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Introduction

Welcome to the inaugural issue of What's Happening in the Mathematical
Sciences! To be published annually. What's Happening surveys some of the
important developments in the mathematical sciences over the past year or so.
Mathematics is constantly growing and changing. reaching out to other arcas of
science and helping to solve some of the major problems facing society. Here you
can read about the development of a mathematical model of the human heart, the
solution to a longstanding mathematical problem zbout the way a drum’s shape
affects its sound. and the contributions mathematics is making to the solution of
environmental problems. ’

What's Happening in the Mathematical Sciences aims to inform the general public
about the beauty and power of mathematics. The American iMathematical Society
is pleased to present this new publication. We hope you enjoy it!

o irhoiz

Sanlucl M. Rankin. 111
AMS Associate Executive Director
and Director of Publications

Cover Illustration. A group of scientists at Los Alamos National Laboratory
have developed a mathematical model of occan dynamics for massively
parallcl computers that they hope will improve understanding of the role of
oceans in global climate change. The colors in this computer-generated
picture indicate sca surface temperature from cold (blue) to warm (red).
Figure courtesy of Richard Smith. Jechr Dukowicz, and Robert Malonc at
Los Alamos National Laboratory.
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Researchers at the Courant Institute of Mathematical Sciences have created a three-dintensional mod< i of the human heart: the computed flow
pattern of hlood is shown above. Grayish lines depict heart fibers. and black spots depict blaod. The recont motion of the blood is indicated hy
the dark lines wrailing behind the black spots. The figure shown iv a single frame in the simulation of the blaad flow. shewing the flow pattern
just after ventricular ejection. Figure conrtesy of Charles Peskin and David McQueen.
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Eguations Come to Life

in Mathematical Biology

he Nile crocodile and the Egyptian plover have a fascinating relationship.

j_ The croc, ordinarily a surly saurian, will sit placidly on the muddy river

bank. mouth wide open, while the bird hops from tooth to tooth scarfing leeches

and other tasty morsels. Crocodvius niloticus enjoys a thorough oral prophylaxis:
Pluvianus cgyptius gets a meal.

The technical term is symbiosis. .

Something like that is evolving between bioiogists and mathematicians. Biology
has a host of problems that call out for mathematical analysis. from the folding
of proteins inside an individual cel! to the complex food webs on the occan floor.
Mathematics, for its part. provides a quantitative framework that can bring order
to the organic chaos of nature and point toward new directions for research.
Mathematics has brought new insights into biology: biology has inspired new
mathematical resuits.

Which you regard as the bird and which the erocodile is a matter, shall we say,
of taste.

Mathematics and biology are not exactly newcomers to cach other. Mathemat:
ical methods have long been used in population studics, epidemiology. geneties,
and physiology. to name a few. And biological problems have spurred the ereation
of many mathbematical techniques, including. arguably. the entire ficld of statistics.

What's new is the depth of detail that mathematical models are now striving
for -and the attendant depth of theory required. The problemss being tackled
today call for closer cooperation than ever before between mathematics and biol-
~gy. Increasingly. mathematicians are getting in on the ground floor of biological
rescarch. working directly with biologists to help tease out the mathematical struc-
ture in phenomena ranging from the undulating motion of fish to the beating of
the human heart.

“The field’s very different now tham it was thirty years ago.” says Alan Perelson.
a mathematical biologist at Los Alamos National Laboratory and president of the
Society for Mathematical Biology. “Early mathematical biology was really mathe-
matics with a little inspiration from biology.” There was little real communication
between the ficlds. But the current generation of mathematical biologists. Perel-
son says, consists of researchers “who’ve been driven by the biology. who look at
the details, talk to experimentalists, and generate models that are attempting to
answer questions of interest to experimentalists.”™

Perclson’s own work has been in theoretical immunology. He and others in the
field are trying to develop mathematical models for the sequence of events that
begins when. say, you step on a rusty nail, from the first antigenic signals pre-
sented by the invading bacteria. to the final chemotactic processes that cinse the
wound cither cleanly or with a lasting scar. It's not just a matter of programming
a computer to do a bunch of calculations. Rescarchers first have to identity the
crucial biological aspects of the process and then find the appropriate mathzmat-
ical equations that describe them. Developing such a thorough understanding.

Biology has a host of
problems that call out for
mathematical analysis,
from the folding of pro-
teins inside an individual
cell to the cemplex food
webs on the ocean floor.
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Nancy Kopell. (Photo by Junct Cole-
man.

Perelson says. is the “grand goal™ of theoretical immunaology. but that goal is still
a long way off. “We are really at the very beginning.”

One reason for that is the daunting complexity of the immune system. The
body’s responsc to the variety of pathogens it encounters is, among other things. a
pattern-recognition problem: The body must somehow identify an invading virus
or bacteria based oa the invader’s distinetive pattern of chemica! clues. The im-
mune system’s ability to do this. rescarchers believe. depends on the diversity of'its
receptors. “To do pattern recognition {for the immune system] secius to require
on the order of ten million different types of receptors.” Perclson ¢eplains. "So to
understand in a profound sense how the system operates  to recogniz vathogens
and respond — one really has to deal with systems of enormous complexicy.” Math-
ematics enters the picture as a tool for modeling not only the individual receptors,
but also the overarching structure that enables them to act in concert.

The emergence of organized behavior from a collection of individual entities is
not unique to the immune system: it is a hallmark of living systems. A centrai
problem in biology is to deduce how properties of a system at one level of orga-
nization produce behavior at higher levels --for example. how docs the electrical
activity in the nervous system of a centipede organize itself into the correct patterns
to make the critter’s legs move in a coordinated fashion?

Nancy Kopell. a mathematician at Boston University. likens this probicm to
the task of figuring out how a television works knowing only the properties of
transistors. She sees the modeling of “ecmergent behavior™ as & central concern
for mathematical biology. “There arec many questions in biology involving the
behavior of systems in which what you can measure casily. .. is the behavior of
some of the components of the system.” Kopell says. “What you can’t easily, or
sometimes not at all. get from direct measurements is what's going to happen when
you hook all these things up. For that you really nced some kind of theory.™

Kopell and her mathematical colleague Bard Ermentrout of the University
of Pittsburgh have collaborated with biologists to study the rhythmic neurcnal
patterns that give rise to swimming in an eel-like fish called a lamprey. Researchers
had known for some time that the cleetrical activity in the lamprey spinal cord
could be represented mathematically as a “chain of oscillators™ - something like a
set of pendulums hooked together by springs. but with quite different mathematical
properties. Kopell and Ermentrout formulated & new mathematical model based
on a deeper analysis of how the oscillutors are hooked together. Their model
produced predictions which could be verified by experimentalists, and it provided
new insight into how the electrical activity organizes itself to produce the swimming
motion in lampreys. The model also helped point out new directions for biological
research. And as new data from new experiments is found. Kopell and Ermentrout
continue to refine their mathematices to better reflect the biology.

Computer simulation figures prominently in many of the modeling cfforts in
mathematical biology. Indeed. revolutions in both hardware and software have
been crucial to advances across the board. The Human Genome Project. with
its ambitious goal of mapping the roughly three billion base pairs that constitute
human DNA. would be incorceivable without machines and mathematical algo-
rithms for dealing with vast amounts of data. (It's not just a question of storing
three billion pieces of informatior: it’s a question of analyzing that data.) Likewise,
mathematics is at the heart of much of medical imaging. including CAT scans. nu-
clear magnetic resonance, ana positron emission tomography. These techniques
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are made possible by machines that carry out mathematical manipulations of the
data that pour into them. Mathematics is at the
One notable example of the use of mathematics and computer simulation in ~ heart of much of medical
physiology is the work of Charles Peskin and colleagues at the Courant Institute imaging, including CAT
of Mathematical Sciences at New York University. They are in the process of scans, nuclear magnetic
building a realistic llu‘cc-d.lmc'nsnonul mulhcm'au.cal n.10dcl of l\hc 11}1111f1n heart. resonance, and pOSitl‘Ol‘I
Thc‘mod.cl. 'lhcy hope. will give rcscurchcr's insight 1nlq the luncll.o‘n!ng- and emission tomographv.
malfunctioning  of real hearts and lead to improved designs for artificial valves :

and other repiacement parts.

“IUsa very large effort. and it’s still going on.™ Peskin notes. The model is nearly
complete anatomically. but “we're still working on gettirg the physiology right.”
he adds. That means figuring out the appropriate clasticities of the parts. how fast
they should contract, and how fast they should rel: <. and then fine-tuning the
cquations to reflect these physiological attributes. '

The grometry of the heart is also a crucial part of the model. Conceptually. the
Courant heart consists of hundreds of closed curves representing muscle fibers. “In
cffect the [model] heart is constructed out of & very large array of rubber bands.”
Peskin explains. Mathematically, the curves are represented by a string of discrete
points, with specified spring-like clasticity between each pair of consecutive points.

A computer keeps track of all these points  on the order of 2 million of them
and immerses them in a computer-simulated bath of blood. Then the real caleu-
lation begins: The numerical heart starts io beat.

The mathematics of the calculation can be described by something that sounds
like the title of a 1950s Japanese monster movic: Hookes's Law Meets the Navier-
Stokes Equation. Hookess Law is the force-displacement relation for springs.
familiar from high-school physics: a fancier. nonlinear version of it is used to

Dctail fron the three-dimensional Courant heart. showing the three leaflets of the model aortic
valve it its closed position. The fiber architecture of the valve has a fractal structure which has
been predicted here by solving an equation for the mechanical cquilibrivm of the fibers under
a pressure loud. (Hustration created at the Pinshurgh Supcercomputing Center.
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With the concurrent rev-
olutions in both biology
and applied and compu-
tational mathematics, |Pe-
skin| says, “the kinds of
preblems that we can re-
alix tically hope to do are
expanding tremendously.”

David MeQueen and Charles Peskin,

¢ Photo reprinted with permission of
Projects in Scientific Computing. Pirrs-
hurgh Supercomputing Center. s

model the heart's muscle fibers. The Navier-Stokes equation, while less familiar,
is even more universal: It describes fluid flow of virtually any kind. from bload
pumping through the heart to global circulation patterns of the carth’s atmosphere.

These are the basic mathematical ingredients that determine the complex mo-
tions of the heart and the blood moving through it. Unfortunately. you can't
sit down with pencil and paper and solve the cquations preciscly- the solutions
are only approachable by computer approximation. And that turns out to be a
formidable task. even for a supercomputer. Solving fluid flow problems is always
computationally demanding, but the heart model presents a particular challenge:
Unlike flow down a pipe or past a spinning turbinc. where the boundary of the
fluid is fixed or moving in a prescribed manner. the motion of the heart wall is
among the unknowns that must be sclved for.

“You not only don't know the boundary velocity. you don't know where the
boundary is.” notes David McQueen. a mechanical engineer who has collaborated
with Peskin for the past fifteen years. " Your traditional engincering approach is
going to be hard pressed to solve this problem.”

Instead. Peskin has developed mathematical techniques for what he calls “im-
mersed boundary™ problems. “The beauty of this method is that it allows you
to do computing in situations where you don’t know tac boundary motions in
advance.” says McQueen. Modeling heartbeats is not the only application. "The
technique is generally useful in biofluid dynamics.” Peskin says. “and it has al-
ready been applied to a wide variety of problems such as platelet aggregation
during blood clotting. aquatic animal locomotion. and wave propagation in the
inner car.” Peskin anticipates future applications in the study of flow in collapsi-
ble tubes such as thin-walled biood vessels. flow in renal (kidney) tubules. and the
flight of birds and bats. There are cven nonbiological possibilities. such as the
design of acrodynamically efficient sails and parachutes.

The current heart model is a step up from a two-dimensional heart that Peskin
began developing in the carly 1970s. Paradoxically. Peskin notes. the 2-D heart is
still. in some ways. more realistic than the 3-D model. That's mainly because the
extra cffort of computing in three dimensions has forced the modelers  fornow
1o use a simpler muscle model. Further advances in both theory and hardware
will undoubtedly bring the 3-D model up to speed. but the 2-D heart is likely to
continue being used for experimental computations. “What we'd really like is to
use the 2-D model as a way of getting rough results. and then perhaps do a fow
3-D computations to verify those findings.” McQueen says.

Indeed. the 2-D model has already proved uscful in artificial heart valve design.
By experimenting wich the shape of 2 prosthetic mitral valve (the gate between the
left atrium and ventricle). McQucen and Peskin found a design that simultancously
increascd the flow velocity near the valve and reduced the pressure drop across
it two features that are prized in artificial valves. While not yet in clinical usc,
the design has been patented and licensed.

The 3-D model has not yet had any such applications. but those are likely to
come as the model becomes more physiclogically realistic and as the computing
demands get more manageable. (Currently a single beat takes upwards of fifty
hours of supercomputer time.) Peskin secs the heart model. and other models in
the future. as important experimental tools. With the concurrent revolutions in
both biology and applicd and computational mathematics. he says. “the kinds of
problems that we can realistically hope to do are expanding tremendously.”

MATHEMATICAL SCIENCES
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New Computer Insights

from “Iransparent” Pro

ofs

athematicians arc professional) skeptics. When told of a new result,
their first response is. Where's the proof? Even when shown a proof,
they're not completely convinced it's correet until they check every last line,

This professional skepticism isn't limited fo traditional mathematical proofs, It
extends to results produced by computers as well. Today’s lightning-fust. high-
tech adding machines take the labor out of long. laborious calculations, making
it possible to carry out computations that could never be done by hand. But they
leave behind the lingering question. Did the computer do its job correctly?

A sequence of recent breakthroughs in theoretical computer science may put
that question to rest. Researchers have found some unexpected new ways by which
computers can prove “beyond a shadow of a deubt™ that the results they provide
are indeed reliable. Morcover. these developments are giving theorists new insights
into some of the hardest problems of computer science,

Guaranteeing the reliability of computer results is obviously of concern to more
than mathematicians. But by thinking of computations themselves as proofs that
certain inputs produce certain outputs, theoretical computer scientists are able
to view anything a computer docs in logical mathematical terms. Morcover, the
computational aspects of many problems can be recast as purcly mathematical
questions in areas such as graph theory or clemertary. first-order logic. The
abstract language of mathematics helps clarifv the essential issues, which might
otherwise be lost among the details of individual applications.

Some computations are casy enough to check. For example. rescarchers often
need to know if there is a path that travels along the edges of a graph, visiting
each vertex once and only once--—-what graplt theorists call a *Hamiltorian cycle.™
(This kind of problem crops up in applications such as designing cfficient telecom-
munications networks.) If a computer says there is a Hamiltonian cycle, it can
prove it simply by pointing out the path (as done with dark lines in Figure la).
But when it says there is #o such path for the graph in Figure 1b, how can vou be
sure it didn’t overlook onc-—or, worse, that your computer saw one but chose not
to tell you?

The computer can. of course. produce a proof by trying all possible routes
around the graph and showing that none is a Hamiltonian cycle. That’s not an
unreasonable thing to do for Figure Ib. But the number of possible routes grows
so quickly with the number of vertices that this straightforward appreach soon
becomes unwicldy. For graphs that typically occur in telecommunications network
problems. for example. this kind of proof weuld take inconceivably long even on
the fastest conceivable supercomputer. That defeats the purpose of having a fast
machine. Worse, one is still left with the task of checking that all the computations
were done correetly.

The problem is. errors in a proof don't always. or even usually, call attention to
themselves—and all it takes to invalidate an entirc proof is one mistake, as minor
as a misplaced minus sign. *“*Mathematical proofs arc very fragile.” says Laszlo
Babai. a theoretical computer scientist at the University of Chicago. Like a string

Today’s lightning-fast,
high-tech adding machincs
take the fabor out of long,
laborious calculations. But
they leave behind the lin-
gering question, Did the
computer do its job cor-
rectly?

Figure 1a. The dark edges “prove” that
this graph has a Hamiltonian cvele.

Figure b, This figure does not have a
Hamiltonian cyele - or does ir?

o Lo
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Lance Formow. (Photo by Maithew
Gilson, University of Chicago. j

of pearls, if the strand breaks anywhere. the whole necklace winds up scattered on
the fioor only with a proof, yvou might not notice tiil you've left the party.

However, help is on the way  sort of. Over the last decade, Babai and others
have developed techniques by which even unreliable computers can, in principle,
provide overwhelming evidence that their calculations are correct. Rescarchers
have recently shown it’s possible for a computer to reformulate an ordinary com-
putational proof in such a way that the correctness of the original proof can
be guaranteed  with near certain'y by merely “spot reading™ the transformed
version at a relatively small number of randomly chosen places.

That'may not satisty mathematicians, for whom being *nearly certain™ is worth
about as much as a basketball player’s last-second, game-winning three-pointer
that “necarly went in.™ The current ._chniques are also far from practical it is
unlikely the spot-checking techniques will ever be used directly to test the veracity
of computers’ output. However, the theory has paid off handsomely in other
ways, mainly by giving researchers new insights in the theory of computational
complexity- the study of how hard a computer has to work to arrive at an answer.

In particular, researchers have discovered an astounding connection with a
scemingly unrelated issuc in complexity theory: the question of whether there
can be “easy™ ways to approximate the solutions to computational problems in
a class known as NP problems that are thought to be intrinsically “hard™ to
solve exactly (see box on next page). Surprisingly. the existence of spot-checkable
proofs turns out to preclude the existence of “easy™ approximation algorithms for
a substantial subset of the problems in NP unless there are casy exact algorithms
for the wholc class NP. a prospect few in the computer science community believe
to be the case.

The new results stem from work on “interactive proofs.” a notion that was
introduced in the mid-1980s by Shafi Goldwasser and Silvio Micali at MIT and
Charles RackofT at the University of Toronto. An interactive proof is a lot like
a police interrogation. A “verifier™ (the detective) asks a “prover™ (the suspect)

Figure 2. Computational prohlems for which efficient algorithms exist constitute the smatlest
in a hierarchy of “complexity” casses.
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A Complexity Primer

The difference between “casy” and “hard” is at the heart of theoretical computer

The theory has paid off

science. In essence, 1 computational problem s “casy” if the number of steps required handsome]y m Othel:

to solve it is bounded by some power of the sizc of the problem. For cxample, ways, mainly by giVlng

multiplication of two N-digit numbers is “easy™ because it takes at most N° single- researchers new il]SightS

digit multiplications and additions. Such problems form a class which computer . .

scientists call P, for polynomial time problems (see F igure 2). in the theory of compu-
The ciass P contains a great many problems, including such significant computa- tational c(}mplexitv_the

tional tasks as linear programming. But a great many more problems seem to lie just ‘ o -

beyond it, problems whose computational demands apparently grow exponentially Sflld} of how hard 4 COlTl"-

with size. These are the problems that complexity theory calls “hard.” puter has to work to arrive
In particular, there's the tantalizing class of dccision problems known as NP, { Deci- at an answer.

sion problems are problems for which a simple Yes/No answer is sought. Technically
P also consists strictly of decision problems, but when answers are easy to come by, the
technicality is unimportant.) The problems in NP (which stands for nondeterministic
polynomial time) have a curious dual nature: The amount of computation required
to arrive at the Yes/No answer may grow exponentially with the size of the problem,
but, at icast when the ans ver is Yes, an “inspired guess” can reduce the amount of
computation down to a simple, polynomial-time verification.

The Hamiltonian cycle problem is one example. The number of possible pathsin a
graph grows exponentially with the number of vertices and edges, but if a cycle exists,
then all that computation is rendered unnecessary if someone simply tells you which
path works, and you simply check it out. That can happen if the given graph was
created by first drawing a Hamiltonian cycle and then disguising it with additional
edges. In a sense, a problem in NP is a little like a riddle--only in NP, the riddle may
have no answer.

But why, one may ask, is it necessary to check all possible paths in order to
determine whether or not a graph has a Hamiltonian cycle? Is it not possible that some
othermethod could arrive at the answer without going through an exponential number
of cases? Is it not possible that the Hamiltonian cycle problem in fact is “casy™---a
member of P - and it just looks hard because no one has found a polynomial-time
algorithm for it yet?

Good question. In fact, that's the core conundrum of computer science, Nobody
knows if there really arc “hard” problems in the class NP: the classes P and NP may be
onc and the same. The lack of an casy algorithm for problems like the Hamiltonian
cycle problem may be due not to the nonexistence of such an algorithm, but to the
limits of mathematicians’ ingenuity. It’s within the realm of possibility that someone
could find an easy algorithm for these hard problems,

It's happened before. Linear programming was long classified as a hard problem
because the simplex method was known to suffer the kind of exponential compu-
tational growth that's characteristic of NP problems. But then, ir 1979, Leonid
Khachian of the USSR Academy of Sciences discovered a pclynomial-time—-j.e.,
“easy” --algorithm for solving linear programming problems. Hence a problem that
had been thought of as hard turned out not to be so hard after all.

It could happen again. But if it happens for the Hamiltonian cycle problem, or any
of several thousand other NP problems, there will be a huge fallout. That's because
over the last two decades researchers have established a web of relationships among
the problemsin NP, Specifically, there is a subclass of NP, the so-calied “NP-complete”
problems, which have the property that any algorithm for solving any one of them can
be translated into an algorithm for solving any other problem in the entire class NP

The Hamiltonian cycle problem is NP-complete. So is the well-known Traveling
Salesman Problem. So are many other problems in graph theory, combinatorics, and
logic. If anyone ever finds a polynomial-time algorithm for any one of these, the
distinction between P and NP will collapse; only P will remain.

Most theorists consider that unlikely. Only a few die-hard optimists believe thai
all problems (at least the ones in NP) are casy: the smart money says that NP really
does contain hard problems. But so far neither side is anywhere close to collecting on
the bet.

