). and some of them are documented in the ,Appendix. "Hie principal

advantages of Splits over st at ist teal soft \val.(' established in quant it at Tye oducal 'tonal research (such as SPSS.

(; 1,IM, or SAS) are flexibility (in hot!! interactive and batch modes), ease of (1,,,toinit(.10 of complex

programs (functions), high quality graphics, and integrity of the environment generated by the defined

data, functions, and other objects.
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2 The sampling design

The original intention was to draw from the population of eighth-graders it; each participating state or
territory a sample of 105 schools and 30 students from each selected school that has more than :15 eighth-

graders, and all the students from schools with fewer than 3i eighth-graders. In some stales a small number

of schools were included in the sample with certainty, and a larger number of students was drawn from

each of these 'certainty' schools. For states (or territories) with fewer than 105 schools each school would

he included in t he sample. In states with an appreciable proportion of 51nd,ffis in small schools ('small'

meaning fewer than 2(I eighth-graders), aggrow re units (sets of schools) containing more than 20 students

would he t he units of sampling. Several factors inter\ curd in this design. including non-cooperation of

schools (school districts) and non-response of st ndents, and incomplete and inaccurate information relevant

to the sampling frame, Snore states and territories (such as, Delaware, (;uitni. and Virgin Islands) have

fewer than 105 schools. Allowing for non-response and small schools, it was expected that the sample for

each state would comprise at least 2000 students from at least 100 schools.

2.1 Elements of the sampling design

2.1.1 The sampling frame

The sampling frame (the list of schools in the state) was constructed using several official sources, such

as NCES Common Core of Data and Quality Education Data. Inc. The frame consisted of a list of all

schools in the stale that have eighth-grade students, the (estimated or exact ) number of eighth-graders,

or the exact number in a previous year, and the stratifying variables. defined for the school district or

another administrative unit: urbanicity (city, suburban, and 'other'), median he income (grouped

ordinal categories). and. where prevalent, minority enrollment (high enrollment of black and /or Hispanic

st wlents). See I:offlor (1991) for details.

Schools with fewer than 20 eighth-grade students ('small' schools) were either at to schools in

their geographic proximity to form units with more than 20 students or aggregated into units with 20 or

more students each

2.1.2 Selecting the schools

A natural ordering of the strata was defined. combining urbanicity and minority enrollment. The schools

were sorted in a 'serpentine' order, from the lowest median income to the 'Ugliest in t he first stratum, from

the hig-lost median income to the lowest in the next stratum. and so on.

In some of t he states a small number of schools. c, were included in the sample with certainty. "I lie

rest of the schools are referred to as non-certainty schools. From the sorted list of non-certainty schools a

systemat is sample was drawn, with a random start, probability proportional to school enrollment, and step-

length m141 as to ensure that K schools would he selected. For most stales C K = 105. This systematic

sampling scheme is best illustrated as follows: The non-certainty schools are represented on a. straight. line

by segments of lengths proportional to eighth-grade enrollment. A step-length 8 for a systematic sample

2
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

HIII I HII

Figure 1: Weighted systematic sampling of schools.
Notes: The schools arc delineated by short ticks, the groups by long ticks. The sampled points arc indicated by
long clotted ticks (points 11. 12, ...). Median income level (three categories) is indicated by asterisk. rite segments

of the sele( led schools (containing the sampled points) are underlined.

front this line is set, and the start is chosen as the point in distance ti front the origin. where It is a draw

from he uniform distribution on (0.$). Further sampled points arc tl + ks, -= 1. 2.... I. where

N is the desired number of point:.: s is chosen so that /is is the length of the segment corresponding to

all the schools. The schools which correspond to the segments containing the selected points are included

in the survey. Figure 1 illustlates this sampling procedure. In the diagram each of the 39 'schools' is

represented by a segment delineated by short ticks. The urbanicity-by-minority categories are delineated

by longer ticks, and the points drawn by systematic sample of size 1() are indicated by long dotted ticks.

The segment of the corresponding school is underlined. The asterisks under the segments indicate the

median income cat egos ies for the schools.

Arrangements for substitution of the non-cooperating schools in the sample are described in Kolfler

(1991).

2.1.3 Replicate groups stratification

The design of the survey for a state has a number of features that cannot he explicitly modelled. The

'reference' model that is considered by the NAEP analysis staff as well as by other researchers is that

3



Table 1: ('Instering structure of the New Jersey sample.

Groups Numbers of selected studes within clusters
1 7 29+20 93+2 22+96 23+19 25+23 30+2:3 39+27

S 11 23+29 95+29 98 21+21 99+28 26+99 25
15 21 26+26 29 1-27 26 26 +21) 29+26 23 +22 22
92 2s 2-1-2S 2+26 22 +25 20+23 211+25+25 13 +11 21+96
29 35 2+93 22+26 26+'2 29+96 2'2-+ -21 27+25 22+55
36 12 23- 1-23 23+19 22+25 23+29 2'.+27 21+26 1-1-26
-1:3 19 29+99 29+26 29-1 -26 25+23 2S+26 21 +25 54+2750 53 27+21) 9S+29 27 +27 25+27+25

Notes: Each entr of the table contains the numbers of selected students within th.. clusters in each group
for example. group I has a cluster with 29 and one with 2)) students in the sample. (1roups 26 and 53 have three
clusters each in the sample. The count for the certainty school is printed in boldface.

of a stratified weighted clustered sampling. The 'strata' in t his context are defined after selection of the
schools. to avoid confusion with t he strata defined by crossclassificat ion of uritauicity, median income. and
minority composition we' refer to them as 111)11(0( groups. It was decided t hat each stale e% °old have 56
replicate groups (evil Ii a few exceptions). '1 he procedure of forming replicate groups is described in koffier
(1991) and justified in Johnson and Rust ( 11)1)2). Most of these groups comprise a pair of clusters, others
have either t hrec or just one cluster. For operational convenience, empty replicate groups (containing no
clusters) are declared so plat the total numher of groups is 5(1. The main purpose of this is to have a

uniform format for the user tapes for all the stales and territories.

2.1.4 Selecting students

Ihe school (list rids were requested to compile lists of all the eight h-grade students in t he selected schools.
From each selected school cell Ii enrollment of more Clean 35 eighth-graders a random sample of 30 students

was drawn without replacement. From schools with fewer than 36 students all students were included in
the sample. In order to ensure Ilint each student had approximately the same chance of being included in
Ilse sample., schools with fewer than 2)) .-;Indents were 'thinned' (preselected): they were excluded from I he
sampling frame with probability inversely proportional tee the total number of students in small st.hools.

For example. the New Jersey sample is described by the. clustering st ruct lire' of selected students wit Inn
schools and of the selected schools within groups, given in Table 1. The sample coolants one certainty
school (in stratum -19) with GO selected students or whom six did not cooperate' with I he survey. A few
,mall schools were aggregated into clusters cold ;lining at least 21) students each. Most clusters have between
20 and students in the sample.. Ihe sample comprises 2710 students from 101 clusters (consolidated
schools) in a3 groups-, two groups are repiesented 1w three clusters each and lour groups by cute' cluster
each. In the process of selecting the sample' or schools I bre(' :airdl schools were 'thinned' out. There are
three empty groups (54 t lirough 56).

14



1

0

0 20 40 60
School

80 100

Figure 2: Adjusted weights for New Jersey.
Notes: I he horiiontal axis is the cluster index ti and the vertical axis is the adjusted sampling weight.
INplicate values of the eight in a cluster arc represented 1w a single dot.

2.1.5 Sampling weights

[ad; (not c II 'Stil) is ,.satiated With a la. I design (hose) weight and each student \yid! a

.,111(1( nt 1.( (within-school) design aright. The sampling of students is conditionally'

sampling of schools. given the selected set of schools. and so each st udent's design sampling eight

equal to I he product of t two :\ {ter the sampling procedur" and administ rat icoi of t he survey

quest iotmaire he students' weights are adjusted for non-response. Figure 2 coot anis a plot of hese ad rot( d

weights for I lie New .lersev sample. Note that the NvHglits have littf. variation itliin clusters: in fart. most

cluswrs have only two distinct and in most cases not very different sallies of the w. ight. There are I 'tree

clusters \vith weights about three titu es larger than the rest of the dust -rs.

2.2 Proficiency scores

Tip- student (111,liommir, contain, it,,,,, of four kinds:

sotto-dettiographic and liackground

attititilinal

experient ial

rot4IIII

111( IGick,,r,tiii,1 it pr()I, fainil, environment and t he etlitraIltulal 1('" I of Atilt udinal
relate to student's familiarity with calculators and computers. to perception of ip:efulness ImIt 'lomat sirs.



and the like. Questions about mathematics classes taken are an example of experiential items. Cognitive

items are mostly multiple choice items, and are scored as correct or incorrect. Based on these scores a

number of (sub-)scales are defined (Measurement, Data analysis and statistics, (Ieontetry, and the like).

Ofir discussion is restricted to the composite scale, based on all the cognitive items.

For a given scale a proficiency score is defined for each student. It is estimated from the item-level

scores by an item-response method (see Lord, 1980, and Mis levy, 1985, for background). The estimation

is strengthened by incorporating (conditioning on) information contained in the student- and school level

background variables. The proficiency scores are subject to uncertainty. and they are represented for each

student by a set of five plausible ralucs.

'The teacher questionnaire contains items about the teacher's qualifications, teaching methods, and

about emphasis on elements of the curriculum.

Figure 3 presents a compact graphical summary of the proficiency scores and final weights. The profi-

ciency scores are represented by the first set of plausible values. The plots on the left-hand side summarize

the distribution of proficiency; at the top its values are plotted. and the within-cluster means are joined

by a solid line; at the bottom the within-cluster standard deviations are plotted. The right-hand plots

summarize the association of sampling weights and proficiency. At the top the two sets of quantities and

at Ihe hollow I heir within-cluster means are plotted.

2.3 Notation

In general. we use capitals to denote quantities that refer to the population, and lowercase characters

to denote sample quantities. For example, .V stands for the population size (number of students in the

population). and n for the sample size (number of students in the sample). fhr proficiency score for

sl tident i (in the population) is denoted by Y. For students in the sample we use three indices. ijk, for

st nt i = I nik in cluster j = I of in group k =1,.... li. and by We we denote the proficiency

score of student ijk. Implicitly. we have introduced nik as the number of sampled students in the cluster

jk and 70k as the number or sampled clusters in group k. The population counterparts for n.,k and wk. are

denoted by Nil. (number of students in cluster jk, j = I If) and Mk, respectively. The proficiency

scores and the adjusted (final) sampling Nveights for the sampled students are denoted by /ki and wok,

respectively. For the plausible values We use another index, 1, = 1 ..... 5, so that yejo, is the plausible value

It for stud, nt ijk.

1\lodd parameters are also denoted by lowercase, such as II. and their estimators are denoted by the

same characters with 'hats'. such as it. When there are several estimators for a single parameter they are

distinguished by an (additional) index. In notation w.' do not distinguish between an estimator (a function

of the dale. considered as a random variable) and an estimate (the realized value of the estimator for the

drawn sample). The sampling variance of an estimator, sa3 p. is denoted by var(p), and the estimate and

estimator of this variance is denoted by NTir(i1).

For random variables we use lowercase Greek characters 0, 3 = mid for parameters p (mean), (T2

(variance), p (c,,rrrIalinn). r (Narianee ratio). and the like. The expectation of a random variable. say

ti
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is denoted by E(;). When it is necessary to distinguish between taking expectation over the samples and
over the students this is explicitly stated.

Vectors and matrices are denoted hy hold characters. Latin for constants. (;reek for random vectors
and matrices.

3 Model-based estimation of standard errors in stratified clus-
tered sampling

In this section the model-based method of Potthoff. Woodbury, and Manton (1992) is implemented for
estimation of the population and subpopulation means in the stratified clustered sampling design used in
the NAEP State ;\ ssessment Program. The method relies on a suporpopulat ion approach and has several
features of the standard analysis of variance.

In ill:, previous section we identified the following features of the sampling design:

. sampling weights:

2. clustering (students within schools):

3. st ratification (replicate groups):

1 non-response;

I. indirect measurement (est Mutt ion) of t he outcome.

We consider first models and estimation Procedures that accomodate each of these features on their oW n
and then construct a model that combines all of these feat tires.

3.1 Modelling features of the design

3.1.1 Sampling weights

Let ),, i = 1.2 he the proficiency scores for the population of .V students (say, in a state). The
population meatt is defined as

Ei
P

(the summation is over the entire population). When proficiency scores are available only for the sampled
students, i 1,2. it, the population moan is commonly estimated by the tveighted mean

E,1,

7, tie,

(111,. stimuli:it ions are over II e sampled students). NVIlerc Is I le. sampling \\vigil! associated will] student
i. \\*hen the weights 11., are constant. equation (1) coincides tviihi t he iiiiwelghied

rt



In t his case t he common (non-zero) value oft he weights is irrelevant for t he est imator in (1 ). More generally,

applying a (positive) constant multiplicative factor on t he weights (t hat is, changing w, to Ca; for some

( > 0) does not affect t he estimator of t he mean ( ).

For equal weights the sampling variance of the estimator ( I) is estimated by

/02
I

A natural extension for unequal weights is the equation

wi(y, p)-var(p) = (2)

Equation (2) is not invariant with respect to constant multiplicative factors of weights. .ind so a 'reasonable'

choice of norrnalizahon for t he weights 0., is essential. In one normalization the sample mean of the weights

is equal to unity, that is, Et = 0, or C' = n/ . Another choice is defined by t he requirement

that the total of the weights he equal to the total of the squares of the weights:

E= E c2 .;?

that is, C = Ei E, u,2. For a probability random sample the total of the weights normalized in

this manner, (Ti tc,)2/ E, is referred to as the effective sample size (Fouling' (1 al., 1992). For this

normalization of weights the estimator in t2) is unbiased.

The sample size n is greater or equal to the effective sample size n A . Their rat in. 010..A. is referred to

as the design (.11.«1 due to weights. It is equal to unity alien the weights are constant.

3.1.2 Clustering

Clustering is usually represented in statistical tie deb.; by a non-negative correlat ion among the ohs( rvat ions

within a cluster, or by cluster-specific 'effects' deviations of wit hin-cluster means (or other summaries)

from the corresponding population summary. These two model approaches are essentially identical, and are

often used interchangeably. In the latter aproach we have a decomposition of the variance of the outcomes

into its within- and between-cluster components. These we denote by i1s. and (771, respectively. The

variance ratio r is defined as r . The wit hin-cluster correlation is equal to (p = ) (62t. + ) =

r1(1+ 7).

It is int nit ively appealing to assume t hat the outcomes of students within a classroom are positively

correlated because students in a classroom share t he sante educational processes and experiences. The size

of this correlation exacts an influence on t he estimators of t he population mean. This can best be illustrated

by considering two extreme cases. If the outcomes for students within a school are perfectly correlated,

that is, they are equal, t hen the outcomes for t he students from a school are perfectly summarized by the

data for any one of the students. If the sample comprises n students from m schools (in < t here are

only m 'essential' observations. not 0. On the ot her hand, if the within-school correlation vanishes t here

are n essential observations. In intermediate cases (small positive correlation), it is reasonable to expect

9



that the sample at hand is as informative (its sample mean has as small a sampling variance) as a random

sample of somewhat smaller size. The ratio of these sample sizes is referred to as the (I( sign (Hui du( to

clustering.

The sampling variance of the arithmetic mean p = y, /7, is equal to

var(p) = I + L lr71 ' 71 i
i I

it is an increasing function of the correlation p, and of the variance

(3)

Note that I here may he more

efficient estimators of the population mean than the arithmetic moan p = in particular,

when the clusters have a wide range of sample sizes. In an alternative estimator the influence of an

outcome (its weight) from a large cluster would he smaller than from a small cluster. Clearly, for an

efficient ..:imat or these 'weights' have to depend on the within-cluster correlation p.

Clusters may have unequal within-cluster variances. Then equal within-cluster covariances across the

clusters do not correspond to equal variance ratios.

3.1.3 Stratification

Stratification is an important device for reduction of sampling variation of the estimates from sample

surveys. It can be interpreted as a partitioning of the target population into an exhaustive set of non-

overlapping subpopulations called strata, and carrying out a separate sample survey for each stratum.

The population mean and other quantities of interest can he estimated by combining the corresponding

estimates for the strata. The target population may exhibit substantial variation, but variation within

each stratum may be much smaller. The parameters referring to a stratum can then he estimated with

high precision, even if such estimates are based only on a fraction of the sample.

Clearly, a key to successful stratification is in identifying a small number c f st rata with h dist inct stratum

means or. more generally. attributes and characteristics strongly associated with t he variables of interest.

We adopt the approach of the NAEP operational analysis and regard the 56 replicate groups as the

strata. In standard survey practice strata are defined for the target population (or the sampling frame)

prior to sampltng. To avoid confusion with the stratification of schools in NAEP. defined by median income,

minority composition, and urbanicity, we use the term group for each of the 56 replicate groups.

