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Introduction

Welcome to the inaugural issue of What's Happening in the Mathematical
Sciences! To be published annually. What's Happening surveys some of the
important developments in the mathematical sciences over the past year or so.
Mathematics is constantly growing and changing. reaching out to other areas of
science and helping to solve some of the major problems facing society. Here you
can read about the development of a mathematical model of the human heart, the
solution to a longstanding mathematical problem about the way a drum's shape
affects its sound, and the contributions mathematics is making to the solution of
environmental problems.

What's Happening in the Mathematical Sciences aims to inform the general public
about the beauty and power of mathematics. The American ivlathematical Society
is pleased to present this new publication. We hope you enjoy it!

Samuel M. Rankin. III
AMS Associate Executive Director
and Director of Publications

Cover Illustration. A group of scientists at Los Alamos National Laboratory
have developed a mathematical model of ocean dynamics for massively
parallel computers that they hope will improve understanding of the role of
oceans in global climate change. The colors in this computer-generated
picture indicate sea surface temperature from cold (blue) to warm (red).
Figure courtesy of Richard Smith. Jchr Dukowicz, and Robert Malone at
Los Alamos National Laboratory.
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Equations Come to Life
in Mathematical Biology

he Nile crocodile and the Egyptian plover have a fascinating relationship.
The croc, ordinarily a surly saurian, will sit placidly on the muddy river

bank. mouth wide open, while the bird hops from tooth to tooth scarfing leeches
and other tasty morsels. Crocody lus niloticus enjoys a thorough oral prophylaxis:
Pluvianus cum fits gets a meal.

The technical term is .symhiosis.

Something like that is evolving between biologists and mathematicians. Biology
has a host of problems that call out for mathematical analysis. from the folding
of proteins inside an individual cell to the complex food webs on the ocean floor.
Mathematics. for its part. provides a quantitative framework that can bring order
to the organic chaos of nature and point toward new directions for research.
Mathematics has brought new insights into biology: biology has inspired new
mathematical results.

Which you regard as the bird and which the crocodile is a matter, shall we say,
of taste.

Mathematics and biology are not exactly newcomers to each other. Mathemat
ical methods have long been used in population studies, epidemiology, genetics,
and physiology, to name a few. And biological problems have spurred the creation
of many mathematical techniques, including, arguably. the entire field of statistics.

What's new is the depth of detail that mathematical models arc now striving
for and the attendant depth of theory required. The problems being tackled
today call for closer cooperation than ever before between mathematics and biol-
ogy. Increasingly. mathematicians are getting in on the ground floor of biological
research. working directly with biologists to help tease out the mathematical struc-
ture in phenomena ranging from the undulating motion of fish to the beating of
the human heart.

"The field's very different now than it was thirty years ago,- says Alan Perelson.
a mathematical biologist at Los Alamos National Laboratory and president of the
Society for Mathematical Biology. "Early mathematical biology was really mathe-
matics with a little inspiration from biology." There ';as little real communication
between the fields. But the current generation of mathematical biologists, Perel-
son says, consists of researchers "who've been driven by the biology, who look at
the details, talk to experimentalists, and generate models that are attempting to
answer questions of interest to experimentalists.-

Perelson's own work has been in theoretical immunology. He and others in the
field are trying to develop mathematical models for the sequence of events that
begins when. say, you step on a rusty nail, from the first antigenic signals pre-
sented by the invading bacteria, to the final chemotactic processes that close the
wound either cleanly or with a lasting scar. It's not just a matter of programming
a computer to do a bunch of calculations. Researchers first have to identify the
crucial biological aspects of the process and then find the appropriate mathmat-
ical equations that describe them. Developing such a thorough understanding.
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Perelson says. is the "grand goal" of theoretical immunology. but that goal is still
a long way off "We are really at the very beginning.

One reason for that is the daunting complexity of the immune system. The
body's response to the variety of pathogens it encounters is, among other things. a
pattern-recognition problem: The body must somehow identify an invading virus
or bacteria based oa the invader's distinctive pattern of chemical clues. The irn-
mune system's ability to do this, researchers believe. depends on the diversity of its
receptors. "To do pattern recognition [for the immune system] seems to require
on the order of ten million different types of receptors,- Perclson explains, "So to
understand in a profound sense how the system operates to recognize pathogens

and respond one really has to deal with systems of enormous complexiiy.- Math-
ematics enters the picture as a tool for modeling not only the individual receptors,
but also the overarching structure that enables them to act in concert.

The emergence of organized behavior from a collection of individual entities is
not unique to the immune system: it is a hallmark of living systems. A central
problem in biology is to deduce how properties of a system at one level of orga-
nization produce behavior at higher levels -for example, how does the electrical
activity in the nervous system of a centipede organize itself into the correct patterns
to make the critter's legs move in a coordinated fashion?

Nancy Kopell. a mathematician at Boston University, likens this problem to
the task of figuring out how a television works knowing only the properties of
transistors. She sees the modeling of "emergent behavior" as a central concern
for mathematical biology. "There are many questions in biology involving the
behavior of systems in which what you can measure easily... is the behavior of
some of the components of the system.- Kopell says. "What you can't easily, or
sometimes not at all, get from direct measurements is what's going to happen when
you hook all these things up. For that you really need some kind of theory.-

Kopell and her mathematical colleague Bard Ermentrout of' the University
of Pittsburgh have collaborated with biologists to study the rhythmic neuronal
patterns that give rise to swimming in an eel-like fish called a lamprey. Researchers
had known for some time that the electrical activity in the lamprey spinal cord
could be represented mathematically as a "chain of oscillators- something like a
set of pendulums hooked together by springs, but with quite different mathematical
properties. Kopell and Ermentrout formulated a new mathematical model based
on a deeper analysis of how the oscillators arc hooked together. Their model
produced predictions which could be verified by experimentalists, and it provided
new insight into how the electrical activity organizes itself to produce the swimming
motion in lampreys. The model also helped point nut new directions for biological
research. And as new data from rim experiments is found. Kopell and Ermentrout
continue to refine their mathematics to better reflect the biology.

Computer simulation figures prominently in many of the modeling efforts in
mathematical biology. Indeed, revolutions in both hardware and software have
been crucial to advances across the board. The Human Genome Project. with
its ambitious goal of mapping the roughly three billion base pairs that constitute
human DNA, would be inconceivable without machines and mathematical algo-
rithms for dealing with vast amounts of data. ( It's not just a question of storing
three billion pieces of information: it's a question ofanalr:ing that data.) Likewise,
mathematics is at the heart of much of medical imaging. including CAT scans, nu-
clear magnetic resonance. and positron emission tomography. These techniques
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are made possible by machines that carry out mathematical manipulations of the
data that pour into them.

One notable example of the use of mathematics and computer simulation in
physiology is the work of Charles Peskin and colleagues at the Courant Institute
of Mathematical Sciences at New York University. They are in the process of
building a realistic three-dimensional mathematical model of the human heart.
The model. they hope. will give researchers insight into the functioning and
malfunctioning of real hearts and lead to improved designs for artificial valves
and other replacement parts.

"It's a very large effort. and it's still going on," Peskin notes. The model is nearly
complete anatomically. but "we're still working on getting the physiology right.-
he adds. That means figuring out the appropriate elasticities of the parts. how fast
they should contract, and how fast they should reit- x. and then fine-tuning the
equations to reflect these physiological attributes.

The geometry of the heart is also a crucial part of the model. Conceptually. the
Courant heart consists of hundreds of closed curves representing muscle fibers. "In
effect the [model] heart is constructed out of a very large array of rubber bands,-
Peskin explains. Mathematically, the curves are represented by a string of discrete
points, with specified spring-like elasticity between each pair of consecutive points.

A computer keeps track of all these points on the order of '3. million of them
and immerses them in a computer-simulated bath of blood. Then the real calcu-
lation begins: The numerical heart starts to beat.

The mathematics of the calculation can be described by something that sounds
like the title of a 1950s Japanese monster movie: Hookes's Law Meets the Navier-
Stokes Equation. Hookes's Law is the force-displacement relation for springs.
familiar from high-school physics: a fancier, nonlinear version of it is used to

Detail from the three-dimensional Courant heart. showing the ilwee leafletsof the 'node/ aortic.
wive in its closed position. Thefiber architecture of the valve has a fractal structure which has
heen predicted here hr solving an equation fOr the mechanical equilibrium of the.fibers under
a pressure load. (Illustration created at the Pittsburgh .S.upercomputing Center
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model the heart's muscle fibers. The Navier-Stokes equation, while less familiar,

is even more universal: It describes fluid flow of virtually any kind, from blood

pumping through the heart to global circulation patterns of the earth's atmosphere.

These are the basic mathematical ingredients that determine the complex mo-

tions of the heart and the blood moving through it. Unfortunately, you can't

sit down with pencil and paper and solve the equations precisely- the solutions

are only approachable by computer approximation. And that turns out to be a
formidable task, even fbr a supercomputer. Solving fluid flow problems is always

computationally demanding, but the heart model presents a particular challenge:

Unlike flow down a pipe or past a spinning turbine, where the boundary of the

fluid is fixed or moving in a prescribed manner. the motion of the heart wall is

among the unknowns that must be solved for.

"You not only don't know the boundary velocity. you don't know where the

boundary is," notes David McQueen. a mechanical engineer who has collaborated

with Peskin for the past fifteen years. "Your traditional engineering approach is

going to be hard pressed to solve this problem."
Instead. Peskin has developed mathematical techniques for what he calls "im-

mersed boundary'' problems. "The beauty of this method is that it allows you

to do computing in situations where you don't know toe boundary motions in
advance.- says McQueen. Modeling heartbeats is not the only application. "The
technique is generally useful in biofluid dynamics." Peskin says. "and it has al-

ready been applied to a wide variety of problems such as platelet aggregation

during blood clotting. aquatic animal locomotion, and wave propagation in the

inner ear." Peskin anticipates future applications in the study of flow in collapsi-

ble tubes such as thin- walled blood vessels. flow in renal (kidney) tubules. and the

flight of birds and bats. There are even nonbiological possibilities. such as the

design of aerocR efficient sails and parachutes.
The current heart model is a step up from a two-dimensional heart that Peskin

began developing in the early 1970s. Paradoxically. Peskin notes. the 2-D heart is

still, in some ways, more realistic than the 3-D model. That's mainly because the

extra effort of computing in three dimensions has forced the modelers for now

to use a simpler muscle model. Further advances in both theory and hardware
will undoubtedly bring the 3-D model up to speed, but the 2-D heart is likely to

continue being used for experimental computations. "What we'd really like is to

use the 2-D model as a way of getting rough results, and then perhaps do a few
3-D computations to verify those findings,- McQueen says.

Indeed, the 2-1) model has already proved useful in artificial heart valve design.

By experimenting v. h the shape of a prosthetic mitral valve (the gate between the
left atrium and ventricle). McQueen and Peskin found a design that simultaneously

increased the flow velocity near the valve and reduced the pressure drop across

it two features that are prized in artificial valves. While not et in clinical use,

the design has been patented and licensed.
The 3-D model has not yet had any such applications, but those are likely to

come as the model becomes more physiologically realistic and as the computing
demands get more manageable. (Currently a single beat takes upwards of fifty
hours of supercomputer time.) Peskin sees the heart model, and other models in

the future, as important experimental tools. With the concurrent revolutions in

both biology and applied and computational mathematics, he says. "the kinds of
problems that we can realistically hope to do are expanding tremendously."



New Computer Insights
from "Transparent" Proofs

athematicians are professional skeptics. When told of a new result.
their first response is, Where's the proof? Even when shown a proof,

they're not completely convinced it's correct until they check every last line.
This professional skepticism isn't limited to traditional mathematical proofs. It

extends to results produced by ,:omputers as well. Today's lightningfast, high-
tech adding machines take the labor out of long. laborious calculations. making
it possible to carry out computations that could never be done by hand. But they
leave behind the lingering question. Did the computer do its job correctly?

A sequence of recent breakthroughs in theoretical computer science may put
that question to rest. Researchers have found some unexpected new ways by which
computers can prove "beyond a shadow or a doubt" that the results they provide
are indeed reliable. Moreover, these developments are giving theorists new insights
into some of the hardest problems of computer science.

Guaranteeing the reliability of computer results is obviously of concern to more
than mathematicians. But by thinking of computations themselves as proofs that
certain inputs produce certain outputs, theoretical computer scientists are able
to view anything a computer does in logical mathematical terms. Moreover, the
computational aspects of many problems can be recast as purely mathematical
questions in areas such as graph theory or elementary. first-order logic. The
abstract language of mathematics helps daffy the essential issues, which might
otherwise be lost among the details of individual applications.

Some computations are easy enough to check. For example. researchers often
need to know if them- is a path that travels along the edges of a graph, visit;ng
each vertex once and only once -what graph theorists call a "Hamiltonian cycle."
(This kind of problem crops up in applications such as designing efficient telecom-
munications networks.) If a computer says there is a Hamiltonian cycle, it can
prove it simply by pointing out the path (as done with dark lines in Figure I a).
But when it says there is no such path for the graph in Figure 1b, how can you be
sure it didn't overlook one -or, worse, that your computer saw one but chose not
to tell you?

The computer can. of course, produce a proof by trying all possible routes
around the graph and showing that none is a Hamiltonian cycle. That's not an
unreasonable thing to do for Figure lb. But the number of possible routes grows
so quickly with the number of vertices that this straightforward approach soon
becomes unwieldy. For graphs that typically occur in telecommunications network
problems. for example, this kind of proof would take inconceivably long even on
the fastest conceivable supercomputer. That defeats the purpose of having a fast
machine. Worse, one is still left with the task of checking that all the computations
were done correctly.

The problem is. errors in a proof don't a]ways, or even usually. call attention to
themselves----and all it takes to invalidate an entire proof' is one mistake, as minor
as a misplaced minus sign. "Mathematical proofs are very fragile," says Laszlo
Babai, a theoretical computer scientist at the University of Chicago. Like a string
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of pearls, if the strand breaks anywhere, the whole necklace winds up scattered on
the floor only with a proof, you might not notice till you've left the party.

However, help is on the way sort of Over the last decade, Babai and others
have developed techniques by which even unreliable computers can, in principle.
provide overwhelming evidence that their calculations are correct. Researchers

have recently shown it's possible for a computer to reformulate an ordinary com-
putational proof in such a way that the correctness of the original proof can
be guaranteed with near certain'y by merely "spot reading" the transformed
version at a relatively small number of randomly chosen places.

That 'may not satisfy mathematicians, for whom being "nearly certain" is worth
about as much as a basketball. player's last-second, game-winning three-pointer
that "nearly \vent in." The current chniques are also far from practical it is
unlikely the spot-checking techniques 1,;i11 ever be used directly to test the veracity
of computers' output. However, the theory has paid off handsomely in other
ways, mainly by giving researchers new insights in the theory of computational
complexity- the study of how hard a computer has to work to arrive at an answer,

In particular, researchers have discovered an astounding connection with a
seemingly unrelated issue in complexity theory: the question of whether there
can be "easy" ways to approximate the solutions to computational problems in
a class known as NP problems that are thought to be intrinsically "hard" to
solve exactly (see box on next page). Surprisingly, the existence of spot-checkable
proofs turns out to preclude the existence of "easy" approximation algorithms for
a substantial subset of the problems in NP unless there are easy exact algorithms
for the whole class NP, a prospect few in the computer science community believe
to be the case.

The new results stem from work on "interactive proofs," a notion that was
introduced in the mid-1980s by Shaft Goldwasser and Silvio Micah at MIT and
Charles Rackoff at the University of Toronto. An interactive proof* is a lot like
a police interrogation. A "verifier" (the detective) asks a "prover" (the suspect)

Figure 2. Computational problems for n/rich efficient algorithms exist constitute the smallest
in a hierarchy of "complexity" classes.



A Complexity Primer
The difference between "easy" and "hard" is at the heart of theoretical computer

science. In essence, a computational problemis "easy" if the number of steps required
to solve it is bounded by some power of the size of the problem. For example,
multiplication of two N -digit numbers is "easy" because it takes at most N1 single-
digit multiplications and additions. Such problems form a class which computer
scientists call P, for polynomial time problems (see Figure 2).

The class P contains a great many problems, including such significant computa-
tional tasks as linear programming. But a great many more problems seem to lie just
beyond it, problems whose computational demands apparently grow exponentially
with size. These are the problems that complexity theory calls "hard."

In particular., there's the tantalizing class ofdecision problems known as NP. (Deci-
sion problems are problems for which a simple Yes/No answer is sought. Technically
P also consists strictly of decision problems, but when answers are easy to come by, the
technicality is unimportant.) The problems in NP (which stands for nondeterminictic
polynomial time) have a curious dual nature: The amount of computation required
to arrive at the Yes/No answer may grow exponentially with the size of the problem,
but, at least when the answer is Yes, an "inspired guess" can reduce the amount of
computation down to a simple, polynomial-time verification.

The Hamiltonian cycle problem is one example. The number of possible paths in a
graph grows exponentially with the number of vertices and edges, but if a cycle exists,
then all that computation is rendered unnecessary if someone simply tells you which
path works, and you simply check it out. That can happen if the given graph was
created by first drawing a Hamiltonian cycle and then disguising it with additional
edges. In a sense, a problem in NP is a little like a riddle --only in NP, the riddle may
have no answer.

But why, one may ask, is it necessary to check all possible paths in order to
determine whether or not a graph has a Hamiltonian cycle? Is it not possible that some
other method could arrive at the answer without going through an exponential number
of cases? Is it not possible that the Hamiltonian cycle problem in fact is "easy"-. -amember of P and it just looks hard because no one has found a polynomial-time
algorithm for it yet?

Good question. In fact, that's the core conundrum of computer science. Nobody
knows if there really are "hard" problems in the class NP: the classes P and NP may be
one and the same. The lack of an easy algorithm for problems like the Hamiltonian
cycle problem may be due not to the nonexistence of such an algorithm, but to the
limits of mathematicians' ingenuity. It's within the realm of possibility that someonecould find an easy algorithm for these hard problems.

It's happened before. Linear programming was long classified as a hard problem
because the simplex method was known to suffer the kind of exponential compu-tational growth that's characteristic of NP problems. But then, it 1979, Leonid
Khachian of the USSR Academy of Sciences discovered a polynomial- time- -i.e.,
"easy" algorithm for solving linear programming problems. Hence a problem that
had been thought of as hard turned out not to be so hard after all.

It could happen again. But if it happens for the Hamiltonian cycle problem, or any
of' several thousand other NP problems, there will be a huge fallout. That's because
over the last two decades researchers have established a web of relationships among
the problems in NP. Specifically, there is a subclass of NP, the so-called "NP-complete"
problems, which have the property that any algorithm eor solving any one of them canbe translated into an algorithm forsolving any other problem in the entire class NP.

The Hamiltonian cycle problem is NP-complete. So is the well-known "traveling
Salesman Problem. So are many other problems in graph theory, combinatorics, and
logic. If anyone ever finds a polynomial-time algorithm for any one of these, the
distinction between P and NP will collapse: only P will remain.

Most theorists consider that unlikely. Only a few die-hard optimists believe that
all problems ( at least the ones in NP) are easy: the smart money says that NP really
does contain hard problems. But so far neither side is anywhere close to collecting onthe bet.

1.0111.11
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places the odginal proof's
single strand of logic with
a highly redundant cable.
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a series of questions about the problem the prover claims to have solved. The
questions are designed to expose any lie (or mistake) in the prover's answers. In
effect, interactive proofs are the embodiment of Walter Scott's familiar warning.
"0, what a tangled web we weave, When first we practice to deceive."

In order to prevent a "mastermind" prover from anticipating the verifier's ques-
tions and concocting a consistent "alibi" to support its original claim, the questions
arc chosen partly at random. Because of this, there's a chance that an interac-
tive proof will occasionally put its stamp of approval on an incorrect result. just
as a lazy student can occasionally guess his or her way to a perfect score on a
True/False test. But the chance of that happening can be made as small as you
like by sin 't asking more questions.

Interactk e proof turns out to be a powerful tool. In 1989, researchers estab-
lished that interactive proofs can be used to verify solutions for a large class of
problems called PSPACE. Then in eariy 1990, Babai, Lance Fortnow, and Carsten
Lund at the University of Chicago proved what initially looked like an innocent
generalization: They showed that problems in an even larger class called NEXP
could be verified by a "multi-prover" variant of interactive proofs.

A multi-prover interactive proof can be thought of as an interrogation of two
suspects who have been separated for questioning. The intuitive idea is that it's
easier to get two suspects to contradict one another than it is to get a single suspect
to trip over his or her own story. The Chicago theorists made that intuition precise.
In demonstrating the exact power of multi-prover interactive proofs, they paved
the way for what came next: "transparent" proofs.

The notion of transparent proof was introduced by Babai and Fortnow in joint
work with Leonid Levin at Boston University and Mario Szegedy at the University
of Chicago. In essence, they found that the question- and answer format of an
interactive proof is unnecessary: instead. all that's needed is to have the prover
rewrite its proof as a kind of legal deposition-- but one that's "easy to see through"
if the prover tries to lie. This "transparent" proof is a long, rambling retelling of
the original proof, couched in a kind of computer-science legalese. consisting of
purportedly true statements which can be checked against each other for accuracy
and consistency.

The key is that the correctness of a transparent proof can be checked without
reading the whole proof. or even very much of it. Any error in the original proof,
no matter how small. is magnified and spread throughout the transformed version
so that it becomes glaringly obvious. By "spot checking" a relatively small number
of randomly chosen passages of the transparent proof, the verifier -who can now
be thought of as a judge -either finds a definite mistake or concludes, with very
high confidence, that the original proof was correct.

This also means that transparent proofs are unaffected by minor copying errors
or other computer glitches. In essence, the transparent moot' replaces the original
proof's single strand of logic with a highly redundant cable.

"You take a proof. which is fragile, and you turn it into a very sturdy thing,-
says Babai. In other words, if a transparent proof isn't riddled with errors, then
the original proof is probably actually okay.

But how much spot checking is needed to he sure? Babai and coworkers showed
that if the original proof was N hits long (remember, everything a computer
does boils down to a string of ones and zeros), then the transparent proof could
he written in such a way that the number of spot checks required to verify the
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correctness of the original is proportional to a power (Cog N. such as l00( log N )2.
That difference can be appreciated by comparing N = 1,000,000 to log N = 6.
What's most important is that any multiple of any power of log N is eventually an
insignificant fraction of N, so for very long proofs the amount of spot checking
will be relatively small.

This was taken a step further by Shmuel Safra at Stanford University and
the IBM Research Center at Almaden and Sanjeev Arora, a graduate student at
the University of California at Berkeley. Safra and Arora found a way to write
transparent proofs that could be checked by looking at only about log log N bits.
Taken literally (using logs base 10). that implies that an original proof of' length
ten billion (101()) could be checked by looking at a single bit of the transparent
version!

But Silfra and Arora weren't just out to reduce the spot-checking requirement
of transparent proofs. They were after bigger game: an application of the new
theory to an old and very important problem in computer science.

Shortly after the introduction of transparent proofs, Safra, Szegedy, and Gold-
wasser, together with Uri Feige and Laszlo Lovitsz at Princeton University. found
an unexpected connection between interactive proofs and a particular problem in
graph theory: that of approxiMating the largest "clique" in a graph of N vertices.
A clique is simply a subset of vertices that are pairwise adjacent (meaning that
there's an edge connecting each pair of vertices) (see Figure 3). The problem of
determining the exact size of the largest clique in a graph is known to be NP-
hard-- -that is, any efficient algorithm for solving this one problem would translate
easily into efficient algorithms for solving any problem in the class NP.

What the five researchers showed was that the problem of approximating the
size of the largest clique is "very nearly" NP-hard. In other words, if the size of the
largest clique can be approximated even poorly by an efficient algorithm, then
any problem in NP can be solved by algorithms that are "very nearly" efficient.

Safra and Arora removed those adverbs. Their refinement of transparent proofs
implies that if the largest-clique problem could be solved approximately by an
efficient algorithm, then there would be truly efficient algorithms for all problems
in NP. In the jargon of computer science, NP would equal P.

That implication was soon extended from the largest-clique problem to a host
of other approximation problems by Arora and fellow graduate student Madhu
Sudan at Berkeley. Rajeev Motwani at Stanford, and Lund and Szegedy. both
now at AT&T Bell Laboratories. They did so by pushing transparent proofs to an
extreme: In their approach, all transparent proofs can be verified with the same
number of spot checks no matter how long the original proofs are.

The only thing better would be a transparent proof you didn't have to read at
all!

The string of breakthroughs in this area of computational complexity came in
rapid succession as befits a subject concerned with speed and efficiency. The
implications for computer science both theoretical and practical- - are yet to
be sorted out. Researchers want to know whether transparent proofs can be
streamlined to more manageable lengths. They also are finding more problems
that look "hard" to approximate. Finally, computer scientists continue to ponder
what these results say about the class Ni' in particular. arc these seemingly hard
problems really all that hard to solve?

The answer to that question is sure to have everyone looking carefully at the
proof.
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Figure 3. The fire vert:ces connected hr
the dark edges Joan a "clique- because
there is an edge henceen each pair of
points.

The string of break-
throughs in this area of
computational complexity
came in rapid succession
as befits a subject con-
cerned with speed and ef-
ficiency.
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Dorn( If 'ebb and Carolyn Gordon w paper models of a pair of "sound-alike" drums. (Photo courtesy of If "ashington University in St.
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You Can't Always Hear
the Shape of a Drum

Lich or what scientists know of the natural world conies not from direct

observation, but by means of indirect measurements. Astronomers. for

example, cannot sample the stuff of stars: instead they infer stars' composition by

analyzing spectrographic images. Likewise. geophysicists construct a picture of

the planet's interior from seismic studies, not from journeys to the center of the

earth. X-rays. CAT scans, and other medical imaging techniques are also indirect

ways of seeing inside the body. Even your family doctor prefers the stethoscope

to the scalpel.
Mathematically. the job of reconstructing an object out of measurements of

certain "observable- properties is known as an inverse problem. (A "direct"

problem is to deduce observable properties from explicit knowledge of an object.)

There are many important questions about inverse problems that mathematicians

and others have worked to resolve. such as how many measurements are necessary

to get an answer and how much accuracy is required. But underlying these

questions is a deeper mathematical question: Even if you can take infinitely many

measurements with infinite precision, can you be sure of your conclusions? Or to

put it differently, can two different objects look alike in every measurable way?

It might seem the answer to this question should be obviously yes. But it's a lot

more difficult than that-- and that's where mathematical theory steps in. In 1966.

the Polish-American mathematician Mark Kac zeroed in on a particular inverse

problem. Can one. Kac queried. hear the shape of a drum?

That may seem like a strange question at first. but it's no stranger than asking if

one can "see" the chemistry of a star or "hear" the interior of the earth. Moreover.

Kac's question has a precise mathematical meaning. The problem it poses had been

a challenge for more than fifty years at the time of Kac's lecture, and it continued

to stymie researchers for another three decades. Then, finally, in the spring of

1991. three mathematicians Carolyn Gordon and David Webb at Washington
University in St. Louis. and Scott Wolpert at the University of Maryland came

up with the answer: a resounding No.