Laszlo Babai. {Photo by Matihew
Gilson, University of Chicago. j

WHAT'S HAPPENING IN THE
MATHEMATICAL SCIENCES

28




Transparent proofs are un-
affected by minor copy-
ing errors or other com-
puter glitches. In essence,
a transparent proof re-
places the original proof’s
single strand of logic with
a highly redundant cable.

a series of questions about the problem the prover claims to have solved. The
questions are designed to expose any lie (or mistake) in the prover's answers. In
effect, interactive proofs are the embodiment of Walter Scott's familiar warning.
~0, what a tangled web we weave, When first we practice to deceive.”

In order to prevent a “mastermind” prover from anticipating the verifier's ques-
tionsand concoctinga consistent “alibi™ to supportitsoriginal claim, the questions
arc chosen partly at random. Because of this, there's a chance that an interac-
tive proof will occasionally put its stamp of approval on an incorrect result. just
as a lazy student can occasionally guess his or her way to a perfect score on a
True/False test. But the chance of that happening can be made as small as you
like by sin ' asking more questions.

Interactive proof turns out to be a powerful tool. In 1989, researchers estab-
lished that interactive proofs can be used to verify solutions for a large class of
problems called PSPACE. Then in eariy 1990, Babai, Lance Fortnow, and Carsten
Lund at the University of Chicago proved what initially looked like an innocent
generalization: They showed that problems in an even larger class called NEXP
could be verified by a “*multi-prover™ variant of interactive proofs.

A multi-prover interactive proof can be thought of as an interrogation of fivo
suspects who have been separated for questioning. The intuitive idea is that it's
easier to get two suspects to contradict one another than it is o get a single suspect
to trip over his or her own story. The Chicago theorists made that intuition precise.
In demonstrating the exact power of multi-prover interactive proofs, they paved
the way for what came next: “transparent™ proofs.

The notion of transparent proof was introduced by Babaiand Fortnow in joint
work with Leonid Levin at Boston University and Mario Szegedy at the University
of Chicago. In esserice. they found that the ‘question-and-answer format of an
interactive proof is unnecessary; instead. all that's needed is to have the prover
rewrite its proof as a kind of legal deposition- but one that’s “easy to see through™
i the prover tries to lie. This “transparent™ proof is a long. rambling retelling of
the original proof. couched in a kind of computer-science legalese. consisting of
purportedly true statements which can be checked against each other for accuracy
and consistency.

The key is that the correctness of a transparent proof can be checked without
reading the whole proof. or even very much of it. Any error in the original proof.
no matter how small. is magnified and spread throughout the transformed version
so that it becomes glaringly obvious. By “spot checking™ a relatively small number
of randomly chosen pussages of the transparent proof. the verifier --who can now
be thought of as a judge- —either finds a definite mistake or concludes. with very
high confidence, that the original proof was correct.

This also means that transparent proofs are unaffected by minor copying errors
or other computer glitches. In essence, the transparen! pioof replaces the original
proof’s single strand of logic with a highly redundant cable.

“You take a proof. which is fragile, and you turn it into a very sturdy thing.”
says Babai. In other words, if a transparent proof isn’t riddled with errors, then
the original proof is probably actuaily okay.

But how much spet checking is needed to be sure? Babui and coworkers showed
that i’ the original proof was N bits long (remember. everything a computer
docs boils down to a string of ones and zeros), then the transparent proof could
be written in such a way that the number of spot checks required to verify the
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correctness of the original is proportional to a power of jog V. such as 100(log N ).
That difference can be appreciated by comparing N = 1.000,000 to log N = 6.
What's most important is that any multiple of any power of log N is eventually an
insignificant fraction of N. so for very long proofs the amount of spot checking
will be relatively small.

This was taken a step further by Shmuel Safra at Stanford University and
the IBM Rescarch Center at Almaden and Sanjeev Arora. a graduate student at
the University of California at Berkeley. Safra and Arora found a way to write
transparent proofs that could be checked by looking at ontly about loglog N bits.
Taken literally {using logs base [0). that implies that an original proof of length
ten billion (10'") could be checked by looking at a single bit of the transparent
version!

But Safra and Arora weren't just out to reduce the spot-checking requirement
of transparen. proofs. They were after bigger game: an application of the new
theory to an old and very important problem in compulter science.

Shortly after the introduction of transparent proofs. Safra. Szegedy. and Gold-
wasser, together with Uri Feige and LaszI6 Lovész at Princeton University, found
an unexpected connection between interactive proofs and a particular problem in
graph theory: that of approximating the largest “clique™ in a graph of N vertices.
A clique is simply a subset of vertices that are pairwise adjacent (meaning that
there’s an edge connecting each pair of vertices) (see Figure 3). The problem of
determining the exact size of the largest clique in a graph is knowr to be NP-
hard---that is. any eflicient algorithm for solving this one problem would translate
easily into efficient algorithms for solving any problem in the class NP.

What the five researchers showed was that the problem of approximating the
size of the largest clique is “very nearly™ NP-hard. In other words, if the size of the
largest clique can be approximaied - even poorly -by an efficient algorithm. then
any problem in NP can be solved by algorithms that are “very nearly™ efficient.

Safraand Aroraremoved thosc adverbs. Their refinement of transparent proofs
implies that if the largest-clique’ problem could be solved approximately by an
cfficient algorithm. then there would be truly efficient algorithms for all problems
in NP. In the jargon of computer science. NP would equal P.

That implication was soon extended from the largest-clique problem to a host
of other approximation problenmis by Arora and fellow graduate student Madhu
Sudan at Berkeley. Rajecv Motwani at Stanford. and Lund and Szegedy. both
now at AT&T Bell Laboratorics. They did so by pushing transparent proofs to an
extreme: In their approach. all transparent proofs can be verified with the same
number of spot checks no matter how long the original proofs are.

The only thing better would be a transparent proof you didn’t have to read at
all!

The string of breakthroughs in this area of computational complexity came in

rapid succession as befits a subject concerned with speed and efficiency. The

implications for computer science - both theoretical and practical-- are yet lo
be sorted out. Rescarchers want to know whether transparent proofs can be
streamlined to more manageable lengths. They also are finding more problems
that look ~“hard™ to approximate. Finally. computer scientists continue to ponder
what these results say about the class NP in particular. are these seemingly hard
problems really all that hard to solve?

The answer to that question is sure to have everyone looking carefully at the
proof.

Figure 3. The five vertces connected by
the dark edges form a “digue” because
there is an edge berween each pair of
poinis.

The string of break-
throughs in this area of
computational complexity
came in rapid succession—
as befits a subject con-
cerned with speed and ef-
ficiency.
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David Webh and Carolyn Gordon with paper models of a pair of “sound-alike™ drums. { Photo courtesy of Washington University in St.
Louis.
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You Can’t Always Hear

the Shape of a Drum

uch of what scientists know of the natural world comes not from direct

observetion, but by means of indircct measurements. Astronomers. for
example, cannot sample the stuff of stars: instead they infer stars” composition by
analyzing spectrographic images. Likewise. zeaphysicists construct a picture of
the planet’s interior from scismic studics. not from journeys to the center of the
carth. X-rays. CAT scans. and other medical imaging techniques arc also indirect
ways of secing inside the body. Even your family doctor prefers the stethoscope
to the scalpel.

Mathematically. the job of reconstructing an object out of measurenients of
certain “observable” propertics is known as an inverse problem. (A “dircet”
problem is to deduce obscrvable propertics from explicit knowledge ot an object.)
There are many important questions about inverse problems that mathematicians
and others have worked to resolve, such as how many mcasurcments are nccessary
to get an answer and how much accuracy is required. But underlying these
questions is a deeper mathematical question: Even if you can take infinitely many
measurements with infinite precision. can you be surc of your conclusions? Or to
put it differently. can two different objects look alike in every measurable way?

It might scem the answer to this question should be cbvinusly yes. Butit’s 2 lot
more difficult than that- and that's where mathematical theory steps in. in 1266,
the Polish-American mathematician Mark Kac zeroed in on a particular inverse
problem. Can one. Kac queried. hear the shape of a drum?

That may seem like a strange question at first. butit’s no stranger than asking if’
onecan “see” the chemistry of a star or “hear™ the interior of the carth, Morcover,
Kac's question has a precise mathematical meaning. The problem it poses had been
a challenge for more than fifty years at the time of Kac’s lecture, and it continuied
to stymic researchers for another three decades. Then. finally. in the spring of
1991 . three mathematicians - Carolyn Gordon and David Webb at Washington
University in St. Louis. and Scott Wolpert at the University of Maryland - -came
up with the answer: a resounding No.

Gordon. Webb, and Wolpert found a pair of distinct geometric shapes in the
plane which, when thought of as mathematical drums. resonate at the exact same
frequencics. In other words, if your goal is to deduce the shape of a drum merely
from the sounds it makes. these two drums provide an example where that goal
cannot be achieved: You can’t decide which drum you're listening to. because they
both sound the same.

That's more than musically important, according to Dennis DeTurck of the
University of Pennsylvahia. an expert on “isospectral gcometry,” as the mathe-
matical theory of such inverse problems is called. It points out there are subtle
mathematical questions involved whenever scientists attempt to reconstruct reality
from a st of data. The fact that even in a relatively simple mathematical setting
there is not always just one conclusion that can be reached from a complete set o’
measurements is. to put it mildly, unsettling.

Remarkably. the final proof that the pair of sound-alike drums actually do sound

Figure 1. The first two “drums™ pic-
tured above make the same “sound” al-
though they are differently shaped. The
same is true of the second pair.
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alike involves little beyond clementary lincar algebra. “It's amazing how simple
you can make this proof.” muses DeTurck. It fits “on a postcard.” he says. In fact.
the mathematics department at Washington University did something like that:
They had T-shirts made up with the proof on them.

But while the proof itself is simple. finding the pair of drums to begin with
was not. It required insights culled from careful study of geometric analysis, as
well as new theoretical techniques that involve a surprising range of mathematical
disciplines, from the theory of partial differential cquations to representations of
finite groups. At one point it also had Gordon and Webb (who are married) filling
up their living room with huge paper models of geometric drums. And in the final
stages. it had them running up a sizeable phone bill with transatlantic calls and
twicc-a-day faxes.

First, though. what is a “mathematical drum.” and why should there be any
connection at all between the shape of a drum and the sound it makes?

The first part is casy enough to answer. A mathematical drum is just a shape in
the planc  a region with an interior and a boundary- such as a circie, a square.
an arbitrary polygoen, or just a blob surrounded by a smeoth curve. The “sounds™
produced by such a drum are determined by the solutions of a partial differential
cquation known as the wave equation. which is used to describe any kind of
wavclike phenomenon, from sound to light to water. In essence. the motion of a
vibrating membrane (that is, a drum) is governed by this equation, together with
the condition that the drum not vibrate on its boundary.

That condition is crucial. Physically. it just says that the drum is attached firmly
to a frame. Mathematically. it restricts the set of solutions to the wave equation.
Without some sort of boundary condition. a mathematical drum could make any
sort of sound.

Among the solutions to the wave equation are certain ones that are purely
periodic in time  that is, vibrations that produce a single, clear tone of a specific
frequency. While it's the interior that does the aetual vibrating. it’s the boundary
that determines which frequencies are allowed. These frequencies constitute the
sounds a given drum can make. They depend solely on the drum’s shape.

Kac's question asked whether or not that dependence could be turned around.

There were reasons to think it might. In 1911, Hermann Weyl proved one can
hear the area of a drum. Weyl's result accords with the intuition that the bigger the
drum, the lower the tone. Some years later, the Swedish mathematician Ake Pleijel
proved onc can hear the length of the boundary. And Kac himself conjectured -
and I. M. Singer and Henry McKean proved --that the number of “holes™ in a
drum is audible. These results made it plausible that the sound of a drum might
contain cnough geometric information to specify the shape uniquely.

On the other hand. there were good reasons to think that wasn't the case. In
particular, mathematicians started finding counterexamples in higher-dimensional
generalizations of the problem. John Milnor, now at the State University of New
York at Stony Brook, found the first counterexample in 1964, a pair of geometri-
cally distinct, sixteen-dimensional “isospectral manifolds™- that being the fancy
term for “sound-alike drums.™ Over the next two decades, other rescarchers found
additional counterexamples in lower dimensions. But these discoveries seemed to
have no systematic basis. It was as if they arose by accident.

That changed in 1985. Toshikazu Sunada of Nagoya University introduced
a method that made it possible to construct examples of isospectral manifolds
almost at will. Sunada’s method gave rise (o a veritable cottage industry of low-

Figure 2. A pair of Buser's isospectral
“bells.”
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dimensional examples. including surfaces that can actually be cut oui of paper and
assembled with tape. These surfaces fail to answer Kac's question only because
they aren’t flat but rather curve around in three dimensions. more like beils than
drums. However. it was onc of these bell-like pairs. an exar le cooked up by
Peter Buser at the Ecole Polytechnique Fédérale in Lausanne, Switzerland. that
ultimately led to the long-sought solution of the original problem (sce Figure 2 on
page 14). _

The inspiration came at a geometry conference at Duke University in March of
1991. Gordon showed a paper model of Buser’s bell-like example in a survey talk.
Wolpert was in the audience.

“Scott came up to me afier the talk and said he'd noticed that thesc paper
models had a symmetry to them, and if you ‘modded out’ by a symmetry---
meaning simply smashing them down then you got plane domains.” Gordon
recalls. "So he asked whether they were isospectral, And that’s what led to all
this. It really is just smashing them down.”

Wolpert's hunch was right. But it took a whilc to find the proof. The shapes that
result from flattening Buser’s example are too complicated to compute their sounds
exactly. so a direct comparison was impossible. Moreover. Sunada’s method did
not apply to the kind of surfaces. calied orbifolds. that were required to make sense
out of the flattening process.

However, help was alrcady at hand. Pierre Berard at the University of Grenoble
had generalized Sunada’s method to once that worked in the orbifold setting. He
had also introduced a crucial notion of “transplanting™ solutions of the wave
equation from one manifold to the other in an isospectral pair Berard's results
were exactly what the Americans nceded.

Even so. it took Gordon and Webb several weeks to find the right combination
of idcas. They initially thought Buser’s cxample was too simple to work. and
spent days cutting out and taping together complicated paper models. looking for
cxamples with good geometric properties. “We must have spent about a week, just
building things out of paper.” Gordon recalls. “And when we cut them in half. we
must have spent about three hours trying to separate the two picees [to get plane
domains] before we realized they didn’t separate!™

Finally they returned to the original example, which they had never completely
abandoned. However., the last picces of the proof came together while the two
were thousands of miles apart-- Webb at Dartmouth, Gordon in Germany. They
hammered out the final details by phone and fax. By the time they got together.
in Grenoble, they had a theory in place for a whole new class of orbifold-based
isospectral manifolds, including a pair that lay flat in the plane, quietly answering
No to Kac's old question. :

That's not the end of the story. though. With help from Berard. Buser. and
others. Gordon. Webb, and Wolpert identified the group-theoretic ideas that make
the proof work. and now have a strecamlined proof simple ecnough to fit on a T-
shirt (sce box on page 16). They also found other, simpler examples of sound-alike
drums. some with as few as cight sides. Other rescarchers, including Peter Doyle
and John Conway at Princeton University, have discovered additional shapes of
elegant simplicity. (Using other methods. Conway and Neil Sloanc at AT&T Bell
Laboratories have found a family of four-dimensional examples similar to Milnor’s
original sixteen-dimensional example.)

Gordon. Webb, and Wolpert's answer to Kac's question closes the book on one

ven if you can take in-
finitely many measure-
ments with infinite preci-
sion, can you be sure of
your conclusions? Or to
put it differently, can two
different objects look alike
in every measurable way?

ol
You Can’t Hear the Shape
of a Two-Piece Band.
Jon Chapman. a postdoc at Stan-
ford University. took “scissors™
to one of Gordon. Webb. and
Wolpert's constructions and found
a particularly simple pair of sound-
alike drums. cach consisting of
two preces. Chapman’s two-picee
drums. shown in the accompany-
ing figures. are simple encugh that
it's possible to compute the exact
sounds they make.
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problem, but leaves others open ~-and raises new questions as well. “Therc are just
tons of questions that come out of this answer.” says an enthusiastic DeTurck. For
instance, researchers right now only have examples of sound-alike pairs of drums:
can there be sound-alike rriples? Researchers also know that not all drums have
isospectral twins (every circle. for example. makes its own. unique sound): is there
a way to tell which drums do and which ones dont? And do the group-theoretic
techniques of Sunada’s method provide a unified explanation of all isospectral
plane domains, or . .e there other ways of constructing sound-alike drums?
Finally. questions remain as to what implications the negative answer to Kac's
question has for other inverse problems and their myriad applications. The one
thing that secms clear is that the techniques mathematicians have developed in
studying drums are likely to have repercussions throughout the rest of science.
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Proof by Picture

Gordon, Webb. and Wolpert's first example of sound-alike drums came from a pair
of curved surfaces designed by Peter Buser. Each drum consists of seven half-crosses
glued together, Their streamlined proof that the drums are isospectral is based on
group-theoretic principles plus Pierre Berard's “transplantation™ technique. but the
result is simple enough to be checked directly.

Figure 3 shows how to recombine pieces 4- G of a standing wave on the seven
half-crosses of the first drum into a standing wave on the second drum. For example,
the combination —B + C — E is fermed by “flipping” pieces B and E upside down
and adding them to piece €. The dark and dashed lines emphasize the required
orientations,

This “transplantation™ is easily seen to work both ways (it can be written as an
invertible 7 x 7 matrix). Allthat remains is to check that the combinations fit together
smoothly and are zero on the boundary. But this can be done piece by picce. For
cxample, —B + C — F is zero on the dark boundary because — B cancels  there and
E was zero to begin with, while it vanishes on the dashed boundary because B is zero
there and C cancels — £: finally. — 8 + C — E fits smoothly with B + F — G on the

diagonal because C-F and E-G already fit smoothly together while B is zero on the
diagonal (and hence fits smoothly with its reflection).
| The proof works just as well when the half-crosses are shrunk down to right isosceles
—-B+C-E ! triangles. and continues to work if the angles of the triangles are (simuitancously)
e ! changed. Thus one example gives rise 1o an entire family of sound-alike drums.
+/—0s ‘
!
|
lﬁ—
. C=F-D X F+F-A /
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3
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Figure 3. A “proof by picture” of Gor- L
don, Webh, and Wolpert's theorem that AN
rou can't abways hear the shape of, u N
drum.
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Environmentally Sound
Mathematics

mong the crucial scientific issues of our age, fe'v are as far-reaching as .
A those posed by the environment. Researchers rom all fields have been Rudimentary aigebra and
called upon to investigate and evaluate the effects human activities are having upon calculus are no longer
the earth, from the upper reaches of the atmosphere to the depths of the ocean.  enough to handle the so-
The complex web of relationships in the biosphere demands an interdisgiplinary phisticated analyses that
approach. o . . environmental scientists

Long the pr?ser\'e of blOl(‘)gISlS.. chemists. OFeanograpllel's. meteorologists. and now know are necessary.
geologists, environmental science is now drawing more and more upon the exper-
tise of mathematicians as well.

Researchers in environmental science have long made use of mathematics to
one extent or another. What’s new is the recognition that rudimentary algebra
and calculus are no longer enough to handle the sophisticated analyses that envi-
ronmental scientists now know are necessary. Advanced techniques in scientific
computing and numerical analysis are coming to the fore as rescarchers tackle
challenging problems ranging from acid rain to the eftects of the world's oceans
on global climate.

There is also growing interest in environmental science in the mathematics
community itself. Recent meetings of the professional mathematics societies have
featured presentations on environmental subjects. and last suminer the Institute
for Mathematics and its Applications. a mathematical think tank located at the
University of Minnesota, held a four-week workshop on environmental modeling.
Mathematicians are finding the field contains some interesting theoretical and
computational problems. They are also finding a need in environmental studies
for the ability of mathematics to build bridges between disciplines that are often
separated by seas of jargon.

This kind of interdisciplinary work “takes time and energy. and it’s not meant
for everyone.” says Mary Wheeler, a mathematician at Rice University. “but there
are some really exciting challenges in it that will also drive some good results in
mathematics.™

Wheeler is one of the leaders in the movement of mathematicians into environ-
mental science. She and colleagues at Rice and elsewhere have developed new
mathematical tools for the study of fluid flow through porous materials. Their re-
search combines the analysis of systems of nonlinear partial differential equations
with suphisticatcd numerical algorithms that take advantage of new computer
architectures such as massively parallel computation to solve the various equa-
tions. Among other applications. their efforts arc aimed at helping environmental
engincers plan remediation strategies for groundwater aquifers that have been
contaminated by hazardous chemicals (see vox on page 20).

Onc of the vexing aspects of environmental studies is the fact that the problems
can span many scales of size. For cxample. a realistic climate model must con-
sider everything from the microphysics of cloud nucleation to global circulation
patterns. Likewise, plans for the isolation of nuclear waste must take into account
physical processes occurring on a time scale of hours to months but keep an eye  Mary Wheeler (Photo by Tommy
on safety standards valid for tens of thousands of years. In short. environmen-  -¢vergne. Rice University: )
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By working with mathe-
matical models, environ-
mental scientists can gain
insights into sysiems that
are too complex to study in
any other way.

tal issues - -take logging, for example-- require researchers to look not just at the
forest. but also at the trees (not to mention the spotted owls). :

Mathematical modeling offers rescarchers the opportunity to identify and clarify
mechanisms that connect phenomena at different scales, Wheeler says. In some
cases sheer computational power makes the conncction possible; in other cases,
the mathematical equations themselves reveal the crucial interactions. By working
with mathematical models, environmental scientists can gain insights into systems
that are too complex to study in any other way.

Computers. and the high-tech algorithms that run on them, are making it pos-
sible to do the calculations required by these sophisticated mathematical models.
“More and more people are recognizing that. with these tools, we can solve very
complex problems.” says Julius Chang, an atmospheric scientist at the State Uni-
versity of New York at Albany. Researchers no longer have to rely on unrealistic
simplifications in order to make the computations tractable. “We can tackle many
problems head on.” Chang says.