3.1.4 Adjustment for non-response and poststratification

!laving been selected into the survey, individual students or entire schools may refuse to cooperate. If it

is feasible wit hin the practical constraints, a non-cooperating school is replaced by a 'substitute' which

matches the selected school as closely as possible on several attributes (for instance, on the stratifying

variables and the enrollment ). Characteristics of t he non cooperating students are not known, and therefore

a. scheme for their replacement by cooperating students is not feasible. Instead, the sampling weights are

adjusted to take account. of the 'missing' observations. In decisions about (approximate) sample size clue

10
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account is taken for the expected proportion of non-cooperating students, as well as for differences between

estimated and actual within-school enrollments and for a number of contingencies.

Au important consequence of non-cooperation (nonresponse) is t hat the weights, proportional to the

reciprocals of the probabilities of being selected into the sample are not proportional to the reciprocals of

the probabilities of inclusion in the sample. When nonresponse is informative, us; these design \eights

would result in biased estimation. 'file design weights are therefore adjusted for nonresponse; for details

of weight adjustment in NAEP Trial State Assessment, see Korner (1991). Since the adjustment depends

on the sample drawn. the weights are random variables (a different sample may result in a different weight

adjustment even for a student included in both samples). Of course, a student responding in one survey

might not respond in a hypothetical replicate of this survey; however, we have no information about the

consistency of the pattern of nonresponse.

As a naive model for weight adjustment we consider an underlying mean weight for each student,

averaged over all possible samples (or all t hose in which the student would he included in t he sample). Since

weights are invariant with respect. to constant. multiples and are proportional to reciprocals of probabilities

it is advantageous to use the logarithm scale. For each subject i we posit the model

log( ) = log( ) . el)

where is the sampling weight assigned to student i when sample s is drawn. u, is the geometric mean

of the weights for student i, taken over all the samples .s, and is a random sample from a centered

distribution. The variance var(;,, ), taken over the hypothetical samples s is a measure of how influential

the nonresponse is. hc clustered nature of the weight adjustment can be incorporated by a variance

component 1110(101:

log( ) = log( tr.. ' (5)

where h{:41,} and {-:.:7(.;7,,s} arc two mutually independent random samples and uijk is the geometric mean

of the weights for student ijk.

In surveys that are carried out on well-researched target populations it is advantageous to adjust the

design (sampling) weights so as to bring them into accord with information about the target population

external to the survey (various 'official sources, censuses, and the like). This is referred to as postst rat ifi-

cat ion. Postst rat ificat ion is not applied in NAEP State Trial Assessment.

3.1.5 Estimation_ of proficiency

The proficiency scale is defined in relation to the cognitive items. The proficiency of a student is estimated

using item-response models; see Koffler (1991) for details, and Mislevy and Rock (198'2) and Lord (1980)

for background. In order to adequately represent the variation of the estimators of proficiency for each

student the proficiency is represented by a set of five draws from the estimated posterior distribution of

the proficiency. Specifically, the item-response method used (Mislevy and Rock, 1982) yields an estimated

II
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distribution of the underlying parameters. from which five random draws are obtained and a set of five

plausibb ralu(s is calculated based on the drawn values. Estimation of proficiency scores is improved by

conditioning on several background variables. For details. see Johnson and Allen (1992, Chapter 11) and

Mislevy and Sheehan (1991).

In general, estimation of any parameter is carried out for each plausible value (five analyses), and the

mean of I hose estimates is adopted. Formally, let y = he the n x 5 matrix of plausible values for

the entire sample, and p It = I 5, he the estimator based on the hth set of plausible values. Then

the mean p = ph15 is the adopted estimator.

To emphasize dependence on data we write ph = p(yh) where denotes column h of y. Note that

for estimat:ors linear in the data, such as the weighted mean, p is equal to the same estimator using t he

within-subject means of the plausible values, that is p = p(y), \vhere y is the vector of row-wise means of
y.

For est Mutt io:1 of the sampling variance the estimators of the [neon of the sampling variances from the

live analyses is supplemented by the variance of the estimates;

,.qi-r(p) = E{ var., (ph ) } + vari, (ph ) (6)

(the subscripts .s and h indicate averaging over samples. and over the live sets of plausible values, respec-

tively).

It is instructive to consider a plausible value y,h as a stun of the overall (subpopulation) mean, p,
deviation of Iie student's prorici(scy y, from the mean ,o. c5, = p, and deviation of the plausible
value from the proficiency, = !ft. Assuming that these two sets of deviations, {6,} and are

independent, a desirable property of any procedure for generating plausible values, the proficiencies {y,},

have smaller variation than the plausible values ly,h1i, for any h. ho difference is the variance of t he

plausible values around the proficiency score.

%ar(y,,, ) var(6, ) car( )

Noe that for Ihe within-student means of plausible values yi we have

var(iii) = var(6,) + Evar(Ti )/5.
7

Ti7, means exhibit more variation than the proficiency scores: the variance of the latter is var(6,). It is

therefore not appropriate to carry out a single analysis using the student-wise means .

3.2 Randomness and conditioning in inference

In surveys, as in statist lea! practice in general, we are interested in sampling Astribulions4estiniators. An

ort hodox view of t he sampling dist ribut ion of an est i nator in a survey is to consider t he dist rihiut ion of t he

estimates of a parameter in a large (infinite) number of (hypothetical) replications of the survey. The goal

in a typical estimation problem is to make inference about such a distribution, based on a singlr re-at:Own
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of the survey. Clearly, features of the survey have to he utilized to compensate for lack of replication.

For a survey with a complex sampling design, non-response, and imperfect reliability of the response (for

instance, due to measurement or estimation error), a hypothetical replication will have different students

and schools in its sample. it may have a different sample size (different numbers of students and schools),

but even the response/outcome of ihe student who happens to lie selected in both surveys will he different

(students', or indeed. our responses to even t he most ubiquitous survey items are known not to lie perfectly

reliable).

Unconditional inference, averaging over a large number of hypothetical survey,, i, often a tall order.

and in practice inference is conditioned on the selected sample. It is meaningful. we believe, to consider

conditioning on the sample that would have been obtained had each selected school and individual fully

cooperated. Such a conditional inference is difficult to conceptualize because selection of the students is

conditional on selection of their schools, (some) schools that refused to cooperate were substituted by other

schools in the survey. and so on. Moreover, school that failed to cooperate in !lie realized survey might

cooperate in a hypothetical replication of the survey.

3.3 Jackknife

This section describes the jackknife method used for estimation of population and subpopulat ion in,ans

and their standard errors. The jackknife is a general method for reduction of bias of estimators and for

estimation of their sampling varian«.s. NVe describe the jackknife method as applied to NA [P Stale Trial

Assessment.

The mean proficiency for the state i, rInotO,d 1\ the mighl(',1 than
I

!A. /11.1 A.

wuk

cdlipal:Iti,,n of the sampling variance or this presents problems arising front complexity or

the sampling design: unequal probabilities of selection, clustered sampling design and adjustment for

noliresponse.

Each or the A' = 5(i replicate groups (whethr empty or not ) is associated Nvit h . udoanalyms carried

out on a pst 11(10SaMpb ". In groups with more than one cluster the clusters are assigned order (first, second.

tie) at random. If group k contains two dust ,rs then the psoudosample for psoudoanalysis k is created by

replacing the first cluster in group k by the other duster in the group. This is equivalent I() doubling the

veights for all students in the second cluster. For groups with Iliree clusters the first cluster is removed.

and the %veights for the students in the other twtt clusters are multiplied by 1.5. Thus. each student in the

sample is associated with K 4 1 -7:: 57 nplIcall ir(igltls. Flies(' weights are given in the NA El) clalaset. If

posts( rat ifical ion were applied the replicate weights would have to be adjusted by postst ratification of the

psoudosample. When carried out operationally, this reproser a substantial computational load.

The kth pseudoanalysis evaluates the estimator (7) using the kt 11 set of replicate weights: we denote

this estimator I,y //"''. The jackknife estimator of the mean p is defined as the aril 1111W1 if lin an of the

(7)
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p.,;( 11(.10(.s/1111(1(01's

l'J = (8)

The sampling variance of p j is estimated as the sum of squares of deviations of t he pseudoest Minims pfk)

from the jackknife estimator RJ:

V7i-r(11J ) = ( (A' 1tj )2: (9)

see Wolter (.985) for details. Note that for estimation of the population mean only groups wit h two or

more clusters contribute to the sum of s.piares in (9). However. for subpopulat ion means the same ordering

of (-lusters is used, and if the subitopidat ion is represented Only by one non - empty cluster in the dataset
which happens not to he the first cluster, the group does make a contribution to the stun of squares in (9).
In practice the cstimator (7) is used instead of (8), and (9) is used as the estimator of sampling variance

of (7). In brief, the jackknife is used only for sampling variance estimation.

The jackknife method given by (8) and (9) appears to be easy to implement, although the size of Ilie

da:aset is substantially inflated by the replicate weights. In N1\ EP Trial State Assessment the students'
records have length of about 1700, but two sets of replicate weights take up more than 800 columns.

Note that instead of the weighted mean (7) other statistics or estimators can he used as the 'parent'
met hod for the jackknife. Ordinary regression is an important example.

Our study focuses on met hods of estimation of the population !neon. and of t he sampling variances of
t estimators, that depend on the design only throngh a single set of weights, t he clustering, and the
st rat i heat loll.

3.4 Model-based methods

section describes the model-based approach of Potthoff rI al. (1)92). as applicable to the NA El) Trial
State Assessment. In general, an est nnator for the quantity of interest (say, the ratio estimator for the
population mean) is considered. and its sampling variance is expressed as a funct ion oldie modelled feat ures

of the design. Typically, those features include clustering and stratification. Clustering can be represented

by one or several variance components and stratification by stratum-specific: means (parameters).

For thy N..k VT State Assessment we consider the superpopulat ion model

mjk = Itk + e'jk. S.ri (10)

where the group means {itk} are unknown constants and (`,34. and t-iik are independent random
variables wit h zero expectations and respect ive variances rr11 and The wit hin-cluster variances (Ti=i.

are positive and unknown, and the between-cluster variance T 1 is a non-negative constant. Note that (rit
is the covariance of two observations in the same cluster:

C(0,*(ilijk Yl'ik) =

11

(t A i')
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Often a common within-cluster variance is considered. This is not a realistic assumption for

N:\ EP State Trial Assessment, however.

We consider the weighted moan, or the ratio estimator,

=
>1:,ik?r,jkYtjk

Y:ijk Wi1
(12)

Assinning (It)) and appropriateness of the weights, that is, they are proportional to the reciprocals of

sampling probabilities. is an unbiased estimator of the superpopulation mean

where .J,., and

(14./14.

It' Wk.. We denote Ilfk = E, ijk wi ky,,k, and

= 11 ;1 7,1 i,j.thik . Note that Rik and Ilk are unbiased estimators of Pk .

3.4.1 The sampling variance of the mean

Following Putt hon. 1 al. ( 1(11)2) we consider the weighted means iiik as aggegal( observations. We use the

'effective sample size. normalization of the weights; we set

so that

W11)1;
/.1k

H. )2k

" .1,1k = = (15)

and denote this 10101 of weights by . ill a general context, Roitholf (1 al. (I(92) refer to ri..t.jk as

t he 'effective sample size'. to emphasize a connection with the number of 'degrees of freedom' of certain

variance estimators, see Sect 1)11 :1.1.2. For NA FP. n....). can he interpreted as the effective sample size Of

ChiSt alt hough these quant it les cannot be compared across clusters. A counterint uit lye example arises

when there is a cluster with a large number of students, each with very 5111011 weight. and another cluster

with a small number of students, each with very small weight. For non-empty clusters 1 < rla jk < nik

and nA .3),. approaches these extremes when the cluster contains a single observation with h dominant weight

(11..1.)4 = ). and when all the weights are almost constant (OA k Ti .). The latter is t he case in the 1990

Mat h Trial State Assessnwnt.

The vithin-cluster weighted mean is

and its variance is

var(11) =

=
i1;1

(

11"

tv.ik
iiTt.)kail + 2 lv.., iikn-f:Vik = °

7t,,
71 +

i.i k
,Lik

The statistics pp; are mutually independent linear components of the estimator ( 12):
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It =

\Ve define the effective cluster sample size as

and the normalized weights as

Now

and the sampling variance of it is

U.ik

118 =
2.0(

=

41'
Il'A..

k
11.2

L.Ik 11.1?11:111k

1' jkvar( it ) = TIT;

JA

":11.)k +
T A Jk.

(18)
071 1 EA,: Ei rtlll
7/

Tlins the sanipling variance of it depends on the variance conmonents ay, and . The next section
deals xvith estimation of I hese variances. Alternatives. discussed later. include imputing values for these
variances and applying smoot hing techniques I o improve est imat ion of varoo by pooling information across
sahsamples.

3.1.2 Est imation of I.110 Valill./1(0 COI111)01.1(.11.tS

There are + I unknown variance parameters {n-?sjk.} and (773 in ( Is). The within-cluster variances
rr21.j, can he estimated as the weighted within-cluster corrected sums of squares

V.,1 3k
1

11..L34.

They are imat ors of (qv A.

1

11A

Ir.1.1)kiY1jk

,kvarcy, 7/A 4V/41'( /73 k

(19)

(20)

If a common within-cluster variance cri!s is assumed the weighted sinus of squares {rid can be pooled:
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Ur:L.1k
mot+ = Ei

(21)
k

is an unbiased estimator of the minim») within-cluster variance The definition of the effective sample

sizes nark is motivated by unbiasedness of the ti inflators in (20) and (21). Also, these estimators have

apprortinah distributions \.2 with the degrees of freedom given by the denominators. see Pot Ilion' (I at.

(1992).

For estimation of the between-cluster variance (3-.13 we consider weighted within-group sums of squares:

?Li = 11jk(Ii)k ilk)
2

JA.

where {nik} is a suitable set of non-negative coefficients (weights). The expectation Cl /if/ is

E(cp ) =

where

tic. var(pik ) + var(pk) 2cox (pp, Itk)}
k

ElIjki.jkvar(itik),
.1k

(22)

(23)

2tv.". E., 11,,
I

jk
11:2

'Ihe development thus far imposes no restriction on the coefficients ?ilk. Obvious choices for them are the

totals of sampling weights. IVjk and the effective sample sizes. nAjk.

For u,k = (23) simplifies to

2

E( 11/ \II1
14.

11.A. \Ci?
tt.Jk (2.1)

Auk

A drawback of the scheme based on Pik = nijk is that the effective within cluster sample sizes nA

cannot be compared across clusters. and may be very misleading when the sampling weights have a large

between-cluster component of variat ion. Neither of these choices for {tijk} takes account of the differing

within-cluster variances cr4.jk, or of the diT,iential contributions of the clusters to the within-group sum

of squares 1' in (22).

The within-cluster ,eighted means pp,. have an approximate normal distribution, and so the squared

deviation (pik pk )2 has a x2-like distribution. Thus vati{(pik p)2} is approximately proportional to

the square of the expectation. The optimal choice of Z/1k is given by the set of coefficients for which the

variance of vp is minimized (subject to a constraint, Hid) as EA. Ej pp; is equal to a constant ). Assuming.

for the inoment, that o is known, and ignoring the interdependence of the squared deviations, We obtain,

using (17), the optimal coefficients

1

I..)k(nh (Ti-s-Jk

17
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The within-cluster variances a' jk can he replaced by their estimates in (19). In the absence of an estimate
.

of o-1, a guess lia.s to he used. It turns out that the accuracy of this guess is not critical: for instance. setting

(T2 = 0 in (25) is often adequate.

an alternative. the reciprocals of the col:tributions to (23) can he calculated using an estimate of
,

o-/-3 obtained ny one of the other methods. In principle. this recursive algorithm can he applied until

convergence. hut changes after the first iteration are unimportant.

The het ween-cluster variance cri? is estimated by the net 110d of IllOnienIS:

rn Elk "Jki " J

(TB (26)

Note that I )). = t1 holds only NVIlell S.rai um A. is represented in t he sample by a single cluster. For

such a cluster and stratum pik = irk and pik = pk.. and so those clusters make no contribution to the

sum-of-squares statistics .,) or up

In \lath 1990 .ria, I tit ate Assessment most groups contain two clusters. As an alternative to the

estimator (22) the following class of statistics for estimation of the het ween-cluster variance can be used:

= L mm,. ii2k (27)
k

Nhore t he sultimat ion is over all groups with h at least two clusters, and {Irk} are suit able weights (constants).

A group wit h a single cluster in t Ile sample cannot cola rihnte to estimation of t he between-cluster ). ariat

and so the only apparent loss is due to the groups with more 111;111 Iwo clu-4ers. 1.1.0 only advantage of

(27) oer up in (22) is in relative computational simplicity. For a group with two or more clusters we have

and

El/( k 112d? =
,var(pik) = 2crii -f .