Gordon. Webb, and Wolpert found a pair of distinct geometric shapes in the

plane which, when thought of as mathematical drums. resonate at the exact same

frequencies. In other words. if your goal is to deduce the shape of a drum merely

from the sounds it makes, these two drums provide an example where that goal

cannot be achieved: You can't decide which drum you're listening to. because they

both sound the same.
That's more than musically important. according to Dennis DeTurck of the

University of Pennsylvania, an expert on "isospectral geometry,- as the mathe-

matical theory of such inverse problems is called. It points out there are subtle
mathematical questions involved whenever scientists attempt to reconstruct reality

from a set of data. The fact that even in a relatively simple mathematical setting

there is not always just one conclusion that can he reached from a complete set k.

measurements is. to put it mildly, unsettling.
Remarkably. the final proof that the pair of sound-alike drums actually do sound
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Figure 1. Tlwlirst two -drums" pic-
tured above make the same -sound" al-
thewh titer are elifienwtly shaped. The
same is tote of the second pair
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Figure 2. A pair of Buser's isospectral
"bells"
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alike involves little beyond elementary linear algebra. "It's amazing how simple
you can make this proof," muses DeTurck. It fits "on a postcard," he says. In fact,
the mathematics department at Washington University did something like that:
They had T-shirts made up with the proofon them.

But while the proof itself is simple, finding the pair of drums to begin with
was not. It required insights culled from careful study of geometric analysis, as
well as new theoretical techniques that involve a surprising range of mathematical
disciplines, from the theory of partial differential equations to representations of
finite groups. At one point it also had Gordon and Webb (who are married) filling
up their living room with huge paper models of geometric drums. And in the final
stages. it had them running up a sizeable phone bill with transatlantic calls and
twice-a-day faxes.

First, though, what is a "mathematical drum," and why should there be any
connection at all between the shape of a drum and the sound it makes?

The first part is easy enough to answer. A mathematical drum is just a shape in
the plane a region with an interior and a boundary- such as a circle, a square.
an arbitrary polygon, or just a blob surrounded by a smooth curve. The "sounds"
produced by such a drum are determined by the solutions of a partial differential
equation known as the wave equation, which is used to describe any kind of
wavelike phenomenon. from sound to light to water. In essence. the motion of a
vibrating membrane (that is. a drum) is governed by this equation, together with
the condition that the drum not vibrate on its boundary.

That condition is crucial. Physically, it just says that the drum is attached firmly
to a frame. Mathematically, it restricts the set of solutions to the wave equation.
Without sonic sort of boundary condition, a mathematical drum could make any
sort of sound.

Among the solutions to the wave equation arc certain ones that arc purely
periodic in time that is, vibrations that produce a single, clear tone of a specific
frequency. While it's the interior that does the actual vibrating, it's the boundary
that determines which frequencies are allowed. These frequencies constitute the
sounds a given drum can make. They depend solely on the drum's shape.

Kac's question asked whether or not that dependence could he turned around.
There were reasons to think it might. In 1911, Hermann Wcyl proved one can

hear the area of a drum. Weyl's result accords with the intuition that the bigger the
drum, the lower the tone. Some years later, the Swedish mathematician Ake Pleijel
proved one can hear the length of the boundary. And Kac himself conjectured
and I. M. Singer and Henry McKean proved --that the number of "holes" in a
drum is audible. These results made it plausible that the sound of a drum might
contain enough geometric information to specify the shape uniquely.

On the other hand, there were good reasons to think that wasn't the case. In
particular, mathematicians started finding counterexamples in higher-dimensional
generalizations of the problem. John Milnor, now at the State University of New
York at Stony Brook, found the first counterexample in 1964, a pair of geometri-
cally distinct, sixteen-dimensional "isospectral manifolds"- that being the fancy
term for "sound-alike drums." Over the next two decades, other researchers found
additional counterexamples in lower dimensions. But these discoveries seemed to
have no systematic basis. It was as if they arose by accident.

That changed in 1985. Toshikazu Sunada of Nagoya University introduced
a method that made it possible to construct examples of isospectral manifolds
almost at will. Sunada's method gave rise to a veritable cottage industry of low-
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dimensional examples. including surfaces that can actually he cut out of paper and
assembled with tape. These surfaces fail to answer Kac's question only because
they aren't flat but rather curve around in three dimensions, more like bells than
drums. However, it was one of these bell-like pairs. an exar. :le cooked up by
Peter Buser at the Eeole Polytechnique Federale in Lausanne, Switzerland. that
ultimately led to the long-sought solution of the original problem (see Figure 2 on
page 14).

The inspiration came at a geometry conference at Duke University in March of
1991. Gordon showed a paper model of Buser's bell-like example in a survey talk.
Wolpert was in the audience.

"Scott came up to me after the talk and said he'd noticed that these paper
models had a symmetry to them, and if you 'modded out' by a symmetry--
meaning simply smashing them down then you got plane domains,- Gordon
recalls. "So he asked whether they were isospectral. And that's what led to all
this. It really is just smashing them down.-

Wolpert's hunch was right. But it took a while to find the proof. The shapes that
result from flattening Buser's example are too complicated to compute their sounds
exactly, so a direct comparison was impossible. Moreover. Sunada's method did
not apply to the kind of surfaces. called orbifolds. that were required to make sense
out of the flattening process.

However, help was already at hand. Pierre Berard at the University of Grenoble
had generalized Sunada's method to one that worked in the orbifold setting. He
had also introduced a crucial notion of "transplanting" solutions of the wave
equation from one manifold to the other in an isospectral pair Berard's results
were exactly what the Americans needed.

Even so. it took Gordon and Webb several weeks to find the right combination
of ideas. They initially thought Buser's example was too simple to work, and
spent days cutting out and taping together complicated paper models. looking for
examples with good geometric properties. "We must have spent about a week, just
building things out of paper." Gordon recalls. "And when we cut them in half. we
must have spent about three hours trying to separate the two pieces [to get plane
domains] before we realized they didn't separate!"

Finally they returned to the original example, which they had never completely
abandoned. However, the last pieces of the proof came together while the two
were thousands of miles apart-- Webb at Dartmouth, Gordon in Germany. They
hammered out the final details by phone and fax. By the time they got together,
in Grenoble, they had a theory in place for a whole new class of orbifold-based
isospectral manifolds, including a pair that lay flat in the plane, quietly answering
No to Kac's old question.

That's not the end of the story. though. With help from Berard, Buser, and
others, Gordon. Webb, and Wolpert identified the group-theoretic ideas that make
the proof work, and now have a streamlined proof simple enough to fit on a T-
shirt (see box on page 16). They also found other, simpler examples of sound-alike
drums, some with as few as eight sides. Other researchers, including Peter Doyle
and John Conway at Princeton University, have discovered additional shapes of
elegant simplicity. (Using other methods. Conway and Neil Sloane at AT&T Bell
Laboratories have found a family of four-dimensional examples similar to Milnor's
original sixteen-dimensional example.)

Gordon. Webb, and Wolpert's answer to Kac's question closes the book on one

Even if you can take in-
finitely many measure-
ments with infinite preci-
sion, can you be sure of
your conclusions? Or to
put it differently, can two
different objects look alike
in every measurable way?

You Can't Hear the Shape
of a Two-Piece Band.
Jon Chapman. a postdoc at Stan-
ford University. took "scissors-
to one of Gordon. Webb. and
Wolpert's constructions and found
a particularly simple pair of sound-
alike drums, each consisting of
two pieces. Chapman's two-piece
drums. shown in the accompany-
ing figures. are simple enough that
it's possible to compute the exact
sounds they make.
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problem, but leaves others open -and raises new questions as well. "There are just
tons of questions that come out of this answer,- says an enthusiastic DeTurck. For
instance, researchers right now only have examples of sound-alike pairs of drums:
can there be sound-alike Iriples? Researchers also know that not all drums have
isospectral twins (every circle, for example. makes its own, unique sound): is there
a way to tell which drums do and which ones don't? And do the group-theoretic
techniques of Sunada's method provide a unified explanation of all isospectral
plane domains, or t..r there other ways of constructing sound-alike drums?

Finally. questions remain as to what implications the negative answer to Kac's
question has for other inverse problems and their myriad applications. The one
thing. that seems clear is that the techniques mathematicians have developed in
studying drums are likely to have repercussions throughout the rest of science.

A

Proof by Picture
Gordon, Webb, and Wolpert's first example of sound-alike drums came from a pair

of curved surfaces designed by Peter Buser. Each drum consists of seven half-crosses
glued together. Their streamlined proof that the drums are isospectral is based on
group - theoretic principles plus Pierre Berard's "transplantation" technique. but the
result is simple enough to be checked directly.

Figure 3 shows how to recombine pieces A- G of a standing wave on the seven
half-crosses of the first drum into a standing wave on the second drum. For example.
the combination -B C E is formed by "flipping" pieces B and E upside down
and adding them to piece C. The dark and dashed lines emphasize the required
orientations.

This "transplantation" is easily seen to work both ways (it can be written as an
invertible 7 x 7 matrix). All that remains is to check that the combinations fit together
smoothly and are zero on the boundary. But this can be done piece by piece. For
example. -B C' - F is zero on the dark boundary because -B cancels C there and
F was zero to begin with, while it vanishes on the dashed boundary because B is zero
there and C cancels -E: finally. -B C' - F fits smoothly with B F G on the
diagonal because C-F and E-G already fit smoothly together while B is zero on the
diagonal (and hence fits smoothly with its reflection).

The proof works just as well when the half - crosses arc shrunk down to right isosceles
triangles. and continues to work if the angles of the triangles arc (simultaneously)
changed. Thus one example gives rise to an entire family of sound-alike drums.

E+F-A

Figure 3. A "prop/ by pi( tun-- (II (or-

you can't ahvay.s hear the .hope ot a
don. ll'ebb, and IiMperis lheoll'llt that

drum.
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Environmentally Sound
Mathematics

Among the crucial scientific issues of our age, f°- v are as far-reaching as
those posed by the environment. Researchers corn all fields have been

called upon to investigate and evaluate the effects human activities are having upon
the earth, from the upper reaches of the atmosphere to the depths of the ocean.
The complex web of relationships in the biosphere demands an interdisciplinary
approach.

Long the preserve of biologists. chemists. oceanographers. meteorologists, and
geologists, environmental science is now drawing more and more upon the exper-
tise of mathematicians as well.

Researchers in environmental science have long made use of mathematics to
one extent or another. What's new is the recognition that rudimentary algebra
and calculus are no longer enough to handle the sophisticated analyses that envi-
ronmental scientists now know are necessary. Advanced techniques in scientific
computing and numerical analysis are coming to the fore as researchers tackle
challenging problems ranging from acid rain to the effects of the world's oceans
on global climate.

There is also growing interest in environmental science in the mathematics
community itself. Recent meetings of the professional mathematics societies have
featured presentations on environmental subjects. and last summer the Institute
for Mathematics and its Applications, a mathematical think tank located at the
University of Minnesota, held a four-week workshop on environmental modeling.
Mathematicians are finding the field contains some interesting theoretical and
computational problems. They are also finding a need in environmental studies
for the ability of mathematics to build bridges between disciplines that are often
separated by seas of jargon.

This kind of interdisciplinary work "takes time and energy, and it's not meant
for everyone:' says Mary Wheeler, a mathematician at Rice University. "but there
are some really exciting challenges in it that will also drive some good results in
mathematics.-

Wheeler is one of the leaders in the movement of mathematicians into environ-
mental science. She and colleagues at Rice and elsewhere have developed new
mathematical tools for the study of fluid flow through porous materials. Their re-
search combines the analysis of systems of nonlinear partial differential equations
with sk.,phisticatcd numerical algorithms that take advantage of new computer
architectures such as massively parallel computation to solve the various equa-
tions. Among other applications, their efforts are aimed at helping environmental
engineers plan remediation strategies for groundwater aquifers that have been
contaminated by hazardous chemicals (see Oox on page 20).

One of the vexing aspects of environmental studies is the fact that the problems
can span many scales of size. For example. a realistic climate model must con-
sider everything from the microphysics of cloud nucleation to alohal circulation
patterns. Likewise, plans for the isolation of nuclear waste must take into account
physical processes occurring on a time scale of hours to months but keep an eye
on safety standards valid for tens of thousands of years. In short. environmen-
r=01=01M1In
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Rudimentary algebra and
calculus are no longer
enough to handle the so-
phisticated analyses that
environmental scientists
now know are necessary.
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Mary 117ceter (Photo by Tommy
Lavergne. Rice University.
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By working with mathe-
matical models, environ-
mental scientists can gain
insights into systems that
are too complex to study in
any other way.
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tal issues -take logging, for example-- require researchers to look not just at the
forest, but also at the trees (not to mention the spotted owls).

Mathematical modeling offers researchers the opportunity to identify and clarify
mechanisms that connect phenomena at different scales, Wheeler says. In some
cases sheer computational power makes the connection possible; in other cases,
the mathematical equations themselves reveal the crucial interactions. By working
with mathematical models, environmental scientists can gain insights into systems
that are too complex to study in any other way.

Computers. and the high-tech algorithms that run on them, are making it pos-
sible to do the calculations required by these sophisticated mathematical models.
"More and more people are recognizing that. with these tools, we can solve very
complex problems." says Julius Chang, an atmospheric scientist at the State Uni-
versity of New York at Albany. Researchers no longer have to rely on unrealistic
simplifications in order to make the computations tractable. "We can tackle many
problems head on," Chang says.

Chang's group, for example, has developed an acid-rain model called RADM
(for Regional Acid Deposition Model) which includes a system of coupled differ-
ential equations for a set of sixty different chemical species (see Figure 1). These
aren't your nice, neat, textbook equations, either. Printed out, a typical RADM
equation runs on for line after line of cryptic symbols and mixed upper- and
lower-case letters, and could easily be mistaken for an old-fashioned computer
core dump. RADM's equations take into account effects such as atmospheric
advection and mixing, gas-phase chemical reactions, cloud mixing and "wet scav-
enging." dry deposition (acid can "fall" even when it isn't raining), and the location
of sources of various pollutants (what comes down must have gone up).
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Figure 1. Cumulative it.et deposition fin grams/hectar .1i»- eastern North America
over a three-day period in .-ipril 1981 as calculated by the Regional Acid Deposition Model
RAD,Ili using actual reported emission rates of various atmo.yherh pollutants. (Figure

courtesy of Julius Chang.,
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Even so, there are limits to what computers can do. Take clouds, for example.
"A cloud serves as an elevator for pollutants." Chang explains. But clouds are
notoriously difficult to model. Scientists specializing in cloud processes have
created "wonderfully detailed" models of cloud formation, Chang says, but their
models "are too computationally complex to use on a regional scale. A single
cloud can fill up a whole computer." So for now, RADM makes do with a cloud
model that's fairly realm tic but highly simplified.

If clouds are hard for computers to handle, oceans are even worse. There's
a huge gulf between what goes on on the open seas and what even the largest
supercomputer can model. That's a problem because oceans play a significant
role in determining climate -and climate is one of environmental science's biggest
concerns.

"If you're interested in climate, you're interested in the ocean," says Mac Hy-
man, a mathematician in the Theoretical Division at the Los Alamos National
Laboratory in New Mexico.

The problem is not that oceans are hard to understand; in some respects, their
equations are simpler than those of the atmosphere. Basically. the earth's oceans
act as a gigantic heat reservoir and transport system. They exert a long-term
influence on global climate by absorbing and emitting heat and carbon dioxide.
The equations that describe all this are pretty well worked out. They include the
Navier-Stokes equation, which underlies all fluid flow problems. and other partial
differential equations describing gas exchange and heat transfer. All told, the basic
equations of ocean dynamics can be written down on a single page. The problem
is, these equations can't be accurately solved on existing computers -at least not
by standard numerical methods.

That's because most of the kinetic energy of the ocean is found at scales too small
fbr standard models to resolve, explains Hyman's colleague Darryl Holm. Unlike
the atmosphere, where length scales on the order of 100 kilometers dominate the
dynamics ( just think of storm fronts), much of the ocean's energy exists in the
form of eddies and waves that are five to ten times smaller.

"Without modeling some aspects of the small-scale, high-frequency waves and
eddies, we can't know whether our global oceanic models arc truly reliable," Holm
says.

But researchers can't just tell the computer to take a closer look at the small-
scale phenomena or rather, says Hyman, "You can't afford the computer costs
to resolve them. If you go down a factor of 10. that's a factor of 10 in three
dimensions, so that's a factor of 1000 plus a factor of 10 in time, so that's a
factor of 104. in computer costs. and no one's talking about those kinds of gains
[in computer technology] in the next few years."

However, Holm and Roberto Carnassa, also at Los Alamos. have developed
some new mathematical approaches that may get around the problem. Their basic
idea is to simplify the equations for ocean dynamics by taking advantage of the
fact that certain important parameters, such as the ratio of surface wave amplitude
to ocean deptn and the ratio of depth to width of the ocean, are extremely small.
I I done carefully, the simplified equations will reliably represent the average effects
of the high-frequency. small-scale elements on the large-scale dynamics. What
should come out. says Hyman, is the correct average answer, "which is what we're
looking for in the climate anyway."

Hyman, Wheeler. and others see a permanent role for mathematicians in en-

Mathematical modeling
offers researchers the op-
portunity to identify and
clarify mechanisms that
connect phenomena at
different scales, Wheeler
says.
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Mathematical modeling
not only may help plan the
cleanup of contaminants,
Wheeler adds, it may also
help contain costs.

Fighting ores who gets to write down
the next term in the equation: Darryl
lfohn t 1, Roberto Camassa (center,,
and Mac Hyman. (Photo fir Fred Rick,
Los Alamos National Laboratory,
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vironmental science. After all, one of the things mathematicians do is to solve
problems. And when it comes to the environment, the problems seem to be getting
bigger all the time.

Bugs in the Program
The cleanup of underground aquifers contaminated by hazardous chemicals is

seriousand costlywork. For example, the disposal of carbon tetrachloride over
a period of eighteen years at the Hanford Site in south central Washington state has
left contaminated groundwater over a five-square-kilometer area: cleaning it up could
cost as much as $300 billion. And that's just one particularly bad example. The
problem is not limited to a few locations. In 1986, the Environmental Protection
Agency estimated there to be leaks in as many as 35% of the roughly 800.000 gasoline
storage tanks in the U.S., with more than half reaching the water table.

"Contamination of aquifers by polluted streams and ponds, leaking storage
tanks, agricultural chemicals, gasoline spills, and dumping has become a serious and
widest:if 3 threat to public health," says Mary Wheeler. Wheeler has taken a keen
interest developing mathematical models that can assist environmental engineers
plan their cleanup strategies.

One such strategy is known as in situ biorestoration. The basic idea is very simple:
Certain microorganisms will actually digest or otherwise remove contaminants such
as carbon tetrachloride--but only if encouraged to do so by the introduction of
dissolved oxygen or other triggering nutrients. What makes it complicated are the
complex interactions of groundwater, contaminant, organisms, and nutrients, which
arc flowing through material that may itself be highly heterogeneous.

That's where Wheeler's mathematics comes in. Wheeler and colleagues have de-
veloped mathematical models that describe these interactions in terms of nonlinear
partial differential equations. They have also developed new computational techniques
to solve these equations numerically and display the results using three-dimensional
computer graphics. While noting there's still a lot of work to be done, Wheeler says
these models should give researchers some much-needed insight into what's going on
at contamination sites and how biorestoration can he used to best effect.

Mathematical modeling may not only help plan the cleanup of contaminants,
Wheeler adds, it may also help contain costs. That's because "experiments" run on
a computer are much cheaper than actual field experimentsand some experiments
can only safely be tried in a computer "environment." The cost of conducting field
experiments can run into the millions of dollars, Wheeler notes. "Doing it on the
computer is very cheap."
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Disproving the Obvious
in Higher Dimensions

of everything that's "obvious" is necessarily true.
Scientists in all disciplines know that drawing "obvious" conclusions.

even from well-founded facts. is a dangerous game, unless those conclusions can
be backed up by experimental verification. The same is true in mathematics.
except that mathematical proof takes the place of laboratory experimentation.
Mathematical explorations are guided by intuition, but only when their i.ituitions
are confirmed by proof do mathematicians accept the "obvious" as true. This
approach is necessary because sometimes what seems "obvious" just ain't so.

Mathematicians saw that happen not once, but twice in 1992. In similar but
separate developments, researchers discovered that two facts from plane and solid
geometry, facts that cry out for obvious generalization to geometric figures in
any dimension, do not hold in that kind of generality. Their findings reaffirm
researchers' suspicion that ordinary spatial intuition is not up to the task of
thinking in higher dimensions.

That would be of only academic interest were it not for the fact that higher-
dimensional geometry plays an important role in many mathematical applications.
"I've been asked questions about higher-dimensional geometry by people who are
interested in speech recognition and by people w ho are interested in algorithms
for dealing with DNA," says Peter Shor, a research mathematician at AT&T
Bell Laboratories in Murray Hill, New Jersey. Higher-dimensional geometry
provides a natural mathematical framework for dealing with problems involving
several variables or long strings of data. In particular, it has figured prominently
in the development of so-called error-correcting codes, which are mathematical
constructions that underlie the reliable storage and transmission of data in satellite
telemetry, computer modems, and even compact disks.

One of the "obvious" generalizations was a problem that had been bothering
mathematicians for the better part of sixty years before it was tackled by Jell' Kahn
at Rutgers University in New Brunswick, Ncw Jersey, and Gil Kalai at the Hebrew
University in Israel. In 1933, the Polish mathematician Karl Borsuk proved that
any region in the plane whose "diameter the largest distance between two points
in the figure- is equal to I can be cut into three pieces, each of diameter strictly less
than I (see Figures 1 and 2). This generalizes the completely trivial observation
that a one-dimensional figure of diameter 1- that is, a line segment of length

can be cut into two shorter pieces.
On the basis of these two cases, Borsuk asked the obvious question: Is it always

possible to cut any d-dimensional shape of diameter 1 into d + I pieces each of
diameter less than I? The "obvious" affirmative answer came to he called Borsuk's
conjecture.

For many figures, of course. the task takes fewer than d 1 pieces. The square
of diagonal I, for example. can he cut neatly in half. On the other hand, an
equilateral triangle in the plane. a tetrahedron in space, and their cousins in higher
dimensions definitely do require d+ 1 pieces: Since their vertices are all mutually a
unit distance apart, each vertex must go into a separate piece. Borsuk's conjecture

2 .1

1/

A

Figure 1. A and B are the farthest
apart of any two points in the shaded
region. The distance between them is
called the "diameter- of the region.

Figure 2. Two ways to partition the
circle and .sphere into pieces of Slnaller
diameter
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One Plus One Equals 1.1?
If Borsuk's conjecture were true, then it should apply to any geometric figure. In

particular it should be true for the vertices of a c /- dimensional "slice" through the unit
"cube" in (d+ 1)-dimensional space. The coordinates of the vertices of the unit cube
are all zeros and ones, and one way to slice through it is to restrict to vertices that have
a specified number of ones (see Figure 3).

Each vertex can be thought of as specifying a subset of the integers { I, 2, ,

d + I} according to which coordinates are ones and which are zeros. For example,
( 1 , 1 , 0, 0, 1 ) specifies the subset 1, 2, 51. Under this interpretation, the distance
between two vertices is related to the size of the intersection of the corresponding
subsets: The smaller the intersection, the greater the distance.

In this setting, David Larman observed, Borsuk's conjecture reduces to a combi-
natorial assertion about sets: If S is a family of subsets of { 1, 2.. . , d + I} such that
all the sets in S have the same number of elements and such that every two sets in S
have at least n elements in common, then S can be partitioned into d + I parts so that
in each part every two sets have at least it + 1 elements in common.

It Nv-c this version of Borsuk's conjecture that Kahn and Kalai found to he false.
The venicle they used to get there is a theorem of Frankl and Wilson: Let k be a power
of a prime number, and let S be a family of subsets of { 1, 2, , 4k}, each with 2k
elements, such that no two members of S have k elements in common. Then S has at
most 2 (44k, II) members. (This bound is less, by an exponential factor, than the total
number of sets with 2k elements.)

The reader is invited to ponder just how the Frankl-Wilson theorem contradicts
Borsuk's conjecture. But remember Kalai's warning: "It's an example of an extremely
short proof that was quite difficult to find."

doesn't say that even' figure needs to be cut into d + 1 pieces in order make all the
pieces have smaller diameter: it just says d + 1 is the most you ever need.

Things started looking good for Borsuk's conjecture in 1946. when the Swiss
mathematician Hugo Hadwiger showed that any d-dimensional geometric figure
can be cut into d +I pieces of smaller diameter. if its boundary is smooth. In other
words, Borsuk's conjecture is true for things like the d-dimensional sphereshapes
without corners or creases.

Then in 1955. the English mathematician H.G. Eggleston proved Borsuk's con-
jecture for d = 3. And that's pretty much where things stood until 1992, when
Kahn and Kalai came in and knocked Borsuk's conjecture flat on its back.

Actually. Kahn and Kalai have not ruled out Borsuk's conjecture altogether:
it might still be true in quite a few more dimensions. What they showed is
that, for high dimensions, the minimum number of pieces required to cut any d-
dimensional object into pieces of smaller diameter grows much more rapidly than
d + 1. Specifically. Kahn and Kalai proved that the minimum exceeds 1.14.

That formula doesn't do much good for small values of d, where d 1 is larger
than 1.14. But starting around d = 10,000, the Kahn-Kalai bound kicks in. (The
first instance where 1.1'41 is greater than d + 1 occurs at d = 9162. With a little
more care. Kahn says. they can obtain a formula that works down around 2000.)
More to the point, their result shows that Borsuk's conjecture is badly wrong at
high dimensions. The number of pieces needed grows exponentially. not linearly.

The form of the result might seem to suggest a long, complicated proof. After
all, square roots don't often appear as exponents. and 1.1 is not the most natural
number in the world. In fact, the proof is surprisingly short. It's only a few lines
long. That doesn't mean the proof was easy to come by, though. "It's an example
of an extremely short proof that was quite difficult to find." says Kalai.
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Peter Shor and Jeff Lagarias. (Photo courtesy of AT&T Bell Labs )

The proof is based on two ideas. The first,due to David Larman at University
College in London, is an interpretation of Borsuk's conjecture as a statement
about families of finite sets and their intersections. The second is a theorem due
to Peter Frankl at the Centre National de la Recherche Scientifique in Paris and
Richard Wilson at the California Institute of Technology about the size of such
families (see box on preceding page). The hard part was "figuring out what to do
with these ideas." Kahn recalls. Once they found the right construction, though,
the contradiction to Borsuk's conjecture was an immediate consequence of the
Frankl-Wilson theorem.

While it wipes out Borsuk's conjecture in general, Kahn and Kalai's construction
of counterexamples leaves a lot of dimensions unaccounted for. In particular. "for
dimension four, you clearly need a different wb:' to look at the entire problem,"
says Kalai. The conjecture could be true or it could be false in that case. Nobody
knows. And it could be another sixty years before anyone finds out. Or another
six hundred years. Or it could be proved tomorrow.

Kahn and Kalai's cutting apart of Borsuk's conjecture was actually the second
of the two counterintuitive geometric discoveries of 1992. Earlier in the year,
Peter Shor and Jeff Lagarias, also at Bell Labs, took on another sixty-year-old
problem, one with roots even older than that. The conjecture they looked at is
based on a simple observation about squares in the plane: If you try to tile the
plane with squares of equal size, then you necessarily wind up with squares that
have an entire side in common. In fact there's essentially only one kind of tiling
of the plane by squares. namely a checkerboard tiling in which the rows have been
shifted by arbitrary amounts ( see Figures 4a and 4h).

If you get your hands on a set of child's building blocks. -iou can convince
yourself that something similar is true in three dimensions: I, you "tile" space
with cubes of equal size, you wind up with cubes that have an entire side in
common. In this case, of course, the common side is a two-dimensional square.

IMIE
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Figure 4a. A tiling of the plane hr unit
squares.

c

Figure 4b. II'hen square C is moved
into the corner it will have an entire
side common with square A.
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"Tiling space," whatever the dimension, means filling the entire space without any
overlapping.