Chang’s group, for example, has developed an acid-rain model called RADM
{for Regional Acid Deposition Model) which includes a system of coupled differ-
ential equations for a set of sixty different chemical species (see Figure 1). These
aren’t your nice, neat. textbook equations. either. Printed out. a typical RADM
equation runs on for line after line of cryptic symbols and mixed upper- and
lower-case letters. and could easily be mistaken for an old-fashioned computer
core dump. RADM’s equations take into account effects such as atmospheric
advection and mixing. gas-phase chemical reactions. cloud mixing and “wet scav-
enging.” dry deposition (acid can “fall” even when it isn't raining). and the location
of sources of various pollutants {what comes down must have gone up).

Figure 1. Cwmudative wer sulfur depasition (in grams/hectare; for castern North America
over a three-day period in April 1981 as caleulated by the Regional Acid Deposition: Model
{RADM i using actual reported emission rates of various atmospheric pollutants.  ( Figure
courtesy of Julius Chang.

R MATHEMATICAL SCIENCES

ERIC

Aruitoxt provided by Eic:

WHAT'S HAPPENING IN THE

21

A]"




E

Q

MC IR

Aruitoxt provided by Eic:

Even so. there are limits to what conputers can do. Take clouds. for example.
“A cloud serves as an elevator for pollutants” Chang explains. But clouds are
notoriously difficult to model. Scientists specializing in cloud processes have
created “wonderfully detailed™ models of cloud formation. Chang says, but their
models “are too computationally complex to usc on a regional scale. A singie
cloud can fill up a whole computer.™ So for now. RADM makes do with a cioud
model that’s fairly reahstic but highly simplified.

If clouds are hard for computers to handle. oceans are even worse. There's
a huge gulf between what goes on on the open seas and what even the largest
supercomputer can model. That's a problem because oceans play a significant
role in determining climate —and climate is one of environmental science’s biggest
concerns.

“If you're interested in climate, you're interested in the ocean.” says Mac Hy-
man, a mathematician in the Theoretical Division at the Los Alamos National
Laboratory in New Mexico.

The problem is not that oceans are hard to understand: in some respects. their
cquations are simpler than those of the atmosphere. Basically. the earth’s oceans
act as a gigantic heat reservoir and transport system. They exert a long-term
influence on global climate by absorbing and emitting heat and carbon dioxide.
The equations that describe all this are pretty well worked out. They include the
Navier-Stokes equation, which underlies all fluid flow problems. and other partial
differential equations describing gas exchange and heat transfer. All told. the basic
equations of ocean dynamics can be written down on a single page. The problem
is. these cquations can’t be accurately solved on existing computers---at least not
by standard numerical methods.

That's because most of the kinetic energy of the ocean is found at scales too small
for standard models to resolve. explains Hyman's colleague Darryl Holm. Unlike
the atmosphere. where length scales on the order of 100 kilometers dominate the
dynamics (just think of storm fronts). much of the ocean’s energy exists in the
form of eddies and waves that are five to ten times smaller.

“"Without modeling some aspects of the small-scale. high-frequency waves and
eddies. we can’t know whether our global oceanic models are truly reliable.” Holm
says.

But rescarchers can't just tell the computer to take a closer look at the small-
scale phenomena---or rather, says Hyman, "You can’t afford the computer costs
to resolve them. If you go down a factor of 10. that’s a factor of 10 in three
dimensions. so that’s a factor of 1000 - plus a factor of 10 in time. so that's a
factor of 10%. in computer costs, and no one’s talking about those kinds of gains
{in computer technology] in the next few years.” '

However, Holm and Roberto Camassa. also at Los Alamos. have developed
some new mithematical approaches that may get around the problem. Their basic
idea is to simplify the equations for ocean dynamics by taking advantage of the
fact that certain important parameters. such as the ratio of surface wave amplitude
to ocean depth and the ratio of depth to width of the occan, are extremely small.
If done carefully. the simplified cquations will reliably represent the average effects
of the high-frequency. smali-scale clements on the large-scale dynamics. What
should come out. says Hyman, is the correet average answer. “which is what we're
looking for in the climate anyway.”

Hyman, Wheeler, and others sce a permanent role for mathematicians in en-

Mathematical modeling
offers researchers the op-
portunity to identify and
clarify mechanisms that
connect phenomena at
different scales, Wheeler
says.
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vironmental science. Atter all. one of the things mathematicians do is to solve
Mathematical modeling problems. And when it comes to the environment, the problems seem to be getting

not (m]y may help plan the bigger all the time.
cleanup of contaminants
b ¥ Bugs in the Program

Wheeler adds, it may also " : o

. v The cleanup of underground aquifers contaminated by hazardous chemicals is
help contain costs. serious—and costly—work. For example, the disposal of carbon tetrachloride over
a period of eighteen years at the Hanford Site in south central Washington statc has
left contaminated groundwater over a five-square-kilometer area; cleaning it up could
cost as much as $300 billion. And that’s just one particularly bad example. The
problem is not limited to a few locations. In 1986, the Environmental Protection
Agency estimated there to be leaks in as many as 35% of the roughly 800.000 gasoline
storage tanks in the U.S., with more than half reaching the water table.

“Contamination of aquifers by polluted streams and ponds, leaking storage
tanks, agricultural chemicals. gasoline spills, and dumping has become a serious and
widespr 1 threat to public health,” says Mary Wheeler, Wheeler has taken a keen
interest  developing mathematical models that can assist environmental engineers
plan their cleanup strategies. .

One such strategy is known as in situ biorestoration. The basic idea is very simple:
Certain microorganisms will actually digest or otherwise remove contaminants such
as carbon tetrachloride—but only if encouraged to do so by the introduction of
dissolved oxygen or other triggering nutrients. What makes it complicated are the
complex interactions of groundwater, contaminant, organisms, and nutrients, which
are flowing through material that may itself be highly heterogeneous.

That’s where Wheeler’s mathematics comes in. Wheeler and colleagues have de-
veloped mathematical models that describe these interactions in terms of nonlinear
partial differential equations. They have also developed new computational techniques
to solve these equations numerically and display the results using three-dimensional
computer graphics. While noting there’s still a lot of work to be done, Wheeler says
these models should give researchers some much-needed insight into what's going on
at contamination sites and how biorestoration can be used to best effect.

Mathematical modeling may not only help plan the cleanup of contaminants,
Wheeler adds, it may also help contain costs. That's because “experiments™ run on
a computer are much chcaper than actual field experiments—and some experiments
can only safely be tried in a computer “environment.” The cost of conducting field
experiments can run into the millions of dollars, Wheeler notes. “Doing it on the
computer is very cheap.”

Fighting over who gets to write down
the next term in the equation: Darryl
Holm tleft), Roberto Camassa (center),
and Mace Hyman. (Photo by Fred Rick.
Los Alanos National Laboratory.
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Disproving the Obvious
in Higher Dimensions

ot everything that's “obvious™ is necessarily true.

Scientists in all disciplines know that drawing "obvious™ conclusions,
even from well-founded facts. is a dangerous game, unless those conclusions can
be backed up by experimental verification. The same iS true in mathematics.
except that mathematical proof takes the place of laboratory experimentation.
Mathematical explorations are guided by intuition. but only when their Lituitions
arc confirmed by proof do mathematicians accept the “obvious™ as true. This
approach is necessary because sometimes what seems “obvious™ just aint so.

Mathematicians saw that happen not once, but twice in 1992. In similar but
separate developments, researchers discovered that two facts from plane and solid
geometry, facts that cry out for obvious generalization to geometric figurcs in
am dimension, do not hold in that kind of generality. Their findings reaffirm
researchers’ suspicion that ordinary spatial intuition is not up to the task of
thinking in higher dimensions.

That would be of only academic interest were it not for the fact that higher-
dimensional geometry plays an important role in many mathematical applications.
“I've been asked questions about higher-dimensional geometry by people who are A
interested in specch recognition and by people who are interested in algorithms
for decaling wilh DNA." says Pf:ler Shor. a resczu’c.h nuul.mlmll.ician at AT&T apart of any two points in the shaded
Bell Laboratories in Murray Hill. New Jersey. Higher-dimensional geometry — jogion. The distance henveen them is
provides a natural mathematical framework tor dealing with problems involving  called the “diameter”™ of the region.
several variables or long strings of data. In particular, it has figured prominently
in the development of so-called error-correcting codes, which are mathematical
construciions that underlic the reliable storage and transmission of data in satellite
telemetry. computer modems, and cven compact disks.

Onc of the “obvious™ gencralizations was a problem that had been bothering
mathematicians for the better part of sixty years before it was tackled by Jeff Kahn
at Rutgers University in New Brunswick. New Jersey. and Gil Kalai at the Hebrew
University in Isracl. In 1933, the Polish mathematician Karl Borsuk proved that
any region in the plane whose “diameter™ - the largest distance between two points
in the figure- -is equal to | can be cut into three picces, each of diameter strictly less
than 1 (see Figures 1 and 2). This generalizes the completely trivial observation
that 4 one-dimensional figure of diameter | --that is, a line segment of length
l-- can be cut into two shorter picces.

On the basis of these two cascs. Borsuk asked the obvious question: Is it always
possible to cut any «-dimensional shape of diameter | into  + | picces cach of
diameter less than 1?7 The “obvious™ affirmative answer came to be called Borsuk's
conjecture,

For many figures, of course. the task takes fewer than ¢ 4 1 picces. The squarc
of diagonal 1, for examplc. can be cut neatly in half. On the other hand. an
equilateral triangle in the plane. a tetrahedron in space, and their cousins in higher
dimensions definitely do require  + | picces: Since their vertices are all mutually a
unit distance apart, cach vertex must go into a separate piece. Borsuk’s conjecture

Figure 1. A and B wre the farthest

Figure 2. Tiwo ways to partition the
cirele and sphere into picces of smaller
diamerer.
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(0.0,

(1, 0.

Figure 3. A diagonal “slice™ through
the unit cube in three dimensions.

Jeff Kahn. (Photo by Nick Romanenko,
Rutgers University:. ;

One Plus One Equals 1.1?

If Borsuk’s conjecture were true, then it should apply to any geometric figure. In
particular it should be true for the vertices of a d-dimensional “slice™ through the unit
“cube™ in (d + 1)-dimensional space. The coordinates of the vertices of the unit cube
are all zeros and ones, and one way to slice through it is to restrict to vertices that have
a specified number of ones (see Figure 3).

Each vertex can be thought of as specifying a subset of the integers {1,2,...,
d + i} according to which coordinates are ones and which are zeros. For example,
(1,1,0.0,1) specifies the subset {1,2,5}. Under this interpretation, the distance
between two vertices is related to the size of the intersection of the corresponding
subsets: The smalier the intersection. the greater the distance.

In this setting. David Larman observed, Borsuk’s conjecture reduces to a combi-
natorial assertion about sets: If S is a family of subsets of {1,2....,d + 1} such that
all the sets in § have the same number of elements and such that every two sets in S
have at least 11 elements in common, then S can be partitioned into d + | parts so that
in each part every two sets have at least 1 + 1 elements in common.

It w»s this version of Borsuk’s conjecture that Kalhin and Kalai found to be false.
The venicle they used to get there is a theorem of Frankiand Wilson: Let k be a power
of a prime number, and let S be a family cf subsets of {1,2,...,4k}, each with 2k
elements, such that no two members of S have & clements in common. Then S has at
most 2(“,\{"_’,1) members. (This bound is less, by an exponential factor, than the total
number of sets with 2k elements.)

The reader is invited to ponder just how the Frankl-Wilson theorem contradicts
Borsuk’s conjecture. But remember Kalai's warning: “It's an example of an extremely
short proof that was quite difficult to find.”

doesn't say that every figure needs to be cut into o 4- 1 picees in order make all the
picces have smaller diameter: it just says d + 1 is the most you ever need.

Things started looking good for Borsuk's conjecture in 1946, when the Swiss
mathematician Hugo Hadwiger showed that any «-dimensional geometric figure
can be cut into d -+ | pieces of smaller diameter. if its boundary is smooth. In other
words, Borsuk's conjecture is truc for things like the d-dimensional sphere--shapes
without corners or creases.

Then in 1955, the English mathematician H.G. Eggleston proved Borsuk's con-
jecture for ¢ = 3. And that’s pretty much where things stood until 1992, when
Kahn and Kalai came in and knocked Borsuk's conjecture flat on its back.

Actually. Kahn and Kaiai have not ruled out Borsuk’s conjecture altogether:
it might still be true in quite a few more dimensions. What they showed is
that. for high dimensions. the minimum number of pieces required to cut any d-
dimensional object into pieces of smaller diameter grows much more rapidly than
d + 1. Specifically. Kahn and Kalai proved that the minimum cxceeds 1. [Vd,

That formula doesnt do much good for small values of d. where d + 1 is larger
than 1.1V<, Butstarting around = 10.000. the Kahn-Kalai bound kicks in. (The
first instance where 1.1V¥ is greater than d + 1 occurs at d = 9162, With a little
more care. Kahn says. they can ebtain a formula that works down around 2000.)
More to the point, their result shows that Borsuk's conjecture is badh wrong at
high dimensions. The number of picces needed grows exponentially. not lincarly.

The form of the result might secem to suggest a long. complicated proof. After
all. square roots don't often appear as exponents. and 1.1 is not the most natural
number in the world. In fact. the proof'is surprisingly short. It’s only a few lines
long. That doesn't mean the proof was easy to come by. though. *It's an example
of an extremely short proof that was quite difficult to find.” says Kalai.
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Peter Shor and Jeff Lagarias. (Photo courtesy of AT&T Bell Labs. j R 1 l ] i

The proof'is based on two ideas. The first,"due to David Larman at University
Coliege in London, is an interpretation of Borsuk’s conjecture as a statement
about families of finite sets and their interscctions. The second is a theorem due
to Peter Frankl at the Centre National de la Recherche Scientifique in Paris and
Richard Wilson at the California Institute of Technology about the size of such
families (sec box on preceding page). The hard part was “figuring out what to do ]
with these ideas.” Kahn recalls. Once they found the right construction. though,
the contradiction to Borsuk’s conjecture was an immediate consequence of the T T E—
Frankl-Wilson theorem.

While it wipes out Borsuk’s conjecture in general, Kahn and Kalai'sconstruction  Figure da. A viling of the plane by unit
of counterexamples leaves a lot of dimensions tinaccounted for. In particular. “for uares
dimension four, you clearly need a different ws:' to look at the entire problem.”
says Kalai. The conjecture could be true or it could be false in that case. Nobody
knows. And it could be another sixty years before unyone finds out. Or another
six hundred years. Or it could be proved tomorrow.

Kahn and Kalai’s cutting apart of Borsuk’s conjecture was actually the second €

of the two counterintuitive geometric discoveries of 1992. Earlier in the year,
Peter Shor and Jeff Lagarias, also at Bell Labs, took on another sixty-year-old
problem. one with roots even older than that. The conjecture they looked at is N
bascd on a simple observation about squares in the planc: 17 you try to tile the
plane with squares of equal size, then you necessarily wind up with squares that
have an entire side in common. In fact there’s essentially only one kind of tiling A

B

of the plane by squares. nanelv a checkerboard tiling in which the rows have been
shifted by arbitrary amounts (sce Figures 4a and 4h).

If you get your hands on a sct of child’s building blocks. “ou can convince
yoursclf that something similar is true in three dimensions: 1. you “tile™ space Figure db. When square C is moved
with cubes of equal size. you wind up with cubes that have an entire side in into the corner. it will have an entire
common. In this case. of course, the common side is a two-dimensional square. e common with square A.
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What is clear, from both
recent results, is that geo-
metric intuition is a decep-
tive guide.

“Tiling spacc.” whatever the dimension. means filling the entire space without any
overlapping.

In 1930, the German mathematician Ott-Heinrich Keller took the plunge. He
conjectured that no matter what the dimension d. if you tile d-dimensional space
with J-dimensional “cubes™ of equal size. then you wind up with cubces that have
an entire (¢ — 1)-dimensional “side™ in common.

Actually. Keller wasjust generalizing a conjecture of Hermann Minkowski. who
in 1907 made the same observation. but restricted to “lattice tilings™-tilings for
which the centers of the cubes form a regular. grid-like lattice of points. like the
locations of carbon atoms in a crystal of diamond. As it turns out. Minkowski
was right and Keller was wrong.

Oskar Perron made his countrymen look good in 1940, proving Keller’s con-
jecture in dimensions up to six. Two years later. the Hungarian mathematician
Gyérgy Hajos vindicated Minkowski completely. showing the original conjecture
for lattice tilin s is true in all dimensions. That left Keller's more general conjecture
in dimensions seven and up. The issue lay unresolved for fifty years.

No more. Lagariasand Shor have found an explicit counterexample to Keller's
conjecture in ten-dimensional space. This also kills the conjecture in dimensions
eleven and up. because as soon as Keller's conjecture fails to be true at onc
dimension. it automatically stops being true at all higher dimensions. (A tiling by
d-dimensional cubes can be converted into a laver of (¢ + 1)-dimensional cubes.
and then copies of the layer can be stacked to fiil all of (¢ + 1}-dimensional space.
with the layers shifted so that there are no entire sides in common between layers.)
The only unresolved cases arc dimensions seven. cight. and nine.

In a sense. thosc cases require only patience  and maybe a high-speed computer
the size of a major galaxy. That's because in addition to proving Keller's conjecture
for dimensions up to six. Perron also showed how the conjecture could be checked
in any given dimension by looking at a finite number of different tilings: If no
counterexample is found in this finite sct. then the conjecture is true (in that
dimension). Unfortunately the number of tilings to be checked is unbclievably
large: 2. No one in his right mind. and no mathematician either. would set out
to sort through 2'** possible tilings to check the case d = 7.

Nevertheless. Lagarias and Shor did something of the sort to find their
ten-dimensional counterexample. They based their construction on work of
Kereszyély Corradi at E6tvos Lorand University and Sindor Szabé at the Techni-
cal University in Budapest, who two years earlier had introduced a new approach
to looking for counterexamples. By studying the output of limited computer
searches, Lagartas and Sho. found tilings in dimensions three, four, and five that
almost gave counterexamples in those dimensions. By cabbling these near-misses
together. they manufactured legitimate countercxamples. first in dimension twelve,
and then in dimension ten.

Its unclear if the same techniques can be brought to bear in dimensions seven.
cight. and nine. Lagarias and Shor say it’s possible the conjecture may fail even
in dimension seven. but the counterexamples are too structureless to find. “The
amazing thing is that there actually existed a counterexample that had a simple
enough structure that you could actually find it.” says Lagarias.

It’s also unclear if their counterexample to Keller's conjecture will have any direct
applications to things like error-correcting codes — so don’t expect next vear’ line
of CD players to be based on a tiling of ten-dimensional space. However, Lagarias
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notes, the cube-tiling constructions give rise to novel types of “nonlinear™ codes
quite unlike the linear codes that are used in current applications.

What is clear. from both recent results, is that geometric intuition is a deceptive
guide. “High-dimensional space is very strange.” says Lagarias. Adds Shor: “If
youre going to make conjectures about high dimensions, you should use some
basis other than just extrapolation.”

In fact. Shor goes so far as to make his own conjecture about higher-dimensionaj
geometry: “Conjectures based solely cn low-dimensional examples are false in
high dimensions.” he asserts. Asked if that includes his own conjecture. Shor
amends the statement: “Conjectures based solely on low-dimensional examples
are fikelv to be false.”

Here’s Looking at Euclid

The latest results involve some pretty highfalutin math, but not all counterintuitive
results in higher-dimensional geometry are har to prove. Here'’s one you can “see"
for yourself.

Start by drawing four circles of radius 1 centered at the points (1.1), (1,—1),
(=1L 1).and (—1.—1) and then add a fifth circle centered at the origin and touching
the other four (see Figure 5). This central circle is clearly contained in the square
around the four outer circles.

The same thing is true in three dimensions: If eight spheres of radius | are centered
at the points (&1, %1, &1, then a ninth. central sphere touching them all stays within
the cube around the cight (see Figure 6).

It would seem obvious that no matter what the dimension, the central “sphere”
always stays within the corresponding d-dimensional “cube.” It’s just not true.

Here’s why. By the {generalized) Pythagorean theorem. the distance from the
origin to-any of the centers of the outer spheres is

VI 4 (2024 1 (2107 = va,

and consequernitly the radius of the central sphere is v/d — 1. But the distance from
the origin to any side of the cube is always just 2. So when ¢ = 9. the central sphere
touches each side of the cube. and for d > 10 it pokes outside the cube.

Figure 5. The smal inmer cirde touches
all four circles of radius 1 and stays
within the squae.

small —

B
eioly

Figure 6. Similarly, i three dimensions. the small inner sphere, swhich touches all the larger ones. remains inside the cube. This is no longer
irue i higher dimnensions:

-
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Figure 2. A nenclosed geodesic on a dis-
torted sphere.

Figure 1. A closed geodesic on a distorted
sphere.
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Collaboration Closes in
on Closed Geodesics

and ignited by a spark. they are capable of exploding with enough power to
propel a rocket into outer space. In mathematics, something similar can happen
when two theories are brought in contact and set off by the spark of a new idea.
Recently two mathematicians with expertise in separate specialties joined forces
to solve a problem in differential geometry that had been on the books for more
than sixty years.

Victor Bangert, at the University of Freiburg in Germany. and John Franks.
at Northwestern University. have shown that no matter how badly you distort
a sphere, there will always be infinitely many “closed geodesics™ on it: rubber
band-like curves that are determined by the curvature of the distorted surface (sec
Figure 1). The previous best result had been that every distorted sphere had at
least three such geodesics  and that theorem dates back to the 1920s.