ItAj=!

2 0.2
,E(1.2) = Ilk 2crii

k,tik>2 11.4 IA

This. together with (21). yields a class of moment estimators of :

(TB =
r2 2_,J =1 ri..1.1k

2 EA. //k

(28)

(301

vhere the summations for k are over groups with at least two clusters in the sample. In analogy with 1 lie

schemes for up we consider the following choices for the coenici,uts

the wit hin-group total sampling weights-

t he tot al of 1ln. effect sample styes nAAA

weights inversely proportional to the expected sum of squares in (28) under (T/. = 0.
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'fable 2: Coefficients for the within-group stuns of squares n and r2.

SSQ
Met hod

rij (C) (2 (B)

11-k

11.4,1k +

llf '2 911(24 +El jkinn jk)

II as III, with ol in place of al

11.3k

1,/{u3k((qi

as III, with I1t in place of

Note: Estimators of the between-cluster variance ri'f3 are referred to by the combination of t he sum of squares (SSQ)

used B or C and the method (choice of coefficients). I, 11, III, or R.

Alternatively, the variance 222B can be estimated by (30) using one of these sets of weights, and then

reestimated using the weights inversely proportional to (28). Of course, this recursive estimation scheme

can he used until convergence is achieved. However, after one such iteration the change in al is usually

unimportant. The motivation for these sets of coefficients is analogous to their counterparts for (26).

The choices for the coefficients ujk in en and uk in are summarized in Table 2. Examples of these

estimators are given in Section 3.5. We refer to the estimators of cr13 and to the estimators of the sampling

variance of if by symbols '13' (based on (30)) or 'C' (based on (26)), and '1' (coefficients lEk or 1Vik),

(coefficients 11.4,3A. or 1 k 71A,2k). (reciprocals of the expected contributions to is or en assuming

= 0), and 'R' (reciprocals of the expected contributions calculated for a estimated by the method I).

The estimates of the variances 0-4. . and al are substituted for their true values in the identity for the

variance of it, (18).

If we insist on interpretation of al as a variance then negative values of o are not admissible. If for

each negative value of (30) the estimate of o is set to zero, as is often done in practice. the resulting

estimator is biased, especially when the true value of the parameter ol is close to zero. On the other

hand. n = al can be interpreted as within-cluster covariance, see (11), and then its negative values are

admissible. The minimum within-cluster covariance n that can be realized for a cluste.. of size Nik is

11(.v 1,k 1). Note, however, that the sample cluster size njk may be much smaller t an the population

cluster size Njk a negative estimate of the covariance h: may he realizable for the sample selected from

the cluster, but not for the entire population of the cluster.

3.5 Examples

The jackknife and model-based methods for estimation of the mean are illustrated on a few examples

using the data from New .Jersey and Oklahoma. Adjustment of the weights due to nonresponse is ignored

throughout the section, but it is explored in the next section.
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Table 3: ,Jackknife analysis. Estimation of the population mean of proficiency scores.

Now Jersey Plausible values Overall

2 5

NVeighted mean 269.17 209.2 209.37 209.10 269.65 969.16
Jackknife mean 909.18 269.13 209.37 209.12 91)1.(55 269..17
Jli stand. error 1.01 1.07 1.03 1.06 .01

Oklahoma

Weighted mean 262.95 262.71 262.7t 262.71 262.63 262 76
Jackknife mean 262.91 262.71 262.71 262.0 262.6(1 262.73
.11\: stand. error 1.23 1.27 1.21 1.2 1 1.99 1.21

3.5.1 Population mean

ion of the popinat ion mean by jackknife is summarized in Table 3 for New Jerse2.: and Oklahoma.
In essence. separate jackknife analyses are carried out for each plausible villa'. and the estimators based

on the plausible values are combined into the 'ONeralE estimator Ivhich takes account of variation due to
estimation or the proficiency scores. The estimate or the population mean proficiency is the average of the
estimates of the mean based on the five plausible values. The sampling variance of the estimator of the
population mean IS estimated using (0). The est iniates for New Jersey are based on 2710 St lidentS
101 clusters, those for Oklahoma on 2222 students from 108 clusters.

The differences between the Weighted means and the jackknife estimates of the means are inconse-
quential: note however. that the differences for Oklahoma appear to be consistent, though negligible. For

niost purposes the statistics based on plausible values 1 are of no interest, and their summaries ill the
right -Mast column of Table 3 are used.

Niodebbased estimators of the standard error of the weighted mean are summarized in "fable 1 for
the four estimators based on each sum-of-squares statistic, r2 and eB. The estimators B1 and ('I require

computation. owing to simpier equations for estimation of cri,, atld the estimators BR and CR most
(almost twice as much as 131 and ('f. respectively). For completeness. the second row of the table contains
the pooled estimates of the common within-cluster variance qt..

The edit sets of estimators of the standard error are within a range of 0.01. but they differ from
the jackknife estimate by about 0.15 (almost 17: per cent ). Rased on tills analysis we cannot arbitrate
whether such a difference is due to sampling, variation of' the estimator of the standard error. or whether
I he:jackknife and model-based estimators have different biases (or indeed. whet her t he jackknife is unbiased
and model-based estimators ar- not )

fable 5 summarizes model-lased estimation of the population mean for Oklahoma. 'ontristing the
analysis fi ir New .1 ers, y t iniatr:, for Olclahoma are N,er close to t he jacliknife est imat of
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Table 1: Nlodel-based estimators of st andard error of the weighled 11.".

New Jersey
Plausible values Overall

1 2 3 1 5

\\*righted wean 269.47 269.12 269.37 269..10 269.65 269.1(i
(579.69 665.5-1 665.89 678.50 667.75 671.59

Met hod BI
,rr-n

St andard error
99.36

1.19

101.17 97.53
1.21 1.17

100.10
1.19

95 26
1.15

100.01
1.19

1311

cr'f'f 97.68 99.95 91.11 8¶0.96 .5596 96.78
St andard error 1.15 1.15 1.1.1 1.15 1.17 1.17

Bill
101.21 107.11 9 1.52 107.10 10-1.50 103.07

St andard error 1.20 1.22 1.16 (:)9 l.l 1.2))

,
BB.

a f 96.55 99.29 90.2)) 97.59 96.90 96.02
St andard error 1.17 1.15 1.1 1 1.15 1.17 1.17

CI
(T"/3 107.10 105.29 100.07 101.32 103.91 10 1.20

andard error 1.22 1.22 1.15 1.19 1.21 1.21

rr-i? 101.61

CH
111-1..16 515.56 99.71 101.35 101.1 1

St andard error 1.21 1.21 1.16 1.19 1.19 1.19

CIII,
(Tit 103.01 102.55 91.06 99.63 100.30 99.92

andard error 1.2)) 1.20 1.15 1.19 1.19 1.19

Cil
101.53 101.91 95.29 10(1.6) 102.02 101.15

S t C I I liad error 1.21 1.21 1.16 1.19 1.20 1.19

\ I 111. population 1 11OCt11 of proficiency -or'. fur New lersey. Hie methods are ilcscribed UI Ile

I. Xi oil ill Tald, 2: pooled e,tinialc of (hi: vithin-clit,Icr valiance: 7 io ,Conal, of
variatu . I ICC estimates an given f,:r ca( plaii,ib1(. value and fur (Iii profi( icncy :.( ore (column .0( rall').
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Table 5: Model-based estimators of standard error of the weighted mean. Estimation of the population
mean of proficiency scores for Oklahoma.

Oklahoma
Plausible values Overall

1 9 3 4 5

\Veighted mean 2(32.95 262.74 262.78 262.71 262.63 262.76
it 654.75 672.11 675.53 678.84 652.18 666.(38

Method 131

a ll 114.60 119.77 112.67 11(3.81 114.08 115.58
Standard error 1.22 1.25 1.22 1.24 1.22 1.23

BIT

it 118.12 123.49 116.43 121.29 117.10 119.28
Standard error 1.2,1 1.26 1.24 1.25 1.23 1.25

13TH

103.71 111.82 101.29 113.7 104.88 107.03
Standard error 1.18 1.22 1.17 1.22 1.18 1.20

BR
(3-. 2? 120.18 199.58 114 .:51 118.70 115.25 117.65
Standard error 1.25 1.25 1.23 1.24 1.23 1.24

CI
aj 121.29 128.09 118.91 120.82 119.20 121.66
Standard error 1.25 1.28 1.25 1.25 1.2,1 1.26

CII
rr- 119.13 125.64 117.22 119.01 116.28 119.-16
Standard error 1.21 1.27 1.24 1.24 1.23 1.25

CIII
121.8(3 128.86 120.10 122.52 119.49 122.5(3

Standard error 1.26 1.27 1.25 1.26 1.21 1.26

C R.

/2i 124.14 125.58 118.95 120.73 118.50 121.58
Standard error. 1.26 1.27 1.25 1.15 1.21 1.26



the standard error. The pooled estimates of the Nvithin-cluster variance for New Jersey and Oklahoma are

alike. as are the between-cluster (within-group) variances. The latter variances are very large, considering

purposeful grouping of the clusters into groups. For example, the estimated within-cluster correlations for

Oklahoma. using method I, are around 115.58/(115.58 + 666.68) = 0.15. Without adjustment for group

(stratification)rat ification) these correlations are much larger (around 0.35).

'1.1ne elapsed time for the analysis producing the eight model-based estimates displayed in Tables 1 and

5 is less than twice the elapsed time for the jackknife analysis.

Of principal interest in Tables .1 and 5 are t he right-most columns ('Overall') giving estimates t hat take

account of inaccuracy in estimation of the proficiency scores.

3.5.2 Subpopulation means

Table 6 displays the estimates of the means for a selected set of subpopulations in New Jersey. The

subpopulation is characbrized by the quest ionnaire item, and response; for instance. (183.2) in the first

column of t lie table signifies the subpopulat ion of st udents who responded '2' (Graduated from high school)

to item number 183 (Parent's educational level). For each subpopulation the corresponding sample size

and number of (non-empty) clusters are given. The standard errors estimated by jackknife are given in

parentheses underneath the associated estimate. For the model-based methods the standard errors are

given in parentheses. and the estimated between-cluster variances in brackets. The methods 13 (for pairs

of clusters) differ front t heir method (' counterparts. but the differences are insubstantial in comparison

with the estimators within a method. especially for small samples. To conserve space. only results for the

met hod ( are given.

'There appears to be considerable agreNnent between the jackknife and model-hased estimators of the

standard errors. especially for larger dal aset s (with more than 1000 students). On the other hand. among

the est ilnal ed standard errors for small &Onsets there are considerable differences. It is feasible, however.

that they merely reflect substantial sampling variation. For instance, the dataset for item and response

(28.2) (Asian American st udents). cont ains 131 st udents. 11 of whom are in a single cluster: of t he remaining

56 non-empty clusters only 16 contain more than two students, and none contains more than six.

3.6 Adjustment of weights for nonresponse

For purposes of statistical analysis. adjustment is commonly. interpreted as a perturbation of t he sampling

weights. The adjustments for a student to the sample drawn may be different from the adjustment in a

different sample in which the st uncut is also selected. This creates problems wit It all methods that rely

On the sampling weights being, constants fixed prior to selection of the sample. A simplistic approach to

dealing with such adjustment is to ignore the stochastic nature of the adjusted weights (their variation

over samples). and proceed wit h the analysis as if the adjustment of weights took place prior to sample

selection. .1 his iipproach is certainly justified when I Ink weights are altered only marginally. This is t he

ease in the New Jersey damsel hut not in the dalaset for Oklahoma. In this section we show. though.
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Table 6: Jackknife and model-based estimates for a selected set of subpopulat ions: New Jersey.

New Jersey

Item
and

response

St udents
and

clusters

Weighted
mean

and oi'l,

Jackknife
Niel hod C

I II III R.

28,1

28,2

28.4

1789/95

398/61

131/57

279.19
662.50

240.79
397.6.1

296.97
655.03

279.54

(1.06)

210.83
(2.30)

296.99
(4.92)

(1.19)

[67.50]

(2.3.1)

[73.73]

(5.04)
[116.43]

(1.1.1)

Ramq

(2.12)
[52.88]

(5.17)
[ 90.92]

(1.28)
[84.29)

(2.30)
[76.45]

(5.23)
[160.63]

(1.33)
[90.74]

(3.20)
[110.41]

(1.83)
[ 17.96]

:11.1

31.2

656/25

1170/15

279.25

719.71

271.79
690.37

279.21

(2.36)

274.81

(2.1(.1)

(2.20)

[72.66]

(1.51)
[63.62]

(2.01)
[58.76]

(1.57)

[66.69]

(1.99)
[55.28]

(1.57)
[67.39]

(1.97)
[5:3.68]

(1.58)
[68.101

18:1.2

183

633/102

1225/104

258.87

571.89

281.38
716.87

258.89
(1.59)

281.38
(1.35)

(1.76)
[138.10]

(1.10)
[ 96.56]

(1.71)
[127.06]

(1.3(1)

[ 89.30]

(1.76)
[139.69]

(1.12)
[100.87]

(1.56)
[95.18]

(1.11)
[ 98.19]

193,1

193.2

193,3

1 513.9

:386/34

677/61

1346/91

301/39

281.73
313.23

272.97
560.91

265.80
580.20

261.36

523.84

281.70
(.13)

273.00

(2.55)

265.83

(1.97)

261.35

(4.61)

(4.48)

[:361.58]

(2.11)

[150.16]

(1.89)
[193.71]

( :3.88)

[ 79.09]

( :3.83)

[277.57)

(2.05)

[140.76]

(1.85)
[183.92]

(3.72)
[ 36.80)

(4.19)
[322.51]

(2.19)
[221.61]

(1.98)
[212.05]

(1.59)
[127.87]

(1.02)
[306.86)

(2.60)
[223.46]

(2.06)
[233.36]

(5.29)
[103.27]

Notes: For each method the estimates of 2i; are given in brackets. []. and the estimated standard errors in
parentheses 1 ). The items and response options are: 2X Derived race/et hnicity ( White, 2 Black. 4 Asian ):it Nlittority stratum:
ISA Parents' educational level (2 (:radua led front high school. 1 Graduated from college);
191 Teacher's graduate major (1 Nlat hematics, ucat ion. 1 Other, 9 Missing).
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Figure I: Student-level weight adjustment Factors for Oklahoma.

that this approach involves Irk ial imprecision even for Oklahoma, No long as thy' adjnstillellt or weights is

fort hi le.

'1'h' design Nveights have tkvo mult iplicative components. school- and student-level design weights. The

school-level weights are proportional to the reciprocals of the probabilities or inclusion the school in

the SallIple, assuming that all schools would cooperate. Note that these weights refer to schools, not to

clusters. The student design heights are proportional to the conditional probabilities of inclusion in the

sample. given that the school is included.

Adjustment Of these %veightS h non-response also has two multiplicative components one for

clustcrs and one for students. In the New Jersey dal aset there are only three different cluster-level ad-

justment facto rs: 1.000 (no adjustment I. 1.027. and 1.010, for Iti, 37, and '21 clusters, respectively. The

student-level adjustment factors arn. in the range 1.010 1.10, with mean and median equal to 1.00, and

sample standard deviation equal to 0.021. In summary. the adjustments of the weights (product of the

school- and student-level adjustments) are in the range 1.01(1 1.171. with mean and median equal to 1.08

and standard deviation equal to 0.032.

In contrast, in the dataset for Oklahoma ( schools with 2222 sl 11(10111S). \viler(' the non-response was

much higher (about 20 per cent at student level). the adjustment of weights is much morn substantial.

Flue design weights (both school- and student- level) are constant wit hin schools, and so are t I le school-level

adjustments. The student-level adjustment factors lutNe 35 distinct values, two in most clusters. 'Fliese

factors are in the range 1.00 1.05. see Figure 1.

The school-level adjustment factors are much les, important . Essentially, there ate three distinct values

of the factor: for GO schools (1195 students) the factor is equal to 1.00: for 12 schools with h 805 students t he

adjustment factor is 1.015 I.(110: and for the remaining schools (13'2 stinlents) the adjust mem factor is

1.10. New Jersey and Oklahoma represent two extremes al11011L; the states participating in the 11(00 \1alll
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Trial State Assessment in terms of nonresponse and consequent adjust ment

Approaches ot her than jackknife to inference from survey samples regard t he adjusted weights as design

weights, ignoring t lie stochastic nature of t he adjustments. We explore whet her such an approach is just ified

for the model-based estimators by a Monte Carlo study in ;vhich t he sampling weights are perturbed by

random terms with suit ably chosen dispersion. Instead of the realized weights ?rip; we consider a set of

'pert urhed' weights. el:!jr, generated by the model

log( tr!; )k. ) = log( te:;:ik ) ..F(uuk) (31)

where it"k`. and are tw. mutually independent random samples from A'(0.c= i) and .1,-(0.r2w).

respectively. and er;lik is the mean weight for student ijk, averaged over all the samples. The choice

of values for the variances o-,,203 and cri,.R. is discussed below. Note t hat cx1(A.1("t'. )) and exp(F(iii?) are

essentially different from the weight adjustments; if they were not weight adjustment would have no

stochastic component . The model in (31) assumes independent deviation factors for clusters and students,

hot log-normally distributed. This assumption cannot he checked because the 'true' weights are not

known. Also, the weights { tuTik) are defined subject to a multiplicative factor constant for a sample. In

(31) a suitable constant factor is assumed. There is no evidence of dependence of t he applied school- and

student-level adjustment factors.