In 1930, the German mathematician Ott-Heinrich Keller took the plunge. He
conjectured that no matter what the dimension d, if you tile d-dimensional space
with c/- dimensional "cubes" of equal size, then you wind up with cubes that have
an entire (d 1)-dimensional "side" in common.

Actually. Keller was just generalizing a conjecture of Hermann 'Minkowski, who
in 1907 made the same observation, but restricted to "lattice tilings tilings for
which the centers of the cubes form a regular, grid-like lattice of points, like the
locations of carbon atoms in a crystal of diamond. As it turns out, Minkowski
was right and Keller was wrong.

Oskar Perron made his countrymen look good in 1940 proving Keller's con-
jecture in dimensions up to six. Two years later, the Hungarian mathematician
Gyorgy Hajos vindicated Minkowski completely. showing the original conjecture
for lattice tilings is true in all dimensions. That left Keller's more general conjecture
in dimensions seven and up. The issue lay unresolved for fifty years.

No more. Lagarias and Shor have found an explicit counterexample to Keller's
conjecture in ten-dimensional space. This also kills the conjecture in dimensions
eleven and up. because as soon as Keller's conjecture fails to he true at one
dimension. it automatically stops being true at all higher dimensions. (A tiling by
d-dimensional cubes can he converted into a layer of (d + 1)-dimensional cubes.
and then copies of the layer can be stacked to fiil all of (d+ 1)- dimensional space.
with the layers shifted so that there are no entire sides in common between layers.)
The only unresolved cases are dimensions seven, eight. and nine.

In a sense, those cases require only patience and maybe a high-speed computer
the size of a major galaxy. That's because in addition to proving Keller's conjecture
for dimensions up to six. Perron also showed how the conjecture could be checked
in any given dimension by looking at a finite number of different filings: If no
counterexample is found in this finite set, then the conjecture is true (in that
dimension). Unfortunately the number of tilings to he checked is unbelievably
large: 22. No one in his right mind. and no mathematician either, would set out
to sort through 212s possible tilings to check the case d = 7.

Nevertheless. Lagarias and Shor did something of the sort to find their
ten-dimensional counterexample. They based their construction on work of
Kereszyely Corradi at Eitvos Lorand University and St ndor Szabo at the Techni-
cal University in Budapest. who two years earlier had introduced a new approach
to looking for counterexamples. By studying the output of limited computer
searches. Lagarias and Sho, rouna tilings in dimensions three, four. and five that
almost gave counterexamples in those dimensions. By cobbling these near-misses
together, they manufactured legitimate counterexamples. first in dimension twelve.
and then in dimension ten.

It's unclear if the same techniques can he brought to bear in dimensions seven.
eight, and nine. Lagarias and Shor say it's possible the conjecture may fail even
in dimension seven. but the counterexamples are too structureless to find. "The
amazing thing is that there actually existed a counterexample that had a simple
enough structure that you could actually find it,- says Lagarias.

It's also unclear if their counterexample to Keller's conjecture will hate any direct
applications to things like error-correcting codes so don't expect next year's line
of CD players to he based on a tiling of ten-dimensional space. However. Lagarias
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notes, the cube-tiling constructions give rise to novel types of "nonlinear" codes
quite unlike the linear codes that are used in current applications.

What is clear, from both recent results, is that geometric intuition is a deceptive
guide. "High-dimensional space is very strange." says Lagarias. Adds Shor: "If
you're going to make conjectures about high dimensions, you should use some
basis other than just extrapolation."

In fact. Shor goes so far as to make his own conjecture about higher-dimensional
geometry: "Conjectures based solely on low-dimensional examples are false in
high dimensions." he asserts. Asked if that includes his own conjecture. Shor
amends the statement: "Conjectures based solely on low-dimensional examples
are likely to be false."

Here's Looking at Euclid
The latest results involve some pretty highfalutin math, but not all counterintuitive

results in higher-dimensional geometry are hart to prove. Here's one you can "see"
for yourself.

Start by drawing four circles of radius 1 centered at the points (1, 1 ), (1, 1 ),
( 1,1), and 1 1, 1) and then add a fifth circle centered at the origin and touching
the other four (see Figure 5). This central circle is clearly contained in the square
around the four outer circles.

The same thing is true in three dimensions: Ifeight spheres of radius 1 are centered
at the points ( ±1, ±1, ±1 ), then a ninth, central sphere touching them all stays within
the cube around the eight (see Figure 6).

It would seem obvious that no matter what the dimension, the central "sphere"
always stays within the corresponding c /- dimensional "cube." It's just not true.

Here's why. By the (generalized) Pythagorean theorem. the distance from the
origin to any of the centers of the outer spheres is

± 1 + ( 1 ) 2 + 1 )2 =

and consequently the radius of the central sphere is IJ 1. But the distance from
the origin to any side of the cube is always just 2. So when d = 9. the central sphere
touches each side of the cube. and for d > 10 it pokes outside the cube.

Figure 5. The small inner circle toucher
al(.jncr circles of radius I and stays
within the squaw.

small
sphere

Figure 6. Similarly. in three dimensions. the small inner .There. which touches all the larger ones. remains inside the cube This is no longertrue in higher dimensions:

womoveoIme...
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Figure 2. A ',archived geodesic on a dis-
torted sphere.
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Figure 1. A closed geodesic on a distorted
sphere.
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Collaboration Closes in
on Closed Geodesics

701."1:IM

-I
ndividually, neither hydrogen nor oxygen can combust. But put together
and ignited by a spark. they are capable of exploding with enough power to

propel a rocket into outer space. In mathematics, something similar can happen
when two theories are brought in contact and set off by the spark of a new idea.
Recently two mathematicians with expertise in separate specialties joined forces
to solve a problem in differential geometry that had been on the books for more
than sixty years.

Victor Bangert, at the University of Freiburg in Germany. and John Franks.
at Northwestern University. have shown that no matter how badly you distort
a sphere, there will always be infinitely many "closed geodesics- on it: rubber
hand -like curves that are determined by the curvature of the distorted surface (see
Figure I ). The previous best result had been that every distorted sphere had at
least three such geodesics and that theorem dates hack to the 1920s.

The new result is mainly of theoretical interest. but that doesn't mean it won't
ever find practical applications. According to Robert Molzon, program director
for geometric analysis in the Division of Mathematical Sciences at the National
Science Foundation, differential geometry is applicable to "everything from general
relativity and understanding the large-scale structure of the universe down to very
small-scale problems such as boundaries between phases [e.g.. liquid and gas) in
nmterials science.- Bangert and Franks's theorem is one more tool with which to
..tudy such problems.

Molzon is also encouraged by the new collaboration between two seemingly dis-
parate mathematical areas: differential geometry and dynamical systems. "Bring-
ing together these two areas is a big step.- he says. Bangert and Franks solved
the geodesic problem through a "divide and conquer" approach. with Bangert
using classical techniques in differential geometry on one part of the problem and
Franks bringing dynamical systems theory to bear on the other part.

Whether it's concerned with applications to relativity theory or materials science.
or with more abstract issues in mathematics itself, differential geometry can be
loosely described as the study of curvature. Geodesics are among its fundamental
objects. A geodesic is basically just a path that follows the curvature of whatever
surface or space it lies in. The precise definition implies that geodesics have a
"shortest path" property. In particular, the shortest path between two points
always lies along a geodesic.

The geodesics on a perfect ( i.e.. undistorted) sphere are the great circles. such
as the equator or any line of longitude on the globe. Every one of them is closed.
But as soon as you hammer on the sphere. that's no longer true. In general. when
a geodesic traveling in one direction approaches a bump or a dent. it gets deflected
in some other direction. much as a golf ball may veer away from the cup on an
uneven green. It can easily happen that the geodesic will never find its way hack
to where it started (see Figure 2).

When there are bumps and dents everywhere. it's possible to imagine every
geodesic wandering about endlessly. i3ut that doesn't happen. George David
Birkhoff proved in 1917 that every distorted sphere has at least one closed geodesic.

S

John Franks.

Whether it's concerned
with relativity theory, ma-
terials science, or more
abstract issues in mathe-
matics itself, differential
geometry can be loosely
described as the study of
curvature.
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Figure 3. A geodesic that gets "trapped"
in the -Northern hemisphere.-

28
WHAT S HAPPENING IN THE.
MATHEMATICAL SCIENCES

Twelve years later, two Russian mathematicians. Lazar A. Lyusternik and Lev
Schnirelmann, went a step further. They proved there are always at least three
closed geodesics on any distorted sphere.

More than half a century went by without a single closed geodesic being added
to the count. Then Bangert had an idea for renewing Birkhoff's original attack

on the problem. Part of the problem. Bangert saw. could be dealt with using
techniques coming purely from differential geometry. his own specialty: the rest
would require results from the theory of dynamical systems--and for that he
sought the expert help of Franks.

"Bangert really kindled my interest in clarifying exactly what was needed to get
this result," Franks recalls.

At first glance. differential geometry seems a far cry from the theory of dy-
namical systems. One subject is concerned mainly with objects that are fixed and
permanent. while the other, virtually by definition, is interested in how things
change. But the two aren't complete strangers. Birkhoff had already shown how
the geodesic question could be translated into a problem purely in dynamical
systems.

Birkhoff's translation starts with a single closed geodesic that loops once around
the sphere without intersecting itself. This curve acts as a kind of "equator"
separating two "hemispheres.- Any other geodesic that crosses the equator either
continues to cross it infinitely often (which is the case for closed geodesics if you
keep following them around and around), or else it eventually gets trapped in one
hemisphere (see Figure 3).

The former case. Birkhoff showed, leads to a dynamical system. Each crossing
of the equator can be described by two parameters: one for the location of the
crossing (i.e., its "longitude"), and one for the angle it makes with the equator.
These parameters can be plotted on a washer-shaped region known as an annulus
(see Figure 4). So each crossing of the equator by a geodesic corresponds to a
point in the annulus. and. conversely, each point in the annulus corresponds to a
crossing of the equator by some geodesic.

The theory of dynamical systems enters in when you follow geodesics from one
crossing to the next. This defines a map of the annulus back onto itself- -and
maps from a region back to itself are one important kind of dynamical system.
In particular, such maps can be iterated (that is. applied repeatedly). In the
case of Birkhoff's annulus map, this corresponds to following a geodesic from
one crossing to the next. The key point is that periodic points for Birkhoff's
annulus mapthat is. points on the annulus that eventually get mapped back
onto themselvescorrespond to closed geodesics. So to show there are infinitely
many closed geodesics on a distorted sphere, it's enough to prove that Birkhoff's
annulus map has infinitely many periodic points.

Bangert saw a division of labor. First of all, something had to be done in the
case when Birkhoff's annulus map is not defined, which can happen. for instance.
when a geodesic crosses the equator and gets trapped in the northern hemisphere.
Bangert handled this case using classical techniques in differential geometry. In
fact, his proof implies there are infinitely many closed geodesics anytime there are
two geodesics that don't cross each other at all.

It remained to prove that, when the annulus map is defined, it's guaranteed
to have infinitely many periodic points (corresponding to infinitely many closed
geodesics). This case Bangert left to Franks. an expert on annulus maps.

911141!
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Birkhoff's annulus map, it turns out, has a special property: When it maps
the annulus back onto itself, it preserves the area, if not the shape, of any piece
of the annulus. Birkhoff himself used this feature to prove that, at least under
certain circumstances, his annulus map would have a fixed point, corresponding
to a closed geodesic that intersects the "equator" in only one point. The proof,
however, had nothing to do with geodesics or differential geometry; it was pure
dynamical systems, a statement about area-preserving annulus maps.

Area-preserving annulus maps have been a staple of dynamical systems theory
ever since. Franks had proved a generalization of Birkhoff's theorem ( more prop-
erly called the Poincare-Birkhoff theorem), and this was why Bangert approached
Franks. in 1988, for help on the geodesic problem. It was clear what needed to be
proved. Franks recalls. It just wasn't clearat firsthow to prove it.

Finally. in 1991. it became clear. Franks's theorem says that any area- preserving
annulus map either has no periodic points, or else it has infinitely many of them.
For the geodesic problem, the no-periodic-point possibility can be ruled out, and
that leaves the long-sought conclusion: The sphere, no matter how badly distorted,
still has an infinite family of closed geodesics.

Franks's theorem and Bangert's analysis don't completely close the book on the
closed geodesic problem. if anything, the fact that there are always infinitely many
closed geodesics raises a host of new questions. There are also questions raised by
the proof itself. For example, among the closed geodesics on a distorted sphere. is
there always one for which the Birkhoff map is defined? (If that's the case, then
Franks's theorem alone would complete the proof that there are infinitely many
closed geodesics.) The list of potential problems and new questions runs onas
endlessly as the eeodesics themselves.

Figure 4. The geodesic crosses the "equator" at a certain point along the equator (indiated
by i i and at a certain tingle (indicated b 01. 7/he iydues (.1 and o at any (Tossing are plotted
onto the annulus.

At first glance, differential
geometry seems a far cry
from the theory of dynam-
ical systems. One subject
is concerned mainly with
objects that are fixed and
permanent, while the other
is interested in how things
change.
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ystal Clear Computations
Rob Almgren and Andy Roosen have a spirited competition going on.
They're trying to see who can grow the nicest-looking crystals. Almgren

and Roosen aren't working with chemicals in a laboratory, though. Instead,
the crystals they grow are geometric shapes that develop in the purely numerical
environment of' a computer.

The two mathematicians Almgren at the University of Chicago, Roosen a
graduate student at Rutgers Universityare members of a computational crystal
growing group. The informal network of researchers, headed by Jean Taylor at
Rutgers and Fred Almgren (Rob Almgren's father) at Princeton University, is part
of a new trend in mathematics to combine the power of mathematical analysis
with the speed and versatility of modern computers to tackle complex problems
of fundamental importance head on.

The computational crystal growers are creating mathematical models and ana-
lytic techniques that will give scientists powerful new tools for studying the nature
of crystals. These new tools, researchers say, will help accelerate the future design
of materials with special properties of strength, "shape memory,- and even super-
conductivity. At the same time, the computational crystal studies raise challenging
problems in pure mathematics and numerical analysis, the solutions to which may
well have applications in other, unrelated areas. The subject contains a "wealth
of new geometric phenomena," says Taylor. "There are all these things out there
waiting to be explained."

Snowflakes, for one. Just how the familiar six-sided crystal takes shape is still
largely a mystery. Scientists know that the final shape depenus on the conditions
of temperature and supersaturation of water vapor while the snowflake is forming.
but -the exact mechanisms are far from clear.- according to Rob Almgren. The
computational crystal growers will know they're on to something when they are
able to mimic the growth of snowflakes.

But other applications are likely to come first. While snowflakes have intrinsic
scientific (and aesthetic) appeal, there are also practical considerations driving
research in crystal growth. The strength of steel, for example, is determined in

'',v the way crystals form as the metal cools from an initial, liquid state.
many properties of semiconductors depend on the way impurities in

.,Lit are "driN en out" in the process of solidification. Crystal growth is also
!al to the up-and-coming manufacturing technique known as molecular-beam

cpitaxv. in which materials are created one atomic layer at a time in a kind of
ultra-high-tech version of spray painting.

Those phenomena all involve the growth of dendrites. and that's what Almgren
and Roosen have been \ ving to recreate on their computer screens. Dendrites are
structures that branch in complicated ways (the name comes from the Greek word
for "tree"). In crystals, they are created by the interplay between surface energy
and diffusion of heat or chemical impurities.

Surface energy in crystals is closely related to the area-minimizing surface ten-
sion that tends to keep soap bubbles and raindrops spherical. However. for
crystalline materials the energy of a piece of surface depends on the direction it
faces. Minimization of this "anisotropic- surface energy pulls the crystals into
nonspherical shapes such as the cubical crystals of table salt. Ileat and excess
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The theoretical results
"might never have been
obtained without the new
ideas generated by trying
to do numerical computa-
tion," Rob Almgren notes.
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chemical concentrations come from the release of latent heat and impurities when-
ever a portion of the liquid crystallizes.

"When heat is released, it must diffuse away." Roosen explains. Until it does.
the region where it was released is too warm to crystallize further. "But what this
means is that little bumps sticking out are able to diffuse their heat away faster
than little dips, consequently they grow faster," he adds. "Without surface energy,
this would happen with any bump or dip no matter how small, so the crystal would
develop arbitrarily small structures. With surface energy. there is a lower limit on
how small the fingers poking out into the cold can be." In other words, "release
of latent heat and diffusion creates instability. surface energy controls it." Roosen
says. The net result is the rapid advance of stable dendritic "tips" and the creation
of characteristic branching patterns.

While that description seems straightforward enough. formulating it mathe-
matically and then turning the equations into workable computer algorithms is a
different matter entirely. Even in a simplified, two-dimensional setting. no one has
yet come up with a method to match the rich range of structures seen in real ex-
periments. Says Taylor: "Various people have announced that they 'understand'
dendrites. I don't."

Almgren and Roosen's two-dimensional pictures look promising. however (see
Figures la and lb). Their methods often produce similar results, but they are
based on different approaches. Both proceed by alternating steps in which the
diffusion of heat is calculated with steps that compute the motion of the crystal
surface. The main difference is in how they go about the second part of the
calculation.

Almgren's approach treats the motion of' the surface as a problem in geometric
optimization. "At every step. you say 'What's the best shape that minimizes a
certain energy function' ?' he explains. Posing the problem in that way gives
the approach an appealing conceptual generality. It also raises a number of
theoretical questions and possibilities. In a good example of intergenerational
as well as interdisciplinary research. Fred Almgren showed that the sequence of

Figure la. :f co.stalgiown using Rob Aln approach.
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optimizing shapes do indeed approximate a smoothly growing crystal. In fact, this
established the existence of a solution to the original problem. which had not been
known till then. The theoretical results "might never have been obtained without
the new ideas generated by trying to do numerical computation." Rob Almgren
or tes. Refining the results "remains an area of active research," he adds.

Roosen uses the same algorithm as Almgren for computing heat release and
diffusion. but his approach is otherwise quite different. For one thing, Roosen
works with surface energy functions that are associated with "completely facetted"
interfaces, meaning that the boundary of the crystal is a polygon with sides set at
prescribed angles ( Almgren works with smooth energy functions, for which the
interface is always a smooth curve or surface). His approach is also direct-
than Almgren's. "What I do is say. At this point. how does [the crystal] move?'
And then I move it. What [ Almgren] does is say. 'How does the whole thing
move?'

Roosen's crystals grow in a five-step process. The key step comes first: Each
edge of the interface is moved according to a rule that depends on the temperature
along the edge and the crystal's "weighted mean curvature" at the edge a concept
introduced by Taylor to make sense of curvature in a setting where the curves
consist of straight line segments at prescribed angles (as dictated by the anisotropic
surface energy). Taylor (who is Roosen's thesis advisor) has developed much ofthe
theory that establishes motion by weighted mean curvature as a practical approach
to computational crystal growth.

The second step in Roosen's algorithm is a merging process in which. for ex-
ample. edges that have shrunk to zero length are removed from the program's
bookkeeping system. Next comes a "shattering" step which takes into account
the fact that sonic parts of an edge mtt actually want to move faster than other
parts because of an uneven temperature distribution. In the final two steps. the
program computes the release of latent heat and its diffusion. These five steps are
repeated tens of thousands of times. A typical calculation, Roosen says, takes four
to ten hours.

Figure lb. :I wing Roo.sedA approach.
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Figure 2. Snapshot .front 'John's com-
puter study of the evolution of the grain
microstructure in a two-phase polvcrys-
tal. (Figure courtesy of Elizabeth A.
Holm, 1992.1
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That may seem like a long time to wait for a picture of a dendrite, but it's small
potatoes compared to the run time for a full-blown three-dimensional computa-
tion. Both Almgren and Roosen's algorithms are conceptually suitable for three
dimensions (much of the subject carries over easily into higher dimensions. for
that matter), but the computational "load" can increase by a factor of several
hundred. It would take weeks to simulate a single snowflake. It would take
centuries to explore the variety produced in a single night's snowfall.

Improvements in the algorithms, further theoretical analysis. ,-nd more worksta-
tion horsepower are likely to bring 3-D calculations into the realm of practicality.
However, another problem will remain: Figuring out a good way to visualize the
results. Two-dimensional objects are easy to represent on paper or a computer
screen; 3-D objects-- especially objects you want to be able to see inside of--are
far more challenging to represent.

Fortunately, the same issue crops up in a vast number of other problems, so
a lot of thought has gone into this area. Researchers have made tremendous
progress in recent years developing graphics programs that convert the computer's
internal "knowledge" of an object into convincing, almost tangible pictures. Ifs
something to look forward to: a 3-D movie (colorized, of course) of a computer-
grown snowflake, surrounded by a glowing cloud of diffusing vapor.

The question is, will two such movies ever be alike?

A Growing Domain
Computational crystal growth is a wide-open field. Dendritic growth is onlyone

of many open problems. Elizabeth Holm, a recent Ph.D. in materials science and
scientific computation at the University of Michigan in Ann Arbor, is working on
another: the structural evolution of "cellular arrays," such as occur in polycrystalline
materials and--although it may seem far removed from the world of crystalsthe
foamy "head" on a glass of beer (see Figure 2).

As the name implies, polycrystalline materials are materials composed of many
crystals, much as soap froth is composed of many individual bubbles. Over thecourse
of time some domains grow while others shrink and disappear. The macroscopic
properties of the material depend, in part, on the distribution of "grain" size in the
crystalline microstructure.

Holm studies the process of domain growth with a computational model taken
from statistical physics. The Potts model, as the approach is called, is like a "bitmap"
of the microstructure, Holm explains. It describes the state of the material by an
array of numerical indices assigned to a grid. In this setting, each domain consists
of a contiguous set of grid sites that are assigned the same index. (On the computer
screen, the indices are converted into colors.)

The evolution of the structure is modeled by any of a myriad set of rules, In one
such rule, a single step of the algorithm is to pick a grid site at random, determine
the number of neighboring grid sites with different indices, and if this numbercan he
reduced by changing the index at the chosen site then do so, otherwise either leave it
alone or change it at random with some smal:. ,emperature"-dependent probability.

Part of Holm's work has aimed at overcoming the effects of preferred directions
(technically called "anisotropy") caused by the geometry of the grid. For example,
in a square grid the boundaries between domains tend to be horizontal or vertical
rather than diagonal. Holm and her coworkers have found that this inherent problem
can be overcome in two ways: by extending the definition of "neighboring" grid site
to a larger region (which, of course, entails more computation) or by increasing the
"temperature" at which the simulation is performed. Their computations, including
some 3-D simulations, indicate the Potts model should be useful for studying domain
growth in a variety of physical systems.
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Camp Geometry
ou might call Kate Jenkins a budding mathematician. The Stanford
sophomore spent last summer working on a computer program that par-

lays mathematical rules into pictures of flowering plants. I ler geometrical bushes
branch, bud. and even bend in a blowing breeze (see Figure 1 ).

Jenkins was one of nineteen undergraduates who participated in a summer
research program at the Geometry Center in Minneapolis, Minnesota. The Ge-
ometry Center is a National Science Foundation (NSF) Science and Technology
Center devoi to research at the cutting edge of geometry and computer visu-
alization of geometric structures. But research is just one side of the coin: the
Geometry Center also takes a serious interest in mathematics education.

Summer research programs for undergraduates in the mathematical sciences
have become popular in recent years. The NSF last year awarded twenty grants
in its Research Experience for Undergraduates program, at schools ranging from
Williams College to Oregon State University. Many other colleges offered their
own programs, as did research centers such as Los Alamos National Labora-
tory, the National Center for Atmospheric Research. and the Cornell National
Supercomputer Facility.

"The philosophy is to give students a different experience with mathematics
than the normal exam-packed classroom experience they get in school,- says Al
Marden, a professor at the University of Minnesota and director of the Geometry
Center. The summer program gives students "a much more hands-on experience
in mathematics. by doing it rather than by listening to somebody talking about
it

"It's sort of like an intellectual summer camp.- adds Tony Phillips of the State
University or New York at Stony Brook, who "coached- the students at the
Geometry Center. For nine or ten weeks the students spent "all day and often part
of the night" at the Center working on projects of their own choosing "whatever
they can think of,- Phillips says.
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Figure 1. A rindNownlield of lenkins's
omputer-generated "plants."
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The summer program gives
students "a much more
hands-on experience in
mathematics, by doing it
rather than by listening to
somebody talking about
it," says Al Marden.
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1991 Summer Institute participants. Center: John Hubbard (Cornell University Front row.
seated: Stephanie Mason. Carol Sohn, Albert Maiden (Directo of. the Geometry Center ,,
Anthony Phillips (Head Coach. SUN): Stony Brook,, David Broman, Jennifer Ellison.
Second row, standing: David Ben-Zvi. Mark Afric'''. Adrian Mariano. Sher,: Scott. Gary
Gutman. Back row, standing: Jacques Friedman, Karen Olsson, Craig Sutton, Linus Upson.
Nicholas Coult. Kate Jenkins, Ken Bromberg. ;Institute participants not in photo: Chris
Cianflone. Thomas Colthurst, and Prem Janardhan. Photo by Chris Faust. Space Science
Graphics, Universit of Minnesota. I

Jenkins took her cue from the hook The Algorithmic Beauty of Plants by Prze-
myslaw Prusinkiewicz and Aristid Lindenmayer. She wrote a computer program
that draws plants using "L-systems" instruction sets that create complex forms
by the recursive application of simple rules. stems were introduced in theo-
retical biology by Lindenmayer in the late 1960s.

L-systems give geometric life to an otherwise abstract algebra of symbolic ma-
nipulations. For example. an L- system might start with the character .string
FFRF, which it interprets as Move Forward. Move Forward. Turn Right. Move
Forward. The key ingredient is a replacement rule which turns each instance of
each character in the "instruction string" into some other string of instructions.
In some systems. a single character- usually the "Forward" instruction is re-
placed by the entire original instruction set. Thus, for example, FFRF becomes
FFRF FFRF)R( FFRF). or. removing parentheses, FFRFFFRFRFFRF. Ifthe

replacement rule is applied several times and then the resulting instruction string
plotted by. say. drawing a line segment with each forward move. the result can be
an elaborate, even organic-looking picture.

Jenkins employed more complicated branching and growth rules to produce
animated "cartoons.' of developing plants. Using a dash of vector geometry, she
also worked out ways for her plants to rustle in a simulated breeze and dip due to
gravity.

Stephanie Mason, a junior at Virginia Tcch, also worked with L-systems. but
11.1!1MIN1171, 411111
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toward a totally different end: creating music. Mason takes the geometric result

of an L-system and interprets it musically. For example. a vertical move may
correspond to a step up or down in pitch. while horizontal moves indicate the

duration of a note. The basic instruction set establishes a motif which iterations

elaborate upon, she explains.
"You can actually create exactly what you want from these L-systems." Mason

says.
One of her creations comes from an L-system that leads to a space - filling curve

called the quadratic Gosper curve. Mason has set up the program so that the

curve really a set of line segments with right-angle turns -is drawn on a computer

screen as the music is played on a synthesizer. Mason worked closely with Chris
Cianflone. a student at the University of Minnesota (now in graduate school at
the University of California at Berkeley). who developed an experimental musical

program based on Fourier analysis of existing melodies.