The new result is mainly of theoretical interest. but that doesn’t mean it won't
ever find practical applications. According to Robert Molzon. program director
for geometric analysis in the Division of Mathematical Sciences at the National
Science Foundation, differential geometry isapplicable to “everything from general
relativity and understanding the large-scale structure of the universe down to very
small-scale problems such as boundaries between phases [e.g.. liquid and gas] in
materials science.™ Bangert and Franks’s thcorem is one more tool with which to
.tudy such problems.

Molzon is also encouraged by the new collaboration between two seemingly dis-
parate mathematical arcas: differential geometry and dynamical systems. “Bring-  John Franks,
ing together these two areas is a big step.” he says. Bangert and Franks solved
the geodesic problem through a “divide and conquer™ approach. with Bangert
using classical techniques in differential geometry on one part of the problem and
Franks bringing dynamical systems theory to bear on the other part.

Whether it's concerned with applications to relativity theory or materials science.
or with more abstract issues in mathematics itself. differential geometry can be
looscly described as the study of curvature. Geodesics arc among its fundamental
objects. A geodesic is basically just a path that follows the curvature of whatever
surface or space it lies in. The precise definition implies that geodesics have a
“shortest path™ property. In particular. the shortest path between two points
always lics along a geodesic.

The geodesics on a perfect (i.c.. undistorted) sphere are the great circles. such .
as the equator or any line of longitude on the globe. Every one of them is closed. Whether it’s concerned
But as soon as you hammer on the sphere. that’s no longer true. In general. when  With relativity theory, ma-
a geodesic traveling in one direction approaches a bump or a dent. it gets deflected terials science, or more
in some other direction. much as a golf ball may veer away from the Cup on an abstract issues in mathe-
uneven green. It can Cil.\:l.l'\’ happen that the geodesic will never find its way back matics itself’ differential
to where it started (see Figure 2). 3 . . . geometry can be loosely

Whe‘n there are bumps and dents c-\'cryv.'hcrc. it s.pos.&;lblc to imagine @t described as the study of
geodesic wandering about endlessly.  But that doesn't happen. George David i ¢
Birkhoff proved in 1917 that every distorted sphere has at least one closed geodesic, curvature.

I ndividually, neither hydrogen nor oxygen can combust. But put together

WHAT'S HAPPENING IN THE 7
MATHEMATICAL SCIENCES -
\‘l . a. )
ERIC : o0
|




equator

Figure 3. A geodesic that gets “trapped”
in the “Naorthern hemisphere.”

Twelve years later. two Russian mathematicians, Lazar A. Lyusternik and Lev
Schnirelmann. went a step further. They proved there arc always at least three
closed geodesics on any distorted sphere.

More than half a century went by without a single closed geodesic being added
to the count. Then Bangert had an ideca for renewing BirkhofT's original attack
on the problem. Part of the problem. Bangert saw. could be dealt with using
techniques coming purely from differential geometry. his own specialty: the rest
would require results from the theory of dynamical systems-—and for that he
sought the expert help of Franks.

“Bangert really kindled my interest in clarifying exactly what was necded to get
this result.” Franks recalls.

At first glance, differential geometry seems a far cry from the theory of dy-
namical systems. One subject is concerned mainly with objects that arc fixed and
permanent. while the other. virtually by definition. is interested in how things
change. But the two aren’t complete strangers. Birkhofl had already shown how
the geodesic question could be translated into a problem purcly in dynamical
systems.

BirkhofI"s translation starts with a single closed geodesic that loops once around
the sphere without intersecting itself. This curve acts as a kind of “equator”
separating two “hemispheres.” Any other geodesic that crosses the equator either
continues to cross it infinitely often (which is the case for closed geodesics if you
keep following them around and around}. or clsc it eventually gets trapped in one
hemisphere (sce Figure 3).

The former case. Birkhoff showed. leads to a dynamical svstem. Each crossing
of the equator can be described by two parameters: one for the location of the
crossing (i.e.. its “longitude™). and one for the angle it makes with the equator.
These parameters can be plotted on a washer-shaped region known as an annulus
(see Figure 4). So cach crossing of the equator by a geodesic corresponds to a
point in the annulus. and. conversely. each point in the annulus corresponds to a
crossing of the equator by some geodesic.

The theory of dynamical systems enters in when you follow geodesics from onc
crossing to the next. This defines a map of the annulus back onto itself—and
maps from a region back to itself are one important kind of dynamical system.
In particular, such maps can be iterated (that is. applied repeatedly). 1In the
case of Birkhoff’s annulus map, this corresponds to following a gcodesic from
one crossing to the next. The key point is that periodic points for Birkhoft’s
annulus map-—that is. points on the annulus that eventually get mapped back
onto themselves—-correspond to closed geodesics. So to show there are infinitely
many closed geodesics on a distorted sphere. it's enough to prove that BirkhofT’s
annulus map has infinitely many periodic points.

Bangert saw a division of labor. First of all. something had to be donc in the
casc when Birkhoff’s annulus map is not defined. which can happen. for instance.
when a geodesic crosses the equator and gets trapped in the northern hemisphere.
Bangert handled this casc using classical techniques in differential gcometry. In
fact, his proof implies there are infinitely many closed geodesics anytime there are
two geodesics that don't cross cach other at all.

It remained to prove that. when the annulus map is defined. it’s guaranteed
to have infinitely many periodic points (corresponding to infinitely many closed
geodesics). This case Bangert left to Franks. an expert on annulus maps.
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Birkhoff's annulus map, it turns out, has a special property: When it maps
the annulus back onte itself, it preserves the area. if not the shape, of any piece
of the annulus. Birkhofl himself used this feature to prove that, at least under
certain circumstances. his annulus map would have a fixed point, corresponding
to a closed geodesic that intersects the “equator” in only one point. The proof,
however, had nothing to do with geodesics or differential geometry; it was pure
dynamical systems, a statement about area-preserving annulus maps.

Area-preserving annulus maps have been a staple of dynamical systems theory
ever since. Franks had proved a generalization of Birkhoff's theorem (more prop-
erly called the Poincaré-Birkhoff theorem). and this was why Bangert approached
Franks. in 1988, for help on the geodesic problem. It was clear what needed to be
proved. Franks recalls. It just wasn't clear—at first—how to prove it,

Finally. in 1991. it became clear. Franks's theorem says that any area-preserving
annulus map either has no periodic points, or else it has infinitely many of them.
For the geodesic problem. the no-periodic-point possibility can be ruled out. and
that leaves the long-sought conclusion: The sphere, no matter how badly distorted,
still has an infinite family of closed geodesics.

Franks’s theorem and Bangert's analysis don't completely close the book on the
closed geodesic problem. if anything, the fact that there are always infinitely many
closed geodesics raises a host of new questions. There are also questions raised by
the proofitself. For example, among the closed geodesics on a distorted sphere. is
there always one for which the Birkhoff map is defined? (If that's the case. then
Franks’s theorem alone would comnlete the proof that there are infinitely many
closed geodesics.) The list of potential problems and new questions runs on—as
endlessly as the geodesics themselves,

Figure d. The geodesic crosses the “equator” at a certain point along the equator (indicated
by djand at a certain angle (indicated by o . The values af 0 and v at any crossing are ploteed
onto the annulus.

At first glance, differential
geometry seems a far cry
from the theory of dynam-
ical systems. One subject
is concerned mainly with
objects that are fixed and
permanent, while the other
is interested in how things
change.
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Rob Alzren and Andy Rousent at the Geometry: Center in Minnceapolis. . Photo by Barry
Cipra. .
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Crystal Clear Computations

ob Almgren and Andy Roosen have a spirited competition going on.

They're trying to see who can grow the nicest-looking crystals, Almgren
and Roosen aren’t working with chemicals in a laboratory, though. Instead.
the crystals they grow are geomeiric shapes that develop in the purely numerical
environment of a computer.

The two mathematicians--Almgren at the University of Chicago, Roosen a
graduate student at Rutgers University—are members of a computational crystal
growing group. The informal network of researchers. headed by Jean Taylor at
Rutgers and Fred Almgren (Rob Almgren’s father) at Princeton University, is part
of a new trend in mathematics to combine the power of mathematical analysis
with the speed and versatility of modern computers to tackle complex problems
of fundamental importance head on,

The computational crystal growers are creating mathematical models and ana-
lytic techniques that will give scientists powerful new tools for studying the nature
of crystals. These new tools. researchers say. will help accclerate the future design
of' materials with special properties of strength, “shape memory.” and even super-
conductivity. At the same time, the computational crystal studics raisc challenging
problems in pure mathematics and numerical analysis. the solutions to which may
well have applications in other, unrelated arcas. The subject contains a “*wealth
of new gecometric phenomena.” says Taylor. “There are all these things out there
waiting t-» be explained.™

Snowfiakes. for one. Just how the familiar six-sided crystal takes shape is still
largely a mystery. Scieatists know that the final shape depenas on the conditions
of temperature and supersaturation of water vapor while the snowflake is forming.
but “the exact mechanisms are far from clear.” according to Rob Almgren. The
computational crystal growers will know they're on to something when they are
able to mimic the growth of snowflakes.

But other applications are likely to come first. While snowflakes have intrinsic
scientific (and acsthetic) appeal. there arc also practical considerations driving
rescarch in crystal growth. The strength of steel. for example, is determined in

" the way crystals form as the metal cools from an initial, liquid state.

many properties of semiconductors depend on the way impurities in

.ettare “driven out” in the process of solidification. Crystal growth is also

1al to the up-and-coming manufacturing technique known as molecular-beam

epitaxy, in which materials are created one atomic layer at a time in a kind of
ultra-high-tech version of spray painting.

Those phenomena all involve the growth of dendrites. and that's what Almgren
and Roosen have been vying to recreate on their computer screens. Dendrites are
structures that branch in complicated ways (the name comes from the Greek word
for “tree”™). In crystals, they are created by the interplay between surface energy
and diftusion of heat or chemical impurities.

Surface energy in crystals is closely related to the arca-minimizing surface ten-
sion that tends to keep soap bubbles and raindrops spherical,  However. for
crystalline materials the energy of a picce of surface depends on the direction it
faces. Minimization of this “anisotropic™ surface cnergy pulls the crystals into
nonspherical shapes such as the cubical crystals of table salt. Heat and excess

)

I/
LIT)!

Joean Tuylor. (Photo by Rebecea
Savoie. j

‘The computational crys-
tal growers are creating
mathematical models and
analytical techniques that
will give scientists powerful
new tools for studying the
nature of crystals.
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The theoretical results
“might never have been
obtained without the new
ideas generated by trying
to do numerical computa-
tion,” Rob Almgren notes.

chemical concentrations come from the release of latent heat and impurities when-
ever a portion of the liquid crystallizes.

“When heat is released, it must diffuse away.” Roosen explains. Until it does,
the region where it was released is too warm to crystallize further. “But what this
means is that little bumps sticking out are able to diffuse their heat away faster
than little dips. consequently they grow faster,” he adds. " Without surface energy.
this would happen with any bump or dip no matter how small. so the crystal would
develop arbitrarily small structures. With surface energy. there is a lower limit on
how small the fingers poking out into the cold can be.” In other words, “release
of latent heat and diffusion creates instability. surface energy controls it.” Roosen
says. The net result is the rapid advance of stable dendritic “tips™ and the creation
of characteristic branching patterns.

While that description seems straightforward enough. formulating it mathe-
matically and then turning the equations into workable computer algorithms is a
different matter entirely. Even in a simplified. two-dimensionai setting. no one has
yet come up with a method to match the rich range of structures seen in real ex-
periments. Says Taylor: “Various people have announced that they “understand’
dendrites. I don’t.”

Almgren and Roosen’s two-dimensional pictures look promising. however {sce
Figures la and 1b). Their methods often produce similar results. but they are
based on different approaches. Both proceed by alternating steps in which the
diffusion of heat is calculated with steps that compute the motion of the crystal
surface. The main difference is in how they go about the sccond part of the
calculation.

Imgren’s approach treats the motion of the surface as a problem in geometric
optimization. “At every step. you say “What's the best shape that minimizes a
certain energy function? ™ he explains. Posing the problem in that way gives
the approach an appealing conceptual generality. It also raises a number of
theoretical questions and possibilities. In a good example of intergenerational
as well as interdisciplinary research. Fred Almgren showed that the sequence of
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optimizing shapes do indeed approximate a smoothly growingcrystal. In fact. this
established the existence of a solution to the original problem. which had not been
known till then. The theoretical results “might never have been obtained without
the new ideas generated by trving to do numerical computation.” Rob Almgren
nctes. Refining the results “remains an arca of active rescarch.” he adds.

Roosen uses the same algorithm as Almgren for computing heat release and
diffusion. but his approach is otherwise quite different. For onc thing, Roosen
works with surface energy functions that are associated with “completely facetted™
interfaces. meaning that the boundary of the crystal is a polygon with sides set at
preseribed angles (Almgren works with smooth encrgy functions. for which the
interface is always a smooth curve or surface). His approach is also “move direct™
than Almgrens. “What I do is say. "At this point. how does [the erystal] move?”
And then I move it. What [Almgren] does is say. “How does the whole thing
move?" "

Roosen’s crystals grow in a five-step process. The key slep comes first; Each
edge of the interface is moved according to a rule that depends on the temperature
along the edge and the erystal’s “weighted mean eurvature™ at the edge aconcept
introduced by Taylor to make sense of curvature in a setting where the curves
consist of straight line segments at prescribed angles (as dictated by the anisotropic
surfaccenergy). Taylor (who is Roosen's thesis advisor) has developed much of the
theory that establishes motion by weighted mean curvaturc as a praciical approach
o computational crystal growth.

The sccond step in Roosen's algorithm 1s a merging process in which. for ex-
ample. edges that have shrunk to zero length are removed from the program’s
bookkeeping system. Next comes a “shattering™ step which takes into account
the fact that some parts of an edge may actually want to move faster than other
parts because of an uneven temperature distribution. In the final two steps. the
program computes the release of latent heat and its diffusion. These five steps are
repeated tens of thousands of times. A typical calculation, Roosen says. takes four
to ten hours.
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Figure 2. Snapshot from Holm's com-

puter study of the evolution of the grain

microstructure in a two-phase polyerys-

| tal. (Figure courtesy of Elizabeth A.
Holm. 1992,

That may secem like a long time to wait for a picture of a dendrite, but it’s small
potatoes compared to the run time for a full-blown three-dimensional computa-
tion. Both Almgren and Roosen’s algorithms are conceptually suitable for three
dimensions (much of the subject carries over easily into higher dimensions, for
that matter), but the computational “load™ can increasc by a factor of several
hundred. It would take wecks to simulate a single snowflake. It would take
centurics to explore the variety produced in a single night's snowfall.

Improvements in the algorithms, further theoretical analysis. .nd more worksta-
tion horsepower are likely to bring 3-D calculations into the realm of practicality.
However, another problem will remain: Figuring out a good way to visualize the
results. Two-dimensional objects are easy to represent on paper or a computer
screen; 3-D objects-— especially objects you want to be able to see inside of —-are
far more challenging to represent.

Fortunately, the same issue crops up in a vast number of other problems, so
a lot of thought has gone into this area. Researchers have made tremendous
progress in recent years developing graphics programs that convert the computer’s
internal “knowledge” of an objcct into convincing, almost tangible pictures. It's
something to look forward to: a 3-D movie (colorized, of course) of a computer-
grown snowflake, surrounded by a glowing cloud of diffusing vapor.

The question is, will two such movies ever be alike?

A Growing Domain

Computationai crystal growth is a wide-open field. Dendritic growth is only one
of many open problems. Elizabeth Holm, a recent Ph.D. in materials science and
scientific computation at the University of Michigan in Ann Arbor, is working on
another: the structural evolution of “cellular arrrys,” such as occur in polycrystalline
materials and—although it may seem far removed from the world of crystals—the
foamy “head” on a glass of beer (see Figurc 2).

As the name implies, polycrystalline materials are materials composed of many
crystals, much as soap froth is composed of many individual bubbles. Over the course
of time some domains grow while others shrink and disappear. The Imacroscopic
properties of the material depend, in part, on the distribution of “grain” size in the
crystalline microstructure.

Holm studies the process of domain growth with a computational model taken
from statistical physics. The Potts model, as the approach is called. is like a “bitmap”
of the microstructure, Holm explains. It describes the state of the material by an
array of numerical indices assigned to a grid. In this setting, each domain consists
of a contiguous set of grid sites that are assigned the same index. (On the computer
screcn, the indices are converted into colors.)

The evolution of the structure is modeled by any of a myriad set of rules. In one
such rule, a single step of the algorithm is to pick a grid site at random, determine
the number of neighboring grid sites with different indices, and if this number can be
reduced by changing the index at the chosen site then do so, otherwise either leave it
alone or change it at random with some smal.. emperature”-dependent probability,

Part of Holm’s work has aimed at overcoming the cffects of preferred directions
(technically called “anisotropy”) caused by the geometry of the grid. For example,
in a square grid the boundaries betwecn domains tend to be horizontal or vertical
rather than diagonal. Hoim and her coworkers have found tha this inherent problem
can be overcome in two ways: by extending the definition of “neighboring” grid site
to a larger region (which, of course, entails more computation) or bv increasing the
“temperature” at which the simulation is performed. Their computations, including
some 3-D simulations, indicate the Potts model should be useful for studying domain
growth in a variety of physical systems.
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Camp Geometry

ou might call Kate Jenkins a budding mathematician,  The Stanford

sophomore spent last summer working on a computer program that par-
lays mathematical rules into pictures of flowering plants. Her geometrical bushes
branch. bud. and even bend in a blowing breeze (see Figure 1),

Jenkins was one of nincteen undergraduates who participated in a summer
rescarch program at the Geometry Center in Minneapoiis. Minnesota., The Ge-
ometry Center is a National Science Foundation (NSF) Science and Technology
Center devoted o research at the cutting edge of geometry and computer visu-
alization of geometric structures. But rescarch is just one side of the coin: the
Geometry Center also takes a serious interest in mathematics education,

Summer research programs for undergraduates in the mathematical sciences
have become popular in recent years. The NSF last year awarded twenty grants
in its Research Expericnce for Undergraduates program. at schools ranging from
Williams College to Oregon State University. Many other colleges offered their
own programs. as did research centers such as Los Alamos National Labora-
tory. the National Center for Atmospheric Rescarch. and the Cornell National
Supercomputer Facility.

“The philosophy is to give students a different experience with mathematics
than the normal exam-packed classroom experience they get in school.” says Al
Marden. a professor at the University of Minnesota and director of the Geometry
Center. The summer program gives students “a much more hands-on experience
in mathematics. by doing it rather than by listening to sonwebody tatking about
e

“It's sort of like an intellectual summer camp.” adds Tony Phillips of the State
University of New York at Stony Brook. who “coached™ the students at the
Geometry Center. For nine or ten weeks the students spent “all day and often part
of the night ™ at the Center working on projects of their own choosing  “whatever
they can think of.” Phillips says.

Figure 1. oA windblown field of Jenikins's

computer-generated “plants.”
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The summer program gives
students “a much more
hands-on experience in
mathematics, by doing it
rather than by listening to
somebody talking about
it,” says Al Marden.

1991 Summier Institute participants. Center: John Hubbard ; Cornell University ;. Front row.
scated: Stephanie Mason. Carol Soln, Albert Marden ( Director of the Geometry Center ,,
Anthony Phillips iHead Coach. SUNY. Stony Brook ;. David Broman. Jennifer Ellison.
Second row. standing: David Ben-Zvi. Mark Meciloon, Adrian Mariano. Sherry Scott, Gary
Guinian. Back row. standing: Jucques Friedman, Karen Olsson, Craig Sution, Linus Upson.
Nicholas Coult. Kate Jenkins, Ken Bromberg. i Institure participants not in photo:  Chris
Cianflone, Thomas Colthurst, and Prem Janardhan. ; ¢ Photo by Chris Faust. Space Science
Graphics. University of Minnesoia.

Jenkins took her cue from the book The Aigorithmic Beauty of Plants by Prze-
myslaw Prusinkiewicz and Aristid Lindenmayer. She wrote a computer program
that draws plants using "L-systems™ instruction scts that create complex forms
by the recursive application of simple rules. L-systems were introduced in theo-
retical biology by Lindenmayer in the late 1960s.

L-systems give geometric life to an otherwisc abstract algebra of symbolic ma-
nipulations. For example. an L-system might start with the character string
FFRF. which it interprets as Move Forward. Move Forward. Turn Right. Move
Forward. The key ingredient is a replacement rule which turns each instance of
cach character in the “instruction string”™ into some other string of instructions.
In some systems. a single character- - usually the “Forward™ instruction-- is re-
placed by the entire original instruction set. Thus. for example. FFRF becomes
(FFRFYFFRF)R({FFRF). or.removing parentheses, FFRFFFRFRFFRFE. If the
replacement rule is applica several times and then the resulting instruction string
plotted by. say. drawing a linc segment with cach forward move. the result can be
an elaborate. even organic-looking picture.

Jenkins employed more complicated branching and growth rules to produce
animated “cartoons” of developing plants, Using a dash of vector geometry. she
also worked out ways for her plants to rustle in a simulated breeze and dip due to
gravity,

Stephanic Mason. a junior at Virginia Tech. also worked with L-systems. but

WHAT'S HAPPENING IN THE
MATHEMATICAL SCIENCES




toward a totally different end: creating music. Mason takes the geometric result
of an L-system and interprets it musically. For example. a vertical move may
correspond to a step up or down in pitch. while horizontal moves indicate the
duration of a note. The basic instruction sct establishes a motif which iterations
claborate upon, she explains.

“You can actually create exactly what you want from these L-systems.” Mason

SAY'S. _
One of her creations comes from an L-system that leads to a space-filling curve
called the quadratic Gosper curve. Mason has set up the program so that the
curve - really a set of line segments with right-angle turns - -is drawnona computer
screen as the music is played on a synthesizer. Mason worked closely with Chris
Cianflone. a student at the Univeisity ot Minnesota {now in graduate school at
the University of California at Berkeley). who developed an experimental musical
program based on Fourier analysis of cxisting melodies.