We adopt t he 'working' assumption that the sampling weights are unbiased estimators of a fixed Inuit iple

of the reciprocal of t he sampling probabilities, and that the adjustment of the design weights at both cluster

and student, levels has the following properties. Each adjustment factor has two components: adjus!ment

of bias of t he design weights, and a random component. We assume that the variation of t he random

component. is of the same order as the variance of the bias of adjustment, that is, the adjustment is

reasonably efficient. This suggests the choice of school- and student-level variances and (3-;1, iv of the

same order of magnitude as the sample variances of the logarithms of t he adjustment factors.

The adjustment factors for New Jersey are so small, that. even for an unrealistically large perturbation of

weights the weighted means have observed variances negligible in comparison with t he estimated sampling

variance of t he estimator for the population mean. We chose the variances cr.': = 0.052 for schools and 7 =

0.12 for students. To illustrate this perturbation, the basic descript statistics of the adjustment factors

are compared with a random sample from the distribution used for perturbing the sampling weights. The

basic descriptie statistics (minimum. median, mean, maximum, and standard deviation in parentheses)

for t he school-level adjustment (on log-scale) are:

0.000, 0.018. 0.027, 0.0.15. (0.018)

'The same st at is( les for a random sample of size 104 (the number of schools) from the dist T0110 ion general ing

the perturbation factors is

0.002, 0.041, 0.037, 0.157, (0.03.1)

The corresponding statistics for the student-level adjustments and perturbation are

0.01(3, 0.058. 0.056. 0.1.10, (0.022)

26 36



and

0.000, 0.00, 0.068, 0.391. (0.060)

Thus the simulated perturbation changes the weight:7. much more than the realized uljust mew for nonre-

sponse.

One hundred sets of perturbed ixeights were generated for the entire sample and several subsamples of

I he New Jersey dataset. The mean and standard deviation of the simulated estimates of the population

mean are 269.3 and (1.2035, respectively. jackknife and ratio estimates of the population mean are

269.17 and 260.46, respectively. For subpopulations the corresponding differences are also trivial. For

example, the mean of the simulated estimates of the mean proficiency of the Asian American students

(131 students in 57 clusters) is 296.91 (standard deviation of the simulated estimates is 0.47), while the

ratio and jackknife estimates are 296.09 and 296.97, respectively. The estimated standard error of these

estimators is aroud 5.0. The variation in the estimates of the sampling variation is also unimportant.

A similar analysis for Oklahoma yields somewhat larger differences. The jackknife and ratio estimates

of the population mean are 262.91 and 262.95, respectively, and the mean of the simulated estimates

is 262.77 (the standard deviation of these estimates is 0.30). The corresponding means for the Asian

American students (36 students in 25 clusters) are 286.47 (ratio estimate), 286.57 (jackknife), and 286.49

(simulation). The differences among these means are trivial in comparison with the substantial sampling

error. The impact of perturbation of weights on the estimated sampl ing variance is also trivial.

3.7 Association of weight adjustment and proficiency

A simpler, though incomplete, way of assessing the influence of the weight adjustment on the estimate of

(sub- )population means is based on exploring the association of the weight adjustment with the proficiency.

For simplicity we consider the first. plausible value as a representation of the proficiency. The estimate of

the population mean for New Jersey, based on the design weights, is 269.28, 0.21 lower than the ratio

estimate based on the adjusted weights. For Oklahoma, the design-weight sample mean is 262 95, 0.26

lower than the adjusted-weight. sample mean. Such differences are no longer trivial although the biases

incurred are in no way consequential.

influence of the weight adjustment on the estimate of the population mean is a result of association of

the school- and student-level adjustment factors with proficiency. Figure 5 displays the plot of the school-

level adjustment of the weights against the school-means of proficiencies (left-hand panel) and the plot of

student-level adjustment against the proficiencies. The school-level adjustments are positively associated

with mean proficiency 'better' schools were more likely to decline participation in the survey. On the

other hand, student-level adjustment is negatively associated with proficiency. Students with lower ability

are more likely to abstain from the survey. Since the school-level adjustment is on a much narrower scale,

the overall adjustment is affected only very moderately by the school-level weight adjustments.

For subpopulat ions the impact of weight adjustment. varies depending on the stochastic mechanism of

'selection' of the subpopulat ion. For example, the weighted means for urhanicity stratum 1 (442 students)

in New .1(rsey are 238.01 and 238.14 for the design and adjusted weights, respectively: for students who
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Figure :I: Associal ion of cluster- and sit:dent- level Iveight adjustment factors vit h proficiency: New Jersey

N',..1"'od"1 '3 (undecided) iii the item about I heir percept ion iir (.,5 w,
inch differences art small fractions of III(' CON-01-p, )11(1111g ,:-11111:11ed standard &vial

of Ito tVri"..1ht,'(1 'Flit. corresponding difference,: for ()I;Itilionia are only larger.
In conclus:ion, veight adjustments have a small. tilt hough percept 1111(.. impart on estimates of the pop-

ulation and stilipoptilat ion means.

The adjust mem of t he sampling veiglits for ()I:lalionitt is comparable to t lit. pert what ion of the school-
level wei.2,lits hy \:((I. I?) and of the st intent-le\ \veights by .1- (0.0.025 1.

3.8 Multivariate outcomes

I i I () se, that bot h t he jackknife and i he model-based met hods have direct extension,: for unlit ivariat
outcomes. 'mai ion (,r (in, ',Tidal ion mean is carried out component -Nvise. and the sampling variance
mat ix cif the vector of est limited means for t he jackknife is

N.2r(I11 ) :27 >3111'4. )1 nit' 4 l Ill )T

using, the it l() Milli lit (P1. t Inwic1-1;tsed iitils Scc1 iun 3.1
;ippi. wit 11 the l':ifrItIC(' c,1111)()Ilettl:, t'ephtecd hy variance ttliltVices.

3.9 Modelling approach

lit this sect ion \ye colt,ider all adapt at ion t.f t lie maximum lilo-libood method for est intat ion of Iflr P"1"1-
lat lull mean. For flit tire reference ve consider ordinary regres,-:ion instead of I he poptilati.qi mean.
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A \veil established approach lu rogression analysis of data from surveys Nvit 11 complex design relics on

superpopulat ion model in vollich survey feat tires arc` typically represented as differences among sampling

units. In [Ice case of simple regression it is nal lira' to consider regression of fi on ./' CocilielollIS varying,

across t he clusters, and diffrctices (iiiiknolvii constants or futict ions) among I he groups:

7-7 I I 4. -4- .) -f.- 4. (321

where b:k) /?.1. ..s24, I and rr;',). independently. l'suall. stil.models of (12)

defined hy cons! caiiits. such as .524. /id 1)4.. ;111(1 he like, are considered. ic siihniodels often

still o.0111;oin a larg,e number of parameters, one for each group, so as to reflect sithst ant ial het \voeit-group

differences to consider t he population inean. sot hi); ES 0 in (32)

For he case of constant \veights. E I, filling such models. say. by maximum (NH.), is

carried mit by iterative procedures the complexity or \vhich oni 1 he Illllllher of est inrited

parameters. For unequal Nveights t he cros-Throduct statistic'' required for NIL arc replaced loy heir veiglited

ersions Interpretation of the ilnalcs. as \yell as of i i , model parailletor-z, Is p r o o l o l e i n a t i c loecause I hey

have to he combined to ohtain quant it ies t hat relate ho the target population. simple adaptation due to

Ilarville (197i) adjusts for I Ino hias of the maximum likelihood estimator of a variance out to ignoring the

regression parameters (or the population mean). This met hod is called the restricted maximum likelihood

(Hu -NIL).

The principal disadvaiii age of till model in (32) is It no di:st inci ion is drawn loci ween sampling errors

and imperfect description of I he its,sociati(oil 111 I he target population. ()ii the 01 her hand, the model-based

procedures appear not to cater for separate cumponents of variation stemming from t he o lust ere(' Hat tire of

1,,, t arget population. This deficiency can. in principle. he resoled hy definitn more Tidal ion

summaries such as measures of 1,01vecit-clusier variation.

4 Simulations

1 he purpose of t he simulation study described in his section is to compare he properties or I hi, j:lekkilir,

mid the proposed in( oklel-hased estimators. rh,, It lilt errors of t est Mutt ON of the (sulo..)-

I), Tidal ion ineatis are of Iriticip;i1 interest . In summitry, I lie inodel-loasd estimators are much 111111 efficient,

III terms of mein] sgtutred errors. t hint jackl:nife. iind the differences among the tipodel-based est iniat ors are

relat ively unimport ant . NVe not 0. liovever. That he c(oniparison is some \vital unfair to t lie jackknife since

t he data are simulated according to the model (oil which 1 he alternal ive methods are hased. In part icula.

%%eight adjust ntent is ignon .1 in the innlhll tons.

Ve consider a datitset . such is the set of all st fluent s in the Nev .lerse vit h Iheir sampling

\veiglits clustering st rlictilre. and stratification/grouping. ;Hid r( place t lir out conic varialde a set of

111, Illodrf III ( in). vil 11 realist lc values or the parameters {rill and {114}.

111'Is, the '2Y"n11-111'.ans { /Ii- drawn independently from .\(2:,(1. and 1 he \\it hin-cluster stall

dard deviations {att ;:..) are dravn independent l front /it I. The set,. cif Lo,roup lit ate-: and the
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Figure 0: Comparison of the estimated and simulated within-cluster log-variances.
Notes: 'Comparison' k. k I 5. is the plot of the ordered values of the logarithms of the simulated wit hin-
cluster variances against the ordered values of the logarithms of the estimated within-cluster variances for the kth
set of plausikle values. The five simulations are mutually independent.

within-cluster variances are common I() all datasets within a set of simulations. but different student- and

cluster-level deviations are drawn independently for each simulated dataset.

For example, for the entire sample = 10, = 10, = -10. and (TY? = 100 generate datasets

with features similar to those of the survey dataset. Ignoring the within-cluster variation of the sampling

\ eights. t he est imat es of t he within cluster variances { cri?.v.j k } have t he cri=vjk-multiple of the 12 dist ribut ion

with I degrees of freedom.

The plots in Figure (.3 compare the estimates {0-?s. jk} for the five sets of plausible values for the New

Jer,ey dataset with five mutually independent sets of simulated estimates of the within-cluster variances.

drawn as reali/at ions of the distributions cri'vp. x /0/.4.p: 1 ). where the variances (Tiv,jk are
drawn from U( VL.1 P. The empirical distributions of the estimated and simulated variances appear to
have comparable feat ores.

For a set of generated profi,iency scores jackknife method, with the replicate weights front the

survey. and the model-based methods were applie 1. Th, following estimators were evaluated.

t he %vcighted mean:

:11'
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Talde 7: Summary of simulation of model-based estimators.

I,stUnator Nlinimum Mean Median Nlaximum St. dev. Deg. fr.

kVtd mean 218.111 250.273 250.292 252.672 1.197

Jack. moan 28.111 250.275 250.285 252.655 1.200

Jack. var. 0.720 1.351 1.328 2.251 0.310 31.6

CI var 0.657 1.06 1.372 2.265 0.320 38.7

('I 32.231 100.285 97.011 180.142 29.092

('11 var 0.657 1.-102 1.365 2.257 0.319 38.6

('11 01i 32.231 99.866 96.157 179.13 29.003

0.633 1.112 1.396 2.367 0.321 38.0

(111 (372i 30.0-13 100.815 99.150 189.313 29..115

CR vat. 0.631 1.03 1.378 2.257 0.319 38.7

CR (7.13 29.829 100.031 97.550 179.392 29.005

C 100 var r 0.639 18 1.392 2.288 0.317 10.1

C100 30.550 1(11.333 98.725 182.211 28.808

RE var 0.631 1.103 1.378 2.257 0.319 38.7

N11,

trI" Illea.11

29.830

609.969

100.032

967 077

97.550

667.6.11

179.393

712.931

29.005

21.591

Notes: The estimators of the sampling variance of the weighted mean are denoted by the method (for instance, ('R)

and the symbol 'var' in the first column. The estimators of the between-cluster variance arc denoted by the method

and the 4. The estimator of the common within-cluster variance is given in the last row of the table (for

all methods i ante within-cluster variances are estimated for each cluster). The group means. common to the

set of simulations. were generated from .1..(2.10. 1(1). The within-cluster deviations were generated front centered

normal distributions with standard deviations drawn from 11(10,40). the between-cluster deviations were generated

front HI). the random draws were mutually independent. Th standard deviations were common to the

simulations. but the (random) deviations were drawn independently for each replicate. One hundred replicates were

simulated.

I he jackknife mean:

the I.Vithill-ChlSter Variances:

I lie between- cluster estimates: 0(100 calculated as ri with weights based
111

100, and cr;?. mi.. ail iteration of t he weighted Fisher scoring algorithm described in Sect ion

3.9:

the eslintated smt)plitig van:11m-, of estimators of the lietveen-cluster variance.

'raid, 7 cotuainf, a simunary of a set of simulations for the population mean. For each estimator (a

row of the table). the mininu mean. median, and maximum realized value are given, as well as the

standard deviation of the realized values. The quantities in the extreme right column (degrees of freedom)

:11
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are discussed helosv.

The \veighted moan (ratio) and the jackknife estimators of the population mean are almost identical.
Their apparent hias (from Ihe superpoptilation mean of 2.50) is (lite to t Ile uncertainty associated with
the simulated group-level deviations Nvhich are constant across the simulations. The true variance of the
sveighted mean estimator eau he calculated by substituting the generated values of the variances (qv...1-k in
the equation (IN): its value. 1.389, implies that the jackknife estimator of the sampling variance (mean
1.35. median 1.33) has a negative bias. while the model- based estimators have positive biases. IloNvever,
tile contributions of !hose blast's to III, Mean ,(11.1arett errors or the ost imated variance are negligible. Also,
the hias in est Mullion of t he between - cluster variance ((rit IU(1) is trivial in compariscni 1,vit h the sampling
variance of the estimator.

The model-based methods ( '1, (II. (111. and ("Ii. were introduced ahove. The nn denoted as ('100
in Table 7 is analogous to Cll, but the weights rr A. are calculated using cri = I 00 . t hat the
weights rt,i; would he optimal \vere equal to their estimates, anti = 100. Further, In.:NIL:stands
for the weighted version of the restricted maximum likelihood im t hod described in Section 3.9. since a
Li,00d starting solution is its( d ter', from method ('II) only one iteration of the Fisher storing algorithm is
applied: preliminary exploration sholved that flirt her iterations change the vain' of the estimate of rqj by
less than Di.

All the estimators of the sampling variance of the weighted mean appear to be downward biased: the
tihserved utriance of the estimator of the mean is I .197:' i The estimator (4100 nearly matches. this
value (its ,iliseved mean is 1.118), and the other niodel-based estimators tilt' only marginally more biased.
"Hie jacll:iiife estimator of t he sampling ariance has hy far the largest hias. Furthermore, the observed
standard de% iation of thus' Jakktiiro rsi Huai or is slight l\ higher than its model-hased counterparts, so that
its mean squared error is also the highest . the comparisons (/f ih^ stardard errors (square roots of the
s,implim; variances) lead to t lie same conclusions

there is little to choose het veen the model.hased estimators of the saitipiiit variance, perhaps
wit h the except ititt tuf the estimator (*HI(' %%inh assumes known he INveen-chaster varianct . It is encouraging.
though, that not ktnnving tliis variance causes only marginal loss of efficiency. The model-based estimators
have almost identical distributions and they are also very highl corielated. The additional computation
involved in t he method makes only a marginal contribution to the efficiency.

However. for several simulations the differences between the estimates are considerable, as can he seen
hit the pairwise plots of the sets of estimates in Figtire 7. The molliods CH and I '100 are not represented
in the plots so as to achieve higher resolution and clarity.

I he (moot .1_based) estimators of (T.i, are also very similar:old mutually highly cort elated. I he est inia) ors
appear to he tuthiased, all hough t heir distributions are sonte\vhat \ved. Note t he subst ant ial uncertainty
III their estimation: their (illserv( d standard deviations are around 29. It is :-nrprisittg that the ('1(10
estimator has the largest bias: lio\vever. its ohser\ lard deviation (21~.511 and its mean squared error
(2`,.1) are t he smallest .