Composers have long played with the formal structure of music. Bach. for
example. is well known for writing music that could be played backward as well as
forward. Mason has gone a step further. with music that can he played sideways as
well, in what she calls a "right-angle canon.- To do this, she simply takes a curve
and rotates it so that pitch and duration are interchanged. When both curves
are played together, using separate synthetic "voices" ( Mason leans to piano and

flute), the effect is surprisingly musical (see Figure 2).
"Bach would have loved it." Phillips remarks.
While Mason and Cianflone were turning Bach inside out. Nick Coult, a senior

at Carleton College in Northfield. Minnesota. was putting a spring in orbit and
numerically tracking the resulting motion. The idea. Coult says. was suggested
by John Hubbard, a professor at Cornell who is on the permanent faculty at the
Geometry Center. The problem is a variant on the three-body problem: There are
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small masses at each end of the spring, and a large, gravitationally attracting mass
which the mass-spring system orbits.

Hubbard had proposed the problem as a simplified model to test tile hypothesis
that tidal forces are responsible for the fact that we always see just one face of the
moon. In this model, the earth is represented by the large mass and the moon is
represented by the mass-spring system.

Coult indeed found that, in many cases. the system evolved into just such a
stable orbit, with one end of the spring always pointing toward the central mass.
However, he also found other stable orbits, some of which are surprisingly complex.
"They're quite interesting to look at," Coult observes.

Setting up the equations that describe the motion was easy enough, Coult recalls.
The challenge lay in solving them numerically. and then analyzing the solutions.
For one thing. he says. "you have to verify that what you have on the computer
screen [when it plots an orbit) is actually right." The programs he developed. Coult
thinks, might be useful educational tools for courses in differential equations,
although "that's not something I was thinking of when I started.-

That sort of unexpected development is one of the benefits of letting students
loose to do what they want in a relaxed atmosphere outside the usual classroom
setting. Phillips points out. "Here, there's no test and there's no competition.- he
says. "The students are free to work at their own pace. They all work pretty hard.
though.-

Figure 3. Ai't her clample of itytkim's uomputer-g(werated -outmlem
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Number Theorists Uncover
a Slew of Prime Impostors

0 ne of the oldest and best known examples of mathematical reasoning is
Euclid's proof that the sequence of positive integers contains infinitely

many primes. Three mathematicians at the University of Georgia have recently
put a curious --and potentially important--twist on Euclid's famous theorem.
W. R. "Red" Alford, Andrew Granville, and Carl Pomerance have shown that
there are also infinitely many prime impostors.

No doubt that calls for an explanation.
A prime number. of course. is a number that's divisible only by itself and 1.

Primes have lots of desirable properties: they are often called the building blocks
of number theory. Hom,ever, unlike building blocks where it's easy to tell the
difference between a block and a building, it's not always obvious whether a
number say 12345678910111213 is prime or composite (that is, a product of
several primes).

At one time, the study of methods for identifying primes was considered an
esoteric pursuit, even by many mathematicians. No more. Finding large primes
and factoring. their composite progeny have turned out to have applications in
such areas as cryptography and computer security systems. The number-theoretic
pursuit of efficient algorithms for primality testing and factorization also serves
as a springboard for eeneral ideas aimed at improving, the efficiency of computer
algorithms for other problems.

Computational efficiency is at the heart of the problem. If you're not worried
about how long it takes. the definition of a prime gives you a simple way to tell
if' you've got one: Given a number like 12345678910111213. just try dividing it
by 2. 3, 4. and on up to 12345678910111212. If one of these numbers divides
12345678910111213. then it's composite: if none does. then it's a prime. (Actually.
it's only necessary to trial-divide up to the square root of the number in question.
since the divisors of a number n can't all be greater than \fir. Also. it's actually
only necessary to trial-divide by primes up to the square root, since. for example.
6 can't divide a number if 2 and 3 didn't already divide it.)

Trial division works well when the number in question is small. But its not a
sensible way to verily the primality of large numbers. That's because the amount
of computation it calls fOr vets quickly out of hand. For numbers with even just a
few dozen digits. the computer un-times for trial-division primality testing start
being measured in terms of the age of' the universe.

Nobody wants to wait that long for an answer. It's like being put on hold when
you're calling long distance.

But what can you do? Well, in 1640 long before the lightning-fast computers
of today the French mathematician Pierre de Fermat discovered a property of
prime numbers that provides a surprisingly efficient test for primality usually.
What Fermat found is the Ibllowine: If ii is a prime number and a is any number
N% hatsocvcr, then the number a" a is divisible by ,i.

That statement has come to he called Derma, ittle Theorem (as distinct from
the more famous "Last Theorem'' i. In spite of the diminutive title. Fermat's Little
11111MIIIMINIMINIMMIlailNr1MIONIIIIIIM11111101111111171111MIIRMIIMOOMIM JON
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Finding large primes and
factoring their composite
progeny have turned out to
have applications in such
areas as cryptography and
computer security systems.
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The chance of being
burned by a prime im-
postor is pretty low
legitimate primes are
far more common than
Carmichael numbersbut
it's still worth reading the
results with a caveat calcu-
lato.
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Theorem is one of the most important results in number theory. In a very real
sense its the cornerstone of the subject.

For the purpose of primality testing. though. the value of Fermat's Little The-
orem is in its ability to expose numbers that are not prime. It does this by turning
the statement around: If a is a number and a is some number such that a" a is
not divisible by a, then a very definitely is not a prime number.

This turns out to be a remarkably efficient test: Given a, see if it divides 2" 2,

3" 3, 5" 5 and maybe a few others (once again, it's only necessary to try
prime numbers for a): if it fails even once, then a is not prime. For example,
Fermat's Little Theorem -oyes- that 6 is composite (if that were ever in doubt!)
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because 6 fails to divide 26 2 = 62. The fact that 6 does divide 36 3 = 726
makes no difference; for a number to be prime, it must always pass the test imposed
by Fermat's Little Theorem.

What makes this a good test for primality is that composite numbers tend to
be exposed very quickly. Most of the time its only necessary to test 2" 2 the
smallest composite number that slips by that test is n = 341 = 11 x 31. It's very
rare for a composite number to pass Fermat's test for more than a couple of values
of a.

But it does happen. In fact, there are composite numbers that pass Fermat's test
for all values of a. The smallest such number is 561 = 3 x 11 x 17. Then come
1105, 1729, 2465, and 2821. These numbers are impostors; they "masquerade as
prime numbers." says Granville. He calls them "annoying."

Infinitely annoying.
The first examples of these prime impostors were found around 1910 by Amer-

ican mathematician Robert D. Carmichael. and for that reason they are called
"Carmichael numbers." It would be one thing if there were just a few of them-
that would offer hope that Fermat's Little Theorem could be used not just as a
proof of compositeness, but also as a guarantee of primality. But theorists kept
finding more of them, and it seemed likely the list would prove endless.

That's exactly what Alford. Granville. and Pomerance have now shown: There
are infinitely many Carmichael numbers. Moreover, their work makes it clear that
many. if not all, other primality tests based on ideas similar to Fermat's Little
Theorem are equally flawed by infinite families of composite numbers that pass
the various tests. "There's no way to just generalize Fermat's Little Theorem
to a [perfectly accurate] primality test." says Alford or rather, he adds, "there's
probably no simple way" to do it.

That may be news to users of computer algebra systems such as Mathematim.
These systems, which manipulate symbolic expressions and do "exact" arithmetic,
generally include a primality test based on one of the jazzed-up versions of Fermat's
Little Theorem. Again, when one of these tests says a hundred- or thousand-digit
number is composite, the result is reliable (even though, paradoxically, the test
doesn't contain any clue as to what the factors might be!), but when the test says
"prime," it really means "probably prime."

"It's not generally appreciated that these tests are not proofs of primality." says
Pomerance. The chance of being burned by a prime impostor is pretty low
legitimate primes are far more common than Carmichael numbers -hut it's still
worth reading the results with a caveat calculator.

The Georgia trio's proof that Carmichael numbers pop up infinitely often is
based on a heuristic argument put forward by Paul Erdos in 1956. The main idea
is to choose a number L for which there are a large number of primes p that don't
themselves divide L, but have the property that p 1 divides L. The key point is
then to show that these primes can be multiplied together in lots of different ways
so that the products all leave remainder I when divided by L. It turns out that
each such product is a Carmichael number.

For example, with L = 120, the primes in question are 7. 11, 13, 31. 41, and
61. A check of all possible combinations reveals that 41041 = 7 x 11 x 13 x 41,
172081 = 7 x 13 x 31 x 61. and 852841 = 11 x 31 x 41 x 61 all leave remainder
1 when divided by 120, and hence are Carmichael numbers.

The fact that the numbers constructed by Erdos's argument are Carmichael
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"And then here I was, I had
done all of this thinking
about how to do it... and
I was crushed, I was really
crushed," says Alford. "So
I went home that night,
really with my nose just
plain flat out of joint. But
the next morning I woke
up, and I knew how to con-
struct 210° of them."
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numbers goes back to the mathematician A. Korselt. Korselt proved that a number
n divides all numbers of the form a" a ( that is, n is a Carmichael number) if
and only if it is squarefree ( which means no prime divides it more than once)
and has the property that p I divides n I whenever p is a prime divisor of
Interestingly, he proved this in 1899 more than a decade before Carmichael put
his stamp on the subject. The difference is, Korselt seemed to think there were no
such numbers. They "surely would have been known as Korselt numbers had he
just done a few computations!" says Granville.

What Alford, Granville, and Pomerance did, in essence, was to make Erdos's
argument precise. Their work was spurred by recent work of Zhang Mingzhi at
Sichuan University, who used the Erdos heuristic to produce examples of large
Carmichael numbers. Alford, who is mainly a computational number theorist,
thought he could do better. "I was champing at the bit to construct one a million
digits long," he recalls. Instead, Pomerance challenged him to show that his
method would produce huge families of such numbers.

"He said, 'Red, if it's as easy as you say it is, why don't you see if you can't
construct 250 of them,' Alford recalls. "And then here I was, I had done all of
this thinking about how to do it... and I was crushed, I was really crushed, for Carl
to say it's just like writing down a bigger integer!" Alford laughs, then continues:
"So I went home that night, really with my nose just plain flat out of joint. But
the next morning I woke up, and I knew how to construct 2100 of them."

In fact, Alford's program coughed up 2128 Carmichael numbers (or, rather,
prime numbers that can be combined in that many ways to produce Carmichael
numbers). That enticed Granville and Pomerance to tackle the theoretic end of
Erdos's argument. By using deep results in analytic number theory and combi-
natorial techniques from the theory of groups, they were finally able to flesh out
Ereliis's argument enough to prove a succinct theorem: There are more than .v2 "7
Carmichael numbers up to .v, for all sufficiently large .v.

Exactly how large .v has to be to be "sufficiently large" is still unclear ( the analytic
techniques are too convoluted to produce an estimate), although the numerical
evidence suggests it happens at around x = 107. In a way it doesn't matter much,
because Erdos's argument actually implies that the exponent 2/7 can be replaced
by any value short of 1. In other words, if you go far enough out, Carmichael
numbers are amazingly abundant. The impostors are not as numerous as the true
primes, but there are enough of them to make you stop and wonder.

An Imposing New Prime
In the early months of 1992about the same time the Georgia trio proved the

infinitude of prime impostorsa group at AEA Technology's Harwell Laboratory
in Britain announced the discovery of a new "largest" prime number: a monster
with nearly a quarter of a million digits belonging to a class of numbers known as
"Mersenne primes."

The new number is not, of course, the largest possible prime. There is no such
thing. What "largest" means here is it's the largest number known to be prime.

Mersenne primes all have the form 2P 1, where the exponent p is itself a prime.
If all primes p produced Mersenne primes, there'd be no sport in finding "largest"
primes, but that's not the case. Mersenne primes are rare enough that only thirty-
two of them are known to exist. The one found last year occurs for the exponent
p = 756,839. A Cray-2 supercomputer took nineteen hours, using a variant of
Fermat's Little Theorem known as Lucas's Test, to verify that the number indeed is
prime.



Map-Coloring Theorists
Look at New Worlds

people often think that once a "hard- mathematical problem has been
solved. that's the end of the story. Nothing could be further from the

truth. Mathematical problems rarely exist in a vacuum: the best ones are usually
surrounded by a coterie of other interesting problems. Rather than spelling the
end to a subject. the solution to a challenging problem more often means that
researchers will turn with increased interest to some of the questions related to it.

Take the Four Color Theorem. for example. In 1976. Kenneth Appel and
Wolfgang Haken at the University of Illinois proved that four colors are enough
to paint any conceivable map in the plane in such a way that no countries with
a common border are painted the same color. This breakthrough. which the
researchers summarized as "four colors suffice.- was one of the most talked-about
results of the 1970s. in part because much of the proof was done on a computer.
To many. the story of map coloring seemed over and done with.

Not so. Recently, researchers have been looking at the map-coloring problem
for classes of maps to which the Four Color Theorem does not apply. These maps
are drawn not on a flat piece of paper, but on arbitrary surfaces with any number
of "handles" on them. such as a coffee cup or a two-handled vase. What the
researchers have found can he stated as a nice counterpart to Appel and Haken's
result: For these new classes of maps, irc colors suffice.

Actually, there are two separate live-color theorems. Carsten Thomassen. a
mathematician at the Technical University of Denmark. has proved that live colors
are enough for maps on these many-handled suffices, provided the countries to be
colored are sufficiently small and numerous. Meanwhile. Neil Robertson at Ohio
State University, Paul Seymour at Bell Communications Research (Bellcore) in
Morristown. New Jersey, and Robin Thomas at Georgia Institute of Technology
have reached the same conclusion for a different class of maps: Five colors suffice
provided the countries to be colored can't be aligned into six mutually neighboring
federat ions.-

The provisos of the two five-coloring theorems are poles apart. Robertson points
out. That doesn't mean the two theorems are in conflict, though. Quite the
contrary. it means the results combine to account for a large class of maps drawn
on general surfaces.

Both new theorems belong to a branch. of mathematics called graph theory. A
mathematical graph is an extremely simple object: just a bunch of points (called
vertices) with a hunch of curves (called edges) connecting them. Few things
are sinyler than that. vet lew things lead so quickly to complicated problems
and intricate results. Graph theory has come to play a key role in theoretical
computer science and numerous other applied areas ranging from the design of
transportation networks to the mathematics of chemical compounds (see box on
page 46). Map coloring is just one area where graph theory plays a unifying role.

It's very easy to turn a map into a graph. You put a vertex at the capital of each
country. and draw an edge between two vertices if the corresponding countries
have a common border (see Figure I ). The graphs that result from ordinary maps
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MM. /ere. Mae ClIpilak are connected
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Figure 2. 111 the dark edges are con-
tracted so that their vertices MOW the
resulting graph ladled a -minor- r is
identical to TherejOre this graph
cannot he drawn on the plane without at
least 111'0 edge's crossing
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are called "planar" graphs, because they can be drawn on a flat plane without any
of their edges crossing. Because each vertex corresponds to a country, "coloring"
a graph means coloring the vertices: if two vertices are connected by an edge. they
should be given different colors. The idea that the edges do not cross corresponds
to the fact that if two countries have a common border, you can make a road
between the two capitals that travels only in those two countries.

The Four Color Theorem says that you need at most four different colors to
color any planar graph. But not every graph is planar. In particular, the graph
with five mutually adjacent vertices cannot be drawn in the plane without two
edges crossing. (If it could, the Four Color Theorem would be false!) Another
example is the "bipartite" graph consisting of two groups of three vertices, with
an edge connecting each vertex in one group to each vertex in the other.

In 1930, the Polish mathematician Kazimir Kuratowski proved that these two
graphs (II:wally denoted as K5 and KO are essentially the only nonplanar graphs.
What this means is that any other nonplanar graph contains at least one of these
two, possibly in the form of a "minor," which is the graph theorist's term for a set
of federati' ns. (A federation forms when two neighboring countries erase their
common border. For graphs, this amounts to contracting an edge until the vertices
it connects merge. See Figure 2.) In other words, there are essentially only two
"obstructions" to a graph being planar: K5 and K3.3.

While K5 and K1.3 cannot be drawn on a flat piece of paper, they can be drawn
on a surface with a handle (see Figure 3). And indeed, every graph can be drawn
on some surface with some number of handles. although determining exactly how
many handles arc necessary is not easy in 1988 Thomassen proved that task
to be NP-complete. (For an explanation of NP-complete problems. see "New
Computer Insights from 'Transparent' Proofs." pages 7 -1 1.)

In 1983. Robertson and Seymour generalized Kuratowski's theorem from the
plane to surfaces with handles. They proved that for each such surface the set
of "obstructing" graphs, while possibly quite large. is nevertheless always finite.

Figure 3. Ks can't he drawn on a plane without at least two edges crossing. But it can he
dawn on a .ruilace with a handle
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Five Colors Don't Suffice!
In 1890, Percy Heawood proved that any map drawn on flat paper can be colored

with no more than five different colors. Heawood's five-color theorem also applies to
maps drawn on the globe, because, topologically speaking, the sphere and the plane
are equivalent. However, it doesn't hold for graphs drawn on surfaces with handles.
For example, it's possible to divide the torus into seven regions, each of which borders
the other six, thus necessitating a separate color for each region.

How many colors does a surface with handles require? Heawood proved it never
takes more than (7 + V48g + 1)/2 colors, where g is the number of handles. In 1968,
Gerhardt Ringel and J. W. T. Youngs proved that Heawood's bound rounded down
to the nearest integer) is exact: Every surface has maps that require as many colors as
allowed by the formula.

Curiously, Heawood's formula gives the right answerfourfor the plane (g = 0),
but the proof only works when the surface actually has handles. This is just one of
many instances in mathematics where a problem is easier to solve in a complicated-
sounding setting than it is in its original guise.

This was an early result in an ongoing research program aimed at developing a
"structural" theory of graphs.

Their latest work with Thomas is in the same vein. In 1943. Hugo Hadwiger
conjectured that any graph can be colored with n colors provided it doesn't con-
tain K4.1 (the analog of K5. with rr + I mutually adjacent vertices) as a minor.
(Obviously if a graph contains outright, there's no way to color it with just
n colors. If K.4.1 is present as a minor, it may still be possible to get by with ri
or even fewer colors. as in Figure 4. but that's not what Hadwiger's conjecture is
concerned with. His conjecture is concerned with those graphs that don't contain
li4.1 in any way. shape. or form.) In other words. Hadwiger's conjecture says the
only potential obstruction to n-coloring a graph is the presence of 1:.4.1.

Hadwiger's conjecture is clearly true for tr = 1 and 2. and easy to prove for
= 3. For n = 4. it turns out to be equivalent to the Four Color Theorem

(although the equivalence is by no means easy to prove). Robertson. Seymour.
and Thomas's theorem settles the case a = 5. Of course, that leaves an infinite
amount of' Hadwiger's conjecture unsolved. But "it says were beginning to learn
what's going on.- Robertson notes.

Hadwiger's conjecture really doesn't care much what kind of surface a graph
or its associated map is drawn on. Thomassen's five-color theorem. however.
does. The problem it solves has a somewhat shorter history. In 1982. Michael
Albertson at Smith College in Northampton. Massachusetts. and Walt Stromquist,
a mathematician at Dan Wagner Associates in Paoli. Pennsylvania, proved that
any map drawn on a torus (that is. a surface with one handle, like a coffee cup or
its topological cousin, the doughnut ) can be five-colored provided that any "tour"
that travels all the way around the handle in any direction visits at least eight
different countries.

Albertson and Stromquist conjectured that something similar should be true
for surfaces with more handles: that if all trips around the handles are sufficiently
long ( that is. visit sufficiently many countries), then the map (or graph) should be
five colorable. That condition is known as "local planarity."

At one point it was thought that locally planar maps might even be four-
colorable. However. Steve Fisk at Bowdoin C'ollege in Brunswick. Maine. put
an end to that in 1978, by showing how to draw maps on the torus (or any other
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The Four Color Theorem
says that you need at most
four different colors to
color every planar graph.
But not every graph is
planar.

Figure 4. This graph has been two-
colored ovn though it contains K5 as
a minor. Does that violate Iladiiger's
coniectitre? No!
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Fan Chung and Shhnno Sielltherg with
a model of a buck yball
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surface with handles) with countries as small as you please that nevertheless require

five colors.
In 1985. Joan Hutchinson. now at Macalester College in St. Paul. Minnesota.

proved that five colors suffice if "small" is defined in a particular way. Thomassen's

theorem goes further. It says that for each surface. there is a number a such that if

all trips that go around handles visit at least a countries of a given map. then that

map is five-colorable. The number a depends on the number of handles on the
surface: Thomassen's proof provides only an estimate. which doubles each time

another handle is added. The actual number, he notes. is likely to be a good deal

less.

One may well ask, why bother? One answer is that graph coloring is not a
purely academic exercise: it does have applications in real settings. "What graph

coloring is really about is scheduling,- says Stromquist. "Trying to color a graph

is the same as trying to schedule a whole lot of events into time slots in such a way

that incompatible events don't happen at the same time." Researchers interested

in developing algorithms for scheduling consequently often find themselves faced

with problems in graph coloring.
But the main reason continues to be one of pure intellectual challenge. The

proof of the Four Color Theorem still requires a computer to rule out a thousand

or so ways a planar map might require five colors rather than four, and to many

mathematicians that's an unsatisfactory state of affairs. "There's obviously still

something to be learned about graph coloring.- says Robertson. Theorists believe

that the results of research in map coloring will be of use in other areas of graph

theory and its applications. Beyond that. there's one final, inarguable reason.
summarized succinctly by Stromquist: "It's fun.-

Graph Theory Tackles the Buckyball
Graph theory is one of the most playful topics in mathematics. But it's also one of

the most useful. In part because of the way it combines algebraic abstractions with
down-to-earth aeometric configurations. graph theory turns up in places you might
not expect -and graph theorists often wind up working in areas seemingly far afield.

Take Fan Chung, for example. Chung. a mathematician at Bellcore, is an expert

on graph invariants. Normally she works either in pure theory or on applications
to problems in communication networks. But recently she has been applying her
graph-theoretic expertise to something quite different: buckyballs.

First discovered just a few years ago. the buckyball is a soccerball-shaped molecule
consisting of sixty carbon atoms arranged in a highly symmetric, icosahedral pattern.
An outline of the buckyball's chemical bonds is reminiscent of the "geodesic domes"
popularized in the 1960s by R. Buckminster Fuller--hence the official chemical name.

buckininsicyallerene.
Chemists, physicists, and materials scientists have flocked to the buckyball and its

variants like moths drawn to candlelight ( indeed, the soot that rises with the flame
of a candle may consist in part of buckyballs). The crowd now includes a handful of

mathematicians.
Graph theory is no newcomer to chemistry: The term "graph" was first used I in its

technical sense) by the mathematician J. J. Sylvester in 1877, in a paper titled "Chem-
istry and Algebra." Mathematicians' drawings of graphs and chemists' renderings
of chemical compounds are strikingly similar. That's no coincidence. Graph theory
turns out to be a useful mathematical tool for chemists seeking to understand the
myriad ways that elements can combine to form complex molecules and the myriad
properties those molecules may possess. (continued on next page,
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Chung has been working with Shlomo Sternberg at Harvard University to analyze
the mathematical properties of the buckyball's unique structure. Sternberg is an
expert in the theory of group representations, which can be roughly described as the
systematic study of symmetry. The combination of graph theory and representation
theory, applied to the buckyball, is a powerful one. Chung and Sternberg's analysis
so far has gone a long way toward explaining the buckyball's spectroscopic properties
and why the molecule is so stable.

Chung and Sternberg are also trying to find a theoretical explanation of an-
other property of the buckyball, which it shares with a growing family of promis-
ing new materials, namely high-temperature superconductivity. The discovery of
high-temperature superconductivity in the late 1980s has left theorists scrambling for
explanations of a phenomenon that isn't even well understood for low temperatures.
"It's really a very big puzzle," says Chung. However, the fact that so many materials
turn out to be superconducting suggests that the puzzle may not depend on details of
the physics. "It's our belief it must be a mathematical explanation," Chung concludes.
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Introduction

Welcome to the 1994 issue of What's Happening in the Mathematical Sciences, a
yearly publication of the American Mathematical Society. inaugurated in 1993.
Volume 2 continues the theme of surveying some of the important developments in
the mathematical sciences over the past year or so. One purpose of What's
Happening is to convey that mathematics is a dynamic discipline, contributing to
research and development in many areas ofscience as well ascontributing significantly
to the solving of some of the major problems facing society. In this issue you can
read about a mathematically-based technology that produces real time continuous
images of the heart, lungs, and other organs; results on key problems in the area of
knot theory and how these results lead to insights in the study of DNA; recent
findings in the theory of waves; and Fermat's Last Theorem.

What's Happening in the Mathematical Sciences is written in a style so that the
general public can learn about the be..iuty and universality of mathematics. The
American Mathematical Society hopes you enjoy it.

Samuel M. Rankin. 111
AMS Associate Executive Director

Front Corer. A collaboration bettseen computer scienlis; Andress !Janson at Indiana Universit!. and
artist Sun. rt Dickson in Los Angeles has brought the Fermat equation to life. 1 he

computer graphic shosss a 3dimenstonal protection of the complex Fermat surface t(`-1- I (the
expon..:tit is indicated by the 5 grid lines that intersect at a point) Dickson has t.:c1 a high-tech
prose s called stereolithograpIn., to render the surface as a truly 3-dmiensiona; sculpture.

Hack ( over. New York-based sculptor Rhonda Roland Shearer combine,. elements of modern
fractal geomry. expressed through plant forms. with classical Euclidean geometry in The Phnom(
SulrJ Te rod (blue patina cube). /guts (yellou, ochre patina tetrahedron). Aqua I red patina docleca
lictiron). Aer (orange patina octahedron and Cachmi Is Indian green patina icosaliedron I (Photo
courtesy 01 Ice Ifolun ( opyright 1992. b., re11111`,1(,11 Roland Shearer
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"A Truly Remarkable Proof"
Atorrent of electronic mail poured from Cambridge. England. on the morn-
ing. of June 23. 1993. Mathematicians at a conference on number theory

at the Isaac Newton Institute. a mathematical research center at the University
of Cambridge. raced to tell their colleagues around the world some stunning
news: Andrew Wiles. a number theorist at Princeton University. had just finished
presenting a proof of Fermats Last Theorem.

Wiles. it seemed. had solved mathematics' most famous open problem. Fermat's
Last Theorem is a deceptively simple statement: The equation .v" y" := :" has
no solutions in positive integers .v. y. and = if the exponent n is greater than 2. The
theorem was jotted down by the French mathematician Pierre de Fermat around
1637. in the margin of a math book. along with a tantalizing comment: "I have
discovered a truly remarkable proof. which this margin is too small to contain."

Countless mathematicians over the last 350 years have tried and failed to
supply the missing proof. Prize money has e\ en been offered for a solution.
Curiously. by the usual standards of mathematics. the theorem itself is of little
consequence: Unlike other famous unsolved problems in mathematics. Fermat's
Last Theorem has no important corollaries. Rather. the problem's significance
stems mainly from the theoretical machinery researchers haze developed in trying

Andrew l'hoto tottrte.NI. ol nie ..Ipplewhite and Princeton L nirerNit y.
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Number theorists would
like to know whether all
elliptic curves are modular.
The TaniyamaShimura
conjecture says they are.

4

YL-

WHAT'S HAPPENING IN THE
NIATHENINI !CAL SCIENCES

to solve it. Indeed. most mathematicians long ago gave up working directly on
Fermat's Last Theorem itself. Then Wiles dropped his bombshell in Cambridge.

The news lit up the mathematical world. It also grabbed the media's attention.
as mathematical stories seldom do. Wiles's proof made the front page of the New
York Times. It made Time and Newsweek. It made the NBC Nightly News ("Be
still. my heart." said NBC's Tom Brokaw).