Composers have long played with the formal structure of music. Bach. for
example. is well known for writing music that could be played backward as well as
forward. Mason has gone a step further. with music that can be played sideways as
well. in what she calls a “right-angle canon.”™ To do this. she simply takes a curve
and rotates it so that pitch and duration arc interchanged. When both curves
are played together, using separate synthetic “voices™ (Mason leans to piano and
flute). the effect is surprisingly musical (see Figure 2).

“Bach would have loved it.” Phillips remarks.

while Mason and Cianflone were turning Bach inside out. Nick Coult, a senior
at Carleton College in Northfield. Minncsota. was putting a spring in orbit and
numerically tracking the resulting motion. The idea. Coult says. was suggested
by John Hubbard. a professor at Cornell who is on the permanent faculty at the
Geometry Center. The problem is a variant on the three-body problem: There are
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Figure 2. 1wo exumples of “nunical scorex” produced by Mason's compuler prograni hased on L-systens. The " flute” s on the left, the
“piane” on the vight. The flute starts in the lower left-hand corner. the piane in the lewer right-haned corner.
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small masses at cach end of the spring. and a large. gravitationally attracting mass
which the mass-spring svstem orbits.

Hubbard had proposed the problem as a simplified model 1o test te hypothesis
that tidal forces are responsible for the fact that we always see just one face ol the
moon. In this model. the carth is represented by the large mass and the moon is
represented by the mass-spring system.

Coult indeed found that. in many cases. the system evolved into Just such a
stable orbit. with one end of the spring always pointing toward the central mass,
However. he also found other stable orbits. some of which are surprisingly complex.
“Theyre quite interesting to look at.” Coult observes.

Setting up the equations that describe the motion was casy enough. Coult recalls.
The challenge lay in solving them numerically. and then analyzing the solutions.
For one thing. he says. “you have to verify that what you have on the computer
screen [whenit plots an orbit] is actually right.” The programs he developed. Coult
thinks. might be useful educational tools for courses in differential cquations,
although “that’s not something I was thinking of when I started.™

That sort of unexpected development is one of the benefits of letting students
loose 1o do what they want in a relaxed atmosphere outside the usual classroom
seuting. Phillips points out. “Here, there's no test and there’s no competition.” he
says. “The students are free to work at their own pace. They all work pretty hard.
though.”

Figure 3. Another example of Jonkines comptter-generated “wardens "
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Number Theorists Uncover
a Slew of Prime Impostors

ne of the oldest and best known examples of mathematical reasoning is

Euclid’s proof that the sequence of positive integers contains infinitely
many primes. Three mathematicians at the University of Georgia have recently
put a curious --and potentially important-- twist on Euclid’s famous theorem.
W. R. "Red™ Alford. Andrew Granville. and Carl Pomerance have shown that
there are also infinitely many prime impostors.

No doubt that calls for an explanation.

A prime number. of course. is 4 number that’s divisible only by itself and 1.
Primes have lots of desirable properties: they are often called the building blocks
of number theory. However. unlike building blocks. where it’s easy to tell the
difference between a block and a building, it’s not always obvious whether a
number say 12345678910111213 - is prime or composite (that is. a product of
several primes).

At one time, the study of metheds for identifving primes was considered an
esoteric pursuit, even by many mathematicians. No more. Finding large primes
and factoring their composite progeny have turned out to have applications in
such areas as cryptography and computer security systems. The number-theoretic
pursuit of efficient algorithms for primality testing and factorization also serves
as a springboard for general ideas aimed at improving the efficiency of computer
algorithms for other problems.

Computational cfficiency is at the heart of the problem. If you're not worried
about how long it takes, the definition of a prime gives you 4 simple way to tell
if you've got one: Given a number like 12345678910111213. just try dividing it
by 2. 3. 4. and on up to 123456789101 11212, If one of these numbers divides
12345678910111213. then it’s composite: if none does, thenit’s a prime. (Actually.
it's only necessary to trial-divide up to the square root of the number in question.
since the divisors of a number n# can't all be greater than \/n. Also. it’s actually
only neeessary to trial-divide by prinmes up to the square root. since. for example.
6 can’t divide a number if 2 and 3 didn’t already divide it.)

Trial division works well when the number in question is small, But it’s not a
sensible way to verify the primality of large numbers. That’s because the amount
of computation it calls for gets quickly out of hand. For numbers with even just a
few dozen digits. the computer run-times for trial-division primality testing start
being measured in terms of the age of the universe.

Nobody wants to wait that long for an answer. It's like being put on hold when
you're calling long distance.

But what can you do? Well, in 1640  long before the lightning-fast computers
of today the French mathematician Pierre de Fermat discovered a property of
prime numbers that provides a surprisingly cfficient test for primality  usually.
What Fermat tound is the following: If # is a prime number and « is ¢y number
whatsocver, then the number ¢ — « is divisible by .

That statement has come to be called FFerma.  1ttle Theorem (as distinet from
the more famous “Last Theorem™). In spite of the diminutive title. Fermat's Little

Finding large primes and
factoring their composite
progeny have turned out to
have applications in such
areas as cryptography and
computer security systems.
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The chance of being
burned by a prime im-
postor is pretty low—
legitimate primes are

far more common than
Carmichael numbers—but
it’s still worth reading the

results with a caveat calcu-

lator.

Theorem is one of the most important results in number theory. In a very real
sense it's the cornerstone of the subject.

For the purpose of primality testing. though, the value of Fermat’s Little The-
orem is in its ability to expose numbers that are nor prime. It does this by turning
the statement around: If # is a number and « is some number such that ¢ — a is
not divisible by 1, then i very definitely is nof a prime number.

This turns out to be a remarkably efficient test: Given n, see if it divides 27 — 2,
I — 3 5" — 5 and maybce a few others (once again. it’s only necessary to try
prime numbers for «): if it fails even once, then n is not prime. For example.
Fermat’s Little Theorem ™ -oves™ that 6 is composite (if that were ever in doubt!)

n Composii:
v HICH Alivat,
PhnE aNan

' _' 5

Putting their heads together 1o solve a tough number theory problem: Andrevw Granville {top g,
Red Atord left i and Carl Pomerance. ¢ Photo by Rick O Quitnn. University of Georgia News
Bureai s
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because 6 fails to divide 26 — 2 = 62. The fact that 6 does divide 3% — 3 = 726
makes no difference; for a number to be prime. it must «/ways pass the test imposed
by Fermat's Little Theorem. '

What makes this a good test for primality is that composite numbers tend to
be exposed very quickly. Most of the time it's only necessary to test 2" — 2 . the
sraallest composite number that slips by that test is n = 341 = 11 x 31. [t's very
rare for a composite number to pass Fermat’s test for more than a couple of values
ofu.

Butit does happen. In {act. there are composite numbers that pass Fermat's test
for all values of «. The smallest such number is 561 = 3 x 11 x 17. Then come
11905, 1729, 2465, and 282!1. These numbers are impostors; they “masquerade as
prime numbers.” says Granville. He calls them “annoying.”

Infinitely annoying.

The first examples of these prime impostors were found around 1910 by Amer-
ican mathematician Robert D. Carmichacl. and for that reason they are called
“Carmichael numbers.” It would be one thing if there were just a few of them---
that would offer hope that Fermat's Little Theorem could be used not just as a
proof of compositencss. but also as a guarantee of primality. But theorists kept
finding more of them, and it seemed likely the list would prove e¢ndless.

That's exactly what Alford. Granville. and Pomerance have now shown: There
arc infinitely many Carmichacl numbers. Morcover, their work makes it clear that
many. if not all. other primality tests based on idcas similar to Fermat's Little
Theorem are equally flawed by infinite families of composite numbers that pass
the various tests. “Therc’s no way to just generalize Fermat's Little Theorem
to a [perfectly accurate] primality test.” says Alford or rather, he adds. “there’s
probably no simple way™ to do it.

That may be news to users of computer algebra systems such as Maraematica.
These systems. which manipulate symbolic expressions and do ““exact™ arithmetic,
generally include a primality test based on one of the jazzed-up versions of Fermat's
Littlc Theorem. Again, when one of thesc tests says a hundred- or thousand-digit
number is composite. the result is reliable (even though, paradoxically. the test
doesn’t contain any cluc as to what the factors might be!). but when the test says
“prime.” it really means “probably prime.”

“It's not generally appreciated that these tests are not proofs of primality.” says
Pomerance. The chance of being burned by a prime impostor is pretty low—
legitimate primes are far more common than Carmichael numbers—but it’s still
worth reading the results with a cavear calculator.

The Georgia trio’s proof that Carmichael numbers pop up infinitely often is
based on a heuristic argument put forward by Paul Erdés in 1956, The main idea
is to choose a number L for which there are a large number of primes p that don't
themselves divide L. but have the property that p — 1 divides L. The key point is
then to show that these primes can be multiplied together in lots of different ways
so that the products all leave remainder | when divided by L. It turns out that
cach such product is a Carmichacl number,

For example. with L = 120, the primes in question are 7. 11, 13, 31, 41. and
61. A check of all possible combinations reveals that 41041 = 7 x 11 x 13 x 41.
172081 = 7 x 13 x 31 x 61.and 852841 == 11 x 31 x 41 x 61 all leave remainder
I when divided by 120, and hence are Carmichael numbers.

The fact that the numbers constructed by Erdds’s argument are Carmichael
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“And then here I was, [ had
done all of this thinking
about how to do it. .. and

I was crushed, I was really
crushed,” says Alford. “Se
I went home that night,
reaily with my nose just
plain flat out of joint. But
the next morning I woke
up, and I knew how to con-

struct 2% of them.”

numbers goes back to the mathematician A. Korselt. Korselt proved that a number
n divides all numbers of the form a¢” — « (that is. 1 is a Carmichael number) if
and only if it is squarefree (which means no prime divides it more than once)
and has the property that p — 1 divides # — | whenever p is a prime divisor of .
Interestingly. he proved this in 1899-- more than a decade befere Carmichael put
his stamp on the subject. The difference is. Korselt seemed to think there were no
such numbers. They “surely would have been known as Korselt numbers had he
just done a few computations!” says Granville,

What Alford. Granville, and Pomerance did. in essence. was to make Erdds’s
argument precise. Their work was spurred by recent work of Zhang Mingzhi at
Sichuan University, who used the Erdés heuristic to produce examples of large
Carmichael numbers. Alford. who is mainly a computational number theorist,
thought he could do better. 1 was champing at the bit to construct one a million
digits long.” he recalls. Instead, Pomerance challenged him to show that his
method would produce huge families of such numbers.

“He said, ‘Red, if it's as easy as you say it is, why don’t you see if you can't
construct 2°? of them,” ™ Alford recalls. “And then here I was. I had done all of
this thinking about how to doit. .. and I wascrushed, I was really crushed, for Carl
to say it’s just like writing down a bigger integer!™ Alford laughs, then continues:
“So I went home that night, really with my nose just plain flat out of joint. But
the next morning I woke up. and I knew how to construct 2! of them.”

In fact. Alford’s program coughed up 2'** Carmichael rumbers (or, rather,
prime numbers that can be combined in that many ways to produce Carmichael
numbers). That enticed Granville and Pomerance to tackle the theoretic end of
Erdés’s argument. By using deep results in analytic number theory and combi-
natorial techniques from the theory of groups. they were finally able to flesh out
Erdés’s argument enough to prove a succinct theorem: There are more than x~/7
Carmichael numbers up te .. for all sufficiently large x.

Exactly how large x has to be to be “sufficiently large” is still unclear ( the analytic
techniques are too convoluted to produce an estimate), although the numerical
evidence suggests it happens at around x = 10°. In a way it doesn’t matter much.
because Erdds’s argument actually implies that the exponent 2/7 can be replaced
by any value short of 1. In other words. if you go far enough out. Carmichael
numbers are amazingly abundant. The impostors are not as numerous as the true
primes, but there are enough of them to make you stop and wonder.

An Imposing New Prime

In the early months of 1992—about the same time the Georgia trio proved the
infinitude of prime impostors—a group at AEA Technology’s Harwell Laboratory
in Britain announced the discovery of a new “largest” prime number: a monster
with nearly a quarter of a million digits belonging to a class of numbers known as
*“Mersenne primes.”

The new number is not. of course, the largest possible prime. There is no such
thing. What “largest” means here is it’s the largest number krown to be prime.

Mersenne primes all have the form 27 — 1, where the exponent p is itself a prime.
If all primes p produced Mersenne primes, there'd be no sport in finding “largest”
primcs, but that’s not the case. Mersenne primes are rare enough that only thirty-
two of them are known to exist. The one found last year occurs for the exponent
p = 756,839. A Cray-2 supercomputer took nineteen hours, using a variant of
Fermat's Little Theorem known as Lucas’s Test, to verify that the number indeed is
prime. :
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Map-Coloring Theorists

Look at New Worlds

. ,
P cople often think that once a “hard™ mathematical problem has been
solved. thats the end of the story. Nothing could be further from the
truth. Mathematical problems rarely exist in a vacuum: the best ones are usually
surrounded by a coteric of other interesting problems. Rather than spelling the
end to 4 subject. the solution to a challenging problem more often means that
rescarchers will turn with increased interest to some of the questions rejated to it.
Take the Four Celor Theorem. for example. In 1976, Kenneth Appel and
Wolfgang Haken at the University of Illinois proved that four colors are enough
to paint any conceivable map in the planc in such a way that no countries with
a common border are painted the same color. This breakthrough. which the
researchers summarized as “four colors suffice.” was one of the most talked-about
resulis of the 1970s. in part because much of the proof was done on a computer.
To many. the story of map coloring scemed over and done with.

Not so. Recently. rescarchers have been looking at the map-coloring problem
for classes of maps to which the Four Color Theorem does not apply. These maps
are drawn not on a flat piece of paper. but on arbitrary surfaces with any number
of "handles™ on them. such as a coffec cup or a two-handled vase. What the
rescarchers have found can be stated as a nice counterpart to Appel and Haken's
result: For these new classes of maps. five colors suffice.

Actually. there are two scparate five-color theorems. Carsten Thomassen. a
mathematician at the Technical University of Denmark. has proved that five colors
are enough for maps on these many-handled surfaces. provided the countries to be
colored are sufticiently small and numerous. Meanwhile, Neil Robertson at Ohio
State Unnversity. Paul Seymour at Bell Communications Research {Bellcore) in
Morristown. New Jersey, and Robin Thomas at Georgia Institute of Technology
have reached the sume conclusion for a different class of maps: Five colors suffice
provided the countries to be colored can’t be aligned into six mutually neighboring
“federations.”

The provisos of the two five-coloring theorems are poles apart. Robertson points
out. That doesn’t mean the two theorems are in conflict. theugh. Quite the
contrary. it means the results combine to account for a large class of maps drawn
on general surfaces.

Both new theorems belong to a branch of mathematics called graph theory. A
mathematical graph is an extremely simple object: just a bunch of points (called
vertices) with a bunch of curves (called edges) connecting them.  Few things
are simpler than that. vet few things lead so quickly to complicated problems
and intricate results. Graph theory has come to play a key role in theoretical
computer science and numerous other applied areas ranging from the design of
transportation networks to the mathematics of chemical compounds (see box on
page 46). Map coloring is just one area where graph theory plays a unifying role.

Its very easy to turn a map into a graph. You put a vertex at the capital of cach
country. and draw an edge between two vertices if the corresponding countries
have a common border (see Figure 1). The graphs that result from ordinary maps

Figure 1. Anv map on the plane can he
converted into a planar graph, and vice
versa. [lere. state capitals are connected
by lines 1o form a graph.
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Figure 2. If the dark edges are con-
tracted so that their vertices merge, the
resulting graph fealled a “minor™ ; is
identical 10 Ks. Therefore this graph
cannot he drawn on the plane without ai
least two edges crossing

are called “planar™ graphs, because they can be drawn on a flat plane without any
of their edges crossing. Because each vertex corresponds o a country. “coloring”™
a graph means coloring the vertices: if two vertices are connected by an edge. they
should be given different colors. The ideca that the edges do not cross corresponds
to the fact that if two countries have a common border. you can make a road
between the two capitals that travels only in those two countrics.

The Four Color Theorem says that you need at most four different colors to
color any planar graph. But not every graph is planar. In particular, the graph
with five mutually adjacent vertices cannot be drawn in the plane without two
edges crossing. (I it could. the Four Color Theorem would be false!} Another
example is the “bipartite™ graph consisting of two groups of three vertices. with
an edge connecting each vertex in one group to cach vertex in the other.

In 1930. the Polish mathematician Kazimir Kuratowski proved that these two
graphs (usually denoted as K5 and K1) are essentially the only nonplanar graphs.
What this means is that any other nonplanar graph contains at least one of these
two. possibly in the form of a “minor.” which is the graph theorist’s term for a set
of federati- ns. (A federation forms when two neighboring countries crase their
common border. For graphs. thisamountsto contracting an edge until the vertices
it connects merge. Sce Figure 2.) In other words, there are essentially only two
“obstructions” to a graph being planar: Ks and K.

While Ks and Kz cannot be drawn on a flat picce of paper. they can be drawn
on a surface with a handle (see Figure 3). And indeed. every graph can be drawn
on some surface with some number of handles. although determining exactly how
many handles are necessary is not casy in 1988 Thomassen proved that task
to be NP-complete. (For an explanation of NP-complete problems. sce “New
Computer Insights from “Transparent” Proofs.” pages 7-11.;

In 1983. Robertson and Seymour generalized Kuratowskis theorem from the
plane to surfaces with handles. They proved that for cach such surface the set
of “obstructing™ graphs. while possibly quite large. is nevertheless always finite.

Figure 3. As can't be drawn i a plane without at least two edges erossing. But it can he
dravn on a surluce with a handle.
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Five Colors Don’t Suffice! The Four Color Theorem
In 1890, Percy Heawood proved that any map drawn on fiat paper can be colored , .
with no more than five different colors. Heawood s five-color theorem also applies to says ﬂ:lat you need at most
maps drawn on the globe, because, topologically speaking. the sphere and the plane four different colors to
ure cquivalen!. Howgver, it dpgsn‘t held for.graphs drawr} on surfaces wi'th handles. color every planar gl“dph.
For example. it’s possible to divide the torus into seven regions, each of which borders But t W hi
the other six, thus necessitating a separate color for each region. ut not every grapn 1s
How many colors does a surface with handles require? Heawood proved it never planal‘.

takes more than (7 + | /48¢ + 1}/2 colors. where g is the number of handles. In 1968,
Gerhardt Ringel and J. W. T. Youngs proved that Heawood's bound {rounded down
to the nearest integer} is exact: Every surface has maps thal require as many colors as
allowed by the formula.

Curiously. Heawood's formula gives the right answer—four—for the plane (g = 0),
but the proof only works when the surface actually has handles. This is just one of
many instances in mathematics where a problem is easier to solve in a complicated-
sounding setting than it is in its original guise.

This was an carly result in an ongoing rescarch program aimed at developing a
“structural™ theory of graphs.

Their latest work with Thomas is in the same vein. In 1943, Hugo Hadwiger
conjectured that any graph can be colored with # colors provided it doesn’t con-
tain K4 (the analog of Ks. with 17 + 1 mutually adjacent vertices) as a minor.
(Obviously if a graph contains K,,,; outright. there's no way Lo color it with just
n colors. If K4 is present as a minor, it may still be possible to get by with »
or even fewer colors. as in Figure 4. but that’s not what Hadwiger's conjecture is
concerned with. His conjecture is concerned with those graphs that don't contain
K, +1 in any way. shape. or form.) In other words, Hadwiger's conjecture says the
only potential obstruction to n-coloring a graph is the presence of K,,..,.

Hadwiger's conjecture is clearly true for # = I and 2. and casy to prove for
n =3 Forn = 4. it turns out to be equivalent to the Four Color Theorem
(although the equivalence is by no means casy to prove). Robertson. Seymour.
and Thomas’s theorem scttles the case n = 5. Of course. that leaves an infinite
amount of Hadwiger's conjecture unsolved. But it says we're beginning to learn
what'’s going on.” Robertson notes.

Hadwiger’s conjecture really doesn't care much what kind of surface a graph /
or its associated map is drawn on. Thomassen's five-color theorem. however.
does. The problem it solves has a somewhat shorter history. In 1982, Michacl
Albertson at Smith College in Morthampton. Massachusetts. and Walt Stromquist.
\

a mathematician at Dan Wagner Associates in Paoli. Pennsylvania, proved that
any map drawn on a torus (that is. a surface with one handle. like a coffec cup or
its topological cousin. the doughnut) can be five-colored provided that any “tour™

/ \
that travels all the way around the handle in any direction visits at least eight
different countries. A AN
Albertson and Stromquist conjectured that something simitar should be true
for surfaces with more handles: that if all trips around the handles are sufficiently

long (thatis. visit sufliciently many countries). then the map (or graph) should be
five-colorable. That condition is known as “local planarity.”

. . N Figure 4. This gruph has been two-
At one point it was thought that locally planar maps might even be four- colored even though it contains Ks as

colorable. However. Steve Fisk at Bowdoin College in Brunswick. Maine. put a minor. Does that violate Hadwiger's
an end to that in 1978, by showing how to draw maps on the torus (or any other  conjecture’ No!
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Fan Chung and Shloma Sternberg with
« model of a buckyball.

surface with handles) with countries as small as you please that nevertheless require
five colors.

In 1985. Joan Hutchinson. now at Macalester College in St. Paul. Minnesota.
proved that five colors suflice i ~small” is defined in a particular way. Thomassen’s
theorem goes further. It says that for each surface. there is a number 2z such that if
all trips that go around handles visit at least » countries of a given map. then that
map is five-colorable. The nuraber n depends on the number of handles on the
surface: Thomassen’s prool provides only an estimate. which doubles cach time
another handle is added. The actual number, he notes. is likely to be a good deal
less.