An i ,in vely ;11)/),,alin,4 v;;1 e,f r,)110);11.i1p4 the erlictotlry c)f the est ii nal ors of iii. sampling, 'arianct' Is
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by fitting 2 dist ribut ions to the empirical distributions of t he estimators. Then more degrees of freedom
(if the fitted \ distribution imply higher efficiency. The method of moments estimator of t degree:, (.1.

Ircefintii is given by 1 he equation

2 x (mean estimate of variance)?d.f. = t;I:1)variance of t he

Flis(' degrees of freedom are given in I he ext mile right column of Table 7. In evaluation of Ills
estimator we ignore the bias of the variance estimator. Not knowing n'if is associated witIi losr; of tip to
degrees of freedom, and using t he jackknife method with an additional loss of 6.5 degrees of frcedolii.

1 Ile model-based estimators are mutually highly correlated: the correlations among the est (

('Ill, (13. ( IOU. and EN' I, are 0.1)90 or higher, t he correlations of these estimators with the tr'l [Uri

is 0.981 or higher. The correlations of the jackknife estimator with I he model-based est Mint ( A arc. 0.s00

or higher; t he highest correlation is with estimator CI (0.8'65).

The set of 100 simulat ions was repeated with the same sinndat ion parameters using a diff44(911 salt iple

of simulated group deviations. Alt hough substantially different values of t he observed means ;111(i NI widar(l

de\ unions were obtained. t heir pattern, and conclusions about efficiency. were the same. For ill:-;tatice, in
one case t he jackknife estimator of the sampling variance of t he weighted mean had the le;11 but
in all cases it was associated with 20 39 per cent loss of efficiency vis-a-vis either of the lot based

estimators.

In conclusion. t he jackknife met] I (..Ioes not deliver on its promise of unbiased estim of the
sampling variance. and the efficiency of this estimator is also inferior to its model based count (Iliarts.
I od, l_liased net do not involve any appreciable loss of efficiency due to .inknown bet wocti (luster

variance. There appears to be little payoff for the set of :it; replicate weights required for t he jackknife
est hind ion, which are dispensed with in the model-based 111(1110(1S.

neralizability c.f these conclusions was explored by further simulations using different tiara mewl.
values and different dal asets. The jackknife est imator of t he sampling variance is particularly vulueraltle

when the between-cluster variance is large: the loss of efficiency for (7.i? = 1.50 is about ;it) pyrcent
while for = .50 it is around 20 per cent. The choice of the distribution for the between-group differences
does not appear to affect the properties of the estimators. The estimators of a; have negligible and,

agreeing with int nit ion. have sampling variances increasing with aYi.

4.1 Estimators for subpopulations

()I' part icular import ;ince are the relative performances of on, st11(h0(1 est imat ors for smaller r,,,tiiiples er

-.111,1).1111:111(111,.. \Ve describe in details the simulations for the subpopulat ion or Hispanic stud,.111,

3 to item 111, Now Jersey sample. There are 303 Hispanic students in the sample: they are l orated in
8 I cliisters wit hill 52 groups in t he sample. The distribution of the Hispanic students across t he ('list ors is

compacily suniniariied in 1 able 8. A large number of clusters contain only one to Three Hispanic i4linlents,
while in ;t loll' (lusters Hispanic students form a tit.tjortty.
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Table 8: 1)i),tribut ion of Hispanic st tulents in I ins NOW .jersey sample

Students tVit hin clusters

St udents I 2 3 .1 5 8 10 11 12 13 17 22

(lusters 27 10 :1 7 5 3 I I 2 2 2 I I 2

Note: The second row contains the numbers of clusters which have the number:- of students given in the satin'
For instance, 27 clusters have one Hispanic' student each.

Several values of the model -based estimators of cr:7? are negative (up to 12 per 100 simulated values),

and. for the purpose of calculating the weights up., they are truncated to zero throughout. The results of

the simulations are given in Table ft in the same format as Table 7.

The observed variance of the weighted means is equal to 5.51. The estimators CH and I? L, come

closest to matching this value. followed l)2,: C100 which assumes known variance ail equal to the corre-

sponding simulation parameter. 1-he price for unbiasedness is very Iugh, t hough: hot h (1? and I? [NI L have

much higher mean squared errors than the jackknife (2.20), or the other model-based estimators (1.88 for

C100, 1.95 for C11. 2.0(5 for CI, and 2.12 for ('III). The degrees of freedom loosely reflect the efficiency of

the estimators. alt hough upward biased estimators appear in a somewhat net ter light.. The difference of 0.7

degrees of freedom between the estimators C100 and ('II, that can he attributed to information about rr'h .

appears to he trivial in comparison with the differences among the least biased and jackknife estimators

on one hand, and the estimators CI. CH, and CHI on the other hand.

The loss of efficiency due to not knowing (TY? is quite moderate. even though est mat ion of cri, is

associated with a lot of uncertainty. However, if an incorrect value of is assumed for t he estimator

C100, a substantial loss of efficiency is incurred. For example, assuming that ajr = 15(1 when in fart

calf = 100 yields it severely biased estimator with mean squared error comparable to the jackknife. In small

subsamples the sampling variance of the weighted mean is more strongly influenced by than in the

entire sample. For example. the sampling variance of the weighted mean simulated using o' 70 is about

one half of the sampling variance simulated using cr'h = 150.

In all datasets the assumption of equal within-cluster variances (ot..) is associated witls substantial loss

of efficiency.

These observed properties were confirmed in simulat ions based on several other subsamples with sizes

130 500. In general, the jackknife estimator is biased and its sampling variance is larger than that of

t he model-based est itnators, with h occasional exception of ( 'H. The estimator (111 is the most efficient one

for some subsamples (following ( '100), but performs rat her poorly for others, though never worse than the

jackknife. The performance of fit, e stimiators ('1 and is much more consistent: is uniformly: more

efficient than ('I, but the difference is unimportant in comparison with the improvement these estimators

represent over the other methods. The jackknife is least competitive for the smallest datasets (losses in

efficiency of up to 15 per cent ) and. Ironically. for the emir( sample. Inefficiency of the jackknife for larger
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Table 9: Summary of simulation of model-hased estimators for Ilispanic students.

Estimator N1ininium Nlean :\ led ian Nlaximum St. dev. Dig. fr.

\\'td mean 2.13.00 218.75 218.78 255.99 2.35
Jack. mean 212.91 2-18.76 2-18.78 255.98 2.31

Jack. var. 1.86 4.92 4.58 13.26 2.11 10.9

var 2.19 4.89 -1.62 11.30 1.96 12.5
('I (Tin 0 112.59 97.3-1 381.13 80.15

var 1.88 5.33 4.90 10.57 1.9-1 15.1
.C11 (31? 0 89.17 68.11 383.1.1 77.95

CHI var 2.40 5.73 5.31 11.20 2.10 15.0
C111 (-1-:h 0 127.78 111.45 383.01 85.44

('H var 1.93 5.2 .78 16.61 2.84 7.3
Cl? ri? 0 114.91 90.78 107.29 97.20

C100 var 3.73 5.23 1.90 12.69 1.86 15.8
('100 cri 71.18 109.90 99.20 30.66 81.01

11EMI, var 1.93 5.12 .78 16.63 2.83 7.3
H EM 1, ITY? 0 114.90 96.87 35.36 97.21

CT- 1110;111 413.20 688.69 669.80 10.10.21 106.12

Notes: The same notation and layout is used as in Table 7. Three 1nindred replicates were simulated, using the
simulation parameters given in Table 7.

samples may be due to not using within-cluster information.

5 Smoothing techniques

The model-based method of estimation of the standard error of the mean proficiency for a subpopulat ion
involves estimation of the cluster- and student-level variance components oil and For small
subsamples, especially those with only a few strata represented by more I han one large cluster. t he estimates

of these variances have large sampling variances. Clearly. estimation of these variances is the Achilles heel
of the model-based methods; it is exceedingly inefficient when a large number of subsamples is analyzed

because information about the variances contained in the analyzed subsample could be complemented by
I he of her subsamples.

Although it is not reasonable to assume that all I he subsamples have the same between-cluster variance
ajn , suitably selected sets of subsamples may share a conimon variance o-Y3. Then estimation of (7'h can
he strengthened by averaging the estimates of rr.i3 across the subsamples. In this process of averaging
more weight can he given to larger subsamples. Also, the weights may vary depending on the analyzed
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subsample. Schemes motivated by shrinkage estimation or empirical liayes methods may he particularly

useful. In a typical such scheme each variance for a subsample is estimated as the weighted mean of the

variances for the entire set of suhsamples. Nvith the weights associated with each subsample held constant.

except for the analyzed subsample which is given wore weight.

Care has to be exercised in averaging the estimated within-cluster variances for a cluster because

.uhsamples may have substantially different within-cluster variances. Each cluster within a subsample can

he considered as an informatively selected subsample. The change in the within-cluster variances is greater

the more closely the variable on which the selection is based is associated with profic:ency. in any case,

estimation of within- cluster variance is simple (based on the stilt of squares 1:,.1 jk). and a variety of

schemes of pooling information across subsamples and/or clusters can he devised.

The influence of the sampling errors associated with estimation of the variance components can he

fort her reduced by the following scheme. The sampling variance of the estimator of a subpopulat ion mean

is a linear function or the variance components:

var(p.,) = .2(7- + ,(712v k'I? a .1) ^

where 7 and 1,1; are functions of the sampling weights:

S

-1 12k

Eikir:jz,k

cc
r1.2 n 7 iv'1.1k

-2
jk.

1" k

(31)

Ile sidiscript = I I is added to several quantities in (31) and throughout this sect inn to emphasize

their dependence on Ihe analy/ed sulisample (dataset ). For the estimaied sampling variances Vitr(p,,) for

stihimpulal ions a we consider the regression equation

= + = (5)
A

where a = are subpopulat ion-specific i.andoni terms and cilt awl {rri2v..11..} are sets of variances

common across the subpopulations. The term consists of two component,: the error of estimation.

ar(//). and the model deviation var(p),L;2r.: Eik jjkaiv.ik . The 'regression' parameters

tail rrfl.JA. way lw ;Isfifficil known or unknown. In the latter case they can he estimated by standard

regression met hoik.

Thu,. Coven a ,1 of the sampling variances var(p). and assuming common variance

components across the subs:11111)1es I Iwse estimales can he 'improved'. or ,Iniiothed, by fitting the

linear iip)d, I (:),T.o. and (1-clarin2, the lilt, d Ie

Vat'( ,, I =

4

Es.z ,3k0-1,L,k ( 31; )



where the estimates of the variance components are obtained by a weighted least squares fit Wi .11 weights

reflecting differential precision of the estimators N.-C:si-r(ii). Since there are a large number of clusters it is

expedient to suhst it lite 111e estimates crivuk for the corresponding variances in (3.1) thus obtaining a simple
regression on (1:ii with no intercept. To take account of differential precision of the estimated variances
y',..--ir(//) (estimated. say, hy jackknife) suitable regression weights, such as the sample size, cluster sample
size, or their linear ounbination can he applied. Stability of the estimate of the common between- cluster
variance (713 can he explored by varying (perturhing) the regression weights. An important diagnostic
check for appropriateness of the model in (3.1) is that the regression intercept, if estimated, is close to zero.

The smoothed estimate of the sampling variance is the fitted value (36), where the variances are either
estimated exclusively from the subsample to which they refer, by a regression (common to all subsamples).
or as a conilcr. disc or these two approaches (such as an empirical Bayes approach).

Extensions and several adaptations of this approach are easy to devise, for example. Icy introducing
different vari;dices crif for disjoint subsets of subs:11)11)1os. The regression equation in (3 1) can be suplemented

by other data summaries (not only functions of the sampling weights). as well as by an intercept term, thus
ohiaining a hotter lit, all hough the original interpretation in terms of a common between-cluster variance

would no longer ;11)14.

An important concern pertains to normality and homogeneity of the 'error' terms ,. Instead of the
regression = it ) t.cr

1,
e cis . we may consider I he regression

/ (7)
in

Sa 3

Which the assumption of i.i.d. for he more palatable. Now the common variance crit
Is estimated as the mean ()I' the quantities As an alternative, a Snit able transformation of .-:,, can

he applied; in particular. Jr po,,itive, log-transformation leads to the g«widro average of z as
an estimator of car. A t ransformat ion may. also he applied to z./,'-:.2

Of' course. the method outlined in this section can be applied to another model for the out cop..', which

w( add lead to a relationship het wren sampling variance and a different set of summaries of the damsel.

The method requires an estimator of t he sampling variances. The jackknife or it model-based estimator
can be used. and it is then Unproved by the smoothing.

An important issue in application of t hese met hods is identification of subsets with h equal (homogeneous)
within- and hot ween-eluster variances. 1)et ;tiled understanding of the educational social. behavioural, and
economic processes relevant to the target population may promote an intelligent choice in this myriad

cf smoothin),), schemes. An interest ing option is that of combining the estimates of the variances based
on a sul)sample with the estimates of variances (their means) from the other subsamples. The mixing

proportion: should depend on the yffe(tke) sample size(s) of the analyzed suhsample. Such a scheme.
motivated by empirical Bayes in) th»)k. has a great potential but r) quires careful experimentation and
(tile iii II III vhich are heyond Inc. sc()pe ccl t hi.. prfq,el.
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6 Regression with survey data

Ordinary regression provides an easy to interpret assessment of association of one variable (the response)

with a set of other (explanatory) variables. '['he standard least squares method for estimation of this re-

gression function is applicable when the following assumptions are satisfied: the values of the explanatory

variables are under control of the experimenter /analyst, the outcomes are generated by a process which

assigns values of the response conditionally independent and 'iormally distributed with constant (condi-

tional) variance given t he relationship to the explanatory variables (regression function), and the regression

function is linear in the .xplanatory variables. In general, the assumptions of conditional independence

and of non-informative s( et ion of subjects are crucial for alidity of the inference based on the regression

estimator.

In regression analysis using survey data there are two distinct challenges: definition of the estimal.ed

quantity. and taking account of the features of the sampling design. For conceptual clarity we consider first

the hypothetical sit nation in which the values of the response I and of the (single) explanatory variable

X. denoted respectively by and Xi. i = 1......V, available for the entire population. With such

data we would calculate the regression slope as
E, x, y; X I (8)

7,( X ) 2

3

%viler, S = 5-1 71, ,V, and C" = X-1 7, V, are the respective population means of X and 1.: all the
summations are over i = I ...... V. Since our inference is conditional on t he target population. we regard

.1 in (:18) as an unknown constant.

As an alternative. we may consider a construct (latent) ) variable V'. observed or measured indirectly

and subject to random deviation (error) by the variable 1". and suppose that 'i is linearly related to X:

= (I° + 3'

I f the values of X, and Y, were available for the entire population .1 would, under certain standard itssump-

t ions. be a 'good' estimator of .1'.

The t'restdual) variance of the deviat ions is est iuiated

cr: =
2

( n 3X;)2 (39)

where o We emphasize that the variance o in (39) is a constant or an estimator. depending

on the adopted perspective. The variance of 3, as an estimator of .1". {DX, A')12}, and would

itself be estimated by

12}

We consider istintation of the quantities (3) (AO) based on a stratified clustered sample from the

target population. Our approach is based on estimation ()flit(' population means .V-1 77 5-1 E,
5-1E, };2, and 1'. for which methods discussed in Section 3.1 are applicable.
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(ignoring the higher-order terms). we have

111 al: 17;1/1E(3)
U., 11; //')

(48)
(7- i" a 1; /

yor(3) 2er12 i.
0. 2u; u

2

These equations can he supplemented by further terms involving higher moments of the random variables

it and -).2 . The values of these moments are not determined by the variance matrix of (-,1,-..2) unless

normality is assumed. However, the assumptions of normality are palatable for large sample sizes.

Note that unbiasedness of the numerator and denominator in (45), as estimators of their respective

population counterparts, does not imply unbiasedness of 3, not even when a-12 = 0.

6.1. Residual variance

The residual variance n2 can he estimated by the same approach. Ignoring the degrees of freedom in
regression for the population, .17(A 2) = 1, we have

(7\-T A")12
(49)x2 ,N-j2

where the bar over variables A' and }' and their functions stands for corresponding population mean.

The naive estimator of (7-2 is constructed by replacing each population mean in (19) by its (jackknife or

model-based) estimator. The mean square 2 is estimated without bias by 'y2 3/2 N."tir(.0). The

denominator of the fraction in (49) is estimated by ./.2 and the numerator by

j'02 .ry).

To obtain the expectation of this estimator we consider the expectations of the numerator and denom-

inator in (49): the former is

E {PT .1.02} = var(rg xy)+ .ry)) . (5(1)

and the latter is derived in complete analogy with the mean square for V.