Experts who attended Wiles's lectures at the Newton Institute expressed con-
fidence in the strategy of his proof. and amazement at the mathematical tour de
force it represented. Still. mathematicians accept no proof as correct until it's
been thoroughly checkedespecially when the problem has the stature of Fer-
mat's Last Theorem. And after the initial celebration had subsided and experts
began meticulously poring over Wiles's 200-page manuscript. problems with the
proof appeared. Most were minor. but one was not.

In early December. Wiles posted an e-mail message acknowledging a gap in the
reasoning near thy end of his proof. As this volume of What's Happening goes to
press. the gap remains. Fermat's Last Theorem is still an open problem.

Yet number theorists continue to praise Wiles's work. "When people finally
see this manuscript. they're just going to be bowled over completely." says an
admiring Ken Ribet of' the University of California at Berkeley. That's because
Wiles's work. while aiming to prove Fermat's Last Theorem. advances number
theory across a broad front. Indeed. the main focus of his work is not Fermat's
Last Theorem itself. but one of the central problems in modern number theory. an
assertion known as the Taniyama-Shimura conjecture.

To explain the Taniyama-Shimura conjecture and its relation to Fermat's Last
Theorem recr_,ires a brief digression on the subject of elliptic curves. Roughly
speaking. an elliptic curve is the set of solutions to a cubic equation in two
variables. A typical equation. such as = .v(.v 3)(x 32). sets the square
of one variable equal to a cubic expression in the other. Number theorists are
particularly interested in "rational points" on elliptic curves: solutions in which
both x and r are rational numbers (see Figure 2).

One way to study the rational points on an elliptic curve is to look at the curve
not in the ordinary system of real numbers. but in an infinite collection of.finite
number systems. In each finite system. the elliptic curve's cubic equation can he
solved explicitly. and the number of solutions tallied. Number-theoretic properties
of the original elliptic curve are reflected in solutions of the cubic equation in these
finite systems.

Things work best when the elliptic curve in question is "modular." Modularity is
a complicated. technical condition. but essentially it means that there is a formula
for the number of solutions or the curve's cubic equation in each finite number
system. Many elliptic curves are known to be modular. and the condition can be
checked computationally for individual curves. Number theorists would like to
know whether all elliptic curves are modular. The Taniyama-Shimura conjecture
says they arc.

First formulated in 1955 by the Japanese mathematician Yutaka Taniyama. and
later refined by Goro Shimura at Princeton University. the Taniyama Shimura
conjecture was and still is a bold and striking characterization of elliptic curves.
In its full technical glory. the conjecture asserts that every elliptic curve is associated
with a particular kind of function known as a modular form: this links two
seemingly unrelated branches of number theory. The idea that there's a bridge



between elliptic curves and modular forms "really pervades lots of things that we
do" in modern number theory. says Ribet. And unlike Fermat's Last Theorem.
the Taniyama- Shimura conjecture has a host of immediate consequences.

Fermat's Last Theorem is one of them.
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Figure 2. The elliptic curve y2 X (.r 31(x j 321 has many rational points. .1 line connecting
any two of them intersects at a third.

The connection between Fermat's "simple- problem and the theory of ellip-
tic curves came as a surprise when. in 1985. Gerhard Frey at the University of
the Saarland in Saarbrucken. Germany. had the idea that any counterexample
to Fermat's Last Theorem could be used to construct a counterexample to the
Taniyama Shimura conjecture. Specifically. Frey proposed. if a" i- h" = c" for
positive integers a. h. and c and an exponent n greater than 2. then the elliptic
curve with cubic equation y2 -= .v-(x a")Cv b") cannot he modular.

Frey's idea hinged on a technical result. which Jean-Pierre Serre at the College
de France in Paris formulated as a precise conjecture. A year later. Ribet proved
Serre's conjecture. This established Fermat's Last Theorem as a consequence of
the Taniyama Shimura conjecture.

Ribet's result gave mathematicians a brand new way of thinking about Fermat's
Last Theorem and a new reason to work on the Taniyama Shimura conjecture.
Actually. it's not necessary to establish the Taniyama Shimura conjecture in full
generality in order to deduce Fermat's Last Theorem: it's enough to prove it for
a class known as semistable curves. This was the starting point for Wiles's attack
on the problem.

Wiles. who was already well known as an expert in the theory of elliptic curves.
went to work full time on the Taniyama Shimura conjecture. To avoid undue
publicity he kept only one colleague at Princeton. Nicholas Kati. abreast of
developments. Finally. in June. lie asked to give three talks at the Newton Institute
number theory conference. John Coates of Cambridge University. who was Wiles's
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thesis advisor at Cambridge in the mid-1970s. scheduled him to speak on Monday.
Tuesday. and Wednesday. June 21 23. 1993.

The audience could tell just from the title of his lectures "Elliptic curves.
modular forms. and Galois representations'' that Wiles had important news to
impart. perhaps pertaining to Fermat's Last Theorem. (All three items in Wiles's
title are key ingredients in Rihet's 1986 result ). Wiwi Wiles began laying out. says
Ribet. was "a complete revelation which is really still shaking number theory": a
new method tbr proving that elliptic curves are modular.

Wiles's theory, builds on results of many other mathematicians. including recent
work by Matthias Vlach at the University of Heidelberg. Victor Kolyvagin at the
Steklov Institute in Moscow. Barry Mazur at Harvard University. Ribet. and Karl
Rubin at the Ohio State University. The new method for proving modularity
is extremely powerful. In essence. it reduces the problem of' showing that the
Taniyama Shimura conjecture holds for particular elliptic curves to the proof of
a single algebraic inequality. That by itself is a "fantastic new result." says Rubin.
For a large class of elliptic curves. the inequality is easy to verify. In his first
two lectures. Wiles outlined how the new method proves the Taniyama Shimura
conjecture for one infinite family of elliptic curves. another enormous advance in
its own right. His lectures left the audience wondering if he had left the family of
scmistable curves those that pertain to Fermat's Last Theorem for last.

1.clt to right: John ('owes, .indre 'des. Ken Ribet, and Karl Rubin at the Isaac Newton
Institute in C'ambridge. lac land. alter 11'iles's IU.storic talk. (Photo courtesy of Ken Ribet. I

f le had. In his third lecture. Wiles announced his major result: The Taniyama
Shimura conjecture is true for semistable elliptic curves. Almost as an after-
thought. he noted the long-awaited corollary: Fermat's Last Theorem. It took a
moment for the announcement to sink in. Then the audience burst into applause.

"The logic of his argument is utterly compelling." Rihet said at the time. Other
number theorists agreed that Wiles had cleared many of the technical hurdles on
the \say to a proof of the Taniyama Shimura conjecture and had set a new agenda
1Or the theory of elliptic curses. Howes er. the review process has resettled a gap
near the end of the proof: The calculations that verily the crucial inequality. which
are eas\ in some cases. turn out to be not so easy for the class of semistable curves.
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Experts believe that Wiles's basic strategy tbr the calculations is sound. even if the
details don't vet fit together.

It's not unusual for a long. complicated mathematical proof to contain an error.
Wiles's colleagues are quick to point out ( it's not even unusual for a short proof
to be mistaken). Nobody knows how long it will take to fill the gap. Still. says
Rubin. "it's hard to believe that the proof of Fermat's Last Theorem is not closer.-

Fermat's Last Theorem is True (for Exponents up to 4,000.000)

Fermat's Last Theorem states that the equation v" y" = :" has no solutions in
positive integers .v. y. and if the exponent n is greater than 2. Could the theorem
be true for some exponents and false for others? Mathematicians have made much
progress in the last 350 years in showing that if any counterexamples exist. the numbers
involved are colossal.

Although he never found room in the margin or anywhere else for a general proof.
Fermat did write down a proof of his famous theorem for the special case n = 4. Over
a hundred years later. the Swiss mathematician Leonhard Euler dispatched the case

= 3. In the 1820s and 1830s. the theorem was proved for exponents 5 and 7. ( It's

enough to prove Fermat's Last Theorem for prime exponents. Fo.- example. if .v = a.

.1. = h. and : = r solve the equation .v6 + .6 = :6. then .v = a2. y h2. and : = e2
solve .v3 + 1.3 = :3.)

In the 1840s, the theory took a giant leap forward. By introducing some potent new
ideas. Ernst Eduard Kummer was able to prove Fermat's Last Theorem for all prime
exponents up to 100. with the exception of three "irregular" primes. In Kummer's
theory. primes are classified as either regular or irregular. Fermat's Last Theorem.
the theory says. is true for all regular primes. Regular primes are believed to be
more common than irregular ones. constituting roughly 60% of all primes. Ironically.
though. while it's known that there are infinitely many irregular primes, the same
statement (while undoubtedly true) has never been proved for regular primes.

Later improvements in Kummer's theory made it possible to handle irregular
primes separately. on a case-by-case basis. In effect. the theory reduces the proof
of Fermat's Last Theorem for individual exponents to a straightforward. though
lengthy. computationtailor-made for modern computers.

In the 1970s. Sam Wagstaff at Purdue University used this approach to establish
Fermat's Last Theorem for all exponents up to 125.000. Recently, four researchers
have pushed the computational approach into the millions. Using refinements of
Kurrr.ner's basic theory to speed up the calculation. Joe Buhler at Reed College in
Portland. Oregon. and Richard Crandall at NeXT Computer Inc.. in Redwood City.
California. with help from Tauno Mets'ankylii and Reijo Ernvall at the University
of Turku in Finland. have verified Fermat's Last Theorem for all exponents up to
4 million. Their results. which appeared in 1993 in the journal Mathematics of
Computation. also support the conjecture regarding the ratio of regular to irregular
primes: Out of 283.145 primes up to 4 million. 171.548. or 60.59%. are regular.

Extending Fermat's Last Theorem beyond the 4 million mark is certainly possible.
says Buhler. but doing so will require developing new computational techniques. If
Wiles succeeds in filling the gap in his proof. that won't he necessary.
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Nobody knows how long it
will take to fill the gap.
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From Knot To Unknot
Alexander the Great didn't mess around. As legend has it. the Macedonian
king decided to try his luck with the fabled Gordian knot. a tough length

of cornet bark wrapped tightly around the pole of an ox cart. It was said that
the person who succeeded in untying this knot was destined to rule the world
(meaning. at the time. Persia). A man of action rather than dexterity or patience.
Big Al unsheathed his sword -and the rest. as they say is history.

Modern mathematicians arc also drawn to the problem of undoing knots. al-
though their motives- -and their techniques are quite different from Alexander's.
In the last few years. researchers using two different approaches have come to un-
derstand better just what it takes to unknot a knot.

A mathematical knot is basically just a closed curve that winds through 3-
dimensional space. like an electrical extension cord that's been tangled up and
then plugged into itself. The theory of these meandering curves has taken off in
the last decade. "Knot theory for a long time was a little backwater of topology.-
notes Joan Birman. an expert in the subject at Columbia University. "It's now
been recognized as a very deep phenomenon in many areas of mathematics." And
it's not just mathematics where knot theory is playing a larger role: molecular
biologists. for example. are using it to help untangle some of the geometric secrets
of DNA (see box page 13).

One key problem in knot theory is to decide whether one knot can be deformed
into another---in particular. to tell whether a given knot really isn't knotted at all.
That may sound like a straightforward. even trivial. problem. But it's really as
difficult to deal with as a snarled-up fishing line. The main difficulty is that there
are infinitely many ways to deform any knot. and they all must be ruled out in
order to show that two knots are indeed different.

Because it's hard to draw truly 3-dimensional pictures. knots are commonly
represented by projections onto a plane. Such a picture. called a "knot diagram."
can be thought of as tracing the path of a tangled extension cord that's been
dropped onto the floor: places where the curve is broken are called crossings.
The number of crossings depends on how the cord has been dropped. and can be
quite large--but every knot has a diagram with a minimal number of crossings.
Knot theorists have constructed elaborate tables of knots arranged according
to this number (see Figure 1). These tables were begun in the 1890s by the
British mathematician P. G. Tait. who was inspired by Lord Kelvin's theory that
atoms were "knotted vortices- in the ether. (Kelvin's idea did not survive. but
surprisingly. knot theory has re-emerged in physics. this time in an area known as
quantum field theory.)

In the 1920s. the German mathematician Kurt Reidemeister showed that any
deformation of a knot can be achieved by a sequence consisting of three types of
moves (see Figure 2). This gives a combinatorial flavor to the topological problem
of classifying knots. but it does not automatically solve the problem. because
there are no set rules that specify the order in which the moves should be applied.
For example. you might think that if a knot can be deformed into the "unknot-
( the knot theorist's word fo, the circle). the deformation could be done without
ever increasing the number of crossings. That's not true: For some diagrams. the
crossing number must go up before it can come down (see Figure 3).

Figure 2. 77w three types of Reidemeis-
ter MOWS.

Figure 3. A Mayo' unknot that can
milt be unknotted ht' fist increasing
number of crossings..
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So how do mathematicians decide whether two knots are different? Knot theo-
rists' favorite approach has been to compute "invariants": numerical or algebraic
expressions assigned to a knot that don't change when the knot is deformed. One
of the earliest invariants. also dating back to the 1920s. is known as the Alexan-
der polynomial (named after the American mathematician John Alexander. not
Alexander the Great). Though defined topologically. the Alexander polynomial
can he derived from the pattern of under- and over-crossings in a knot diagram.
Most important. if two knots have different Alexander polynomials. then they are
necessarily different knots. For example. the trefoil knot. whose polynomial is
.v2 .v + 1. differs from the square knot. whose polynomial is (.v2 .v + 1)2 and
both differ from the unknot. whose polynomial is the constant I (see Figure 4).
However. different knots need not have different Alexander polynomials. The
granny knot. for example. has the same polynomial as the square knot. Likewise.
the right- and left-handed trefoil knots share the same polynomial even though
it's impossible to deform one into the other.

For a long time. though. the Alexander polynomial was one of the few tools
topologists had for telling knots apart. Then in 1984. Vaughan Jones. a mathe-
matician at the University of California at Berkeley. discovered a new polynomial
invariant. Jones's polynomial turned out to be more powerful than Alexander's at
distinguishing different knots. It also revealed startling new connections between
knot theory and mathematical physics. More recently. Viktor Vassiliev at the In-
dependent University of Moscow has introduced a whole new class of invariants
based not on the topology of individual knots but on the structure of the space of
all closed curves. even those that pass through themselves (such curves are viewed
as degenerate. or -singular." knots). Berman and Xiao-Song Lin at Columbia
University have found deep connections between Vassiliev's invariants and the
Jones polynomial.

The Alexander and Jones polynomials are easy to compute. but they don't re-
fer to anything that can be seen geometrically in a knot diagram. The minimal
crossing number for a knot. on the other hand. refers explicitly to something that

left-handed trefoil right-handed trefoil

granny knot

Figure 4. The squaw knot is lormd by joining a right- and hit-handed trch,iI: the granny
knot i Jointed by joining two right-handed (or two left-handed) trefoils.



can be seen. So does the "unknotting number.- which is the least number of times
you need to "cheat- by passing a knot through itself in order to untie it. But these
invariants can be hard to compute.

Theorists generally compute a knot's minimal crossing number by a process of
elimination: First they find a diagram that seems to have the fewest crossings: then
they show that the knot is different from every knot with fewer crossings. typically
by comparing Alexander or Jones polynomials. The second step. however. requires
a complete list of knots with smaller crossing numbers. So far that list is complete
only up to crossing number 14.

The unknotting number is even harder to compute. You might think you
could compute it by taking any diagram and finding the smallest combination
of crossings which. if the knot is passed through itself at those points (so that
underpasses become overpasses and vice versa). will untie the knot. Unfortunately.
that doesn't necessarily give the right answerit only puts an upper bound on the
unknotting number. For example. Figure 5 (top) shows a knot diagramin fact.
one with a minimal number of crossingswhich cannot be untied by changing
fewer than three crossings. But Figure 5 (bottom) shows the same knot in a
diagram that can now be untied with just two cheats. In other words. to find the
fewest crossings to change. it may be necessary to take a simple looking diagram
and redraw it to look more complicated: and there seems to be no bound on how
much more complicated a knot diagram may need to look before it exhibits the
correct unknotting number.

Until the recent breakthrough. theorists had no general method for computing
unknotting numbers. except when the value happens to be I (if a knot can be untied
with a single cheat. then its unknotting number must be either 1 or 0. so one need
only check whether the knot was already unknotted). But researchers have recently
proved results that allow knot theorists to compute unknotting numbers exactly
for many more knots. and obtain useful lower bounds on unknotting numbers for
all knots.

Working on problems in 4-dimensional topology. Peter Kronheimer at Oxford
University and TOMaS7 Mrowka at the California Institute of Technology have
proved a 40-year-old conjecture. due to John Milnor. about unknotting numbers
for a special class of knots. Milnor's conjecture specifies the unknotting number
for all "torus" knots. These knots come from curves that are drawn on a torus.
which is what mathematicians call a donut. To tie a (p. )-torus knot. wrap a
string p times through the hole in a donut. stretching the string so it goes q times
around the donut itself before you tie the ends of the string together: then eat the
donut (see Figure 6).

Milnor. who was also mainly interested in 4-dimensional topology. conjectured
that the unknotting number for such a knot is always (p -1)(q -1)/2 (p and q can't
both be even: in fact. in order for the knot to be drawn on the torus without inter-
secting itself. p and q can't have any common divisor greater than I). For example.
Milnor's conjecture says that the (101. 3)-torus knot has unknotting number 100.
Given the difficulty knot theorists have had computing the unknotting number
when its value is greater than 1. Milnor's conjecture seems almost miraculous.

How. you might wonder. does 4-dimensional topology get mixed into the theory
of knots? The trick is to view the deformation of a knot as occuring in time. which
adds a fourth dimension to space. "If we think of a space time picture of what
is going on. the moving curve in space sweeps out a 2-dimensional surface in
space- time.- Kronheimer explains. Topologically. the 2-dimensional surface is

rs
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Figure 5. The diagram at top twilitu he
unknotted with fewer than three changes
of crossings, but the modified diagram
hehw can he unknotted with only Iwo
(indicated by circles).

Figure 6. A (4.31-torn% knot.
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Figure 7. Two unknots that are "lurked"
together:

Figure 8. A (I-strand braid with 2 knot
components. N pOSilive crossiin and 2
negative crossings. (In a positive cross-
ing, the overpass goes from upper left
to lower right; in a negative (rossing, it
goo front upper right to lower 1efi 1
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like a cylinder. lie adds. but "because the original curse is knotted. the cylinder
sits in space time in a rather complicated way.-

If the deformation includes a cheat. then the space -time surface intersects itself
at that point. Kronheirner and Mrowka were studying the general theory of self--
intersecting. or "immersed.- surfaces in 4-dimensional space. Their research is
based on far-reaching ideas introduced in the early 1980s by Simon Donaldson at
Oxford University. who borrowed techniques from theoretical physics to analyze
the structure of 4-dimensional spaces. The result for knots came as a kind of 3-d
bonus. "We weren't really aiming at Milnor's [conjecture].` Kronheimer says.

More recently. Lee Rudolph at Clark University in Worcester. Massachusetts.
has shown that Kronheimer and Mrowka's results also prove a generalization of
Milnor's conjecture due to Daniel Bennequin at the University of Strasbourg in
France. which provides a lower bound on the unknotting number for all knots.
and all "links" as well. (A link is simply a set of knots that are tangled together.
as in Figure 7.) Bennequin's conjecture requires drawing the knot (or link) dia-
gram in a particular configuration known as a braid ani distinguishes between
"positive- and "negative" crossings (see Figure 8). Ira h...aid with .1/ strands and
R components (which is 1 for a knot. and greater than 1 for a link) has P positive
and N negative crossings. then Bennequin's conjecture asserts that the unknotting
number U satisfies the inequalities ;P NI < 2t + .1f R < P N. If all
crossings have the same sign (say positive). then Bennequin's conjecture gives an
exact value for the unknotting number. In particular. it turns out that a rp. q
torus knot can be drawn as a braid with p strands and 'p 11q positive crossings.
so Milnor's formula falls out of Bennequin's conjecture. (Actually. only the lower
bound in Bennequin's conjecture required proof: the upper hound was proved by
Michel Boileau at the University of Teahouse and Claude Weber at the University
of Geneva in 1983. shortly after the conjecture appeared.)

As if' one proof weren't enough. William Menasco. a knot theorist at the State
University of New York at Buffalo. has also proved Bennequin's conjecture. using
completely different methods. (This parallels the legend of Alexander. Accord-
ing to some accounts. the Great one didn't draw his sword. but instead removed
the pole on which the Gordian knot was tied. leasing the knot to fall apart of
its own accord.) Working independently at about the same time t.s Kronhcimer
and Mrowka. Menasco actually proved a stronger version of Bennequin's conjec-
ture. one that looks more closely at the distinction between positive and negative
crossings in a knot or link.

In Menasco's theorem. the unknotting number is replaced with positive and
negative variants. The positive unknotting number. U.. is defined as the minimal
number of positive crossings that must he changed to negative ones in order to untie
a knot. regardless of how many negative crossings must be changed to positive.
(The negative unknotting num'oer. U . is defined similarly.) Menasco showed that
U. satisfies the inequality P N 2t R. pros ided that I' .V. ( A

similar inequality holds for U if P N I. Since the original unknotting number
/ is never less than U or I. . Menasco's inequalities together imply Bennequin's
conjecture.

Menasco's proof is strictly 3-dimensional. Like Kronheimer and NIrosska's
proof. it is based on a careful study of immersed surfaces but in this case the sur-
faces are deliirmed disks hounded by knots. all situated in ordinar 3-dimensional
space. The proof is "sexy geometric- and insolses "it lot of picture draw nig.-
Menasco says. adding that his approach uses "loss-tech mathematics'' compared
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to the methods emploed by Kronheimor and Mrowka. Berman. who has collab-
orated with Menasco on an extensive study of links and braids. disagrees. "The
proof that he found is \ er) hard.- she says. "Some of the things that he did are
extremely difficult to visualize. His ability visualize 3-dimensional geometry is

rather extraordinary.-
Birman enthusiastic about the new results on the unknotting number. "It's

the beginning of a real theory of this mysterious number.- she notes. She is also
pleased that there are two proofs. "It's quite wonderful that two such widely
different techniques could lead to the came result.- she says. "I think it's evidence
of the unity of mathematics.-

But that's what knots are ilood liar: Tying things together.

The Knotted Helix
Mathematicians aren't the only ones excited by the latest results in knot theory.

Molecular biologists. too. are eager to get in on the action.
"For me it's great." says Sylvia Spengler. a molecular biologist at the University of

California at Berkeley. "It gives me insight on how frequently an enzyme had to act."
Spengler is one of a glowing group of researchers applying theorems from topology

to the chemistry of life. That may seem like a stretchbut stretching is what topology
is all about. Biologists have long known that DNA is not only wound in a double
helix. but also tightly coiled inside the nucleus of the cell. But only recently have
researchers begun to understand the details of what they call supercoiling.

Supercoiling is found, for example. in circular DNA. a form of the macromolecule
that occurs in bacteria and yeast. The flexible molecule need not look like a geometric
circle. though: it may even be knotted. Knotting and unknotting- is caused by
enzymes called topoisomerases. These enzymes cut the strand of DNA at one point.
pass another part of the strand through the gap. and thcn reseal the cut exactly
what's called for in the unknotting number theorem.

De Witt Sumners, a knot theorist at Florida State University who collaborates with
Spengler and others on topological aspects of molecular biology, points out that the
unknotting number is a lower bound for the number of times the topoisomerase has
to act. "If ou have really complicated products that have a large unknotting number.
it's going to take the enzyme a while to produce those." he explains.

Figure 9. /lire( strand., , irr law 11 N. I. , /'/),,to Iii tr r oi Si II hi Sp, Ourry -
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According to some
accounts. Alexander
the Great didn't draw
his sword. but instead
removed the pole on which
the Gordian knot was
tied. leaving the knot
to fall apart of its own
accord.
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New Wave Mathematics
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john Scott Russell knew he was on to something one August day in 1834.
when he chased a peculiar -heap of water" down the Edinburgh Glasgow

canal. When a boat being pulled by horses suddenly stopped. the wake "rolled
forward with great velocity. assuming the form of a large solitary elevation. a
rounded. smooth. and well-defined heap of water. which continued its course
along the channel apparently without change of form or diminution of speed."
The wave. he noticed. was approximately 30 feet long and a lOot and a half high.
and traveled at 8 or 9 miles per hour. Russell followed it on horseback for a couple
of miles until it finally disappeared. -Such.- he later wrote. "was my first chance
interview with the singular and beautiful phenomenon which I hake called the
Vv'tik e of Translation.-

At the time. Russell's observation was considered an anomaly: it was even
greeted with disbelief. These days. the theory olsolitary wakes is a well developed
subject. w ith close ties to mathematical physics. But even so. there are still surprises
and potential applications waiting in the w ings. One surprise surfaced recently
when Philip Rosenau. a theorist at the Technion in I LULL Israel discos ered a
class of waves so solitary that two of them can moke along within a hair's breadth
of each other yet remain blissfully unaware of each other's existence. Rosenau
and Mac I lyman. a mathematician in the Theoretical Division at Los Alamos
National Laboratory. hake been chasing and observing these compact wakes not
on horseback. but by means of high-speed computation.

Although their findings are. so far. strictly mathematical. applications of Rose-
nau and llvman's compact waves may not be far off. For years. solitary wakes
have been considered as promising carriers 0;' digital information on optical tibc,
because they can. in principle. trawl fore\ er without losing their shape. Compact
wakes: ability to trak el close together kk ithout interfering kk ith each other might
(der CN en further adkantages.

Mathematicians in the nineteenth CCiltlir were slow to come to grip, w ith

Russell's solitary wake. in part because the prek ailing theory of wake motion was
locked into a particular partial differential equation called the "wake equation.-
which is still used to kliscribe all kinds of undulatory phenomena. from water
wakes to sound wakes to quantum-mechanical 'a ak Cs the last. of course. being a
INNCIlliC111-CCIIItiry iiinok ation i. According to the NS a% e equation. Russell's "heap of
water- couldn't sustain itself: It would immediately begin to break apart. as hit.11-
frequency components raced out in front. leak ing lower-frequency components
further and further behind exactly what Russell didn't sec.

The wake equation also tailed to explain another obserkation Russell made. this
time when he re-created solitary wakes in his laboratory by dropping weights into
a long rectangular tank of water. 'the taller the wake. Russell found. the Lister it
armed. For explaining this behak ior. the wake equation is no help at all: The wake
equation is linear. and for phenomena described by linear equations. the height +it
things doe, not affect how they change in tin

By the end of the nineteenth century. law t:. et. an adequate theory ha solitary
wakes had been kli.kiiloped in the for in of a !noddle,' N',INC equation know n as
the Kortekkeg de Vries in Kik'. equation. Dem al from basic equations of fluid
tl.namies, the KA' equation dey_athes hi ikk k'. an es propa!!ate dow it a channel IA lilt
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rectangular cross section. It differs from the ordinary wave equation in one critical
respect: the KdV equation has a nonlinear term.

Rosenau and Hyman's equations go even further. The two theorists tinkered
with the nonlinear term in the KdV equation: more important. they added a
second nonlinearity. this time in a part of the equation known as the dispersion
term isee box). The inspiration Ibr making the dispersion term nonlinear came
from Rosenau's studies of liquid drops. such as raindrops running down a window

pane.