One may well ask, why bother? One answer is that graph coloring is not a
purely academic exercise: it does have applications in real settings. “What graph
coloring is really about is scheduling.” says Stromquist. “Trying to color a graph
is the same as trying to schedule a whole lot of events into time slots in such 2 way
that incompatible events don’t happen at the same time.” Researchers interested
in developing algorithms for scheduling consequently often find themselves faced
with problems in graph cotoring.

But the main reason continues to be one of pure intellectual challenge. The
proot of the Four Color Theorem still requires a computer to rule out a thousand
or so ways a planar map might require five colors rather than four. and to many
mathematicians that’s an unsatisfactory state of affairs. “There’s obviously still
something to be learned about graph coloring.” says Robertson. Theorists believe
that the results of research in map coloring will be of use in other areas of graph
theory and its applications. Beyond that. there’s one final. inarguable reason.
summarized succinetly by Stromquist: “It’s fun.”

Graph Theory Tackles the Buckyball

Graph theory is one of the most playful topics in mathematics. But it’s also one of
the most useful. In part because of the way it combines algebraic abstractions with
down-to-earth geometric configurations. graph theory turns up in places you might
not expect-—and graph theorists often wind up working in arcas seemingly far afield.

Take Fan Chung. for example. Chung. a mathematician at Bellcore, is an expert
on graph invariants. Normally she works either in pure theory or on applications
to problems in communication networks. But recently she has been applying her
graph-theoretic expertise to something quite different: buckyballs.

First discovered just a few years ago. the buckyballis a soccerball-shaped molecule
consisting of sixty carbon atoms arranged in a highly symmetric, icosahedral pattern.
An outline of the buckyball’s chemical bonds is reminiscent of the “geodesic domes™
popularized in the 1960s by R. Buckminster Fuller—hence the official chemical name.
buckminsterfullerene.

Chemists, physicists. and materials scientists have flocked to the buckyball and its
variants like moths drawn to candlelight (indeed, the soot that rises with the flame
of a candle may consist in part of buckyballsj. The crowd now includes a handful of
mathematicians.

Graph theory is no newcomer to chemistry: Taeterm “graph” was first used (in its
technical sense) by the mathematician J. J. Sylvester in 1877, in a paper titied “Chem-
istry and Algebra.” Mathematicians” drawings of graphs and chemists” renderings
of chemical compounds are strikingly similar, That's no coincidence. Graph theory
turns out to be a useful mathematical tool for chemists seeking to understand the
myriad ways that clements can combiue to form complex molecules and the myriad
pre-perties those molecules may possess. (continued on siext puges
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Chung has been working with Shlomo Sternberg at Harvard University to analyze
the mathematical properties of the buckyball’s uniqué structure. Sternberg is an
expert in the theory of group representations, which can be roughly described as the
systematic stucy of symmetry. The combination of graph theory and representation
theory, applied to the buckyball, is a powerful one. Chung and Sternberg’s analysis
so far has gone a long way toward explaining the buckyball’s spectroscopic properties
and why the molecule is so stable.

Chung and Sternberg are also trying to find a theoretical explanation of an-
other property of the buckyball, which it shares with a growing family of promis-
ing new materials, namely high-temperature superconductivity. The discovery of
high-temperature superconductivity in the late 1980s has left theorists scrambling for
explanations of a phenomenon that isn’t even well understood for low temperatures.
“It’s really a very big puzzle,” says Chung. However, the fact that so many materials
turn out to be superconducting suggests that the puzzle may not depend on details of
the physics. *It’s our belief it must be a mathematical explanation,” Chung concludes.
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Introduction

Welcome to the 1994 issue of What's Happening in the Mathemuatiical Sciences. a
vearly publication of the American Mathematical Society. inaugurated in 1993,
Volume 2 continues the theme of surveving some of the important developments in
the mathematical sciences over the past year or so. One purpose of What's
Happening is to convey that mathematics is a dynamic discipline. contributing to
researchand developmentin manyareas of scicnce as well as contributing significantly
to the solving of some of the major problems facing society. In this issue you can
read about a mathematically-based technology that produces real time continuous
images of the heart, lungs. and other organs: results on key problems in the area of
knot theory and how these results lead to insights in the study of DNA; recent
findings in the theory of waves: and Fermat's Last Theorem.

What's Happening in the Mathemaiical Sciences is written in a style so that the
gencral public can learn about the be.uty and universality of mathematics. The
Amecrican Mathematical Socicty hopes you enjoy it.

Samuel M. Rankin. [1]
AMS Associate Executive Director

Front Cover. A collaborationbetweencomputerscientis: Andrew Hansonat Indiana Universits and
artist Stes. -1t Dickson 1n Los Angeles has brought the Fermat equation v'+17=:" to hie. The
computer graphic shows a 3-dimensional proiection of the complex Fermat surface u'+1'=1 (the
exponcat 1s indicated by the 5 gnid lines that sntersect at o point) - Iickson has uszd a high-tech
proce ~ called stercohthography to render the surface as a truly 3-duviensionai sculpture.

Back Cover. New York-based scuiptor Rbhonda Roland Shearer combine« elements of modern
fractal gcome*ry, expressed through plant forms. with classical Euchidean geometryin The § Platoni
Solids Terra tblue patina cube), /g (vellow ochre patina tetrahedron). Agua tred patina dodeca.
hedron), dertorange patina octahedron) and Caelunitviridian green patina icosahedrony (Photo
bocourtesy ol Lee Bolun Copynight «© 1992, by pernusaon of Rionda Robind Shearer )
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Figure 1. .1 3-luncusional projection ol the complex Fermat surface '+ e’ =1, rendered with computer graphics (topt and through
stercolithowraphy as a plastic sculpture bottonr— Frawre conrtesy of Stewart Dickson, 1
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“A Truly Remarkable Proot™

torrent of electronic mail poured from Cambridge. England. on the morn-

ing of Junc 23. 1993, Mathematicians at a conference on number theory
at the Isaac Newton Institute. a mathematical rescarch center at the University
of Cambridge. raced 1o tell their colleagues around the world some stunning
news: Andrew Wiles. a number theorist at Princeton University. had just finished
presenting a proof of Fermat's Last Theorem.

Wiles. it seemed. had solved mathematics” most famous open problem. Fermat’s
Last Theorem is a deceptively simple statement: The equation v = " = =" has
no solutions in positive integers v, v.and = i the exponent n is greater than 2. The
theorem was jotted down by the French mathematician Pierre de Fermat around
1637. in the margin of a math book. along with a tantalizing comment: I have

discovered a truly remarkable proof. which this margin is too small to contain.”

Countless mathematicians over the last 350 years have tried - and failed
supply the missing proof. Prize money has even been offered {or a solution.
Curiously. by the usual standards of mathematics. the theorem itself is of little
consequence: Unlike other famous unsolved problems in mathematics. Fermat's
Last Theorem has no important corollaries. Rather. the problem’s significance
stems mainly from the theoretical machinery rescarchers have developed in trying

Andrevw Wiles, (Photo cowrtesy of Donise Applewhite and Princeton University: )
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Number theorists would
like to know whether a/l
elliptic curves are modular.
The Taniyama—Shimura
conjecture says they are.
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to solve it. Indeed. most mathematicians long ago gave up working directly on
Fermat's Last Theorem itself. Then Wiles dropped his bombshell in Cambridge.

The news lit up the mathematical world. 1t also grabbed the media’s attention.
as mathematical stories seldom do. Wiles's proof made the front page of the New
York Tinmes. It made Time and Newsweek, [t made the NBC Nightly News (*Be
stitl. my heart.” said NBC’s Tom Brokaw}).

Experts who attended Wiles’s lectures at the Newton Institute expressed con-
fidence in the strategy of his proof. and amazement at the mathematical tour de

Jorce it represented.  Still. mathematicians accept no proof as correct until it’s

been thoroughly checked--especially when the pfoblem has the stature of Fer-
mat's Last Theorem. And after the initial celebration had subsided and experts
began meticulously poring over Wiles's 200-page manuscript. problems with the
proof appeared. Most were minor. but one was not,

In early December. Wiles posted an c-mail message acknowledging a gap in the
rcasoning near thg end of his proof. As this volume of What's Huppening gocs (o
press. the gap remains, Fermat's Last Theorem is still an open problem.

Yet number theorists continue to praise Wiles's work. “When people finally
scc this manuscript. they're just going to be bowled over completely.” savs an
admiring Ken Ribet of the University of California at Berkeley. That's becausce
Wiles's work. while aiming to prove Fermats Last Theorem. advances number
theory across a broad front. Indeed. the main focus of his work is not Fermat's
Last Theorem itself. but one of the central problems in modern number theory. an
assertion known as the Taniyama-Shimura conjecture.

To explain the Taniyama- Shimura conjecture and its relation to Fermat's Last
Theorem reavires a brief digression on the subject of elliptic curves. Roughly
speaking. an elliptic curve is the set of solutions to a cubic cquation in two
variables. A typical cquation. such as »* = x(x = 3y + 32). sets the square
of one variable cqual to a cubic expression in the other. Number theorists are
particularly interested in “rational points™ on elliptic curves: solutions in which
both x and i are rational numbers (sce Figure 2).

One way to study the rational points on an clliptic curve is to look at the curve
not in the ordinary system of real numbers. but in an infinite collection of finite
number systems. In each finite system. the clliptic curve's cubic equation can be
solved explicitly. and the number of solutions tallicd. Number-thcoretic properties
of the original elliptic curve arc reflected in solutions of the cubic cquation in these
finite systems. ‘

Things work best when the clliptic curve in question is “modular.” Modularity is
a complicated. technical condition. but essentially it means that there is a formula
for the number of selutions of the curve’s cubic cquation in cach finite number
system. Many elliptic curves are known to be modular. and the condition can be
checked computationally for individual curves. Number theorists would like to
know whether a/f clliptic curves are modular. The Taniyama-Shimura conjecture
says they are.

First formulated in 1955 by the Japanese mathematician Yutaka Tanivama. and
later refined by Goro Shimura at Princeton University. the Taniyama Shimura
conjecturc was- andstillis - a bold and striking characterization of'clliptic curves.
In its full technical glory. the conjecture asserts that every clliptic curve is associated
with a particular kind of function known as a modular form: this links two
scemingly unrelated branches of number theory. The idea that there’s a bridge
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between elliptic curves and modular forms “really pervades lots of things that we

do™ in modern number theory. says Ribet. And unlike Fermat’s Last Theorem.

the Taniyama- Shimura conjecture has a host of immediate consequences.
Fermat’s Last Theorem is one of them.

200 T T
( /
//‘(24. 168)
100 = (=12, 60) 7
//\\'

0 T( 3.0 \ /
-100 + .
~200 ' '

~40 -20 0 20 40

~ I3 I3 2 . I3 I3 .
Figure 2. The elliptic curve v= = x{x = 3)(x + 32) has many rationad points. A line connecting
any nwo of them imersects at a third.

The conncction between Fermat's “simple™ problem and the theory of ellip-
tic curves came as a surprise when. in 1985. Gerhard Frey at the University of
the Saarland in Saarbriicken. Germany. had the idea that any counterexample
to Fermat's Last Theorem could be used to construct a counterexample to the
Taniyama -Shimura conjecture. Specifically, Frey proposed. if ¢” + b" = ¢" for
positive integers . h. and ¢ and an exponent n greater than 2. then the elliptic
curve with cubic equation y* = x(x — «"){x + h") cannot be modular.

Frey’s idea hinged on a technical result. which Jean-Pierre Serre at the College
de France in Paris formulated as a precise conjecture. A ycar later, Ribet proved
Scrre’s conjecture. This established Fermat's Last Theorem as a consequence of
the Taniyama Shimura conjecture.

Ribet's result gave mathematicians a brand new way of thinking about Fermat's
Last Theorem and a new reason to work on the Taniyama Shimura conjecture.
Actually. it’s not necessary to establish the Taniyama - Shimura conjecture in full
generality in order to deduce Fermat’s Last Theorem: it's enough to prove it for
a class known as semistable curves. This was the starting point for Wiles's attack
on the problem.

Wiles. who was aircady well known as an expert in the theory of elliptic curves.
went to work full time on the Tanivama Shimura conjecture. To avoid undue
publicity he kept only one colleague at Princeton. Nicholas Katz, abreast of
developments. Finally. in June. he asked to give three talks at the Newton Institute
number theory conference. John Coates of Cambridge University, who was Wiles's

Ribet’s result gave
mathematicians a brand
new way of thinking about
Fermat’s Last Theorem
and a new reason to work
on the Tanivama—Shimura
conjecture.
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In his third lecture. Wiles
announced his major
result: The Tanivama—
Shimura conjecture is
true for semistable elliptic
curves.
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thesis advisor at Cambridge in the mid-1970s. scheduled him to speak on Monday.
Tuesday. and Wednesday. June 21 23, 1993,

The audience could tel! just from the title of his lectures  “Elliptic curves.
modular forms. and Galois representations™  that Wiles had important news io
impart. perhaps pertaining to Fermat's Last Theorem. (All three items in Wiles's
title are key ingredients in Ribet's 1986 result). Whet Wiles began laying out. says
Ribet. was “a complete revelation which is really still shaking number theory™ a
new method for proving that elliptic curves are modular.

Wiles's theory builds on results of many other mathematicians. including recent
work by Matthias Flach at the University of Heidelberg. Vicior Kolyvagin at the
Stekiov Institute in Moscow. Barry Mazur at Harvard University, Ribet. and Karl
Rubin at the Ohio State University. The nes method for proving modujarity
15 extremely powerful. In essence. it reduces the problem of showing that the
Taniyama Shimura conjecture holds for particular elliptic curves to the proof of
a single algebraic inequality. That by itsell is a “Tantastic new result.” says Rubin.
For a large class of elliptic curves. the inequality is casy to verify. In his first
two lectures. Wiles outlined how the new method proves the Taniyama Shimura
conjecture for one infinite family of elliptic curves. another enormous advance in
its own right. His leetures left the audience wondering if he had left the family of
semistable curves  those that pertain to Fermat's Last Theorem  for last.

Lett torighe: Jolm Coates, Andvew Wiles, Ken Ribet, and Karl Rubin at the Isaae Newton
Instivee in Cambridee, Encland. after Wiles's listorvic talk. { Photo couriesy of Ken Ribet. )
He had. In his third lecture. Wiles announced his major result: The Tanivama
Shimura conjecture is true for semistable clliptic curves.  Almost as an after-
thought. he noted the long-awaited coroltary: Fermat’s Last Theorem. It took a
moment for the announcement to sink in. Then the audience burst into applause.
“The logic of his argument is utterly compelling.” Ribet said at the time. Other
number theorists agreed that Wiles had cleared many of the technical hurdles on
the way to a proof of the Taniyama Shimura conjecture and had set a new agenda
tor the theory of elliptic curves. Howeser. the review process has revealed a gap
near the end of the proof: The caleulations that verify the crucial inequality. which
are easy insome cases. trn out to be not so casy for the class of semistable curves,
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details don't vet fit together. )

It's not unusual for a long. complicated mathematical proof to contain an error.
Wiles's colleagues are quick to point out (it’s not even unusual lor a short proof
to be mistaken). Nobody knows how long it will take to £ill the gap. Still. says
Rubin. "it’s hard to believe that the proof of Fermal's Last Theorem is not closer.”

i
|
' Experts believe that Wiles's basic strategy tor the calculations is sound. even if the

Fermat’s Last Theorem is True (for Exponents up to 4.000.000)

Fermat's Last Theorem states that the equation v + 3" = =" has no solutions in
positive integers x. v, and = if the exponent # is greater than 2. Could the theorem
be true for some exponents and false for others? Mathematiciuns have made much
progress in the last 350 vears in showing that if any countcrexamples exist. the numbers
involved are colossal.

Although be never found voom in the margin or anywhere else for a general proof.
Fermat did write down a proof of his famous theorem for the special casen = 4. Over
a hundred vears later. the Swiss mathematician Leonhard Euler dispatched the case
n = 3. In the 1820s and 1830s. the theorem was proved for expanents 5 and 7. {It's
enough to prove Fermat's Last Theorem for prime exponents. Fo:example. if v = «.

: 6 5 o 2 2 2
v = b.and = = ¢ solve the equation x” + * = =" thenx = ¢~ v =h" andz = ¢
solve x* + 13 =2%)

In the 1840s. the theory took a giant lcap forward. By introducing some potent new
ideas. Ernst Eduard Kummer was able to prove Fermat's Last Theorem for all prime
exponents up to 100. with the exception of three “irregular” primes. In Kummer's
theory. primes are classified as either regular or irregular. Fermat's Last Theorem,
the theory says. is true for all regular primes. Regular primes arc believed to be
more common than irregular ones. constituting roughly 60% of all primes. Ironically.
though. while it's known that there are infinitely many irregular primes. the same
statement (while undoubtedly true) has never been proved for regular primes.

Later improvements in Kummer's theory made it possible to handle irregular
primes separately. on a case-by-case basis. [n effect. the theory reduces the proof
of Fermat's Last Theorem for individual exponents to a straightforward. though
lengthy. computation—tailor-made for modern computers.

In the 1970s. Sam Wagstaft at Purdue University used this approach o establish
Fertnat's Last Theorem for all exponents up to 125.000. Recently. four researchers
have pushed the computational approach into the millions. Using refinements of
Kummer's basic theory to speed up the calculation. Joe Buhler at Reed College in
Portland. Oregon. and Richard Crandall at NeXT Computer Inc.. in Redwood City.
California. with help from Tauno Metsdnkylid and Reijo Ernvall at the University
of Turku in Finland. have verified Fermat's Last Theorem for all exponents up to
4 million. Their results. which appeared in 1993 in the journal Mathematics of
Computation. also support the conjecture regarding the ratio of regular to irregular
primes: Out of 283.145 primes up to 4 million. 171.548. or 60.59%. are regular.

Extending Fermat's Last Theorem beyond the 4 million mark is certainly possible.
savss Buhler. but doing so will require developing new computational techniques. 1F
Wiles succeeds in filling the gap in his proof. that won't be necessary.

Nobody knows how long it
will take to fill the gap.
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Knots to 8 Crossings

David Broman and Charlic Gunn

Figure §. Reprinted with permission from Supplement
Lid

to Not Knot by David Epstein and Charlie Gunn, published by 4 K Perers,
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From Knot To Unknot

lexander the Great didn't mess around. As legend has it. the Macedonian

king decided to try his luck with the fabled Gordian knot. a tough length
of cornel bark wrapped tightly around the pole of an ox cart. It was said that
the person who succeeded in untying this knot was destined to rule the world
(meaning. at the time. Persia). A man of action rather than dexterity or patience.
Big Al unsheathed his sword-—and the rest. as they say. is history.

Modern mathematicians are also drawn to the problem of undoing knots. al-
though their motives. —and their techniques-—are quite different from Alexanderss.
In the last few years. researchers using two different approaches have come to un-
derstand better just what it takes to unknot a knot,

A mathematical knot is basically just a closed curve that winds through 3-
dimensional space. like an electrical extension cord that's been tangled up and
then plugged into itself. The theory of these meandering curves has taken off in
the last decade. “Knot theory for a long time was a little backwater of topology.”
notes Joan Birman. an expert in the subject at Columbia University. “It's now
been recognized as a very deep phenomeiton in many areas of mathematics.™ And
it's not just mathematics where knot theory is playing a larger role: molccular
biologists. for example. are using it to help untangle some of the geometric secrets
of DNA (sce box page 13}.

One key problem in knot theory is to decide whether one knot can be deformed
into another--in particular. to tell whether a given knot really isn't knotted at all.
That may sound like a straightforward. cven trivial. problem. But it’s really as
difficult to deal with as a snarled-up fishing line. The main difficuity is that there
are infinitely many ways to deform any knot. and they all must be ruled out in
order to show that two knots are indeed diiferent.

Because it's hard to draw truly 3-dimensional pictures. knots are commonly
represented by projections onto a plane. Such a picture. called a “knot diagram.”
can be thought of as tracing the path of a tangled extension cord that’s been
dropped onto the floor: places where the curve is broken are called crossings.
The number of crossings depends on how the cord has been dropped. and can be
quite large-—but every knot has a diagram with a minimal number of crossings.
Knot theorists have constructed claborate tables of knots arranged according
to this number (see Figure 1). These tables were begun in the 1890s by the
British mathematician P. G. Tait. who was inspired by Lord Kelvin’s theory that
atoms were “knotted vortices™ in the ether. (Kelvin's idea did not survive. but
surprisingly. knot theory has re-emerged in physics. this time in an area known as
quantum field theory.)

In the 1920s. the German mathematician Kurt Reidemeister showed that any
deformation of a knot can be achieved by a scquence consisting of three types of
moves {sce Figure 2). This gives a combinatorial flavor to the topological problem
of classifying knots. but it does not automatically solve the problem. because
there are no set rules that specify the order in which the moves should be applied.
For example. you might think that if a knot can be deformed into the “unknot™
(the knot theorist’s word for the circle). the deformation could be done without
ever increasing the number of crossings. That's not true: For some diagrams. the
crossing nuinber must go up before it can come down (sce Figure 3).

A — )
P \\\ \\
Y, - N —
/ \
Figure 2. The three types of Reidemeis-
{er moves.
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Figure 3. A “nasty” unknot that can
only be unknotted by first increasing the
nmnther of crossings.
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In the last few years.
researchers using two
different approaches

have come to understand
better just what it takes to
unknot a knot.