6.2 Implementation

The estimation procedure described above requires est i mat ion of t he sampling variance mat rix of t he means

of A", `,"\'''. AT, and Y2. This can he accomplished by jackknife, the model-hosed, or, in principle, any

other method. The extension of both for multivariate statistics is discussed in Section 3 8. The estimated

moments are then substituted for the 'true' moments in (46) applied for the numerator and denominator

of the regression estimator 3, the estimators of (39) and (4(1). The estimator 3 can be (approximately)

corrected for bias using equation (.18).
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Note t hat the method described in this section fl applicable for any sampling, design since it is based

on the expectations and covariance st ruct tire of the populat ion nie,ins of c..rtain

6.3 Regression with jackknife

the jackknife method discussed in Section :1.3 has a straightforward extension rdirtar regression.

In essence. \ve replace the mean as die 'parent method liy the weighted regression. and subject each

component of the regression vector estimate (Iii e intercepi and slope in the case !if simple regression). ;is

\yell as till' residual variance, to the jackknife estimation.

Thus. tn NA til) Trial State Assessment an ordinary regrtssion 0. Inl(d for combination of each set of

replicate veights .and the final sampling veights) and plausible vain( s. a total of 57 =_- regressions.

The sets of estimates of the regression parameters tind or the residual ariatices are till II summarized

obtain the jackknife estimat(-s of these parameters. Although relatively easy to mem this procedure

denuit«Is a lot oloimpuling 11110' without ileces.-:arily providing an ellirieni est intator t ftesiaudard errors,

.1 short-lilt. using the jackknife as described above for t he first plausible value. and est 'into ing t he residual

varianci- from the regressions with the final weights for the other four plausible :dues. is used i ration

This way only GI regressions have to be fitted.

6.4 Example

For illustration we construct :1 regressor variable as the total of all the response, to i11015

2:31 23s ( how op( n (10 gm/ of items i scotrd oil kikert !!!,.ale (I

5. ordinal). Data from 2171 students (Mt.} per ('('lit If ti(, sample) front int rhisirs, who Pt-T.11(1yd to

a'li item are used in the analysis. The ,ja,..kknife analysis. involving 57 1 = '25 NV,,11.0)1c(1 last !squares

regression fits, is summarized ill the top panel of Table 10. The jackl:nile estimates of he intercept . slope.

and residual variance aro given for each plausible value. and t estimate, for the proficiency scores are

giVIII in t he right-most column.

The results of the model-l)ased regression met hod are given the 1)4 liii 1:1111.1 Ill. 'Hwy are in

close agreement \vit Ii the jackl:nife method. The estimated correlat ion or Ill, wilitt.ratiq. and denominator

If .1 it, ts to ()Aft hilt even for imputed correlations of zero aud unity the results are not

substantially difrerrlit. 'rabic ii disphys t he results for the proficiency score:-. sum nririyiliv, !tic

f!ir each plausible value. To explore the influence of the imputed correlation. t he results are gien for

correlations 0, 0 2..... 1. The standard errors of the 510111, iniao,r are affected a great deal by the choice

of the correlat iii. hut for t he estimates (intercept slope, and residual variance' t choice or tie correlat ion

is not critical. This suggest!, a simplification of the Taylor expansion method presented in Section t.

6.5 Multivariate and multilevel regression

The wodel-based met hod for simple regression can serve Os an outline for exten!,iiiii,

multilevel re,gression. In the former, the population regression parameter is defined as

1:3
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Tali le 10: 13egression analysis using the jackknife and model -haled methods: New Jersey data.

hle Valli e I) col.

Parameter I 2 a 1 5 value

Jackknife

Slope

lies. ariance

230.03

1. 10:1

(0.227)
1012.05

230.02

1.01
(0.218)
1031.51

229.03

1.411
(0.218)
1015.88

2:30.33

1.390
(0.225)
10-13.62

226.66

1.521
(0.235)
1018.37

229.31

1.26
(0.235)
1036.17

Int(Trept

Slope

11es. variance

230.03

1.107
(0.221)
1010.12

Model-based method

229.02 229.62

1.106 1.18
(0.216) (0.219)
1(128.51 1013.17

230.16

1.395
(0.223)
1010.37

226 61

1.528
(0.236)
10.18.33

229 28

1.132
(0.232)
1036.-11

ote: The estimated standard errors are given in parentheses.

/ = (XTX) I XTY. (51)

where X is the it (population) matrix of the regressors ((he population dei,ign mat rix), and Y is t he
1 vector of the outcomes for the population. Each t o t a l of crossproducts i n ( 5 1 ) can he etil 1)V

the corresponding rat io est imator and the sample covariances can be obtained from (he sampling variances
using the formula

T.
+ ad'.1) Yiit(51..5) - v7ir(J3.r.i)

2

whim denotes the ratio est iniator of the population Wean I) rod' of .v .V2. .1.110 expectation and
(he variance matrix of the sample counterpart of (51).

.5 = (xTx)-1 xTy.

ran he approximated hy the multivariate version of the delta 111( (hod. Let

/.1 = ("2+e2)-1(uu +el),

where m, are the expectations and Ch the from the expectations of t he numerator ( It = I) and
denominator (11 = 2) in (51). \ denote the covariance matrices for row h of e, tcitli el by :---

cov(e2 r,. el), for two rows of = /111(I set L1 =
Assuming that is much smaller than 112 we have the expansion

5



Table 11: Regression analysis of t be proficiency 011 a constructed variable using t Ii model-based met hod:
New Jersey data.

Correlation

Parametur 0.2 0.1 0.6 0.8 1.0

I:it ercept 229.15 229.37 229.29 229.21 229.13 229.01

1.126 1.130 1.132 1.31 1.538 1.111
Slope (0.252) (0.212) (0.232) (0.221) (0 20S) (0.191)

Res. variance 1036.0 1036.12 1036.44 1036.16 1036.4 1036.50

Notes: The construcked variable is described it' Section 6.1. The results are given for imputed values of the
(,,rrelation 0. .... I.

/ -1 1 1(I IC, 1E, -t- 11 1 E t11.T. I ill. 11, ±11., E- - 2 t

11., 111 -F 11., E
1 I

-E.+11.,
I Ci .

and so the mean and variance mat rix of ji are approximated as

E(73)11., 1111 IL, { I r ,tr I c-II, 4,21 2) t r )

Car(fl) u.T1 A AT ± B)

v. here A is the p p matrix with columns I u.i . and B is It

it (11.7'1111J, ). I ," II. p.

For imillIlrvcd regression a nuniker of data summaries. various Nvithin-chister sums of s(luare> and

crossproducts. are required. An al,orillull for itmxiiiiizing the log-likelihood for t lie population can he

used. ivithi Ili.. ''Hilda; ion quant it ies replaced by their sarnplo counterparts. The equal ions for such an

algorithm involve complex runct of the summaries. and, as a consequence I lie dell a not 1(1(1 leads to

unwieldy equal ions, in particular for est imat ion of variances and covariances. Nevort hr loss. the outlined

approach can easily be applied tcithnnl bias correct and derivation of sampling variance mat rix of

he est imators. The impact of he covariance or correlation matrix can be explored hy Unpin ing,

se%eral exi remit. he mat rix. such as t he mat rix 'i'r'is other' singular mat riers. 1 lie sann.

appr..ach can. in priii. iple. be applied to st runt ural model equations and factor analsis.

FIX \VII 11

7 Two-stage clustered sampling design

his section drrives tiee equal ions for ille nirt hod of Pot t hoff rI al. (1992) for Ihr tvo-stage (i firer-

level ) clustered sampling design. It ark's. for instance. when the replicate Ar"111):- 01 Ihr 1990 Nlaldl

15



Trial State Assessment data are associated with variation. 'rho NAPA' Assessment for USA employs a

stratified probability clustered sample with two stages of clustering. This section extends the model-based

methods to such sampling desires. We present first the details for the two-stage clustered design with no

st rat ificat ion. Incorporating stratification is relatively straightforward because it merely corresponds to

collating independent information across the strata.

We ;Ise t he tern, -group. for the sane' aggregate sampling units (replicate groups) as above, even though

those units are now associated with h Ian dant Variation. We consider the model

!kik = 1It + k + jk .f,jk . (.52)

where j k. and are 2 + mutually independent random samples from centered dis-

tributions with respective variances .7-2, and { o-j2k}jk . These variances are referred to as cartanc(

canyon( ills. The covariance of two observations in the same cluster is r2 and the covariance of two

observations from the saute group but different clusters is Since these covariances can, in principle, he

negative. it is meaningful. though counterintuitive, to consider negative 'variance' components, so long as

the valiance matrices for the sample and the target population are non-negative definite.

This model differs front that for the stratified clustered sampling only by the assumptions for the group

deviations ok . In Section 3.1 these deviations are assumed to he unknown constants (fixed). whereas

here we assume them to be a set of i.i.d. random variables. As in Section 3.1 we do not assume specific

distrihntiotis for the random variables in (52). We focus on the ratio estimator of the popul lion mean for

P = EJ Li wiik/kik
EA- > l E, ij

define I Ile tit age- Level \1st:1011yd sample Illealln

vt here

k

rt 1.r jk

11 .-1.1)kYijk

It jk

Ej11.11,3kIlik

/3.1.

IV) = T. and , 111,1 111. 4. WA, n0 = WHJA. are the>2

school,. and schools within -strata'. Note also that n..1 E, 1ra and flint-

analo.4on... notation. the population weighted sample mean is expressed as

its
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wr-kilk
=

where wc-,k = Ej II?, nr = Ek 1/',11.k, for h = 1.2. and 11' = Ek Wk.

Further, we denote pk. = 11 ± (11,. and pik = It (kk + 15k, SO that pik and pk are estimators of the

realized values of pjk and /'A-. respectively. These estimators are conditionally unbiased given Itjk and pk,

respectively.

The moment met hod of est imitating I he variance components .:2, r2, and {n-j`k} jk is based on the following

ANOVA-like (weighted) sums of squares:

Z./3.k

t'(

11.A.i.ik(,4,ik 11,k)2

nAjk

uk(lik /0)-

(53)

The sets of eights { ujk-} and { 11,. } can be arbitrary non-negative numbers: their choice is , tcnssed below.

First, we evaluate the expectations of these statistics as (linear) functions of the variance components; then

linearly combine them and solve the resulting moment equations by setting these statistics equal to their

expectations.

For derivation of the expectations of t he sum-of-squares statistics in (53) t he following identities are

useful:

Pik Pik

Pk Pk

I p

EuAs Oc-
"I/ ,k k 1- n ,

n1.1.k

Ek We A. ((,(.

11c

E 11 1i

fl 11.k

CAA

jk

r-
(in

+
k "

4-
tt, iiT

A. W(

1t 14 10:

.73 jk 2

If
jk

WI?
ajk .

A

WI? 7!.1.1A-
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wlicry = t. tht III 2,n mi. A. otc that it Icgroes Ill fr(.0(1()111. app,ar Ii 1111,-;

Tiu

III? 4-

II 1

It. A

I VA.

s;

c;III 1,, 111 I.. xpr, -:7- :).1) (7,7i in I..rins (filic sampling weights /r.,jk and i holt. siage-level totak It',

and 11.;,..

l3y -,illii1:11.(q1;,1.:11iIts :Ippliod 1111, 'lW,11 2,1.,1:1, ,-;,1111 or squarcs Wo 41;1111

l't ) = 1,, , 4 , _ > ., kk.1, II .). --

v.. k
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7/ 4. -4- .7-
.
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, IIHk. //,-
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For example. the coefficient of r2 in (59) is equal to

7.1 v2..

IV 2_,
-11

When the group-level totals of ; ;rights are constant then (59) further simplifies to

/ _2
E(r) = I)

where A: is the number of groups.

7.1 Estimators of the variance components

1 1

71 B 1; A

1

I17:1

WI?

" J11,1 k.3

The within-school variances are estimated by rA,ik . If schools share sithin-school variances, the statistics

vA.ik can he combined to form an estimator of the common varianco. For instance, if all schools within a

group have a common within-school variance al then

1

k

is an unbiased estimator of ai .

In general, we have

E(rn.) = DILA. T2

k

UrAjk

E( rc ) = J) .2 Dc.., r2 E
k j

where the coefficients DB., D8.3k. D,,, and Dr, k are as in (55) aucf (58), or their special cases. Moment

estimators for the school- and group-level variances are the solutions of the pair of line? equations

P,Jkai2fr.

E k 13.k = E :+k D .k 72 sk E

= Dc 2 ',j k j2 k ((i0)

where .c A. are a ,-;et of non-negatie constants:

T = Lk Ek E.) j2k

1)B.k

1.( Ek DCA: T2 Ek E j DCJA"Ti2k

Dc
( 61)

The weights appear to he natural choices for the coefficients sk . The oi-dimates of the variance compo-

nents are then substituted for the true values in (51) to obtain an est Oat(' of the sampling variance var(it)
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of the population mean estimator p. Using different sets of weights for the moment matching equations,

estimating some of the variance components by smoothing techniques involving multiple regression opens

up a variety of possibilities which require further research.

7.2 Stratified two-stage clustered design

For purposes of statistical analysis the design of the NA EP surveys is described as a st ratified two-stage

weighted sampling design. Thus, within each group a small number, usually two, primary .sampting units

(PSU) is 'selected' (in reality, a different stratification is used. but after selecting the primary sampling

units they are paired into replicate pairs of l'St's). Then clusters (schools, or 'consolidated' schools) are

selected from each selected PST.', and finally st udents are sampled from each selected school.

Since wit hin each group we have a two- stage clustered design. I he estimators of t he variance components

and of the sampling variance of t he mean carry over lost ratified design, w it h suitable weights for combining

the wit hin-st rat nut estimates of t he variance components.

8 Summary

The report describes a class of model-based met hods for estimation of the population mean in st rat ified

clustered sampling. Importance of the adjustment of weights is assessed by an approach considering the

sampling variation of the adjusted weights and its (variance) components. 'the methods are non- iterative.

and the resulting estimators are more efficient than the jackknife estimators for a variety of datasets

obtained from t he 1990 Math Trial State Assessment. The methods can be extended to two-stage clustering.

A general method for estimation of more complex population summaries. such as regression coefficients. is

out lined. It is based on the estimators of t lie population means. applied to various quadratic funct ions of

the explanatory and outcome variables. There are no distributional assumptions in model-based methods,

apart from normality of the sample means. Model-hasod methods use only the final adjusted weights: the

replicate weights can be disposed of, thus radically reducing the size of the didaset and simplifying data

handling procedures. 'Hue principal advantage of the model-based methods is in eflicincy and small bias

of t he est imators of standard errors for rite population mean. Contrary to theoretical claims. the ( NA EP)

operationally implemented jackknife estimator of the sampling variance is not unhia.ed.
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9 Appendix. Data analysis with Splus
This section describes and documents functions and programs written in Splits for processing and analysis
of 1990 Math Trial State Assessment data.

9.1 Data input.

The data were obtained from the User Tapes, and in the process of transferring them to the Sun-Workstation
on which the analysis would take place only a subset of 120 variables was selected. They included all
the resampling weights. plausible values for the composite proficiency scores. information about student
background. and a subset of responses to cognitive and attitudinal items. The file containing this dataset
is named NJ .dat for New Jersey. and similarly for other states.

The data an' input into the Splits environment by the following Splits expressions:

Ncols 120

NJdat matrix(scan("NJ.dat"),nco1=Ncols,byrow=T)

The function scan 'scans', or reads. the dataset and temporarily stores it in a vector: by default, two
numbers are separated by one or several spaces. one or several carriage returns, or t heir combination. This
default can easily be overruled. The function mainr with the argument harm,. -7-- 7' 'shapes' this vector into
a Matrix with Nceis columns by filling up its elements row by row. There are reasonable defaults if the
vector has a length which is not a multiple of N«,/s. and the user is informed about it I,y a warn rag.

The number of students in the data is ascertained as the number of rows of t Ilc matrix Mat:

Nstud. dim(NJdat) [1]

Next, e.'e sort the students by t he schools and by strata. The scalars .Vjack and .Vpuir are the indices
(column eiii,ibers) for the stratum and th school within the stratum. Knowing t hat there are at most
I Ito slook within a st t lie students can be sorted On I he variable

stratum number + school number wit pin stratntu.

First, to ease the burden of typing complex expressions we define an Splus function (1s:

cis function(c1,c2)

NJdat C,c1.7%*%matrix(c2)

This Function has two unit/wars: el should be a veotor. a list of column indices of .V./dat. and c2 a vector
of the same length as cl. The function returns the linear combination of Illy cr,lllluns CI of .V/d0/ with
l'0,11iritqlls C2. The vector c2 has to be reshaped into a matrix because Splits distinguishes between vectorc
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and matrices with a single column or row. 'File value of the function ei.s is a vector even t hough it is

generated by a matrix operation.