A Tale of Three Equations
The wave equation. the KdV equation. and the compacton equation are all roughly

similar in form. but the differences are critical. All three equations can be though:
of as describing the up-and-down motion of a string of corks floating in a narrow
channel of water. such as a long, thin trough. Mathematically. the trough is infinitely
long and infinitely thin. so that each cork can be identified by a single variable, say x.
which specifies its location along the leng ill of the trough. The corks' up-and-down
motion is described by a function of two variables: u(x. t) is the height of the cork at
point .v and time 1.

The traditional, linear wave equation has the form tit -t- u, + uvxx r-= 0. The first
term. tit. is the derivative of u with respect to t--that is. the speed at which a cork
is going up or down. The middle term. u,. is the derivative of u with respect to .v:
it describes the slope of the wave at each pointthat is. how much higher or lower
each cork is than its neighbors at a particular moment. The final term. limy, is the
third derivative of u with respect to .. This is the "dispersion" term: because of
it. traveling -wave solutions with different wavelengths propagate at different speeds.
These solutions have the form u(x. t) = sin((x (Alt) with c = (12 l)/t2. The
parameter f is the wavelength. while r is the speed at which the wave propagates
(i.e.. the speed at which a particular crest of the wave moves). Because the equation
it, u, r u,, 7-- 0 is linear. a general solution can be formed by adding these
traveling-wave solutions together. But any such combination will produce a wave that
changes shape over time. because the different components move at different speeds.

The KdV equation has the form it, +- u.CTr = 0. Changing the middle
termsquaring the u before taking its first derivativehas a profound effect. Simple
sine waves are no longer solutions: instead. the traveling-wave solutions have the form

= 13c/21sech2(k crIVE/2). The shape of the solution is a single. smooth
hump (see Figure I1. What's more, both the height and the "width" of a wave arc
completely determined by the speed r at which it travels: Taller waves move faster
than shorter ones. quite unlike waves governed by linear equations. Whatever shape a
wave governed by the KdV equation has initially, it %sill eventually -and usually quite
quickly break up into a train of these basic shapes. with the tallest waves out front.

Rosenau and ilyman's compacton equations make the dispersion term in the
KdV equation nonlinear as well. The simplest compacton equation has the form

lu21, 0. ( More generally. Rosenau and Hyman have studied
equations of the form tit .1- (e), (11^), = 0.) This time. the traveling-wave
solutions have the form u(x.1) ,4(.13)cos21(.1- et )141 for 2r: < .v ft < 2r: and
al r. t) 0 if IN 2r:. As with the KdV equation. the height of a compacton
depends on its speed. but compactons have the same width. namely 47t. Waves in
any initial shape also &compose into o train cl compactons. However, numerical
evidence suggests that when compactons separate. as they do after a collision, they
leave behind them an apparently infinite wake of tiny ripples. Rosenau and 11!,rnan
-are still trying to fathou the nature of the ;e ripples

lost nonlitwar equations cannot be mill. cd exactly that'soneofthcadvantages
linear equation, hold. But some can. The Kill: equation and the new nonlinear
clisr2rsion cquatitut , turn out to he 1111t,FW them. I he basic Era% eling-wa%,.: solution
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What happens when a fast-
moving wave overtakes a
slow-moving wave?

hyperbolic functions. often seen in introductory calculus classes. are closely related
to the trigonometric functions commonly studied in high school.) Rosenau and
Hyman's equations. by contrast. have various traveling-wave solutions. ranging
from parabolic arc; to cosine waves. But all of these waves. whether generated by
the KdV equation Or by Rosenau and Hyman's equations. share one particularly
striking feature: The speed at which a solitary wave moves is proportional to its
heightjust as Russell had seen in his laboratory.

That feature raises an interesting question: What happens when a fast-moving
wave overtakes a slow-moving wave? In the 1960s. Martin Kruskal at Princeton
University and Norman Zabusky at Bell Telephone LaboratOries in Whippany.
New Jersey (both now at Rutgers University in New Brunswick. New Jersey).
found a surprising answer. When a tall solitary wave overtakes a shorter one. the
two do not merely merge. Nor do they break each other apart. Instead. after a
brief but passionate encounter. the two waves separate. each with the same size
and shape it had befor:i. The only evidence they ever met is a "phase shift": The
taller wave is pushed slightly ahead of where it would otherwise have been. while
the shorter wave is held slightly hack. Because the solitary waves retain their
separate identities. much as colliding particles do. Kruskal and Zabusky dubbed
them "solitons."

I s
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The property Kruskal and Zabusky discovered is not unique to the KdV equa-
tion. Many other nonlinear equations have the same property: In effect. their
traveling-wave solutions (which are also called solitons) are impervious to any
kind of disturbance. That makes solitons good candidates for carrying informa-
tion. If. for example. light can be made to propagate along a fiber-optic cable in
accordance with a KdV-type equation. then pulses of digital information can be
sent as solitary waves. which travel long distances without distortion.

4.00

3.00

2.00 7 I\

1.00

10-14

One drawback of KdV-type solitons. however. is that they aren't truly solitary. -I no ---
Each such "classical" soliton tapers off. both fore and aft. with an infinitely 01) 12.5 25.0 37.5 50.0 62.5 75.0 57.5100.))

long "tail." As a result. two waves start interacting before their main parts
meet (technically speaking. two waves are alap interacting. but because the
tails taper off exponentially. the interaction is weak until the waves are suitably
close together). Thus to keep soliton-borne information from getting garbled. the
carrier waves have to keep their distance.

That's where Rosenau and Hyman's compact solitons-- or "compactons." as
the two mathematicians call them---could have an advantage. These new waves
are tailless: They vanish abruptly at the endpoints of a well-defined interval. As
a result. two compactons cannot interfere with one another until they overlap. In
theory. at least. a string of identical compactons could race along an information
superhighway like so many manic tailgaters at rush hour-- except that on this
highway. everyone adheres strictly to the speed limit.

Whether compactons actually have a future on the fiber-optic highway remains
to be seen. For now. Rosenau. Hyman. and their colleagues are interested mainly
in the light compactons shed on the theory of solitons. One key insight regards
the role of a condition known as integrability. The KdV and other classical soliton
equations are all integrable. This means. roughly. that their solutions satisfy
infinitely many "conservation laws." much as physical systems obey laws such
as conservation of energy and momentum. Integrability helps explain solitons'
extraordinary stability: The conservation laws constrain the waves so rigidly that
they can hardly fall apart.

Compacton equations. however. are not integrable: they satisfy only a handful
of conservation laws. Hyman didn't expect much to happen when they numerically
smashed two compactons together. but Rosenau urged him to run the computer
experiment. "We took one that's traveling fast and one that's traveling slow. and
we hanged them into each other." Hyman recalls. That the two waves emerged
intact. just like ordinary. integrable solitons "was amazing." Hyman says. These
unexpected results indicate that the remarkable stability of solitary wages lies
deeper than mere integrability.

Still more surprising is a brand new feature. not seen in classical solitons: When
two compactons meet. interact. and separate. they leave behind a wake or tiny
ripples (sec Figure iI. Rosenau and I lyman almost missed this in their lit st com-
pacton calculations they thought they saw only some numerical "noise" in the
results, stemming from imprecisions in the computation. ( All numerical compu-
tations are prone to round-off and other errors: one role of mathematical theory
is to study such imprecision precisely). "It was only when we were getting ready
to write up the results that v.t: decided to do an IA tra-high-resolution calculation

get rid of this numerical not .c." lit man e \ plains. "When it didn't go ak.k,n, we
s,arted l'otaising in on it."
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When two compactors
meet, interact. and
separate, they leave
behind a wake of tiny
ripples.
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The ripples arc a "real mystery." Hyman says. They seem to continue indef-
initely. with tinier and tinier ripples arising. a kind of flotsam caused. perhaps.
by the compacton equations' lack of integrability. But that's just speculation:
There's no proof yet that the ripples don't finally die out. just numerical evidence
that smaller and smaller ripples continue to arise. "It's just begging for a solu-
tion." notes Hyman. Researchers may no longer chase chance observations on
horseback. but plenty of "singular and beautiful" phenomena remain to be found.

A Peek at Peakons
Hyman and colleagues Roberto Camassa and Darryl Holm at Los Alamos Na-

tional Laboratory have also been looking at yet another new soliton-type equation.
Like the compacton equations, this wave equation sports a nonlinear dispersion term.
but the new equation also happens to be integrable. This time. the traveling-wave so-
lutions have sharp peaks, hence the name "peakons" (see Figure 4). The researchers
believe the peakon equation will provide additional insight into the role of nonlinear
dispersion in the theory of solitons. Interestingly, the peakon equation was obtained
by simplifying the equations of a global ocean circulation model--the same model
that generated the color graphics for the cover of last year's issue of What's Happening
in the Mathematical Sciences.

figure 4 I pit -time plot ot pcalont% u m Ir l tll,l of nkturt thile L'tlicraft'd Ill lb!,
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Mathematical Insights
for Medical Imaging

First of all. do no harm.- Along with his famous oath. the Greek physician
Hippocrates left that instruction for his medical heirs. But in order to

diagnose disease. modern physicians often find they must perfOrm such invasi'.e
procedures as biopsy and angjoizraph,. Ben X-ra,,s are not without risk. It's a
necessary evil: To treat disease. doctors need to see what's happening inside the
body. L'sclul as it is a stethoscope can't hear cancer cells growiml.

Medical researchers are constantl looking for safer. more accurate wa s to
monitor patients' condition. A team of mathematicians and engineers at Rensse-
laer Polytechnic Institute I RPI i in Troy. New York. is doing its part to help. Math-
ematicians David Isaacson and Margaret Cheney. biomedical engineer Jonathan
Newell. and their colleagues halve developed a new. mathematically-based tech-
noiogy that produces real-time. continuous images of the heart. lungs. and other
organs all without cutting patients open or bombarding them with radiation.
They hope their machine. which wem into clinical testing at the Albany Medical
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Center in 1993. will eventually offer physicians a powerful but safe diagnostic tool
for such illnesses as heart disease. pulmonary edema. and breast cancer.

The new technology. known as Electrical Impedance Imaging. works by apply-
ing tiny electrical currents through electrodes placed on the skin. measuring the
corresponding voltage response. and then deducing the distributions of electrical
conductivity and permittivity inside the body (Roughly speaking. conductivity
measures how easily charge moves through a medium. while permittivity measures
the capacity of a medium to store electrical energy.) Since different parts of the
body have different electrical properties. the computed distributions provide an
image of the body's tissues and fluids.

Take the lungs. for example. Air is a notoriously poor conductor of electric-
ity. Asa result. when healthy lungs fill with air. they show up in an impedance
image as regions of low conductivity. By contrast. in a patient suffering from
pulmonary edema a complication often seen following injury. heart attack. or
major surgery the lungs are partially filled with fluid. Because the fluid has high
conductivity. the edema appears as an abnormality in an impedance image.

Blood. too. has high conductivity. so impedance imaging also has potential for
measuring the amount of blood being pumped by the heart. Measuring cardiac
output "is very useful to physicians because it tells them how well the heart is
working.- explains Newell. At present. the only reliable ways to measure cardiac
output involve passing a catheter through a vein and through the heart. which is
a dangerous and expensive procedure.-

Impedance imaging is one of several medical imaging techniques that rely heav-

ily on mathematics. The most common is Computed Axial Tomography. or
CAT-scan. In essence. a CAT-scan combines X-rays taken from many different
directions. Each X-ray measures the density of tissue along a particular line of
sight. A computer algorithm based on a mathematical procedure called the Radon
translOrm uses these measurements to reconstruct the actual spatial distribution
of densities. Similarly. Magnetic Resonance Imaging. or M R I. constructs images
by measuring the body's response to strong magnetic fields.

These techniques all invoke solving what are known as "inverse- problems.
so called because they ask. in effect. for the opposite of a direct calculation. If.

flit evample. the conductivity distribution in an object is known. then the voltage
response to a set of applied currents can he computed directly. much as an algebraic

evpression such as 2 v 5 can he directly evaluated if the value of the variable

v is known On the other hand. the inverse problem try ing to reconstruct the
conductivity distribution from a measured set of oltage responses is like trying
to lind a A. al lie 01..\ rot vv hich 2.v2 v 5' equals 2. only in a much more complicated

mathematical setting.
For impedance imaging. the equations to he solved arc derived from Maxwell's

equations. a set of partial differential equations that describe all electromagnetic
phenomena. Reconstructing an image of the hod:, s interior from measurement;
on the surface is a considerable challenge. in part because The equations are non-
linear and in part because the recomtruction is highly New-like u»neasurement
error!.. "Conducti\ it\ distribution, that may he very different ma\ produce data
that ale clo,,e to each other.'' note, Isaac,on. fo cope \\ ith that problem. the
RN team has glesigned high-Ft:Liston electrical system fur deli\ ering current
and meikuring oltages. and coupled it \\ ith computer algorithm, that optuni/c
the ,y stcm%. l eI lot mance.
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third generation. It combines delicate engineering with sophisticated mathemat-
ical analysis and high-speed computer algorithms to generate precise patterns of
current and then reconstruct images from the measured responses. The currents.
which are applied through electrodes like those used for electrocardiograms. are
well below the level of human perception and considered harmless. That makes the
system suitable even for continuous use. as a monitoring device. Whereas a CAT-
scan. say. only takes "snapshots" of the body. impedance imaging makes MO\ ies.
tracking physiological processes in addition to revealing anatomical structure.

That's not to say that impedance imaging will render CAT-scans obsolete. On
the contrary. since they measure different properties of tissue. the two technologies
complement each other. But impedance imaging offers some special advantages.
For one thing. it's relatively inexpensive. in part because of its compact electronics
package. It also does not require a specialist to operate or interpret: ACT III or
its likely successors could even be used by paramedics on ambulance calls.

Isaacson started studying the mathematics of impedance imaging in the early
I980s. He quickly saw that theory alone was not enough. "I had some ideas about
things to do. but I needed some practical experience as to how accurately one
can actually measure things. and I wanted to do some experiments.- he recalls.
He went to Newell. who. while skeptical that impedance imaging could work in
practice. helped design an experiment to find out. They decided to see whether
Isaacson's electro-mathematics could locate chunks of in a tray of saltwater.

"We took a little pan from the local supermarket. filled it with gelatin and salt
water. put electrodes around the outside of the pan. pumped some currents in and
measured the voltages.- says Isaacson. Sure enough. an image appeared. which.
though crude. showed roughly where the jello was. That was enough for Newell:
"He got very excited about this.- Isaacson recalls.

Newell brought in David Gisser. an electrical engineer I now professor emeritus)
at RM. to design and build the electronics. The first system "was crude. but it
worked.- Isaacson sacs. The current version incorporates many improvements
in both hardware and software. In particular. Cheney notes. Gary Saulnier. an
electrical engineer at RPI. and his student Peter Edic have made the system last
enough to work in real time. "A huge number of students have worked on the
project at one time or another.- Cheney adds. "Ever since I've been associated
with the project. there have been somewhere between I 0 and 2(1 students in °Red
at an one time the number depend. main It on funding. Thet range from Ph.D.
students to undergraduates. We've even had a couple or exceptional high school
st udents.-

In experiments with electrodes surrounding a circular tra 3(1 centimeters in
diameter 1 roughlt the si /c and shape of a human chest I. ACT III can reconstruct
a reasonable image of a nickel -sited object in the center of the trat the hardest
spot to get a good picture. The R PI group is now also doing experiments with
human subject. ineluding volunteer patients at the Alban. Medical ('enter. To
image a 2-dimensional ''slice'' through the heart and lungs. the researcher, place a
32-electrode belt around t person's Lhest. III then sends it .peeially designed
sequence 01 current pallet 11,, through the electrode.. Voltage measuri_ments taken
it the 31' electrodes are fed hack to the machine. which uses an algorithm the group
calls NOSLIZ Newton One-Sti.p I rror Reconstinctoi to produce a circular. 4%-
1n-id-cell image see I ipires I 3 ;. I he output IN led to :I \ ideo 1110111tilr. (111
the stilted can watch litei 1. Ike or hem oe. 1 lung, tilling mid mirk mr.

"-'"""MMIMEMIlhirill1=1

ohm -(c)ntsaltt
- backeround \

i1050 ohni-aq \
left lung

I

\
,

50 ohm-cm j\\ heart

x.,
; _tbn ohm-cm

right lung )

\

Figure 2. hltpcdatit C linage (top! 11.,,m
a test with Annulated heart and lung%
haring .Npcilied conchtutiriticA ,bationti.
'Photo courteAr of 111,, RenAelar
groap.

1

-NN

lgurc 3 .?(t-t to rt.st tonA t, till twin.
tote (/ lent/ um/ /lint! ,olif II', I
1 kcil,st hi' I It /

19.1 III!
\I k 1111 NI \II( !(11..NCP-;



Isaacson and colleagues
have developed the math-
ematical theory by which
ACT III can figure out for
itself which current pat-
terns to use.
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and blood pumping: L.1%1 -COrdliCtIN it air appears in dark blue. high-conduct ivit
t,iood appropriately in bright red.

Nlathematiealk. each current pattern say sending current in at just one elec-
trode and taking it out at another is a \ ector in 32-dimensional space. More
precisel. each pattern is a ector in a 31-dimensional subspace defined by the
reqttirement that the net current applied io the subject must be iero t other ise the

subject's hair would start standing on end ). The measured \ oltage response at the
electrodes is also a vector in 31-dimensional space. Roughl speaking. the conduc-
ti it. distribution is to be IOund in the matrix that relates the current and \ oltage
vectors. To Iind that matrix. its necessar\ to appi 31 fundamentally different
current patterns t in technical terms. the patterns must he "linearl independent-

One ke question liar the RPl soup is which current patterns to use and how
to design the electronics to get the best possible siimal. In principle. an\ set that
includes 31 linearly independent patterns v ill do. But that nmores the effect of
errors. which can send the linear algebra rattling off into nonsensical solutions.

-It turns out that the best set of patterns to appl depends on what's inside the
bod\.- Isaacson explains. For imaging features near the bod's surface. patterns
that send current in at just one electrode and take it out at an adjacent electrode
are optimal. The RPI group. how e\ er. uses patterns based on the trigonometric
sine and cosine functions. These patterns are pro\ abl optimal tier distinguishing
Matures deep inside the bod\. Isaacson and colleagues have de\ eloped the math-
ematical theor b\ which ACT III can figure out fur itself \\ Ilia current patterns
to use.

The researchers are also exploring tea reconsti uction techniques. (Ilene:\ has
led the way on one promising approach called laver stripping. Conceptually.
stripping amounts to sok ing fur the conducti it) distribution Ia\ er b\ la\ er. like
peeling an onion The current and oltage measurements. which are made on
the outside surface. are used directl to sok e liar the conductivit of the first
liter. From this solution. a set of currents and xoltages are computed liar the
ini(h. surface of this la \er. These -measurements are then used to obtain the
conducti it distribution of the next ko. er. and so on. -Its a simple idea.- Chene:.
sa\ s. -The nice thing r,. it applies to lots of problems.-

The RPI researchers are not the onl group working on impedance imaging. but
Chene credits Isaacson with ha\ mg the clearest \ ision w hat can be done. "One
or the 1,(2 things lie is able to do is to ask the right questions.- she sass. "People
workinLi on imerse problems usuall start b thinking about the reconstruction
problem. Figuring out what data one needs in order to do reconstruction ()lien
suggests w hat measurements should be made. But Dake looked at the problem
front the point of iew of actuall' building a s sten, and asked the more funda-
mental question of how to make measurements containini_! the maximum amount
of information.-

The answers could o ind up sa\ HP_' \ c-.



TParlez-vous Wavelets?
Mathematicians are like the French.'' the German poet Goethe once re-
marked. "They take whatever you tell them and translate it into their

own language and from then on it is something entirely different.-
Goethe's observation is as true now as ever. But times may be changing. In

the last ten years. mathematicians and researchers in diverse areas of science.
engineering. and even art have discovered and begun to develop a theoretical
language they can all understand. This new common language is sparking 11CAA
collaborations. Many mathematicians are now crossing over into such applied
areas as signal processing. medical imaging. and speech synthesis. At the same
time. much deep but abstract-sounding mathematics is becoming accessible to
researchers in fields from geophysics to electrical engineering.

The new language is wavelet theory. Those w ho speak it describe wavelets as
powerful new tools for anal'. zing data. Wavelet theory serves as a kind of numerical
zoom lens. able to focus tightly on interesting patches of data but without losing
sight of the mathematical forest while attending to the trees. twigs. buds. and
grains of pollen.

"Never before in anything on which I've worked have I had contacts with people
from so many different fields.- says Ingrid Daubechies. a mathematician at AT&T
Bell Laboratories and a leading authority on wavelet theory. Because there are so
many aspects to the subject. "you have all these ideas brew inc together it's very
fertile for every body concerned.- Daubechies adds. "It's a very nice laboratory for
showing that applications can have interest liar pure mathematics. and x ice versa.-

Mathematically. wavelets are an offshoot of the theory of Fourier analysis.
Introduced by the French mathematician Joseph Fourier in his essay Thi'oric
wia/j thfitc di' In chalcur ( analytic theory of heat i. published in 1822. Fourier
analysis seeks with great success to understand complicated phenomena by
breaking them into mathematically simple components. The fundamental idea
is to take a function and express it as a sum of trigonometric sine and cosine
waves of various frequencies and amplitudes. The familiar and well-understood
trigonometric functions are easy to analyze. 13y combining information about a
function's sine and cosine components. properties of the function itself are easily
deduced at least in principle.

Fourier analysis is among mathematics' most widely used theories. It is espe-
cially suited to analyzing periodic phenomena. periodicity being the most promi-
nent proper(!, of sines and cosines. But even so. the theory has its limitations and
its pitfalls. The main problem is that finding detailed inlManation about a function
recluires looking at a huge number of its intinitt.s1 many Fourier components. For
e \ianple. a transient -blip.- obi. IOUs in a graph. is impossible to recogni/e from Its
eflect on a single component. the reason. in essence. is that each sine and cosine
wise undulates infinitely in both directions. thus a sin 1g,e wave can't help locate
any thing. Indeed the shat per the bhp. the more I ourier comp.ments are needed
to describe it

NV,idel Illeol s bikes it thlIcivnl drpniAch Instead of t,1 v,ith the mlinitelv
undulating sine and cosine waves. w. a,. elet analysis relies 011 translations and dila-
tions of ,I ,110,1111 elite -; 11 -111,1thet V.,11,CIC!" 11101 is conccntrated in a find': inter\ al
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more flexible than traditional Fourier analysis. "Daughter" wavelets are formed
by translating. or shifting. the mother wavelet by unit steps and by contracting
or expanding it by powers of two (see Figure 1). One then expresses other func-
tions as combinations of wavelets. just as Fourier analysis represents functions by
combining sines and cosines.

The fact that the mother wavelet is concentrated in a finite interval gives wavelet
theory its zoom-in capability: An interesting blip in a function can be analyzed
by looking only at those wavelets that overlap with it: finer details are resolved by
looking at increasingly contracted copies of the mother wavelet in the vicinity of
the blip.

Many of the ideas underlying wavelet theory have been around for decades.
but the subject itself got off the ground only recently. The story starts in the
early 1980s in France. when wavelets were introduced by geophysicist Jean Morlet
and mathematical physicist Alexander Grossmann. In 1985. mathematician Yves
Meyer constructed a family of wavelets with two highly desirable mathematical
properties. called smoothness and orthogonality. (Interestingly. J. 0. Stromberg
at the University of Tromso in Norway had constructed such a family several years
earlier. but the connection with the nascent theory of wavelets was not realized
until after Meyer's work.)

The following year. Meyer and Stephane Mania gave the subject a solid foun-
dation with a theory of "multiresolution analysis." Then in 1987. Daubechies
constructed a family of wavelets that. in addition to being smooth and orthog-
onal. were identically zero outside a finite interval. Daubechies's construction
opened up the field. "Compactly supported" wavelets arc now easy to come by.
and are among the most commonly used in applications.

And applications are abundant. Wavelets arc being tested for use in everything
from digital image enhancement- making blurry pictures sharp to new methods
in numerical analysis !itself widely used in scientific computing I. "They're a
very versatile tool." says Daubechies. Not all the applications will pan out. but
many will. and some already have. "There are some very nice success stories."
Daubechies adds.

One such story mac haze far-reaching effects. especially for the next generation
of criminals. The Federal Bureau of Investigation has adopted a wavelet-based
standard for computerizing its fingerprint files. The FBI has around 200 million
fingerprint cards on file. according to Peter I liggins. deputy assistant director of
the Bureau's Criminal Justice Information Services division. and 30.000 to -f0.000
identification requests pour in ever day. At present. 0-e FBI's fingerprint tiles
consume about an acre o: office space. The goal. says I liggins. is to digitize the
files. store them electronically. and "put [them] in something that would fit in a
20 20-foot room."

It sounds easy: after all. entire encyclopedias now fit on a compact disk with
room to spare. But that's words. Images are something else. At a resolution of
500 pixels per inch. a standard fingerprint card contains nearly 10 illegally tes or
data. Transmitting that much information over a modem something the police
would like to be able to do takes hours at today s transmission rates. For a dozen
cards. it's quicker to use Federal Express.

What's needed is some way to compress the data on a fingerprint card without
I M,111( F ttlf qup distoi ling the picture. That's w here waNelets come ill. By treating the fingerprint

lntt '11,11,Al ef I (VW, frst 'of inldr,' as a two-dimensional function. its possible to represent it with a combina-
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are needed to represent a fingerprint. and the contribution of each wavelet can be
rounded off. or "quantized." which reduces the amount of data that needs to be
stored or transmitted.

The wavelet standard for fingerprints was developed by Tom Hopper at the FBI
and Jonathan Bradley and Chris Brislawn at Los Alamos National Laboratory.
The standard allows many kinds of wavelets to be usedin effect. each electronic
fingerprint "card" will include formulas for its particular wavelets. as well as the
wavelet representation of the fingerprint itself So far, one family of wavelets has
been approved for use. It compresses fingerprint data by a factor of approximately
20 to 1 reducing 10 megabytes to a much more manageable 500 kilobytes
yet gives images that pass the FBI's automated recognition tests. Indeed. the
reconstructed fingerprints look almost exactly like the originals (see Figure 3).

Bradley and Brislawn have also applied wavelet techniques to another kind of
data compression: managing the numerical geysers that gush out of supercom-
puters when running such things as global climate models. "High-performance
computers are reaching the point w-here their ability to churn out data is surpass-
ing our capacity for storing and analyzing, it." says Brislawn. In the approach he
and Bradley have developed. the computer decomposes the solution (for exam-
ple. a color-coded map of global ocean temperatures) into wavelets: the user can
then control the output by specifying how much detail --that is. how many of the
wavelet componentshe or she wants to see. One challenge is to figure out how
much you can compress the output without sacrificing quantitative capabilities of
a model. such as long-term statistical predictions of climatic conditions. Brislawn
notes. "This looks like a tough question that we won't be able to answer until we
get a better idea of what the models arc capable of predicting."

Other researchers are studying the use of WaNclets not as post-processing tools.
as Bradley and Brislawn are doing. but directly in scientific computation itself
Gregory Beylkin at the University of Colorado has been studying applications
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Wavelet theory is making
some of the hard-won
insights of mathematicians
working in the abstract
reaches of analysis
accessible to researchers
in many fields.
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of wavelets in numerical analysis. Many problems such as solving a system
of partial differential equations that describes the flow of oil underground boil
down to working with huge matrices. or square arrays of numbers. Such matrices
are easier to work with if many of their entries are zero. Beyikin has shown that
wavelet analysis can reduce a wide class of matrices to the desired form.