So how do mathematicians decide whether two knots are different? Knot theo-
rists” favorite approach has been to compute “invariants™: numerical or algebraic
expressions assigned 1o a knot that don’t change when the knot is deformed. One
of the carliest invariants. also dating back to the 1920s. is known as the Alexan-
der polynomial (named after the American mathematician John Alexander. not
Alexander the Great). Though defined topologically. the Alexander polynomial
can be derived trom the pattern of under- and over-crossings in a knot diagram.
Most important. if two knots have different Alexander polynomials. then they are
necessarily different knots. For example. the trefoil knot. whose polynomial is
x? — x + 1. differs from the square knot. whose polynomial is (x> — x + 1) - and
both differ from the unknot. whose polynonuial is the constant 1 (see Figure 4).
However. different knots need not have different Alexander polynomials. The
granny knot. for example. has the samc polynomial as the square hnot. Likewise.
the right- and left-handed trefoil knots share the same polynomial even though
it’s impossible to defornm one into the other.

For a long time. though. the Alexander polynomial was one of the few tools
topologists had for telling knots apart. Then in 1984. Vaughan Jones. a mathe-
matician at the University of California at Berkeley. discovered a new polynomial
invariant. Jones's polynomiai turned out to be more powerful than Alexander’s at
distinguishing different knots. It also revealed startling new connections between
knot theory and mathematical physics. More recently. Viktor Vassiliev at the In-
dependent University of Moscow has introduced a whole new class of invariants
based not on the topology of individual knots but on the structure of the space of
all closed curves. even those that pass through themselves (such curves are viewed
as degenerate. or “singular.”” knots). Birman and Xiao-Song Lin at Columbia
University have found deep connections between Vassiliev's invariants and the
Jones polynomial.

The Alexander and Jones polynomials are casy to compute. but they don't re-
fer to anything that can be seen geometrically in a knot diagram. The minimal
crossing number for a knot. on the other hand. refers explicitly to something that

o N
N/ )

left-handed trefoii right-handed trefoil
\ N 7N
\‘ T ) _______ ’\
\\
/ o/
L/ \ / ( \‘\‘“—-”/ \
\\__,/ N
square knot granny knot

Figure 4. The square knot is forned by joining a right- and left-hauded trefoil: the sranny
knot is formed by joining bvo right-handed (or two left-handed ) trefoils.
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can be seen. So does the “unknotting number.” which is the least number of times . \
you need to “cheat” by passing 4 knot through itself in order to untie it. But these AN ]
invariants can be hard to compute. \ // \‘\ /\\ /

Theorists generally compute a knot's minimal crossing number by a process of /) // )
elimination: First they find a diagram that seems to have the fewest crossings: then " \ / \
they show that the knot is different from every knot with fewer crossings. typically ( ) / : </
by comparing Alexander or Jones polynomials. The second step. however. requires / / ‘ /
a complete list of knots with smaller crossing numbers. So far that list is complete ‘ S / \ \
only up to crossing number 14. /,’ // \

\

The unknotting rumber is even harder to compute. You might think you / ‘\/
could compute it by taking any diagram and finding the smallest combination '
of crossings which. if the knot is passed through itself at those points (so that

underpasses become overpasses and vice versa). will untie the knot. Unfortunately. N

that doesn't necessarily give the right answer—it only puts an upper bound on the \\J
unknotting number. For example. Figure 5 (top) shows a knot diagram—in fact.

one with 4 minimal number of crossings—which cannot be untied by changing // \
fewer than three crossings. But Figure 5 (bottom) shows the same knot in a /\\ N
diagram that can now be untied with just two cheats. In other words. to find the \ 7 \ ™ )

fewest crossings to change. it may be necessary to take a simple looking diagram

1
and redraw it to look more complicated: and there seems to be nu bound on how / ! /
much more complicated a knot diagram may need to look before it exhibits the ) (\/ K
correct unknotting number. D /
Until the recent breakthrough. theorists had no general method for computing ' / >

with a single cheat. then its unknotting number must be either 1 or 0. so one need
only check whether the knot was already unknotted}. But researchers have recently
proved results that allow knot theorists to compute unknotting numbers exactly

for many more knots. and obtain useful lower bounds on unknotting numbers for ANy
~
all knots. ~——

Working on problems in 4-diinensional topology. Peter Kronheimer at Oxtord
University and Tomasz Mrowka at the California Institute of Technology have Figure S. T"'f" diagram at top cannot be
proved a 40-year-old conjecture. due to Jf)hll Milnor. about unknotting numbers ::7,:"’::1"";]‘;‘”’]2“/ Lt‘/|ziIntz’:';[(lllzlﬁi/(ll’((;m{xfl:({lllllfzu‘
for a special class of knots. Milnor’s conjecture specifies the unknotting number — pojow can be wnknotted with only two
for all “torus™ knots. These knots come from curves that are drawn on a torus. (indicated by circles ).
which is what mathematicians call a donut. To tie a (p.g)-torus knot. wrap a
string p times through the hole in a donut. stretching the string so it goes ¢ times
around the donut itself before you tie the ends of the string together: then eat the
donut {sze Figure 6).

A j ..
unknotting numbers. except when the value happens to be 1 (if a knot can be untied K) / M )
AT
N

Milnor. who was also mainly interested in 4-dimensional topology. conjectured
that the unknotting number for such a knot is always (p—1){g — 1) /2 (p and g can’t
both be even: in fact. in order for the knot to be drawn on the torus without inter-
secting itself. p and g can’t huve any common divisor greater than 1). For example.
Milnor’s conjecture says that the (101. 3)-torus knot huas unknotting number 100.
Given the difficulty knot theorists have had computing the unknotting number
when its value is greater than 1. Milnor’s conjecture seems almost miraculous.

How. you might wonder. does 4-dimensional topology get mixed into the theory
of knots? The trick is to view the deformution of a knot as occuring in time. which
adds a fourth dimension to space. I we think of a space time picture of what
is going on. the moving curve in space sweeps out a 2-dimensional surface in
space- time.” Kronheimer explains. Topologically. the 2-dimensional surface is

Figure 6. A (4.3)-10rus koot
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Figure 7. Tvwo unknots that are “linked”
together.

Figure 8. A d-strand braid with 2 knot
components, N positive crossings, und 2
negative crossings. (In a positive cross-
ing. the vverpuss goes front upper left
to lower right: mn a negative crossing, it
goes from upper right to fower left )
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like & cylinder. he adds. but “because the original curve is knotted. the cylinder
sits in space -time in a rather complicated way.”

I the deformation includes a cheat, then the space -time surface intersects itsell’
at that point. Kronheirer and Mrowka were studyving the general theory of self-
intersecting. or “immersed.” surfaces in d-dimensional space. Their research is
based on far-reaching ideas introduced in the early 1980s by Simen Donaldson at
Oxford University. who borrowed techniques from theoretical physics to analyze
the structure of 4-dimensional spaces. The resuit lor knots came as a kind of 3-d
bonus. “We weren't really aiming at Milnor’s [conjecture].” Kronheimer says.

More recently. Leec Rudolph at Clark University in Worcester. Massachusetts.
has shown that Kronheimer and Mrowka’s results also prove a generahization of
Milnor’s conjecture due to Daniel Bennequin at the Universiiy of Strasbourg in
France. which provides a lower bound on the unknotting number for all knots.
and all “links™ as well. (A link is simply a set of knots that are tangled together.
as in Figure 7.) Bennequin's conjecture requires drawing the knot (or link) dia-
gram in a particular configuration known as a braid and distinguishes between
“positive™ and “negative” crossings {see Figure 8). If a braid with M strands and
R components (which is | for a knot. and greater than | for a link) has P positive
and N negative crossings. then Bennequin's conjectere asserts that the unknotting
number U satisfies the inequalitics [P - N < 20U+ M - R < P+ N, Ifall
crossings have the same sign (say positive). then Bennequin's conjecture gives an
exact value for the unknotting number. In particular. it turns out that a (p.¢)-
torus knot can be drawn as a braid with p strands and *p ~ 1)g positive crossings.
so Milner’s formula falls out of Bennequin’s conjecture. (Actually. only the lower
bound in Bennequin's conjecture required proof: the upper bound was proved by
Michel Boileau at the University of Toulouse and Claude Weber at the University
of Geneva in 1983, shortly after the conjecture appeared.)

As il one proof weren't enough. William Menasco. a knot theorist at the State
University of New York at BufTalo. has also proved Bennequin's conjecture. using
completely different methods. (This parallels the legend of Alexander, Accord-
ing to some accounts. the Great one didn't draw his sword. but instead removed
the pole on which the Gordian knot was-tied. leaving the knot to fall apart of
its own accord.) Working independently at about the same time @y Kronheimer
and Mrowka. Menasco actually proved a stronger version of Bennequin's conjec-
ture. onc that looks more closely at the distinction between positive and negative
crossings in a knot or link.

In Menasco’s theorem. the unknotting number is replaced with positive and
negative variants. The positive unknotting number. L', . is defined as the minimal
number of positive crossings that must be changed to negative ones in order to untic
a knot. regardless of how many negative crossings must be changed to positive.
(The negative unknotting numboer. U . is defined similorly.) Menasco showed that
U, satisfies the inequality -V < 20« M - R provided that - V. (A
similar incquality holds for Ui 2 <= V). Since the original unknotting number
{15 never less than U0 or U . Menasco’s inequalities together imply Bennequin's
conjecture.

Menasco’s proof is strictly 3-dimensional.  Like Kronheimer and Mrowha's
proofl it is based on a careful studs of immersed surfaces but in this case the sur-
laces are deformed disks bounded by knots. all sitwated in ordinary 3-dimensional
space. The proof is “very geometric™ and involves “a lot of picture drawing.”
Menasco says. adding that his approach uses “low-tech mathematics™ compared
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to the methods employed by Kronheimer and Mrowka. Birman. who has collab-
orated with Menasco on an extensive study of links and braids. disagrees. “The
proof that he found is very hard.” she says. “Some of the things that he did are
extremely difticult to visualize. His ability 10 visualize 3-dimensional geometry is
rather extraordinary.”

Birman is enthusiastic about the new results on the unknotting number. “It’s
the beginning of a real thcory of this mysterious number.” she notes. She is also
pleased that there are two proofs. It's quite wonderful that two such widely
dilferent techniques could lead to the same result.” she says. I think it's evidence
of the unity of mathematies.”

But that's what knots are good for: Tyving things together.

The Knotted Helix

Mathematicians aren't the only ones excited by the latest results in knot theory.
Molecular biologists. too. are cager to get in on the action.

“For me it's great.” says Sylvia Spengler. a molecular biologist at the University of
California at Berkeley. “1t gives me insight on how frequently an enzyme had to act.”

Spengler is onc of a growing group of rescarchers applying theorems from topology
to the chemistry of tife. That may scem like a stretch-~but stretching is what topology
is all about. Biologists have long known that DNA is not only wound in a double
helix. but also tightly coiled inside the nucleus of the cell. But only recently have
researchers begun to understand the details of what they call supercoiling.

Supercoiling is found, for example. in circular DNA. a form of the macromolecule
that occurs in bact.ria and yeast. The flexible molecule need not look like a gecometric
circle. though: it may even be knotted. Knotting—and unknotting—-is caused by
enzymes called topoisomcrases. These enzymes cut the strand of DNA at one point.
pass another part of the strand through the gap. and then rescal the cut--—exactly
what’s called for in the unknotting number theorem.

De Witt Sumners, a knot theorist at Florida State University who collaborates with
Spengler and others on topological aspects of molecular biology. points out that the
unknotting number is a lower bound for the number of times the topoisomerase has
to act. “if you have really complicated products that have a large unknotting number.
it's going 10 tuke the enzyme a while to produce those.” he explains.

Figure 9. Three strands of knotted civealar DN Photo comtoa of Sylvia Specgler Uniser-
sty of Califorma, Berkeios, and Frank Dean, Rockefclor Dnnersany

According to some
accounts. Alexander

the Great didn’t draw

his sword. but instead
removed the pole on which
the Gordian knot was
tied. leaving the knot

to fall apart of its own
accord.
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ohn Scott Russell knew he was on to something one August day in 1834,

when he chased a peculiar “heap of water”™ down the Edinburgh Glasgow
canal. When a boat being pulled by horses suddenly stopped. the wane “rolled
forvard with great velocity. assuming the form of a large solitary clevation. a
rounded. smooth. and well-defined heap of water. which continued its course
along the channel apparently without change of form or diminution of speed.”
The wave. he noticed. was approximately 30 feet long and a foot and a half high.
and traveled at 8 or 9 miles per hour. Russell followed it on horseback for a couple
of miles until it finally disappeared. “Such.”™ he later wrote. “was my first chance
interview with the singular and beautiful phenomenon which I have called the
Wave of Transhation.™

At the time. Russell’s observation was considered an anomaly: it was even
greeted with disbelief. These days. the theors of <olitary wases is a well developed
subject. withclose ties to mathematical physics. But even so. there are still surprises
and potential applications waiting in the wings. One surprise surfaced recently
when Philip Rosenau. a theorist at the Technion in Haifa. Isracl discovered a
class of waves so solitary that two of them can move along within a hair's breadth
of cach other yet remain blisstully unaware of cach other’s existence. Rosenau
and Mac Hyman. a mathematician in the Theoretical Division at Los Alamos
National Laboratory. have been chasing and observing these compact wanes not
on horsehack. but by means of high-speed computation.

Although their findings are. so Tar. strictly mathematical. applications of Rose-
nau and Hyman's compact waves may not be far ofl. For years. sohtary wases
hive been considered as promising carriers of digital infornaation on optical fibe: .
because they can. in prineiple. travet forever without losing their shape. Compact
waves” ability to travel close together without mterfering with cach other might
olfer even further advantages.

Mathematicians in the nineteenth century were slow (o come to grips with
Russell's solitary wave. in part beciuse the prevailing theors of wave motion was
tocked into a particular partial differential equation called the “wine equation.”
which is still used to deseribe all Kinds of undulatory phenomena. from water
waves to sound waves to quantum-mechanical saves sthe fust. of course. being a
twenticth-century innovition). According to the wane equation. Russells “heap of
water” couldntsustain wsell: Tt would immediately begin to break apart. as high-
frequency components riaced out in front. leaving lower-frequency components
further and further behind  evucthy what Russell didn’t see.

The wave equation also tailed to explain another obsersation Russetl made. this
time when he re-created solitary waves in his faboratory by dropping weights into
a long rectangular tank of water. The taller the wave. Russelt found . the Tuster it
moved. Foresplaining this behavior. the wave equation is no help atall: The wane
cquatiot s fitcar. and for phenomena descrthed by tincar equations. the height of
thinges dous notaffect how they change i tin

By the end of the nincteenth century. hov ever. an adequate theors o solitars
waves had been developed in the form of a modilicd wase cquation known as
the Korteweg de Vries or KdV. equation. Dernved from basic equations of flind
dynamics, the KdV equation describes how wines propasate down o channet with

J—— - - eemzeq




rectangular cross section. It differs from the ordinary wave equation in one critical
respect; the KdV equation has a nonlinear term.

Rosenau and Hyman's equations go even further. The two theorists tinkered
with the nonlincar term in the KdV equation: more important. they added a
second nonlinearity. this time in a part of the equation known as the dispersion
term tsee box). The inspiration for making the dispersion term nonlinear came

- from Rosenau’s studics of liquid drops. such as raindrops running down a window
pane.

| AN

A Tale of Three Equations

The wave equation. the KdV cquation. and the compacton equation arc all roughly
similar in form. but the differences are critical. All three equations can be thought:
of as describing the up-and-down motion of a string of corks fioating in a narrow
channel of water, such as a long, thin trough. Mathematically. the trough is infinitely
long and infinitely thin. so that each cork can be identificd by a single variable. say x.
which specifics its location along the lengih of the trough. The corks’ up-and-down
motion is described by a function of two variables: u(x. 1) is the height of the cork at
pomt x and time ¢,

The traditional, lincar wave equation has the form t; + tiv + tixxx = 0. The first
term. ;. is the derivative of 1 with respect to r-—that is. the speed at which a cork
is going up or down. The middle term. . is the derivative of 1 with respect to x:
it describes the slope of the wave at each point—that is. how much higher or lower
cach cork 1s than its neighbors at a particular moment. The final term. wyxx. is the
third derivative of 1 with respect to x. This is the “dispersion™ term: because of
it. aveling-wave solutions with different wavelengths propagate at different speeds.
These solutions have the form u(x. 1) = sin{(x — ¢1)/€) with ¢ = (£2 - l)/fz. The
paramecter £ is the wavelength. while ¢ is the speed at which the wave propagates
(i.c.. the speed at which a particular crest of the wave moves}. Because the cquation
w + ity iy = 0 is linear. u general solution can be formed by adding these
traveling-wave solutions together. But any such combination will produce a wave that
changes shape over time. because the different components move at different speeds.

The KdV cquation has the form u, + (u*)x + txex = 0. Changing the middie
term—squaring the u before taking its first derivative—has a profound cffect. Simple
sine waves are no longer solutions: instead. the traveling-wave solutions have the form
wtx 1) = 13c/2sech*({x -~ ¢1)y/c/2). The shape of the solution is a single. smooth
hump (sce Figure 1). What's more. both the height and the “width” of a wave are
completely determined by the speed ¢ at which it travels: Taller waves move faster
than shorter ones. quite unlike waves governed by lincar cquations. Whatever shape a
wave poverned by the KAV equation has initially. it will eventually -and usually quite
quickly - break up into a train of these basic shapes. with the tallest waves out front.

Roseniau and Hyman's compacton equations muke the dispersion term in tac
KdV equation nonlincar as well.  The simplest compacton equation has the form
w = (")l = tu”han ¢ 0. (More generally. Rosenau and Hyman have studied
cquations of the form w, -+ (™). + (t"jxve = 0.} This time. the traveling-wave
solutions havc the formu(x . ) - g4:‘/3lcos:((.v —ct)fd)for -2 < x —¢t < 2rand
ulv.ry = 0ifix o > 2r. As with the KdV equation, the height of 4 compacton
depends on its speed. but compactons have the same width, namely da. Waves in
any inital shape also decompase into o train of compactons. However, numerical
evidence sugeests that when compactons separate. as they do after a collision, they
feave behind them an apparently infinite wake of tny ripples. Rosenau and Hyman
are still trying to fathor the nature of these npples

Most nonlincar equations cannot be solvedexitly  that’s one ol theadvantages
Imcar cgquations hold. Bur some can. The KdV equhion and the new nenlinear
Jisparsion cguation s wen out to be among thent. Fhe basie tras ehing-wave solution

of the KAV equation im ol e spectal lunctien known as a hvperholic seeant, ¢ The

Figure 1. A wraveling-wave solution of
the Kd1” equation.
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hyperbolic functions. often scen in introductory calculus classes. are closely related
What happens when a fast- !0 the llri_gonon?ctric functions commonly §tudied in }1igh school.)._Rosenau u'nd
moving wave overtakes a Hyman s'equgnvon:,‘. by cqnlrail.’ have vzmou§ lru\jelnjgv-wave soluiions. r'ungmg
slow-moving wave? from p'dl'dbOllC'drC) to cosine waves. But all oi~these waves. whether gener.dled by

the KdV equation or by Rosenau and Hyman’s equations. share one particularly
striking feature: The speed at which a solitary wave moves is proportional to its
height—just as Russell had scen in his laboratory.

That feature raises an interesting question: What happens when a fast-moving
wave overtakes a slow-moving wave? In the 1960s, Martin Kruskal at Princeton
University and Norman Zabusky at Bell Telephone Laboratories in Whippany.
New Jersey (both now at Rutgers University in New Brunswick. New Jersey).
found a surprising answer. When a tall solitary wave overtakes a shorter one. the
two do not merely merge. Nor do they break cach other apart. Instead. after a
brief but passionate encounter. the two waves separate. each with the same size
and shape it had beforz. The only evidence they ever met is a “phase shift™: The
taller wave is pushed slightly ahcad of where it would otherwise have been. while
the shorter wave is held slightly back. Because the solitary waves retain their
separate identities. much as colliding particles do. Kruskal and Zabusky dubbed
them “solitons.™

Ligure 2 .1 vpace-time plot of thice compactons codidhng several times oea perodic donwm e compactons experience d phiase
Sabt swuth cach collion and creatc a amali nipple
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The property Kruskal and Zabusky discovered is not unique to the kdV cqua- 400
tion. Many other nonlinear equations have the same property: In effect. their oo L
traveling-wave solutions {which are also called solitons) are impervious to any - -
kind of disturbance. That makes solitons good candidates for carrying informa- 200 4 /\
tion. If. for cxample. light can be made to propagate along a fiber-optic cable in

Loo L \ N

accordance with a KdV-type equation. then pulses of digital information can be \j/ \
sent as solitary waves. which travel long distances without distortion. e

One drawback of KdV-type solitons. however. is that they aren’t truly solitary. -l —f——t—t —
Each such “classical™ soliton tapers off. both fore and aft. with an infinitely 00 123 350 37.5 30.0 62.5 75.0 $7.5 1000
long “tail.” As a result. two waves start interacting before their main parts KT -

meet (technicaily speaking. two waves are a/ways interacting. but because the

tails taper off exponentially. the interaction is weak until the waves are suitably MO
close together). Thus to keep soliton-borne information from getting garbled. the 240 4 d
carrier waves have to keep their distance. Lo i ’/ \

That's where Rosenau and Hyman’s compact solitons- or “compactons.” as - ! "_ "'-\ -
the two mathematicians call them--<ould have an advantage. These new waves !
are tailless: They vanish abruptly at the endpoints of a well-defined interval. As -100 4o i
a result. two compactons cannot interfere with one another until they overlap. In OO 128 50 ATI MO 023 TR 00
theory. at least. a string of identicul compactons could race along an information L —
superhighway like so many manic tailgaters at rush hour-- except that on this - '
highway. everyone adheres strictly to the speed limit. N 1; A

Whether compactons actually have a future on the fiber-optic highway remains = + ; “:
to be seen. For now. Rosenau. Hyman. and their collcagues are interested mainly oo L A
in the light compactons shed on the theory of solitons. One key insight regards _ *__\:/‘ _'\.J_ o
the role of a condition knownr as integrability. The KdV und other classical soliton ;
cquations arc all integrable. This means. roughly. that their solutions satisfy O
infinitely many “conservation laws.” much as physicai systems obey laws such (0123 SROATS SO0 028 TR0 AT S0
as conservation of encrgy and momentum. Integrability helps explain solitons’ S0

extraordinary stability: The conservation laws constrain the waves so rigidly that o
they can hardly fall apart.
. . P 200 L

Compacton equations. however. are not integrable: they satisfy only a handful '
of conservation laws. Hyman didn’t expect much to happen when they numerically LRV o
smashed two compactons together. but Rosenau urged him to run the computer _— o
experiment. “We took one that's traveling fast and one that’s traveling slow. and f
we banged them into cach other.” Hyman recalls. That the two waves emerged B e e S
. . . . . . . . .~ 00 125 250373500625 TS0 XTS1000
intact. just like ordinary. integrable solitons “was amazing.” Hyman says. These " 7~ o
unexpected results indicate that the remarkable stability of solitary waves lies Figure 3. Ripples result when com-
deeper than mere integrability. puctons collide. Here a tall wave over-
tahes a shorter one as thes both move
ront lefr o el

Still more surprising is a brand new feature. not seen in classical solitons: When
two compactons meet. interact. and separate. they leave behind a wake of tiny
ripples (sce Figure 3). Rosenau and Hyman almost missed this in their first com-
puacton calculations - they thought they saw only some numerical “noise”™ in the
results. stemming frony imprecisions in the computation. (AN numerical compu-
tations are prone to round-off and other errors: one role of mathematical theory
i> to study such imprecision precisely ). =Tt was only when we were getting reads
to write up the results that we decided to do an extra-high-resolution caleutation
te get ridh of this numerical noi e Human explains, “When it didn't go asay we
sdatrted focusing inon "
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When two compactons
meet. interact. and
separate. they leave
behind a wake of tiny
ripples.
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The vipples are a “real mystery.” Hyman says. They seem to continue indef-
initely. with tinier and tinier ripples arising. a kind of flotsam caused. perhaps.
by the compacton equations’ lack of integrability. But that’s just speculation:
There’s no proof yet that the ripples don’t finally die out. just numerical evidence
that smaller and smaller ripples continue to arise. “It's just begging for a solu-
tion.” notes Hyman. Rescarchers may no longer chase chance observations on
horseback. but plenty of “singular and beautiful™ phenomena remain to be found.