Sorting of (he data is accomplished by the following expressions:

# Npair and Njack are the column indices

# for the replicate and jackknife

Npair 12

Njack 11

# sort records by schools

NJdat NJdat[sort.list(cis(c(Npair,Njack),c(1,3))),]

The hash causes the rest of t he line to he regarded as a comment.. The function .sort.bq returns t he

permutation t hat would sort its argument in ascending order. This permutation is then applied to the rows

of t he matrix .Vidat. The selection of columns of NJdat can be affected by an expression between t he last

comma above and t he closing bracket 1'. \o expression behind tine comma is interpreted as all columns..

For convenience, it is useful to calculate t he delimiters of the schools in the data. We index the schools

by integers 1. 2..... h-re school I is represented by records 1.2. .. , school 2 by //I + 1 ul + //2.

and so on. NVe refer to iii as t he school sample sizes.

Bot seq(Nstud)pduplicated(cls(c(Npair,Njack),c(1,3)))]

Top c(Bot[-1]-1,Nstud)

Cnt Top Bot + 1

Nclu length(Cnt)

In I Iris sequence of expressions lint is assigned all t he indices (components of t he vector I 2 V.../?/(0.

for which any value of the linear combination of replication and jackknife indices occurs for t he first time.

The exclamation mark'!' stands for negation. and the function duplicated returns a logical vector (vector of

T's and h.'s) indicating whet her I he value of the component of the argument is equal to that of a previous

component . BoI court ;tins t he indices of t he first students from each school. l'op is set to t he indices

of t he last students from each school, Citt to t he number of students from each school. and ,V(/// to the

number of schools iu t he dal asci (length returns the number of components).

9.2 A data summary

The following expressions give flue selected variable names and tabulate' t he categorical variables arid

compute (want des and standard deviations for t he quantitative variables Note how the function patr is

used for generating a set of similar names (character strings).



# Tabulating the NJdat data

# Tabulation

Vnames c("Sex","School","Race","IEP","LEP",

"D.Sex","D.race","Urb.Stratum","Min.Stratum',"Inc.Stratum",

"Rep.Grp.1","Drop.Grp","JK.Fac","Weight",

paste("SRWT",seq(1,56)),

"Orig.WT","Num.Cor","Par.gd.","Single.P","Sch.Math",

"Perc.Math","T.Certf","T.Und.Mj","T.Grp.Mj","T.Math.Crs",

"T.Emph.No.","T.Emph.PS","S.Policy","Problems","B003501A",

"5003601A","8000901A","8000903A","B000904A","B000905A",

paste("M",10100+seq(1,8),"B"),

"M810201B", paste("M",10300+seq(1,3),"B"),

paste("MPRCMP",seq(1,5)),

paste("T023",c(201,301,302,311,312,307,308,313,401,402,

411,412,407)))

length(Vnames)

quanti c(1,2,3,seq(13,72),75,seq(103,107))

categ seq(1,120)[- quanti]

NJTAB list()

for (i in categ)

NJTAB[[i]] TBL!i)

for (i in quanti)

NJTAB[[i]] c(mean(NJdat[,i]),quantile(NJdat[,i],

c(0,.1,.25,.5,.75,.9,1)), sqrt(var(NJdatE,ii)))

"Done"

colll 0111 of the N.11:113 is. naturally quite extensive, and therefore Wu' reproduce only a small

section of it. giving, rite summary for a categorical and a quantitative variable.

$"Sch.Math , No. 75":

5.1

6



Mean Minimum 10% 25% Median 75% 90% Maximum St. Dev,

3371.8 -25021 -14404 -269 4920 11410 14975.5 19804 10445.4

$"Perc.Math , No. 76":

1 2 3 9

725 1392 555 38

Variable No. 75 is the School keel math mean logii score (multiplied by 10000), No. 189 on the User

Tapes. and No. 76 is Studtnt perception of mathematics, No. 190 on the User Tapes.

9.3 Jackknife

In this section we present an Splits function for jackknife estimation of subpopulation moans. Specifically,

we consider estimation of the mean proficiency for a subpopulation given by a condition described in terms

of the variables in the dataset. The vector of values of this (logical) variable on the sampled students is

the argument of the Splits function Jaekf. The default argument is '1', that is, the entire population.

The function starts with extracting the dataset for the subsample corresponding to the subpopulation

(.\'/d). and the sample size of this subsample (nStu). The permanent assignment symbol '<< ' has the

effect of its left -hand side to he written in the directory available at the entry into Spins. Other objects

created within the function are temporary: with the exception of the last expression of the function they are

not available after the function is successfully evaluated. If an error occurs during evaluation, t he directory

remains intact.

The objects bet, top and cnt are the analogues of the vectors Hot, Top and l'itt for the subsamplo. The

object Tn( (totals of the weights) is a vector of length .N7r. (number of strata -F- 1). and its components

are ihe total of adjusted weights (the first component), and the totals of the jackknife replicate weights for

each pseudwnialysis. Cud is the index of the adjusted weights. and the adjusted weights are followed by

the jackknife replicate weights in each record of the dataset.

The permanent assignment of Ttrt, as well as or Sid, is essential because these objects are used in

another function: the function jkinian evaluates the sample mean or the ,jackknife pseudo-means for a

set of plausible values. The indices for the analysis (sample or jackknife) and for the plausible value are

encoded in the argument j. 'the function ikmean is used via the apply function to create t he vector of

these nteans. The function apply has three arguments: an array .1, an integer i. and a function f. The

Imo ion f is applied to each subplane of the i-th dimension of In our case, .1 is a column vector of

integers 0,1 jr pr 1 ( Npr is the number of plausible values, equal to 5). For a given integer

the associated pseudo-analysis and the plausible value are given by integer division (`X/X ) and remainder

((%1X ), respectively: see the declaration of the function ikmi an. 'the values returned by the apply function
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using jknuan are reshaped 1100 a jr x in. matrix: it contains I ht. sitinple and pseudo-means (rows) for

I he sets or plati,,,ihir values (columns).

Tip, function hsq collects the results of 1110 jackknife analyses: the sample (weighted) means. the

jackknife estimates of tllr means. and t he jackknife estimates of the sampling variances. `since the decimal

placing was ignored at the input, division by MO anti 10000 brings the results onto the appropriate scale.

The function is then applied to each column of sitar. that is, for each plausible value. t hits general ing a
3 x .V p)' matrix.

The mat rix .ear's is augmented by the means across the plausilde values and its t bird row (sampling

N..aiance) is augmented by the observed variance of the sampling variances. finally, the variances are
transformed to standard errors (deviations), labels are attached to the rows and columns of wars, anti the

function rot urns a list containing:

numbers of students and schools:

counts of students wit bin schools;

rite mat nix r a rs:

user. system and elapsed times for evaluation of the function (now final Ills' of .,./aur is assigned

by line hrst expression of th,, function).

Thc txl'n'---.101IN cousin t.tig the limo hit] jk.un tin art' enclosed in braces { ): for functions containing a
single expression. Stich as JA.rimin and he braces art- redundant .

'1 he following is an example of using t he function jkint 'iii jackkilirc performed for the
sulipopnlation of all st intents who ( \you'd have) responded 'A' ('slroutgiv agree') to l he question afoot

st 5 percept ion of matiwill,Itic, (v7u.i,ki)I N.. No in hi,. tape).

JKre762 Jackf(NLTdat[,76]"1)

JKre762

The first exprcssion is an assignment: the second, (plot Mg the name of

$Students. clusters:

[1] 725 104

$counts:

[1] 8 4 4 10 6 12 7 10 5 3 9 7 13 4 6 6 11 6 1 14

[21] 9 8 11 5 3 14 12 4 2 6 8 12 11 12 4 6 5 5 6 10

[41] 6 7 2 7 13 7 13 5 9 3 5 4 5 4 2 3 10 11 8 3

[61] 11 3 6 6 5 4 14 6 5 7 2 8 6 6 10 11 6 8 7 10

[81] 7 11 7 12 8 5 5 2 2 4 4 5 8 15 9 6 5 5 9 5

1-a;
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[101] 4 8 3 9

$estimates:

P.vl. 1 P.vl. 2 P.vl. 3 P.vl. 4 P.vl. 5 Ov-11

Weight. mean 279.837 279.592 279.516 279.910 279.732 279.717

JK, mean 279.828 279.579 279.501 279.905 279.718 279.706

JK. st.err. 1.681 1.707 1.722 1.659 1.727 1.707

Thus. tin' sohsainple contains 725 students from RH schools (each school is represented in thr subs:no-

ple). Tbe mean proficiency is 2711.71 t he difference bet ween t he jackknife and ratio (weighted) estimates

is trivial The estimated standard error of I be jackknife estimator is 1.71.

# Jackknife analysis for subsets

# cases selected by seval

# 1990 New Jersey state trial assessment

# The function requires only the dataset NJdat

# and the logical vector

# for the selected subset, e.g. Jackk(NJdatE,74)==2)

# (!!) or the vector of subscripts

# Constants to be set

# Cpr ... the first column of plausible values

Gpr = 103

# 1p number of Plausible Values

1p = 5, and Ip=seq(1,1p)

# Cwt the column o-f weights (followed by the JK weights)

Cwt = 14

# Njr number of r,SUs

Njr = 57

# The default is the entire dataset (2710 students)

Jackf function(seval = 7)

{

57
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start proc.time()

ft select the students

NJd :<- NJdat[seval, ]

nStu <- dim(NJd)[1]

# the delimiters for the clusters

bot <- seq(1, nStu)[!duplicated(NJd[, c(Npair, Njack)] %*%

matrix(c(1, 3)))]

top <- c(bot[ -1] 1, nStu)

cnt <- top bot + 1

# the total weights

Twt «- apply(NJdC, Cwt:(Cwt Njr 1)], 2, sum)

4 analysis for each replicate and plausible value

jkmean <- function(j)

{

jj <- j %% (Njr)

sum(NJd[, Cpr j %/% Njr] * NJd[, Cwt jj])/Twt[jj + 1]

4 Jackknife means

sbar <- matrix(apply(matrix(seq(0, Npr * Njr 1)), 1, jkmean),

Njr, Npr)

4 jackknife results (means and variances) for each pl. value

ssq <- function(yb)

c(yb[1]/100, mean(ybC-1])/100, sum((yb[ -1] yb[1])-2)/10000)

svars <- apply(sbar, 2, ssq)
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# variance standard error

svars <- cbind(svars, apply(svars, 1, mean))

svars[3, 1p + 1] <- svars[3, 1p + 1] + 1.2 * var(svars[2, ])

svars[3, ] <- sqrt(svars[3, ])

dimnames(svars) <- list(c("Weighted mean", "JK. mean",

"JK. st.err."), c(paste("P.v1.", Ip), "Ov-11"))

# results

list(Students.clusters = c(nStu, length(cnt)), counts = cnt,

estimates = svars, proc.time=proc.time()-start) }

9.4 Model based estimation

"Idle Spins function lrnig listed below executes t he set of model lased estimation procedures described in

Section 3.1.

# Function for model based estimation of NAEP data subsets

# Filename NS.md (started 6/8/92) method based on

# Potthoff et al. JASA, 1992

# cases selected by seval

# 1990 New Jersey state trial assessment

# The function requires only the dataset NJdat

and the logical vector

# for the selected subset, e.g. Jackk(NJdat[,74]==2)

# (!!) or the vector of -lots

# Use function TBL to tabulate a NAEP variable

# Constants to be set

# Cpr ... the first column of plausible values

Cpr = 103

# 1p ... number of Plausible Values

1p = 5, and Ip=seq(1,1p)



Cwt ... the column of weights

Cwt = 14

Njr number of PSUs

Njr = 67

4 The default is the entire dataset (2710 students)

STR ... column of the stratifying variable, default ..

STR = 11

4 other option ... STR = 9 (4 strata)

VCmg <- function(seval = T,STR=11)

{

start <- proc.time()

4 select the students

y <- N.Jdat[seval,c(Npair,Njack,STR,Cwt,Cpr+Ip-1)]

, str <- y[,3]

nStu <- dim(y)[1]

4 the delimiters for the clusters

but <- seq(1, nStu)[!duplicated(y[, c(1,2)] 7.*Y.

matrix(c(1, 3)))]

top <- c(bot[-1] 1, nStu)

cnt <- top bot + 1

Ncl <- length(cnt)

clu <- rep(seq(1,Nci),cnt)

w <- y[,4]/1000

y <- y[,4+Ip]/100

4 stratifying variable (student- and cluster-level)

4 rucode to strata 1,2, ..., nstr

cstr <- unique(str)

str <- match(str,cstr)

Str <- str [top]
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nstr <- length(cstr)

# the delimiters for the strata

Sbot <- ses(1,Ncl)[!duplicated(Str)]

Stop <- c(Sbot[-1]-1,Ncl)

Scnt <- Stop-Sbot+1

# total weight

W <- sum(w)

# sample means

Wmn <- t(y)%*%matrix(w)/W

# within-cluster means

tcls <- cbind(tapply(w,clu,sum), tapply(w-2,clu,sum))

for (i in Ip)

tcls <- cbind(tcls, tapply(y[,i]*w, clu, sum)/tcls[,1])

# normalized weights and effective sample sizes A

# estimate of the within-cluster variance

nA <- tcisE,11-2/tclsC,23

S2w <<- matrix(O,Ncl,lp)

for (i in Ip)

S21.7[,i] «- tapply((yE,i3-tcls[clu,2+i])-2*w, clu, sum) *

tcls[,1]/tclsE,21 / (nA-1)

S2W <- apply(S2w[nA>1,],2,mean)

S2w[nA==1,] «- S2W

# within-stratum totals, only when more than 2 PSUs

Snb <- S2w/matrix(nA,nrow=length(nA),ncol=lp)

61

71



Snb <- Snb[Sbot,] +Snb[Stop,]

SnA <- nA[Sbot]+nA[Stop]

Swt <- tcls[Sbot,1]+tcls[Stop,1]

# between-cluster sums of squares

difs (tcls[Sbot,-c(1,2)]-tcls[Stop,-c(1,2)])-2

v21 <- t(difs)%*%matrix(Swt)

v211 <- t(difs)' /, *Vaatrix(SnA)

v2I11 <- apply(difs/Snb,2,sum)

# between-variance estimates

BI <- (v21 t(Snb[Sbot!=Stop,])%*%matrix(

Swt[Sbot!=Stop]))/sum(Swt[Sbot!=Stop])/2

BII <- (v2II t(Snb[Sbot!=Stop,])%*%

matrix(nA[Stop] +nA[Sbot])ESbot!=Stop,])/

sum(nA[Sbot!=Stop])/2

BIII <- (v2111 sum(Stop!=Sbot))/apply(liSnb[Stop!=Sbot,],

2,sum)/2

# reestimate

Swr <- 1/(matrix(2*v2I,nrow=length(Sbot),ncol=lp,byrow=T) +

Snb)

v2R <- apply(difs*Swr,2,sum)

BR <- (v2R apply((Swr*Snb)[Sbot1=Stop,],2,sum))/

applY(Swr[Sbot!=Stop,],2,sum)/2

# within stratum totals

stra <- rep(seq(1,length(Scnt)),Scnt)

ucls <- cbind(tapply(tcls[,1],stra,sum),

tapply(tcls[,1]-2,stra,sum))

for (i in 1p)
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ucls <- cbind(ucls,tapply(tcls[,1]*tcls[,2+i],stra,sum)/

ucls[,1])

difs <- (tclsE,2+Ipl-ucls[stra,2+10)-2

# estimates based on W_jk and nA

Exci -Sbot[Stop==Sbot]

Wcom <- tcls[,1] tcls[,1]-2/ucls[stra,1]

vbI <- t(difs) %*./. matrix(tcls[,1])

CI <- (vbI t(S20%*%matrix(Wcom/nA))/sum(Wcom)

Wcom <- 1 2*tcls[,1] /ucls[stra,1]+ucls[stra,2]/ucls[stra,1]-2

vbII <- t(difs) %**4 matrix(nA)

CII <- (vbII t(S2w)%*%matrix(Wcom))/sum(Wcom*nA)

vbIII <- t(difs[Excl,])%*%matrix(nA[Excl]/Wcom[Excl])

CIII <- (vbIII apply(S2w[Excl,],2,sum))/sum(nA[Excl])

# reestimate

Snb 1/(matrix(vbI,nrow=length(nA),ncol.lp,byrow=T) 4-

S2w/matrix(nA,nrow=length(nA),ncol=lp))

rbR <- t((difs*Snb)[Excl,])%*%matrix(1/Vcom[Excl] )

CR <- (vbR apply((S2w/matrix(nA,nrow=length(nA),ncol=lp)*

Snb)[Excl,],2,sum))/apply(Snb[Excl,],2,sum)

# variance of the weighted mean

nB <- W-2/sum(tcls[,1]-2)

van <- 1/nB*(BI + t(S2w)%*%matrix(tcls[,2])/

sum(tcls[,1]-2))

varII <- 1/nB*(BII + t(S20%*%matrix(tclsE,27)/

sum(tcls[,1]-2))
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varIII <- 1/nB*(BIII + t(S2w)%*%matrix(tcls[,2])/

sum(tcls[,1]-2))

varR <- :i /nB *(BR + t(S20%*%matrix(tclsC,21)/

sum(tcls[,1]-2))

varCi <- 1/nB*(CI + t(S20%*%matrix(tcls[,2])/

sum(tc1s[,1]-2))

varCII <- 1/nB*(CII + t(S20%*%matrix(tcls[,2])/

sum(tcls[,1]-2))

varCIII <- 1/nB*(CIII + t(S2w)%*%matrix(tcls[,2])/

sum(tcls[,1]-2))

varCR <- 1/nB*(CR + t(S20%*%matrix(tcls[,2])/

sum(tcls[,1]-2))

# results

indx <- c(2,3,4,5,6,7,8,9)

resm <- matrix(c(Vmn,vari,varII,varIII,varR,varCI,

varCIl, varCIII, varCR, S2W, AI, BII, BIII, BR,

CI, CII, CIII, CR), ncol=lp,byrow=T)

resm <- cbind(resm,apply(resm,i,mean))

resm[indx,lp+1] <- resmEindx,lp+17+(1 +1/1p)*

apply(resm[indx,Ip],1,var)

resm[indx,] <- sqrt(resm[indx,])

dimnames(resm) <- list(

c("Weighted mean", "SE I", "SE II", "SE III",

"SE R", "SE CI", "SE CII" "SE CIII", "SE CR",

"Within variance", "BV I", "BV II", "BV III",

"BV R", "BV CI", "AV CII", "BV CIII","BV CR"),

c(paste("Pl.val.", Ip), "Overall"))

list(Stadents.schools.strata = ('nStu, Ncl, nstr),

school.sizes = cnt, strata=cstr, PSUs.in.strata=Scnt,

Eff.size = nB, estimates = resm,

pr,:c.time=proc.time()-start)

}
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!The arguments of the function are the subsample (giN-n by a 1()2,1ral Val:Midi'. \VIII) the 111 sampi, a-,

the (I( fault ). and t he :stratification variable (default variable No. I I. variable No. 5i1 on the rser Tapes).