Wavelets are especially suited to analyzing sound. Indeed. there's a strong resem-
blance between wavelets and musical notes. The mother wavelet can be likened to
a particular note say a quarter note at middle C-- played at a particular time. Its
translates represent the same quarter note at middle C played at other times. while
its contractions and expansions are eighth- and half-note Cs. played at higher and
lower octaves. Ronald Cullman at Yale University and Victor Wickerhauser at
Washington University in St. Louis have developed a technique they call adapted
waveform analysis. in which a catalog of waveforms is automatically searched
for the wavelets best suited to a particular problem. Among the applications is
removing noise from recorded sound,

Coifman and his colleagues recently cleaned up an old piano recording of
Johannes Brahms playing one of his own Hungarian Dances. Over the years. the
recording had acquired several layers of noise. Brahms's live perfmnance was
recorded in 1889 on a \yax cylinder. which later partially melted. The damaged
cylinder was re-recorded on a 78 rpm disk: the \ ersion Coifman began with had
been recorded from a radio broadcast of the 78. By then the music. competing
with pops. hiss. and static. was all but inaudible. Wit\ elet techniques made it
possible to remove enough not ;e to hear Brahms playing.

Wa\ elets are also helping researchers clean house in theoretical statistics. "As
soon as we were exposed to wavelets. we made the equk akin of about ten years'
progress in months.- says David Donoho. a Stanford I: nix ersit statistician who
has led the way in applying the new theory. Donoho and his colleague lain
Johnstone have developed a "was elet shrinkage- method for remo ing numerical
noise from data. Their method. which they'e show n to be optimal from several
technical vantage points. first decomposes data into v. a \ elets and then shrink,
each was elet component according to a rule that eliminates small components
altogether.

Donoho expects the insights wavelets supply to set a new agenda for theoret-
ical statistics. I la\ ing sok ed many of the technical problems theorists had long
struggled with. "we're in a better position to say what the right questions arc for
statistical theory to focus on.'' he says.

Indeed. that nun he wavelets' most important legacy. Wavelet theory is making
some of the hard-won insights of mathematicians worl, ing in the ah,a nags reaches
of analysis accessible to researchers in man\ Ileitis, "Was ,dets teach you a way to
think about problems so that a lot of ideas in abstract harmonic amtlysis become
natural.- Donoho say,. The theory of wavelets does more than simply decompose
and reconstitute complicated mathematical functions. In Donoho's view. "h., a
tool to restructure sour thoughts.-

Daubechies agrees. "A lot of things are starting to come together.- she says.
the same time. she adds. de r that we still need new advance, in order to

fulfill all the promises that \\ e think ale theie.-



Random Algorithms
Leave Little to Chance

It's a common experience: B'o're walking down an tact: corridor or a city
sidewalk \\ hen. without warning. you find yourself lace to face with someone

in an equal hurry going the other way. You both stop before you collide. and you
both step aside to your right. You both smile awkwardly and both step aside
again to your /di. You both smile again. This time you wait for the other to
make a mo\ e. You both \\nit for the other. Finally one of you breaks the pattern.
and the impasse ends. You both laugh. say "thanks for the L Iance.- and walk away
wondering how long you could ha\ e both been stuck there.

That scenario generally plays out to comic effect in e\ eryday life. Curiously.
something similar occurs in computers but with effects that are less amusing.
When a singleminded program meets ta I c V. rong input. the result can be a de\ as-
tating slowdown. And according to Murphy's Law t "If any thing can go wrong. it
will" 1. if there's a data set on \\ hick a program runs slowly. then that's the data set
the program \\ ill he asked to process.

There may he a way out. though. Mathematicians and computer scientists are
studying a new approach to programming that tt\ oids the computational gridlock
associated with many problems. This new approach relies on a humble but time-
honored technique: flipping coins.

The technical term is "randomiration.- but it boils dow n to heads and tails. The
idea is to insert occasional random I tGec.sions into a computation to tiN Old getting
caught up in some unexpected conspiracy between program and data. While
random algorithms are susceptible to runs of had luck. such runs can be made
ex, Ahngly improbable. Nloreo\er. that kind of had luck is independent of the
data.

"When you put coin flips into your algorithm. then it doesn't matter how your
data is structured.'' explains Joel Spencer of the Courant Institute of Mathematical
Sciences at NC'S York lni\ ersity. "There's no particular kind of data that's bad.-

Ilere's how, the idea works in the case of the sidewalk tango. Suppose that
you. the program. hale a strictly deterministic pattern of responses to the other
pedestrian !the data. which in this case is another program t. If. ,;;t. ,ott aka!,,
ccit: through the responses I.eft. Right. Wait. then you'll he OK if the data has
some other pattern. But if th,. data happens to be ,:tructured the w rong way
then you're stuck fore\ er. On the other hand. if you randomly choose among the
possible actions each time. then no matter how the data is structured. it is highl\
unlikely you'll he blocked for long. E \ en if the data "wants'' to block you. it
cant 11111C!,S it's SOITIChOV. Clair.oant. ID which ease !,011.I.0 got bigger p'ohlein..

It's also possible you'w stumbled across a mirror.1
Computer;. of colt' se raid:, go \\ alking dow n the ,,adetv alk. \ ore IC,thlt:

,Ctillq! V.I1Cle Falli1011111es'lleirs is the task of sorting. Computers are often fed long
lists I of names say. or addresses, to be put into alphabetical or numerical order:
it the kind of "mindle:,;" acti\ Hy computers excel at And that's the problem: .\
machine w ill gladly spend all day or all deC,Itte sorting (ATM's data. and it v. ill
do just that if \ ou don't woiry about the efficiency with \\ Inch it v orks.
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The efficiency of a sorting algorithm (what computer scientists call its "com-
putational complexity-) is measured by the number of pairw ise comparisons it
makes that is. how often the algorithm compares two objects to see which one
conies first. Ilan algorithm is unlucky (or stupid) it can w ind up comparing eery
pair of items. That's not so had ou're just trying to put a bridge hand in order.
But it's a urim prospect if you've just spilled a thousand alphabetized index cards
onto the flooryou could wind up making nearly half a million comparisons.
And when the number of items. say on a political party's mailing list. climbs into
the millions or tens of millions. the potential worst-case number of comparisons
begins to make the national debt Ir,,k like a pittance.

One popular sorting algorithm is called QuickSort. The basic idea is to choose
one item on the list. such as the item currently on top. and then compare everything
else with it. forming two piles: those "above" and those "below.- The key then is
to repeat this procedure with the "above" and "below" piles separate/J there is
no need ever to compare items from different piles. This process. which theorists
call "recurske.- is guaranteed to work.

On most lists. QuickSort works quite well. More pre,isel, when ikeraged over
all possible arrangements of a list. the number of comparisons the algorithm makes
is prt portion al to the number of items in the list multiplied by the logarithm of that
number. But there are times when QuickSort doesn't work well at all. Ironi,a11.
the list is afready sorted. then Quick Sort does the worst possible thing: It con pares
non, pair of items.

"It not enough that an algorithm does well on ik erage if there's a patch of
problems on which it does %cry badly. and that patch of problems happens to
come up in the real world.- says Spencer. "That's exactly the case with QuiekSor
because in the real world you do sort things that are already sorted.
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A randomiled tcrsion of QuickSort soles the problem of -bad- data: Instead
of starting %).ith the lir,t item on the list. or an other predetermined item. pick
an item at Yandom. Most of the time. the too piles till he of roughly the same

Bt choosing a random item at each stage. the algorithm will unless t ou are
exceedingly unlucky make close to an ikerage-case number ()I' comparisons ill
total.

QuickSort. v.hether randomi,ed or not al),,ey, produces a correct ans .er
that is. a properly sorted list. What you're gambling on is not the ans er. but
hon long it takes the algorithm to find it. In other applications. an algorithm's
Plitt time is guaranteed. but the ansNer it produces Is kink approximate. but ).kith
a high piobabilitt of heing wt.!, close. One such problem c(,nceins computing
or estimating; the -oltitne- of an /I-dm-tensional shape. This is not just an

arcane mathematical pursuit: the siie Or higher-dimensional geometric shapes is a
central concern in malt problems in theoretical physic,. chemistrt statistics, and
elsev. here.

Theoretical computer scientists haw prow(' that estimating the olume ttl gill

n-dimensainal shape to a specilied accuraet Is computationally intradable. 11 thL.
algorithm used i, deterministic. "Intractable- means that the amount of

exponentiallt N gilt the dimension it. leading to it kind of compu-
tational inflation that makes all but the smallest problems too expenske to mike.
In general. theorists consider a problem tractable if there is a -poi), nonnal time-
algorithm for sok ing it mat is. an algorithm %%hose computational demands
increase Ito fasto than sonic uI the siie of the problem Iin till , case the
dimension /IL For estimating oiume. there is no such alromhill.

No such acterniiniqn algot Ulm). that is
In I9S9. \lartin Dter at the I atiN chat). of I eci, nl Higland dad Alan Trie/c

and EU at C'arnegie Mellon I. 'nkeNit found :1 rarldO111 itigOrithIll 101
ohmic that broke through the problem's exponential harrier. I heir

algorithm. v.hieh computes the \oluntc, conkA 0I1 a 111.'111011

for lo-t- inside an n-dimensional
lite starting point for I )ter I I ic/c. and Karlrlall\ algorithm resemble, a pool It

played game of dart,. If t ou thnm darts %%idiom aiming the fraction that hit
particular region of a ud I, approximatit equal to that icguins liactioa
of the dartboard's area Isee 2,. (*itriouslt enough. an accurate estimate fol
the legions area require, ,111 it/II« Mat'

In // dimensions. the traditional "dart!Nyard- is an /1-(11111e11101101-ClIlle. and
-darts- are ihrOtI.III plainc a random number for each of the fr.! coordinates )1

a point in the cube. but that alone doesn't sole the problem. Fstimating \ ohmic
this was require, a number of darts that grou,s exponentiallt \A, ith it. Elie reason

somey. hat counter intuitke: .An object tOil lit ,moult into the n-dill onsional
cube but still occ,q)y lust an esr'.-nierliallt (hit portion of the t talc% olume I of

example. the n-dimensional -sphere" of diameter 1 touching all sides of a unit
cub: ha; 1.oharlo les, than 1/2" ir 1 see hox t page!. Thervforc to hose
ant reasonable chance of estimating the %ohmic of sat. a I (11)-d1111t2111011a1

hate to t1,1111, more darts than there are elem....mar, partick's in the unkerNe.
rhe three theorists dodge that problem bt placing the "huger' legion insicle

a nested set of dartboards. The dartboards reallt. just come\ shapes in /i-
diIllerhiOrlal ,pace ;ire crafted so the target tiLcupies a substantial fraction of the
small -a. \One)] o(,:.:apics a siihstantial Inaction 01 the next small,- ! and so on until
the largest darth:ard tuctipie!i a good hit of the cube !sec Figure a 131 random'',
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thrtns ing Llarts at the smallest dartboard. sou can estimate the target's kolume
as fraction of that hoard. Likekkise. each dartboard's %ohmic as a fraction of
the nest hargei hoard can he estimated by randomly thrtming darts at the larger
hoard. The final result an estimate for the %Amite of the target as a fraction of
the cube is obtained by multiplying. all these fractions together.

The Incredible Shrinking n-sphere
The area and solume formulas rd.` and (4/3 )7:r3 are familiar to anyone who has

studied cirelei, and spheres. Less familiar, perhaps. is the formula

%%nch gives the "volume" of an n-dimensional "sphere" of radii,. r.
Tip; dLnominator 1-1(n/ 2) t I), takes some explaining. The gamma function. as

it's called, is it much-studied special function. It plays important roles throughout
mathemati-. hum geometry to nuinh,:r theory. The gamma function generalizes
the factorial function n! no, 11(n 2) 3 2 I--- itself a central character
in combinaiati it., and probobility theory. h,,r computational purposes. the main
property of the gamma function is the "recursion relation" DA' rt.c). Thus.
for example,

lakev,ise.

1-141 3 I'131 3 .2.h21 3.2.1

, 5 3 1 1

2 )

To round out the application to the n-sphere it's enough to know that II I

and I/2j. /71/.:. Thus. for example. the toluene:, of the and 6-spheres of
diameter I (radius 1/2) are r:'/32. rr'/641. and n1/3144. iespectikely. In general. the
kolume of the it phew gets smatter as n gets larger: The numerator 1;111
exponentially. v.hile the denominator It t n/ 2) r I I 111Cfeo es. As a remit. eken though
the n-sphere fits snugly inside a cube. the fraction of the cube's kolumc that it ttecupies
is exponentially small making it a tiny target if you try playing "darts" on the cube
sec Inelu star) )

liut that stiategy only (hides one pi oh' for another thin st..eins equally difficult'
piLking random pollll Ill,tde in .11 inttarils shaped ITI(111

.\:1,111.1. le nut colic irteil %kith Limn!, quick I!. there's no pohlem.
'ill you liake to do is use ramItint numbers to gencrate the coort.linate it points III

rAintensional spat:: but discard an points that happen to tall outside the tlesii..LI
lo keep the computation tractable liokkek et I cr I t Lye. and 1.-;,initan

had to lint( atiother 'Haien and then prose that it ktorlt.s.
I he approach thcy homil 'molt. es on of the staples of pittl-talulil thcoly

ramlont ,kalks. I he tit-, strategy doesn't produce ti 1411 minion) points hat it
comes close enough for mans purposes. itteluding the n-Llimensional

tit pittlkleni I h.: stalk`. take place oil an ti-thtiLmsiolial grid sec
I it,torc Startiot! hum a paint ih u. s .111%\`,11 to he in the icgum is mtere..t.
the r5.1itlitin ssalkei picks one of the 2tt t_itorLImattz Lint:Lotions at raiiLlom in 11110.:

III:nell'.IOIt,, loo' eumple he nmffit loll a die it, tIct.id.: %%Lille; to go hack. forth
left Iiglu tip of dito, n tint then (WIC Iel) III 111,11 1.1110,:111,11

LlimiL, sit iltte,n't take het out ad,_. tole legion

hate liti a ht.11e tune that a ',militia %kall.ei ekentull% rcts
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lost- in die sense that alter a certain inimbs:r ol steps she has nearby equal prob-
ability or being found at any tin. en grid point. The open question was how long
it takes to get lost docs the number of `,I.t211, mow ,nponentiall of poi, Holman>
with the dimension tr?

"We showed we can get lost in pol nonnal time.- explains Kalman. In other
N\ Ord', even though the number of grid points grows erpon,mtiall!, with the dimen-
sion n. the number t Iralld0111',Wps it take, to get aft\ v. here on the grid with nearly
equal probabilit . grows no faster than some power or tr to proe it. -we needed
a lair hit of mathematics.- including -xarious results frOlii &Irk:MI(1,11 g,'.)111.....n.r,
that had just been pn.u, ed in the 19'(s Kannan

I ).c...r 1.rici and Is: annon's result applies only to con'.:\ regions and exen
then. some technical iestrictions apply. Il . not bird II:, the method
doesn't work in general: II your region is hourglass-shap...d. as in Figure '; then
a random walk starting in Inc compai uncut in,y requite exponentially manN,
steps to AIN:oxen- the other compartment., i he duce theorists oliginal ploot
showed that the dinount of computation required for accurate \ ohmic esi mime.
nl H dimension, is hounded H a marked miproxement osel the exponential
bounds of deterministic algorithms but still lar I tom contiast the
woist-case lot of detdaninistic QuiLktioit 1 hounded hy . Subs...km.1u

woik a number of ley...art.:lids though has lowered the hound \ lost nth,

Kalman I ,1',/11, I 11.15/ II Lill I 110.t.:1",1(1 and Lorand
and Siniono".u/ 1,1 Lin till

11111, 'khlk,21.1 111,.. hound !,, dud It .1 Lon cot

true down to Ii I he Algol (thin which could 111111(11(112 of applk anon, is

now -St:Emig on the pi aLtr..al kinnan say

Ii max he sow.' nine heroic random dh,oritlinis hcoune Loivononplii.e 111 lulu
putter applications. -111%.1.."', a rt...'; preler2nce among ludic. th.. Ieal

,1 Id Algol Sp2n...er at. knowl,2dges Hut the th...'oiy Is l'in-

yeoning and di: potenital '.ciy !eat I hues
not coindilemil in the etlecti\ enc., of I.Indonlieti algolithilis. I lie\ 'lc hot iirst

gunk I think really impoi 'ant tor computer

The Guru of Random Algorithms
-ph: mini of random algorithms i a math: atidan who lids never teuehed a com-

puter. Paul E.rdir.. one of the best-known and mo4t colorful mathanaticians of the
VACI1(1011 century. Erdo.. who turned No in I993. is a fiegia...,,t ybitor to
centers around the world. lie has written hundreds of papers and co.mithored many
hundreds more. Joel SpiEer Lredits him with inxigorating the theory of combirid.
torte: and creating what the probabilistic in v,h11.2 palely

mathematical. is what makes random algorithms tick.

ul speoaltic,. is proteins the exi.terke tit i.lirrhinatorial
without aLtually constructing aunt. 1 he probabilistic method, for example. does this
t-i., showing that. under the right ciictimstantr.s. an obyet picked at random from a
certain class of combinatorial objects wilt base the desired structure with piohahility
greater than /cur and that can happen only ilobjects with the deurcd structure exist

13 11:O tivilLADLE

unuire 5 I

tt

; I 1'1 11.1,

(

IA II \ I II NI \ IN lilt
\i SI tilt 11 II Nt I c.



The guru of random algo-
ri111m1/4 k a mathematician
vvim has 11C8 er touched a
computer.

Spencer's faiorite example is Era's's very first: a result in graph theory dating hack
to 1937. The problem is easi.:st to state in term, of social tlivineering: Is it posable
to the 0,v a party for, say. n guests. at which there arc no large groups either of mutual
triemis or of mutual strangers? IT° be precise, by "large" we mean twis:e the logarithm
base 2 ()I-n.1 anwer: Yes. Just start with a roomful of mutual strangers, bring
each ,air toiether and either intrud lee them or not, depending on the toss of a coin.
By an ingenious proof. ErdC, showed that the probability of getting a party with the
desired mix is not just greater than zero. it's extremely close certainty.

That might seem to i.,ugg:it that 1 rNis's random introductions could be replaced
by mime deterministic rule But so tar. no line has bond one that works. I The
problem of cour,e. is to lind a rule that works for crli value; of n.) No one has cten
come close to this result hi a constru iise (algorithm) and it% been 46 years," say,
Spencer. I he reason. he spectil Iles. is that "when you start to construct thing you're
putting structure into them. and this Nobler]) seems to demand a lots of structure."
But who knows? One of lirdOs's many proteges might still find a construction that
sale es. the pwhknl

I hat's happened w ith other problems. Indeed, "delandomitation" i., a hot topic in
the theory of random algorithmi:. Spencer note,. It isn't always po abl, and it of
mat es the inner workings of an algorithm luder to understand. but derandonniation
olleis theoretical in ight, of us own. At the yet; least it Hite. theorists ,on,, thing 0)
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-I he last logical steps for
the planar triple bubble
and the double bubble in
space remain to be taken
perhaps b!, some future
group of undergraduates.
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solution for three areas is assumed to consist ot connected rqions then the
"standard" form ins out o% er tv.o other combinatorial possibilities I see Filmre

. More recentI. Ilutchings. no a graduate student at liar\ ard t 'MN ersity
has gone back to the double bubble but up a dimension. It's knov. n tuat the

a.ea-minuni/ing tiouble bubble is a "surface of roolution- obtained b!,
iotating some plane curse around :111 iiNas. The likely ansv.or Is the shape that
IV,Ulls hen the 2-dimelisional standard double bubble l's spun ;.tround its a \is of
s)inmetr. but a proof remains elusi I Itmeer. Hutchings has slim% i that the
solution. \\ hatoer it ma look like. he no ems(:, chambers. Nloreo% cr. in special
cases. such as v.hen the No prescribed \oltin,es are equal. he has proed that the
enclosed reLrions are also connected.

the lost lorical steps for the planar triple bubble and the double bubble ill
space remain to he taken perhaps 11) affil future l'roup tot undeip.radthite, I lie
pioblems are pood ones for students. sT, s !hitching,. because the high-lo el part
ot the problem Is done. and the rest can be approached 1r.Iiii ,:lementar, methods.

It lust tequires some determination and a little inpentin,.-
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Straightening Out Nonlinear Codes
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Error-correcting code
technology is noslada-;,s as
common as compact dishs:
its Irhat your fluor-
ite \I0 /art or Madonna
CD to play perfectl!, even
though ,sour cat's been
claming the (115k.
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Coding theorists hale
known for decades that
nonlinear codes of a gilen
length can have more code
words than their linear
counterparts.

11111.-, coal, 1%, Itll
NIcilli N1 kit( %I (411 N( I

in Nturrat hill. New Jersey. and Patrick Sole at the Centre National Recherches
Scientilique in Sophia Antipolis. France. to short that many nonlinear codes can
acct .ilia be considered linear when looked at in the right tat.

heir lindings. which k ill appear in the IEEE Than eiction% in bib artnEnton ne-
t,/l. open the gates- to the use of nonlinear codes. sat s Kumar. Among the
promising applications is "sequence design- for digital cellular communications.
which will ckcntuallt replace the analog teelmologt now used in gadgets such as
car phones. St stems based on nonlinear codes could serke mans more users' A ith
the al. ailable handkk idths.

But first of all. what are errorcorrecting codes. and that does hIleadt \ 11,0e to
do %%ill) the subject?

In general. a mathematical code is simply a set of "kkords.- each of which is
nothing mole than a string of st mbols. The most commonly used "alphabet''
has just t \ko smbols: U and I. I picalk. the words in a code all hate the same
"length- that 6, the same number ()Ins and Is. !Not all codes work that v:at.
The familiar 11orse code. lOr example uses a simple i/ot to represent the frequentlt
appearing -kkord- t'. but a loner doi-dor-daNh-thd for the less common I.

I he crior-coriceting capabilut of code 1s based on a notion of ''distance''
between code %%ord.. Hie distance b..i.kkeen tkko word, is simplt the numbei
of places in which they diner. If the distance between ant ty. o code words is

.it least I then the code can correct single errors. I or example. in the code
;1160H6 11110.00111. 110111. the misread cord UI Iuti c;111 he corrected to its
"nearest nendiboi I I Ion. tram which it diners in unit one dirtt It differ, twin
the other code sorts in to'. three. ;pill tom places. iespeetn.clt lakew ise. when
the distance between code words (s at least 5. the code can correct double errors
triple clog -collet:1ml' iequiles distance 7 of moic. and so forth.

I he code !mount 1 1 Inn Nil II. 111)111 is also an example of a //..k ui code: It

il add tkko c, kkolit, bother using the binart addition rule I I it the
icult is another code ord. I or example. I I WO 11011 1101 1 1. I meant\

a code an aivebrale ,a Facture that makes decoding messages much easier
and makes oicotimr then a snap. In precise mathematical terms. a lineal code
R a k ector -pace o\rl the finite held so the lull force of linear ,dgebra can he
bought

Rut linear codes also hake thew now nside. the main problem is th:q linearity
016:n iestilets the numhe: of possible code words. which hinder, the code's abilitt
to calls intOrmation. If sot! 1'e not kkorried about lincaritt toll can toss in as a
Ilea code word alit strillo. that mamtains the appropi late h om eke' t thing
alveadt in the code. But If kola insist on linearit... ton hake to check these
distances not Just lor the prospeetike new code word. but also for all its sums V. ith
words alteadt in the code.

( t.dtile Oleo' Isis hake known h rdecades That nonlinear codes of a gr. C11 icnIzth
can hale more code cords than their linear counterparts. Among linear codes
of I n Ili 16. for example the best doubl.-eriol rc,.. code Ili, 128 code
\kords. Rut in 1967..1. 11. Noidstrom and John Robinson et wstructed a nonlinear
code comm.-nog 256 words Nordstrom was a 111_f-'h-school udent at the time_
Robinson an electrical enginc-i at die 1 ank ersitt of Iowa 1. In dike!. only 7 digits
in each code void of the linear code carer information I the other 9 do the error
correcting). whelea lit the Noidstrom Robinson 042. can: inloi

impiok einem ol apprwomatek l4 Researchers hake dekeloped mans other

r
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e\amples or nonlinear Lodi.", including tkko ram
'and Preparata codes. both olv, hush generali/e the Nordsn Rtihne,on

ilieS (IC """ kl' INCRIOCI%

1:\ en lo linear codes hake pi edonunated in practice. bet. e\tla
titre makes them easier to \wish with. %\ Inch translates into rivct and moil
alrorithms for encoding and decoding Nonlinear code:: appai cot IA I, M
fait: has lett them in the dust.

'kill
The like reseaiehers haw discok LTA! a simple trick that tai n- man\ familiar

nonlineal codes into linear codes not oker /7H though. but mei d, the algebraic
sk stem n I. 2.3} kk ith the rules 2 2 I 3 2 x 2 0 and

\lore the\ hake round that mans nonlinear codes can he obtained as
"images or codes that are linear 0, el' / using a particularb simple mapping.

i he trick is a kind or squaring or the circle see Figure 2 I he s\ stein /I is
often represented b lour points or compass: 0 and 2 at laq and "est. I and 3
at :North and South. Adjacent digits are considered to diller In I kl iposite digits
1-), 2. the distance betv,een code kkords reflects these dilierence I of e\ainPle
the distance betkkeen (1110(1 and 0123 is 4 since the digits dilki h% O. t, 2. and I.
icspectik eh.. The nok idea is to the a linear code over and I eplace the digits
O. I. 2. and 3 %kith till. (II. I I. and In. respectikely. The ik.'sult nonlinear code
okci / that is reall just a linear code user /4 in disguise!

The surprise is that this trick accounts fish' essentially all or the nonlinear codes
that theorists hake studied ,.;) tar. in.sludinr the Nordstrom Robinson. kerdoek-
and Preparata nudes. It didn't hate to kkork out that way: the trick might have
produced onl> a limited soh, las, or nonlinear codes-- and uninteresting. useless
ones. at that. The thrum's success hints at deep connections among the Narious
kiwis of L ode.. %kith more surprr.es posibh. in '.lore.

on 10

Figure 2. flu' key to nonlinear codes:
".yquarilig
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The theory's success hints
at deep connections among
the various kinds of codes.
with more surprises possi-
bly in store.
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The theory hits already cleared up a longstanding mystery: the fact that many
nonlinear codes seem to come in "dual pairs- even though "duality- is defined
only fig linear codes. In particular. each Kerdock code has properties "dual"
to those of a Preparata code. while the Nordstrom Robinson code looks like a
"sell -dual" code. Researchers had long puzzled user this seeming coincidence.
The new results explain it all: the nonlinear codes over Z, inherit the appearance
of duality from their linear precursors over /4. which really are dual.

Hammons and Kumar first discovered a Z4 connection for the Kerdock and
Preparata codes in early 1992. They had been imestigating mathematical aspects
()la communication technique know n as code division multiple access ICDM A).
an up-and-coming candidate technology for digital cellular radio. CDM A allows
many users simultaneous access to a communication channel by assigning each
user a separate code word: the distance between code word.; prevents users' signals
from getting mixed up. With more code 11ords. more people can use the system at
once.

Sloane. Calderbank. and Sok made the same discos cries independently later in
the year. According to Sloane. David Forney at Motorola Codex and Mitchell
Trott at MIT asked him at a conference in October about the possibility of a
connection between the Nordstrom Robinson code and self-dual linear codes
oser Z. Sloane was the right person to ask. lie and John Conway at Princeton
t'nRersity had recently completed a study of such codes. so he immediately knew
w Inch code would give the connection. if there was one: a self-dual code o\ er /4
known as the octacode.

"I went home and. in two minutes thinking about it. it became clear that yes
indeed. the octacode was really the same thing as the Nordstrom Robinson code.-
Sloane recalls. "I called up C.mw ay and said. 'Look! I low could we have missed
this? We should hake noticed tnis years ago!'

Calderbank and Sole contributed several key ideas to Sloane's observation. and
the three or them soon had an extensie theory. including efficient algorithms for
decoding the Kerdock and Preparata codes. Then Calderbank discovered that
I 'amnions and Kumar had !build many of the same results. The two groups
agreed to publish their results jointly.

More recently. Sloane and Conway base found /4 precursors Ihr a number
of single-error-correcting codes that are nonlinear over /2 while Calderbank.
Kumar. and Tor I lelleseth at the University of Bergen. in Norway. have discovered
some new codes user /4 v hich are better. by various technical standards.
of the previously known families user ibgether with Peter Cameron at Queen
Mary and Westfield College in London. Bill Kantor at the tali\ ersity of Oregon.
and Taap Seidel at the Technical lahversity of Eindlim en in the Netherlands.
Cakirbank has af,so begun investigating a surprising connection between the /4-
linearity of the Kerdock codes and some seemingly unrelated problems in finite
geometry Nonlinear codes may finally be getting straightened out but it looks
like coding theorists can still count on quite a few twists and turns.



Quite Easily Done
he line between easy mathematical problems and hard ones is finely drawn.T
Some problems seem to cross back and tbrth: First they look easy. then

they scent hard. and then. v hen they're finally solved. they look easy again.
A recent example is a simple-sounding, combinatorial puzzler called the Dinitz
problem. First posed in 1978. the Dinitz problem has finally been soled with a
surprisingly simple proof. but only after fifteen years during 11. hiCh it seemed a
vary tough nut to crack.

The story starts in the late 1970s. kir Dinitz. then a graduate student at Ohio
State 1ThiNersity i now a professor at the Unix ersitv of Vermont). was studying
properties of combinatorial arrangements known as latin squares. .A latin square
is an n n array an symbols say a 5 - 5 array of stars. squares. circles. diamonds. ) 3; 1 A
and triangles in which no symbol appears more than once in any row or column
!see Figure I ). Latin squares are useful. for example. in the design of experiments. Figure I. Lad: of fire .symhols appears
to protect against bias. 11. say. you want to compare fix e different herbicides in a . ,,wri woe in a 5 - 5 him .%quare.

A 1 .) * .
1 7; A )

) 4 1 A -*

A ) 1

corn field. but want to make sure the results aren't affected by \ at iations in soil
quality from one side of the field to another. then di\ iding the field into a 5 - 5
latin square pattern is an efficient way to design the experiment.

Latin squares are easy to come by. Indeed. their numi-;r explodes w ith the
size of the square. from two 2 ' 2 squares to mei \ e 3` 3 squares to more than
10' squares of size 8 8 But Dinitz cooked up a variant on the problem of
constructing latin squares Ibr \\hich it wasnt clear until now that oar solution
could he found.

In an ordinary n '- a 'anti square. there is only one set of a symbols. and an
element from that set must he chosen lOi each location in the square. In Dinitz 's
version called a "partial latin square- each location is assigned its own set of
n possible sy mbols: these sets may vary from location to location. The problem
is still to choose a symbol for each location. but now the sy mbol must come from
the set assigned to that location. The goal. howoer. remains the same: to alloid
choosing the same symbol twice in any one row or column.

In Figure 2. a three-element set is assigned to each location in a 3 3 square:
the elements in orange constitute a partial latin square. The Dinitz problem asks:
Cik en any assignment an-clement sets of sy mhols to the n2 locations in an a , a
array. is it always possible to find a partial latin square'? Or to put it negatively.
at all the ways to assign n- clement sets to the It of an n a array.
are there any for which it's impossible to pick an element from each set without
picking some sy mbol twice in the same row or column?

At first glance. the answer seems obl.ious: Since the problem. in general. uses
more than a symbols. it should he easier to satisfy the nonrepetition requirement
fOr a pat nal latin square than fOr an ordinary laFn square. But that glance
overlooks a crucial aspect of the problem: Not e. cry symbol is aailable at every
location. One NA a to construct an ordinary 'atilt square is to specify where in
each row you'll place the first symbol. V. here the second sy mbol. and so on: that

: ,L. 1. ) 1 IA. !. * -1. *.

1. ). ,:- IA . I. ) ) ; A. . I
: A. ). '- i ; ). . , 1

approach doesn't e ), en make sense for partial latin .squares. Figure 2 One ymind 'orange, Iron!
Another telling difference between ordinary and partial latin squares casts fur- cod; //Ivo-dement set (on whoop, he

liter doubt on the "oh\ lined less- of the aw,:wei. Ordinary latin squares can always (limo, In loom a 3 3 pa, thi/ hilin

he filled in "row by row.- If. .,ay. the first two tows of a 5 5 square hays been %glean.

I
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filled in successfully (without doubling up in either row or any column). then the
rest of the rows can also be filled in to give a latin square. That means that when
you're trying to create a latin square. you'll never paint yourself into a corner you
won't get down to the last row. for example. and find yourself unable to complete
the square. With partial latin squares. by contrast. you can paint yourself in. For
example. if the sets in the first row of a 2 x 2 array are { A. B} and { B. C }. it's
natural to choose A and B as the symbols in that row- but then you get in trouble
when you see the sets { A. Cl and { B. CI in the next row.

Complications notwithstanding. Dinitz's conjecture- that partial latin squares
can always be found turns out to be true. It just took fifteen years for a proof to
be found. In the meantime. the problem served as a kind of drawing card for the
theory of combinatorial design and a testing ground for new ideas.

Dinitz's conjecture can be verified directly for 2 x 2 arrays. because there are so
few different possibilities. In principle. the conjecture can be checked for arrays of
any given size. That's because there are only finitely many cases to check: The total
number of distinct symbols for an a x a array cannot exceed n3. so the number of
cases is less than a3 to the power a3 (more precisely. it's at most the n2 power of

) ). But the numbers involved in such a brute-force. case-by-case analysis grow
astronomically with a. The 3 x 3 problem is small enough for this approach to be
practical. but the 4 x 4 case is already out among the stars.

In 1991. however. Nog Alon and Michael Tarsi at Tel Aviv University in Israel
proved a theorem that made it easy to verify (by computer) Dinitz's conjecture
fbr 4 x 4 and 6 x 6 arrays. Their theorem is not specific to Dinitz's problem. It
concerns a general problem in graph theory called "list coloring.-

In combinatorics. a graph is a set of points (called vertices) and a set of lines or
curves (called edges) connecting them. Many applications of graphs in scheduling
or network theory can be interpreted as coloring the edges of a graph. with the
stipulation that no two edges of the same color meet at a common vertex. To
schedule a college football season. for example. let each team be represented by
a vertex. draw an edge connecting teams tom are slated to meet. and then color
each edge according to the week on which the two teams are to play (say red for
week 1. blue for week 2. and so on). The condition that no like-colored edges
should meet at a common vertex simply means that no team should be asked to
play two games simultaneously.

In a list-coloring problem. each edge in a graph is assigned a prescribed set.
or list. of alloNed colors. The Dinitz problem can be viewed as a special case of
list coloring. for graphs in which each of a "row" vertices is joined to each of a
"column" vertices (see Figure 3). Graphs of this type. in which the vertices are
separated into two sets and all edges cross from one set to the other. are known
as "bipartite" graphs: the particular graph associated with the Dinitz problem is
called a complete bipartite graph. because it includes all possible edges between
the two sets of vertices. There is a general conjecture regarding how large the
palette of possible colors for each edge of a graph must he in order to ensure that
a list coloring is possible. Viewed from this angle. the Dinitz problem is just the
tip of an immense theoretical iceberg.

Alon and Tarsi's theorem gives a condition which. if satisfied. guarantees the
existence ()la list coloring from sets of a particular size. Their condition is simple
enough to be verified explicitly for the graphs associated with the 4 x 4 and
6 x 6 Dinitz problems. In principle, the condition can be checked for all even a.

41 4'
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but once again. the amount of computation involved gets quickly out of hand.
Furthermore. the condition is never satisfied for odd tt. (This doesn't mean that
the Dinitz conjecture is false for odd n. just that Mon and Tarsi's theorem won't
help prove it for those cases.)

Other researchers. notably Roland I-iggkvist at the University of Stockholm.
had made inroads on the list coloring problem and its relation with the Dinitz
conjecture. In late 1992. Jeannette Janssen. then a graduate student at Lehigh
University in Bethlehem. Pennsylvania (now a postdoc at Concordia University
in Montreal). proved a result that surprised even many of the experts. Janssen
showed that Alon and Tarsi's theorem could be used to solve completely a slightly
weaker version of Dinitz's problem. Instead of focusing on squares. Janssen
looked at rectangles- arrays with fewer rows than columns. She showed that in
any r x n array with r < n. its enough to have n symbols (or colors) assigned to
each location in order to guarantee that a partial latin rectangle exists.

Janssen's result comes close to the full Dinitz conjecture in two different (but
closely related) ways. First. it says that you can always fill in at least the first
n I rows of a partial latin square (the previous best result guaranteed only
two-sevenths of the rows). Second. by starting with an n x (n + I) rectangle and
then lopping olithe last column. Janssen's theorem says that you can always find a

a

Figure 3. Each edge in a bipartite graph corresponds to a location in an x n array.

Jeannette Janssen. (Photo courtesy of
Cliff Skarstedt.
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partial latin square if n I symbols have been assigned to each location again.
far better than previous results.

Experts in the field lauded Janssen's breakthrough. "It is brilliant.- said Herb
Will of the University of Pennsylvania. "It moves the problem much closer to a
resolution than anyone had expected.- Other theorists agreed. predicting the full
Dinitz problem would be solve:: )on. perhaps within a year. They were right but
not quite for the reasons they had in mind.

bred Galvin. a mathematician at the University of Kansas. read Janssen's proof
in the /3r(//e/in of the American Alathemaiical .S'ociety: this led him hack to Alon
and Tarsi's paper in the journti: Cmnbinatorica. A remark in that paper made
Galvin realize that one of the ideas in Janssen's work could he parlayed into a
proof of the complete Dinitz problem. provided one could prove a certain result.
about the existence of something called a kernel.

Loosely speaking. a kernel ()la graph is a "largest possible" subset of vertices.
no two of which are connected by an edge. The precise definition is more technical.
but the way kernels are used in Galvin's proof is simple: take any color. say red.
identify the set of locations that include red among their allowed colors. find a
kernel of s,:t. and then make red your choice for all the locations in that
kernel. The Dinitz problem is solved by repeating this process Nith other colors
until evory location has been colored but this approach wouldn't work. Galvin
knew. if some set of locations didn't have a kernel.

"I didn't know much about kernels. so I decidt".1 to go' to the library and see
N% hat's mailable in the way of kernel existence theorems.- Galvin recalls. He found
exactly what he needed in the second paper he looked at. a theorem by Frederic
Malfray which appeared in the Journal olCombinatorial Theory (Series B) in 1992.

1 \Q.:, really surprised.- Galvin says. "I read and reread IMalfray's paper]
several times. thinking maybe I misunderstood one of the definitions." That can
happen in a technical tangle of terminology but not this time. Maffray's theorem
was indeed the missing ingredient: the Dinitz problem had been solved.

Gals in circulated a three-page. handwritten account of his findings early this
year ( 19941. lie subsequently streamlined the proof to make it sell- contained.
Ile is still surprised. almost embarrassed. by the pr'oof's simplicity and the way in
which he found it. "None of the ideas in the proof originated with me.- he says.
"All I did was put together a couple of things that were already in the literature."

The experts are also surprised. "The proof is just amazing." says Jeff Kahn. an
expert on combinatorics a, Rutgers University:. Adds Janssen: "Nobody thought
that if' there would he a proof. it would fit on three pages.-

In fact. Galvin's three-page proof solves the list-coloring problem not just for the
complete bipartite graphs associated with the Dinitz problem. but for all bipartite
graphs. .1a nssen thinks the proof gives insight into the general list-coloring problem
for all graphs. Although Galvin's proof uses none of the elaborate theoretical
machinery in Alon and Tarsi's paper or in Janssen's work. the heavy-duty stuff
may still he crucial in solving the general p'roblem the Dinitz problem may have
turned out easy to solve because it's a special casc. Janssen says. On the other
hand. the list-coloring problem may ultimately turn out easy to solve as well.
perhaps because it's a special case of some even more general problem. If there's
a lesson to be drawn. it's that hard problems need not stay that way.



The Road Least Traveled

Fred Galvin's solution of the Dinitz problem (see main story) not only shows that
partial Latin squares exist, it also points to an efficient algorithm for finding them. That
doesn't always happen: Computer science is rife with problems for which solutions
indisputably exist, but for which efficient algorithms to find them are lacking.

In the classic example, known as the Traveling Salesman Problem, a sale; nan (or
woman) starts at the home office, visits a certain set of cities, and returns home. The
"cost" (in time, mileage, or money) of traveling between each pair of cities is known;
the objective is to complete the calls at the least possible total cost.

The Traveling Salesman Problem is an example of a "combinatorial.optimization"
problem"combinatorial" because it deals with ways of arranging things, and "op-
timization" because it asks for the best arrangement. Like the Dinitz problem, the
Traveling Salesman Problem can be phrased in graph-theoretic terms: The vertices of
the graph are the cities, and the edges are the roads connecting them.

The problem and its variants have a foot in the door of many application's in which
resources need to be routed. The manufacture of printed circuit boards presents one
example. In order to connect conductors on different layers of a printed circuit board,
it's necessary to drill holesas many as several thousand, nowadays. The job is best
done by a robot, which never gets bored or takes coffee breaks. But even a robot can
waste time. The drilling robot must pick up the right size drill bit, move from hole
to hole, and then return the bit (perhaps to exchange it for one of a different size).
Moving the drill about is necessary, but unproductive and time-consuming; ideally.
the drill will move as little aF possible.

In principle, solving the Traveling Salesman Problem is easy: If the salesman has
n cities to visit (including the home office), then only (n 1)!/2 different routes are
possible, so it's just a matte of checking to see which one is shortest (or cheapest). The
catch, of course, is in that "only." The number of possible routes grows exponentially
with the number of cities, making a brute-force approach impractical for any problem
with more than a handful of cities.

Computer scientists draw the line at programs whose run time grows exponen-
tially with the size of the problem. They much prefer "polynomial-time" algorithms:
programs whose run time grows no faster than some power of the problem size (sec
"Random Algorithms Leave Little to Chance," pages 27 -32). But so far no one
has found a polynomial-time algorithm for solving the Traveling Salesman Problem.
Indeed. the general consensus is that no such algorithm exists; solutions to the Trav-
eling Salesman Problem, it's thought, are inherently hard to find, even though they
obviously exist.

That hasn't kept people from looking for better ways to tackle the problem. though.
In part because the Traveling Salesman Problem crops up repeatedly in applications, in
part to hone techniques that can be used in other combinatorial optimization problems
as well. and in part just because the challenge is there, researchers have developed
algorithms which, while still exponential. manage to solve some exceptionally large
instances of the problem.

David Applegate at AT&T Bell Laboratories, Bob Bixby at Rice University. Vasek
Chvatal at Rutgers University. and Bill Cook at Bell Communications Research (Bell-
core) in Morristown, New Jersey, have come up with what might be the best approach
yet. Their algorithm stems from a method introduced in 1954, when computers--and
combinatorial optimization-- were just getting off the ground. The basic idea is to
convert the original problem into a sequence of linear programming problems; solv-
ing them gives an increasing sequence of lower bounds for the cost of the salesman's
cheapest route. Each individual linear programming problem is easy to solve; the
catch is, it may require solving a huge number of them to get at the final answer.
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To avoid getting lost in endless computation. Applegate and colleagues have added
a "branch and bound" technique. Their algorithm periodically picks a pair of cities
and divides the search for an optimal route into two branches: routes that visit the
two chosen cities consecutively, and routes that don't. The search along a particular
branch is curtailed (bounded) if that branch offers nothing better than a route that's
already known.

The ne, method has already seers some success. Applegate and colleagues have
used their branch-and-bound technique to solve more than a dozen longstanding
"challenge" problems. including one with 3038 "cities" (see Figure 4 (left)). As it
happens. their toughest computation to date is, in a sense, already out of date: One
of the challenge problems was to find the shortest tour of all 4461 cities in the former
East Germany. The branch-and-bound algorithm chased the problem down a total
of 2929 branches before coming up with the answer (see Figure 4 (right)).

Figure 4. ;1 timeling salesmans hot route around a printed circuit hoard (left / and the farmer East Germany (right). (Figures cour-
tesy of Bill Cook, Bellcore.)

46
WHAT'S HAPPENING IN 'riff:
NIATHEMATICAL SCIENCES

MST COPY AVAILABLE



(Vector) Field of Dreams
hat goes around. comes around. right? Not necessarily. In fact. in the
realm of 3-diroensional topology. what goes around need never come

back around. At least that's one way to describe a recent result of Krystyna
Kuperberg.

Kuperbcrg. a mathematician at Auburn University in Auburn. Alabama. has
resolved a fortysome-year-old problem known, as the Seifert conjecture. Dating
back to a paper by Herbert Seifert in 1950. the Seifert conjecture concerns the
topological properties of a 3-dimensioral space. or manifold. known as the 3-
sphere. A direct generalization of the ordinary circle and sphere (see box). the
3-sphere is. topologically. the simplest 3-dimensional manifold. But even so. many

of its properties remain shrouded in mystery.
The Seifert conjecture. says John Franks. a mathematician at Northwestern Uni-

versity. "was the kind of question that we thought we should be able to answer
and we couldn't." Until now.

In technical terms. the Seifert conjecture asserts that every smooth. nonzero
vector field on the 3-sphere necessarily has at least one closed orbit. This sounds

eminently reasonable. Indeed. in his 1950 paper. Seifert proved that all vector
fields of a certain class (namely. distortions of a vector field known as the Hopf

Figure 1. The "stereographie p !jection" maps every point in the plane to a point on the
2-sphere h mnnecting 1110 the "north pole," which can he thought of as corresponding to a
"point at infinity'' in the plane.

Getting 'Round in n Dimensions
The circle, known to topologists as the I-sphere, or St, is the curve defined by the

equation x2 4-y2 = 1 in the (x, y)-plane. Likewise, the "2-sphere" S2 is the surface
defined by the equation x2 + y2 + :2 = I in 3-dimensional space. The n-sphere is a
straightforward generalization: It is the n-dimensional "hypersurface" defined by the
equation xj + x5 + + 44,1 = 1 in coordinates x;. vn+1. Topologically, the
n-sphere is a compact version of n-dimensional Euclidean space with an extra "point
at infinity." Figure 1 shows how the (x, y)-plane can be mapped onto the 2-sphere in
3-dimensional space. The corresponding picture in 4-dimensional space is left to the
reader's imagination.
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Figure 2. The 1-sphere (also known
as the circle) allows for it:ero vector
fields (top), but every vector .field on the
2-sphere has a "hold spot.''
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fibration ) do have closed orbits. But even so. mathematicians soon came to doubt
the general conjecture. Their doubts were well founded: The Seifert conjecture is
false.

By adding an ingenious new twist to some old ideas. Kuperberg has constructed
smooth vector tieldr. with no closed orbits, thus putting the kibosh on Seifert's
conjecture- and not just for the 3-sphere. but for all 3-dimensional manifblds.

Kuperberg's counterexamples could have implications in the theory of dynam-
ical systems. where closed orbits correspond to periodic behavior. such as the
regular swing of a pendulum or the predictable variations in a predator-prey re-
lationship. Vector fields crop up constantly in the study of' differential equations
and mathematical physics. Newton's law for gravitational motion and Maxwell's
equations for electromagnetism are just two examples where vector fields play a

key mathematical role in describing physical phenomena.

Loosely speaking. a vector field assigns a little arrow to each point of the surface
or space on which the field is defined. Arrows attached to different points can
point in different directions. and they can have different lengths. The most familiar
example or a vector field is wind: At each point on the surface of the. earth. the
wind can be described by an arrow pointing downwind. with length proportional
to the windspeed. (Of course wind also changes in time. A vector field can be
thought of as a wind that varies from place to place. but remains constant in
time.) Through each point, a vector field determines a trajectory -the path a dust
particle would follow if blown by the field's wind. If the dust particle ever gets
blown back to where it began. it will endlessly follow the same path over and over:
The trajectory is what mathematicians call a closed orbit.

There are only two essentially different continuous. nonzero vector fields on the
1-sphere (i.e.. the circle): one that points clockwise and one that points coun-
terclockwise. On the 2-sphere. remarkably. there are none at all. Topologists
sometimes call this the hairy billiard ball theorem: You can't comb the hair on
a billiard hall, unless it has a bald spot (see Figure 2). In general. there is a di-
chotomy between even- and odd-dimensional spheres: Odd-dimensional spheres
have continuous. nonzero vector fields. even-dimensional spheres do not.

To restate the dichotomy from a different point of view: Every dynamical system
on an even-dimensional sphere has at least one fixed point. whereas dynamical
systems on odd-dimensional spheres need not have any fixed points. In effect.
Seifert was asking whether dynamical systems on the 3-sphere have the next best
property: Do those without fixed points necessarily have closed orbits?

Seifert's original question referred generally to continuous vector fields. not
specifically to smooth fields. (A vector geld is "smooth" if the lengths and di-
rections of the vectors change not just continuously, but smoothly in technical
terms. the field is "infinitely differentiable.") But in 1972. Paul Schweitzer at Pon-
tifica University Catolica in Rio de Janeiro. Brazil. produced a once-differentiable
counterexample. A decade later. Jenny Harrison at the University of Californiaat
Berkeley constructed nonzero. orbitless vector fields that were twice differentiable.
(Based on fractals. Harrison's counterexamples could actually he differentiated up
to but not including three times, given appropriate definitions for fractional
differentiation.)

Schweitzer's and Harrison's once- and twice-differentiable counterexamples
made Seifert's conjecture seem unlikely to hold in the infinitely differentiable case
either. On the other hand, there are plenty of theorems that hold for smooth



functions but lose their grip at any lesser level of differentiability. In any event. the
constructions seemed stuck at the low-derivative end of things.

Kuperberg's construction breaks that impasse. Expanding on ideas she and
Coke Reed. now at the Supercomputing Research Center in Bowie. Maryland.
introduced in 1981 to resolve another conjecture about fixed points of dynamical
systems. Kuperberg has shown how to modify a smooth vector field so as to break
up any closed orbits that might be present. The construction is "very geometric...
Kuperberg says. Keeping things smooth was not the hard part of the problem.
she explains: "The main difficulty turned out to be not to form additional circular
trajectories" in the process of modifying the field.

The starting point for Kuperberg's counterexample is a smooth vector field with
finitely many closed orbits. (It's well known that such fields exist. even though
vector fields with infinitely many closed orbits are easier to come by. Schweitzer
and Harrison used the same starting point.) The basic tool in Kuperberg's con-
struction is a topological gadget known as a "Wilson plug" -a 3-dimensional
shape with a vector field that is constant on its boundary and which "traps" at
least one trajectory that enters it. The idea is to pick a point on one of the closed
orbits. look at a small neighborhood of that point using a coordinate system in
which the vector field is constant. and then replace a piece of that neighborhood
with the plug. arranging things so that the formerly closed orbit becomes one of
the trajectories that enters the plug and gets trapped inside. The trick is to do this
without creating any new closed orbits.

Kuperberg pulls off the trick in three steps. Curiously. in the first step she con-
structs a plug that has Lilo closed orbits. At this stage the plug looks like a thick
washer (see Figure 3). The vector field points straight up on the boundary. but
inside the plug. the vectors change direction: Trajectories are deflected counter-

Figure 3. The first stage in Kuperberg's counterexample to the Seifert conjecture is known as
a IVilson plug. Trafectories that enter directly beneath the two circular orbits (dark lines) get
trapped inside. (Figure erirfe.V.V of K.rystyna Kuperberg. )
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clockwise in the bottom half of the plug. but clockwise in the top half. As a result.
any trajectory that makes it all the way through. exits the plug directly above where
it enters as though the field inside the plug were still constant. Trajectories that
enter (and exit) near the inner and outer walls are deflected only slightly. The
amount of deflection is greater for trajectories that enter away from the walls. until
finally. trajectories that enter halfway between the walls pile up on a pair of circles
pointing in opposite directions. and thus get trapped inside the plug.

In the second step. Kuperberg refashions the plug to make it look something
like a pretzel (see Figure 4). The top and bottom surfaces of the plug no longer
lie in a plane. but the walls remain vertical. Most important. there are now
places where the inner and outer walls are close together. Finally. in the third
step. Kuperberg pinches off two pieces of the plug near the outer wall and stuffs
them through the inner wall. giving each piece a twist and skewering it on one of
the closed trajectories (see Figure 5). These "self insertions" are the key to her
counterexample.

Figure 5. MC final Stage in Kuperherg's construction, with cut-away sections to show the
self-insertions. (Figure courtesy Kryst pro Kuperberg.

"It's the sort of thing that you wouldn't think would be particularly helpful."
says Franks. To he sure. the self insertions break up th,. two closed orbits the plug
began with. But it's not at all clear that a slew of new closed orbits aren't created
in the process. Indeed. says Kuperberg. "if these self insertions are not chosen the
right way. new closed trajectories may form.-

To control the trajectories created by the self insertions. Kuperberg relies on what
she calls a "radius inequality." Roughly speaking. when a self insertion satisfies
this inequality. the resulting plug cannot contain any closed orbits. Instead. all
the trapped trajectories spiral endlessly around inside the plug.

These endless trajectories do more than pull the plug on the Seifert conjecture.
Kuperberg's corr:truction produces a "minimal set." which John Mather. a dy-
namical systems theorist at Princeton University. suspects may be of an entirely
new kind. Minimal sets are basic components of a dynamical system. Roughly
speaking. a set is minimal if the dynamics on the whole set can be generated from
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the dynamics on any piece of it. In particular. closed orbits arc minimal sets.
as are fixed points. Other kinds of minimal sets are known. says Mather. but
"an overall picture of what minimal sets can be is just lacking." By adding to
the list of known examples. the minimal set contained in Kuperberg's plug could
help theorists better understand the range of things that can happen in dynamical
systems.

Kuperberg's construction also lowers the barrier to proving something much
stronger. namely that the 3-sphere itself is minimal for the dynamical system
associated with some vector field. Self -minimal manifolds are not that hard to
find: the simplest example occurs on the torus (see box). Had the Seifert conjecture
been true. the 3-sphere could not have been self-minimal. because a closed orbit
can't generate the dynamics away from itself. At this point there's no hard evidence
either way. but if it turns out the 3-sphere is self-minimal, that would do much
more than refute the Seifert conjecture. It would darn near turn it inside out.

Mathematical Donuts
Picture a chocolate cake donut with colored sprinkles all around it, all lined up to

point in the same direction (see Figure 6). The non-caloric, mathematical version of
this is known as a constant vector field on a torus. If you start at the outer circumfer-
ence and follow the field once around. either you'll advance along the circumference by
a rational multiple of the circumference or you'll advance by an irrational multiple. In
the former case, the trajectory from any point will eventually close up: if the trajectory
advances by the rational multiple min, it becomes periodic after n times around. But
in the latter case, the trajectories never close up. Instead every trajectory winds about
the torus forever, eventually coming arbitrarily close to every point on the surface.
For such a vector field, the entire torus is a minimal set (see main story).

Et
-

Figure 6. A rector field on a torus and part of one of its Irojectories. Tlw complete trajectory
may or may not he closed. (Based on fissure courtesy of Prederick II7ckun. Geometry Center,
Minneapolis., Minnesota,
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