()lily the utininull s( . of variables is selected into the array t,. Then the decimal places for the veights and

plausible values are 1.(1)isted. The object Ip is Iii( vector (1.2.:i. 1,5f, defined as Ip i. I ilc

number of plausible values. equal to 5.

The delimiters for the clusters art' set as in Jkott an huts additionally. similar delimiters are set for the

strata twit fl respect to clusters). Some Carc is necessary because clusters and even \\Ind, st rat a may a Iseitt

in the subsample

The array /et, contains the %vithin-cluster totals of \veit.&lits. squared kVight:-.. and veighted Iklak of

plausible values: n.1 are t he within-cluster effective sample sizes. and .C..111 is the matrix of estimate,: of

the vithin-cluster variances . The notation for the sum of squares and ariance estimator i. similar to

that in the text The in-thud based all pairs of 1'S1.'s uses the objects "nu. 1..21. r.211. and :,()

The other two methods require within-st rat tint totals of weights and means of plausible values. These

are collected in the matrix tic's. The objects rb rIii. 14)11, and so On, art the «,unterparts ti c.2 and ril, v..211

for the two met hods. 'Hie sets of five (Ip) estimates are then summarized in the lase column of the im,trix

The output of the function is a list containing the clustering structure of the amilyied siihsample,

the estimates. and information about processing time

for illustration we give t In' aimlysis for :espouse .A. t.t I he itew nl 1« p11(1) of math( mean s.
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$Students.schools.strata:

[1] 725 104 53

$school.sizes:

[1] 8 4 4 10 6 12 7 10 5 3 9 7 13 4 6 6 11 6 1 14

[21] 9 8 11 5 3 14 12 4 2 6 8 12 11 12 4 6 5 5 6 10

[41] 6 7 2 7 13 7 13 5 9 3 5 4 5 4 2 3 10 11 8 3

[61] 11 3 6 6 5 4 14 6 5 7 2 8 6 6 10 11 6 8 7 10

[81] 7 11 7 12 8 5 5 2 2 4 4 5 8 15 9 6 5 5 9 5

[101] 4 8 3 9

$strata:

6 51 102 149 196 244 295 359 410 476 492 541 600 652 677 732 792

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

813 868 926 968 989 1045 1101 1147 1195 1273 1301 1347 1404 1445

18 19 20 21 22 23 24 25 26 28 29 30 31 32

1498 1551 1598 1645 1725 1768 1809 1859 1915 1963 2013 2067 2125

33 34 35 36 37 38 39 40 41 42 43 44 45

2182 2253 2283 2337 2388 2475 2523 2587 2637

46 47 48 49 50 51 52 53 54

$PSUs.in.strata:

[1] 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 3 2 2 2 2

[31] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3

$Eff.size:

[1] 74.536

$estimates:

P.vl. 1 P.vl. 2 P.vl. 3 P.vl. 4 P.vl. 5 Ov-11

Weight. mean 279.837 279.592 279.516 279.910

Wtd. st.err. 1.537 1.572 1.525 1.440

Between-var. 102.215 112.575 105.488 81.197

G(i

279.732 279.717

1.536 1.531

104.311 101.157
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W.st.err II 1.497 1.553 1.515 1.428 1.520 1.511

Btwn-var. II 93.294 108.237 103.124 78.695 100.657 96.801

W.st.err. R 1.716 1.694 1.639 1.530 1.665 1.670

Btwn-var. R 145.696 142.324 132.325 101.063 135.083 131.298

Within var. 643.821 614.549 613.602 679.647 623.104 634.944

$proc.time:

[1] 36.416 4.517 48.000 0.000 0.000

Note that the effective sample size is 74.5, much smaller than the number of clusters. 10.1. The first two

estimates of the standard error are nearly identical (1.53 and 1.51), but differ appreciably from the third

one (1.67) which is close to its jackknife counterpart (1.71).

For the entire sample there is a much closer agreement. The jackknife estimate of t he standard error is

1.05, while its model-based counterparts are 1.09, 1.10, and 1.085.

9.5 Regression

In this section the Sp lus functions for fitting regression by the jackknife and model-based met hods are

given. The vector rsel identifies the students with complete records (for each variable using in constructing

the explanatory variable), and xvar is the constructed explanatory variable. The function .IKryg returns

the results of a pseudoanalysis. These results are stored in srcg and are returned in a suitable format in

the list JAP.

# An example with regression

# Select all the subjects

rsel (NJdat[,91]<6)8z(NJdat[,92]<6)&(NJdat[,93]<6)8z

(NJdat[,94]<6)84(NJdat[,95]<6)A(NJdat[,96]<6)&

(NJdat[,97]<6)&(NJdat[,98]<6)

xvar NJdat[,91]+NJdat[,92]+NJdat[,93]+NJdat[,94]+

NJdat[,95]+NJdat[,96]+NJdat[,97]+NJdat[,98]

JKreg function(j)

{

jw j%%Njr

jY - j'AnNjr
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# regression of pl.value jy with weights jw

ft lsfit(xv,NJd[,Njr+3 +jy],NJdE,34-jw1)$coef

matrix(c(ft,sum(NJd[23+jw]*(NJdE,Njr-1-3.1-jy1-ft[1]-ft[2]*xv)-2)/

sum(NJd[,3+jw])))

}

ssq function(yb)

c(yb[1],mean(yb[ -1]),sum((ybE-17-yb[1])-2))

start proc.time()

xv xvar[rsel]

NJd NJdat[rsel,c(Npair,Njack,Cwt+seq(Njr)-1,Cpr+Ip-1)]

NJd[,seq(Njr) +2] NJd[,seq(Njr)+2] /1000

NJd[,Nir+2+Ip] _ NJd[,Njr +2 +Ip] /100

bot seq(1,dim(NJd)C11)flduplicated(NJd[,c(1,2)]%*%

matrix(c(1,3)))]

top c(bot[ -1]-1, dim(NJd)E1D

cnt top-bot+1

clu rep(seq(1,length(cnt)), cnt)

sreg apply(matrix(seq(Npr*Njr)-1),1,JKreg)

sregi matrix(sreg1,1,Njr,Npr)

sregs matrix(sreg[2,],Njr,Npr)

sregv matrix(sreg[3,],Njr,Npr)

sresi apply(sregi,2,ssq)

sress apply(sregs,2,ssq)

sresv apply(sregv,2,ssq)

svari cbind(sresi,apply(sresi,1,mean))

svars cbind(sress,apply(sress,1,mean))



svary cbind(sresv,apply(sresv,l,mean))

svari[3,1p+1] svari[3,1p+1] + (1p+1)/1p*var(svariC2,1)

svars[3,1p+1] svars[3,1p+1] + (1p+1)/1p*var(svars[2,])

svars[3,] _ scirt(svarsE3,7)

svari[3,] sqrt(svari[3,])

svary svarv[-3,]

dimnames(svari) list(c("Intercept", "Jackknife intercept",

"JK. st. err."),c(paste("Pl.val.",Ip),"Overall"))

dimnames(svars) list(c("Slope", "Jackknife slope",

"JK. st. err."),c(paste("Pl.val.",Ip),"Overall"))

dimnames(svarv) list(c("Res. var.", "Jackknife res. var."),

c(paste("Pl.val.",Ip),"Overall"))

JKfit list(Students.clusters=c(dim(NJd)[1],length(cnt)),

counts=cnt, intercept=svari, slope=svars, Res.variance=svarv,

proc.time=(proc.time()-start)[1:3])

JKfit

The program for the inodel-lias,(1 estimator is given below. The nesting structure (given by bet. or.

and (lu for clusters. and .Lo/.,(pp and s( a/ for strata) is required, but only one set of sampling weights is

Tho not;ition similar to that in oth..r !-This functions and in the text.

# Regression with NAEP State data using Model-based methods

# Filename NW.Reg

# the same data as in NW.reg (jackknife)

# Select all the subjects

rsel (NJdat[,91]<6)&(NJdat[,92]<6)&(Nidat[,93]<6)&

( NJdat[, 94]< 6) &(NJdat[,95]<6) &(NJdat[,96]<6)&

(NJdat[,97]<6)&(NJdat[,98]<6)

xvar NJdat[,91]+NJdat[,92]+NJdat[,93]+NJdatE,941+
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NJdat[,95]+NJdatE,967+NJdat[ ,97]+NJdat[,98]

# the stratum indicator

STR 11

start proc.time()

### xv xvar[rsel]

NJd NJdat[rsel,c(Npair,Njack,STR,Cwt,Cpr+Ip-1)]

NJd[,4] NJd[,4] /1000

NJd[,4+Ip] NJd[,4+Ip]/100

clustering

bot seq(1,dim(NJd)[1])nduplicated(NJd[,c(1,2)]70d4

matrix(c(1,3)))]

top c(botE-17-1, dim(NJd)[1])

cnt top-bot+I

Ncl <- length(cnt)

clu <- rep(seq(1,Ncl),cnt)

stratification

# stratifying variable (student- and cluster-level)

str <- NJd[,3]

cstr <- unique(str)

# recode to strata 1,2, ..., nstr

str <- match(str,cstr)

Str <- str [tog]

nstr <- length(cstr)
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# the delimiters for the strata

sbot <- seq(1,Ncl)[!duplicated(Str)]

stpp <- c(sbot[- 1]- 1,Ncl)

scut <- stpp-sbot+1

# the y-variate (first plausible value) and weights

# <- NJd[,4]

# total weight

Wt <- sum(w)

# weighted within-cluster totals for 1, x, y, x-2, xy, y-2

Mfit list()

for (i in Ip)

{

yv <- NJcI[,4+i]

Tcls cbind(tapply(w,clu,sum),tapply(xv*w,clu,sum),

tapply(yv*w,clu,sum), tapply(xv-2*w,clu,sum),

tapply(xv*yv*w,clu,sum),tapply(yv-2*w,clu,sum))

# sample means of x, y, x-2, xy, y-2

WMn <- apply(Tcls,2,swn) /Wt

# regression estimate

nume WMn[5] WMn[2] *WMn[3]

deno WMn[4] WMn[2]-2

beta nume/deno

alph WMn[3] WMn[2]

sign WMn[6] WMnC3]-2 WMnCSJ + WMnC2J*WMn[3]
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strr sqrt(sigm/deno/length(yv))

## sampling variance estimation

dt cbind(xv,yv,xv-2,xv*yv,yv-2) matrix(WMn1-11,

nrow=length(xv),ncol=5,byrow:=T)

## effective sample size (A)

W2s tapply(w-2,clu,sum)

nA Tcls[,1]-2n2s

S2w <- array(0,c(Nc1,1p,1p))

for (i in 1:Ncl)

S2w[i] <- t(dt[bot[i]:top[i],])%*%dt[bot[i]:top[i],]/

(nA[i]-1)

## within-stratum totals

stra <- rep(seq(length(scnt)),scnt)

Ucls <- matrix (tapply(Tcls[,1],stra,sum))

for (i in 2:dim(Tcls)[2])

Ucls <- cbind(Ucls,tapply(Tcls[,i],stra,sum)/Ucls[,1])

Tc1s[,-1] _ Tcls[,-1]/matrix(Tcls[,1],nrow=dim(Tcls)[1],

ncol=dim(Tc1s)[2]-1)

VrEst <- (Tcls[,-1]-Ucls[stra,-1])%*%((Tcls[,-1]-Ucls[stra,-1])*

matrix(Tcls[,1], nrow=dim(Tc1s)[1],ncol=dim(Tc1s)[2]-1))

WCom Tcls[,1] -Tcls[,1]-2/Ucls[stra,1]

sMM S2w[1]*WCom[1]inA[1]

for (1 in 2:Ncl)
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sMM sMM + S2w[i]*Ycom[i]/nA[1]

VHat2 (VrEst sMM)/sum(YCom)

# variance of the weighted mean

nB Wt-2/sum(Tcls[,1]-2)

varm S2w[1]*W2s[1]

for (i in 2:Ncl)

varm varm + S2w[i]*W2s[i]

varm (VHat2+varm/sum(Tcls[,1]-2))/nB

## varm (5x5) contains the variance matrix for

## (x,y,x-2,xy,y-2)

## sampling variation of the regression parameter estimate

## numerator variance

nuvar varm[4,4] + varm[1,1]*varm[2,2] + varm[1,2]-2 +

Tan[2]-2*varm[2,2] + WM11[3]-2*varm[1,1] 2*WMn[2]*varm[2,4]

2*Win[3]*varmr1,4] + 2*WMn[2]*YMn[3]*varm[1,2]

## denominator variance

devar varm[3,3] + 2*varm[1,1]-2 + 4*Tan[2]-2*varm[1,1]

4*YMn[2]*varm[1,3]

# the estimated covariance of the numerator and denominator

covr varm[3,4] 24an[2]*varm[1,4] 14Mn[2]*varm[2,3]

lan[3]*varm[1,3] + 2*varm[1,1] * (varm[1,2] + Tan[2]*YMn[3]) +

2*WMn[2]-2*varm[1,2]

't# expectation and variance assuming COVARIANCE of the numerator

## and denominator equal to cvr, and the estimated covariance

7:;8



cvr c((-0.1+seq(11)/10)*sqrt(nuvar*devar),covr)

ebet nume/deno + cvr/deno-2 devar*nume/deno-3

vbet nuvar/deno-2 + devar*nume-2/deno-4 2*cvr*nume/deno-3

## residual variance

## numerator

ul nuvar + (WMn[5] WMn[2]*WMn[3] varm[1,2])-2

## denominator

u2 WMn[4] varm[1,1] WMn[2]-2

## variance of numerator is 3*nuvar-2

## variance of denominator is devar

cvr c((-0.1+seq(11)/' *scart(3*devar)*nuvar,covr*sqrt(3*nuvar))

rsig WMn[6] + varm[2,2] WMn[3]-2

u1/u2*(1 + devar/u2-2) + cvr/u2-2

paste("covariance ",covr)

paste("correlatj.on ",crre)

"Done"

## samplilg variance of the numerator and denominator

nuvar; devar;

## estimates and standard errors

rout rbind(WMn[3]-ebet*WMn[21,ebet,vbet,rsig,covr/

Hi



sqrt(nuvar*devar))

dimnames(rout) list(c("Intercept","Slope","St.Err.S1.",

"Res.var.","Covariance"),c(paste("Correlation",

(seq(11)-1),"/10"),"Est.corr."))

Mfit[[i]] rout

}

Mf it

## Summarize

MfitS matrix(0,5,12)

mns matrix(0,1p,12)

for (i in Ip)

{

MfitS MfitS + Mfit[[i]]

mns[i,] MfitEEin[2,]

}

MfitS MfitS/lp

MfitS[3,] sqrt(MfitS[3,] + apply(mns,2,var)*(1+1/1p))

MfitS
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