A Peek at Peakons

Hyman and colleagues Roberto Camassa and Darryl Holm at Los Alamos Na-
lional Laboratory have also been looking at yet another new soliton-type equation.
Like the compacton equations, this wave cquation sports a nonlinear dispersion term.
but the new equation also happens to be integrable. This time. the traveling-wave so-
lutions have sharp peaks, hence the name “peakons™ (see Figure 4). The researchers
believe the peakon zquation will provide additional insight into the role of nonlinear
dispersion in the theory of solitons. Interestingly. the peakon equation was obtained
by simplifying the equations of a global occan circulation modcl-—the same model
that generated the color graphics for the cover of last year’s issuc of What's Happening
in the Mathematical Sciences.

= S A
&__“s‘__*'%-, ATAGAN —

q
L
il
[
>0
>
]
m;ﬁ{

|

1
a0
q
iifl
m
.'"

q
' {

%
[
il
'Jl" |
ifl)
il
ulIII{
il
4
d (| l
!
U
<
wnllffy',’,.‘
at\ll((rﬁf
"m;),r'\

q
b
il

A

'l

!

|
|
i
q

i
Rt

)

( :::1{
\ {FF;
.{{g(
|
dl

rr(
. {i{
il
il
)
’1'"}

qlir<
<
il
rﬁ%}
R0
[fru‘u
ﬂfﬁr
I
il

— = AN A g
== =\ & N N =M=A4
C T S L.~&"é-§@%:—= A
&/ & N =t =1 o W o SR/ Y
T < = e Y BRI & AR ST aY
e e e O Y % A o ..,=J?-4'
= O W el O=nad 5 %'—
= < 2y -‘s‘- =L " ) R 5 2| — &=
?-“\J"“:?=' = = & <
= = GOMINCIS T AAA A
= atv/R ‘J\ I\ = =
=
Figure 4 1 spacc-tine plot of peakems o now A of solttary wave generated e ths
exaple omy o ppal porabic wp s haer e
Y




Mathematical Insights
for Medical Imaging

irst of all. do no harm.”™ Along with his famous oath. the Greek physician

Hippocrates left that instruction for his medical heirs. But in order to
diagnose discase. modern physicians often find they must perform such invasive
proccdurcx‘ as biopsy and angiography. Even X-rayvs arc not without risk. Its a
necessary evil: To treat discase. doctors need to see what'’s happening inside the

body. Useful as it is a stethoscope can’t hear cancer cells growing.

Medical rescarchers are constantly looking for safer. more
monitor paticnts” condition.

accuriate ways to

A team of mathemateians and engineers at Rensse-
lacr Polytechnic Institute (RPD in Troy. New York. is doing its part to help. Math-
ematicians David Isaacson and Margaret Cheney. biomedical engineer Jonathan
Newcll, and their colleagues have developed a new, mathematically-based tech-
noiogy that produces real-time. continuous images of the heart. lungs. and other
Al without cutting patients open or bombarding them with radiation.
They hope their machine. which went into clinical testing at the Albany Medical

organs
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Impedance imaging is one
of several medical imaging
techniques that rely heav-

ily on mathematics.
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Figure 1. The 496-grid-cell mesh used
(o reconstruct images of clecirical con-
ductivity diseribitions. ( Reprinted by
pernission of Joln Wiley & Sons, Inc.,
from “"NOSER: An algorithm for solv-
ing the imverse condnetiviey problen.”
M. Chenev. D, Daacson. J. Co Newell,
S, Simske, and J. Goble, International
Jowrnal of Imug'inu Svstems and Tech-
nology, vol. 2. p 68, figure 1 11990,
1991 Jn/u) Wiley & Sons, Inc.!
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Center in 1993, will eventually offer physicians a powerful but safe diagnostic tool
for such illnesses as heart discase. pulmonary edema. and breast cancer.

The new technology. known as Electrical Impedance Imaging. works by apply-
ing tiny electrical currents through electrodes placed on the skin. measuring the
corresponding voltage response. and then deducing the distributions of clectrical
conductivity and permittivity inside the body. (Roughly speaking. conductivity
measures how easily charge moves through a medium. while permittivity measures
the capacity of a medium to store electrical energy.) Since different parts of the
body have different electrical properties. the computed distributions provide an
image of the body s tissues and fluids.

Take the lungs. for example. Air is a notoriously poor conductor of electric-
ity. As a resull. when healthy lungs il with air. they show up in an impedance
image as regions of low conductivity. By contrast. in « patient suffering from
pulmonary edema- -a complication often scen following injury. heart attack. or
major surgery  the lungs are partially filled with fluid. Because the fluid has high
conduclivity. the edema appears as an abnormality in an impedance image.

Blood. too. has high conductivity. so impedance imaging also has potential for
measuring the amount of blood being pumped by the heart. Measuring cardiac
output “is very useful to physicians because it tells them how well the heart is
working.”" explains Newell. At present. the only reliable ways to measure cardiac
output involve passing a catheter through a vein and through the heart. which is
a dangerous and expensive procedure.™

Impedance imaging is one of several medical imaging technigues that rely heav-
ily on mathematics. The most common is Computed Axial Tomography. or
CAT-scan. In essence. a CAT-scan combines X-rays taken from many different
directions. Each X-ray measures the density of tissue along a particular line of
sight. A computer algorithm based on a mathematical procedure called the Radon
transtorm uses these measurements to reconstruct the actual spatial distribution
of densities, Similarly. Magnetic Resonance Imaging. or MR constructs images
by measuring the body’s response to strong magnetic fields.

These technigues all involve solving what are known as “inverse™ problems.
so called because they ask. in effect. for the opposite of a direet caleulation. 11
for example. the conductivity distribution in an object is known. then the voltage
response to a set ol applied currentscan be computed directly. much as an algebraic
cxpression suchas 217 =7y 3 can be direetly evaluated if the value of the variable
v is known  On the other hand. the inverse problem  trying to reconstruet the
conductivity distribution from a measured set of voltage responses  is like trying
tofind avalueofa forwhich 2x= - 7y Sequals 2. only ina much more complicated
matheniatical setting.

For impedance imaging. the equations to he solved are derived from Maswell’s
equations. a set of partial dilferential equations that describe all electromagnetic
phenomena. Reconstracting an inige of the body S interior from measurements
on the surface is a considerabie challenge. in part because the equations are non-
linear and in part because the reconsdruction is highly sensitive to measurement
errors. “Conductiviy distribitions that may be sery different may produce data
that are very close to cach other.” notes Isaaeson. To cope with that preblem. the
RPI team has desiened a high-preciston clectrival ssstem for delisering current
and maisuring oftages. and coupled 1t with computer adeonthms that optimize
the ssstem™s performance,

Fhe /P n-up ol ther nrachine ACHITL
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third gencration. It combines delicate engineering with sophisticated mathemat-
ical analysis and high-speed computer algorithms to generate precise patterns of
current and then reconstruct images from the measured responses. The currents,
which are applied through clectrodes like those used for electrocardiograms. are
well below the level of human perception and considered harmless. That makes the
svstem suitable even for continuous use. as 4 monitoring device. Whereas a CAT-
scan. say. only tukes “snapshots™ of the body. impedance imaging makes movies.
tracking nhysiological processes in addition to revealing anatomical structure.

That’s not to say that impedance imaging will render CAT-scans obsolete. On
the contrary. since they measure different properties of tissue. the two technologics
complement cach other. But impedance imaging offers some special advantages.
For one thing. it's relatively inexpensive. in part because of its compact electronics
package. It also does not require a specialist to operate or interpret: ACT 11 or
its likely successors could even be used by paramedics on ambulance calls.

Isaacson started studying the mathematics of impedance imaging in the early
1980s. He quickly saw that theory alone was not enough. ~1 had some ideas about
things to do. but I needed some practical experience as to how accurately one
can actually measure things. and I wanted to do some experiments.” he recalls.
He went to Newell. who. while skeptical that impedance imaging could work in
practice. helped design an experiment to find out. They decided to see whether
Isaacson’s electro-mathematics could locate chunks of jello in a tray of saltwater.

“We took a little pan from the local supermarket. filled it with gelatin and salt
water. put electrodes around the outside of the pan. pumped some currents in and
measured the voltages.” says Isaacson. Sure enough. an image appeared. which.
though crude. showed roughly where the jello was. That was enough for Newell:
“He got very excited about this.” Isaacson recalls.

Newell brought in David Gisser. an electrical enginecr (now professor emeritus )
al RPL. to design and build the clectronics. The first syster “was crude. but it
worked.” Isaacson says. The current version incorporates many improvements
in both hardware and software. In particular. Chenes netes. Gary Saulnier, an
clectrical engineer at RPL and his student Peter Edic have made the system fasl
cnough to work in real time. A huge number of students have worked on the
project at one time or another.” Cheney adds. “Fver since I've been associated
with the project. there have been somewher between 10 and 20 students involved
atany one time  the number depends maindy on funding. They range from Ph.D.
students to undergraduates. We've even had a couple of exceptional high school
students,”

In experiments with clectrodes surrounding a cireular tray 30 centimeters in
diameter troughly the size and shape of a humin chest). ACT 1 can reconstruct
a reasonable image of a nickel-sized object in the venter of the tray  the hardest
spot Lo get a good picture. The RPE group is now also doing experiments with
human subjects. including volunteer patients at the Albany Medical Center, To
image a 2-dimensionat “slice™ through the heartand lungs. the ressarchers place a
A2-electrode beltaronnd aperson’s cheste ACT T then sends aspecially designed
sequence of carrent patterns throvgh the electrodes. Voltage measurerients taken
atthe 32 eleetrodes are fed hack to the imachiue, which uses an algorithin e group
culls NOSER (New ton One-Step Frror Reconstiucton o produce a cireular, J96-
erad-cell mage ssee Figures T3 The output s fed to a video monttor. on which
the subgect can watch - Witeralls Tve his or her own Tungs Billing and cnptyime
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Isaacson and coileagues
have developed the math-
ematical theory by which
ACT 1l can figure out for
itself which current pat-
terns to use.
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and blood pumping: Low-conductivity air appearsin dark olue. high-conductivity

Lrood  appropriately o bright red.
Mathematically. cuch current pattern

trode and taking it out at another

say sending current in at just one elee-
Is i vector in 32-dimensional space. More
precisely. cach pattern is a veetor in a 3=dimensional subspiee defined by the
reqriirement that the netcurrent applied o the subject must be zero (otherwise the
subjects hair would start standing on end). The measured voltage response at the
clectrodes isalso a vector in 31-dimensional space. Roughly speaking. the conduce-
tvity distribution is to be found in the matrix that relates the current and voltage
vectors, To lind that matris, iUs necessary o appiy 31 fundamentally ditferent
current patterns (in technical terms. the patterns must be “linearly independent™ .

Oue key question for the RPL group is which current patterns o use and how
to design the electronies to get the best possible signal. In principle. any set that
includes 31 lincarly independent patterns witl do. But that ignores the effect of
errors. which can send the lincar algebra rattling oft into nonsensical solutions.

“TUturns out that the best set ol patterns to apply depends on what's inside the
bods.” Isaacsen expliins. For imaging features neav the body s surface. patterns
that send current in at just one clectrode and take it out at an adjacent electrode
are optimal. The RPI group. however. uses patterns hased on the trigonometric
sine and cosine functions. These patterns are provably optimal lor distinguishing
features deep inside the body. Isaacson and colleagues huve developed the math-
ematical theory by which ACT HY can figure out for itsell” which current patterns
1O Use,

The rescarchers are also exploring new reconstiuction techniques. Cheney has
led the way on one promising approach called fayer stripping. Coneeptually. laver
stripping amounts to solving for the conductivity distribution layer by layer. like
peeltng an onion The current and voltage measurements. which are made on
the outside surface. are used directly 1o soive for the conductivity of the first
laver. Prom this solution. a wet of currents and voltages are computed lor the
invide surface of 1his kiver. These “mcasurements ~are then used to obtain the
conductivity distribution of the next luver. and ~so on. “1ts asimple idea.” Chenes
siys. The nice thing s itapplies to lots o problems.”

The RPErescarchersare not the only group working on impedance imaging. but
Cheney eredits Isaacson with having the clearest vision of what can be done. “One
ol the key things he is able to doas to ask the night questions.” shesays. “People
working on inverse problems usually start by thinkimg about the reconstruction
problem. Frezuring out what data one needs in order to do reconstruction olten
stuggests what measurements should be made. Bt Dave looked at the problem
from the pomt of view of actually building a systers and ashed the more funda-
mental question ol how to make meastrements contaimny the masimum antount
ol informition.”

The answers could wind up ssimng live-.
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Parlez-vous Wavelets?

athematicians are like the Freneh.” the German poet Gocethe onee re-
marked. “They take whatever you tel! them and translate it into their
own language and from then on it is something entirely different.”

Goethe's observation is as true now as ever, But times may be changing. In
the last ten years. mathematicians and rescarchers in diverse arcas of science.
engineering. and even art have discovered and begun to develop a theoretical
language they can all understand. This new common language is sparking new
collaborations.  Muny mathematicians are now crossing over into such applied
arcus as signal processing. medical imagimg. and speech synthesis, At the same
time. much deep but abstract-sounding mathematics is becoming accessible to
researchers in fields from geophysies to electrical engineering.

The new language is wavelet theory, Those who speak it deseribe wavelets as
powerful new tools for analy zing data. Wavelet theory serves asa kind of numerical
soom lens. able to focus tightly on interesting patches of data  but without losing
sight of the mathematical forest while attending to the trees. twigs. buds. and
grains of pollen.

“Never before in anything on which ['ve worked have 1 had contacts with people
from so many different fields.” savs Ingrid Daubechies. & mathematician at AT&T
Bell Laboratories and a leading authority on wavelet theory. Because there are so
many aspects to the subject. “vou have all these ideas brewing together it very
fertile for every body concerned.” Daubechies adds. “Its avery nice laboratory for
showing that applications can have interest for pure mathematics. and vice versa.”

Mathematically. wiavelets are an offshoot of the theory of Fourier analysis.
Introduced by the French mathematician Joseph Fourier in his essay Théoric
analy tigue dve la chaleur tanalytic theory of heati. published in 1822, Tourier
analysis seeks  with great success 1o understand complicated phenomena by
breaking themy into mathematicatly simple components. The fundamental idea
iv to tahe a function and express it as a sum of trigonometric sine and cosine
wives of various frequencies and amplitudes. The familiar and well-understood
trigonometric functions are casy to analyze. By combining information about a
function’s sine and cosine components, properties of the function itselt are casily
deduced  at leastin principle.

Fourier anaiysis s amonyg mathematios” most widely ased theories. 1t is espe-
cially suited to analyzing periodic phenomena. periodicity being the most promi-
nent property of sines and cosines, But even so. the theory has its imitations and
its pitfalls, The main problem is that finding detailed information about a function
requires looking at o huge monber ofits infinitels many Fourier components. For
example. atransient “blip” obvious ina graph. is impossible to recognize from s
cllect onasingle component. Fhe reason. in essence. is that each sine and cosine
wanve nndalates infinitely m both directions thus a single wave can’t help locate
amything. Indecd the sharper the bhp. the more Tourier companents are needed
to desenbet

Wacelet theory iahesanditerent approach Instead ofwerbmg witl the mbintels
undilatmg sme and cosme waves. v elet analvsis rehies on tragslations and dila-
tons ol asuttably chosen “mother savelet™ that is coneentrated ina finite intery
Almost any tunction can serve as the mother wavelet this mabes savelet theons
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i more [lexible than traditional Fourier analysis. “Daughter™ wavelets are formed

' | by transiating. or shifting. the mother wavelet by unit steps and by contracting

P o~ or expanding it by powers of two (sce Figure 1). One then expresses other func-

\\ tions as combinations of wavelets. just as Fourier analysis represents functions by

\ combining sines and cosines.

v The fact that the mother wavelet is concentrated in a finite interval gives wavelet
theory its zoom-in capability: An interesting blip in a function can be analyzed
by looking only at those wavelets that overlap with it: finer details are resolved by
jooking at increasingly contracted copies of the mother wavelet in the vicinity of

j\ the blip.

g Many of the ideas underlying wavelet theory have been around for decades.

but the subject itself got off the ground only recently. The story starts in the

early 1980s in France. when wavelets were introduced by geophysicist Jean Morlet
and mathematical physicist Alexander Grossmann. In 1985, mathematician Yves

Meyer constructed a family of wavelets with two highly desirable mathematical

propertics. called smoothness and orthogonality. {(Interestingly. J. O. Stromberg

' at the University of Tromso in Norway had constructed such a family several years

carlier. but the connection with the nascent theory of wavelets was not realized

until after Meyer's work.)

The following year. Mever and Stephane Mallat gave the subject a solid foun-
dation with a theory of “multiresolution analysis.” Then in 1987. Daubechies
constructed a family of wavelets that. in addition to being smooth and orthog-
onal. were identically zero outside a finite interval. Daubechies’s construction
opened up the field. “Compactly supported™ wavelets are now easy to come by.
and arc among the most commonly used in applications.

And applications arc abundant. Wavelets are being tested for use in everything
from digital image enhancement- making blurry pictures sharp 1o new methods
in numerical analysis titself widely used m scientific computing).  “Theyre a
very versatile tool.”™ says Daubechies. Not all the applications will pan out. but
many will. and some alreads have. “There are some very nice suceess stories.”
Daubechices adds.

One such story may have far-reaching effects. especially for the next generation
of criminals. The Federal Bureau of Investigation has adopted a wavelet-based
: standard for computerizing its fingerprint files. The FBI has around 200 million
P fingerprint cards on file. according 1o Peter Higgins, deputy assistant director of

o the Burcau’s Criminal Justice Information Serviees division. and 30.000 to 40.000
identification requests pour in every day. AL present. the FBI's fingerprint files
consume about an acre ¢ office space. The goal. says Higgins. is to digitize the
files. store them clectronically. and “put {them] in somcething that would fit in a
20+ 20-foot room.”

|
!

It sounds casy: after all. entire encyelopedias now fit on a eompact disk with
- room to spare. But thats words, Images are something clse. At a resolution of
300 pixels per inch. a standard fingerprint card contains nearly 16 megabytes of
data. Transmitting that much information over a modem  something the police
would like to beabletodo  takes hoursat today ~ transmission rates. Foradozen
cards, its guicker to use Federal Bxpress,
Whats needued is some was to compress the data on a lingerprint card without
Figure 11 “omdher” swendder ttopand - distorung the picture. That's where wanelets come in. By treating the fingerprint
e Sdahten L cottesy o image as i two-dimensional function, its possible to represent it with a combina-
fertd Dbl tion of wavelets, With a suitably chosen Family of wavelets, only arelative handtul
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are needed to represent a fingerprint. and the contribution of each wavelet can be
rounded off. or “quantized.” which reduces the amount of data that needs to be
stored or transmitted.

The wavelet standard for fingerprints was developed by Tom Hopper at the FBI
and Jonathan Bradley and Chris Brislawn at Los Alamos National Laboratory.
The standard allows many kinds of wavelets lo be used-—in effect. each electronic
fingerprint “card” will include formulas for its particular wavelets. as well as the
wavelet representation of the fingerprint itself. So far. one family of wavelets has
been approved for use. 1t compresses fingerprint data by a factor of approximately
20 to l—reducing 10 megabytes to a much more manageable 500 kilobytes--
yet gives images that pass the FBI's automated recognition tests. Indeed. the
reconstructed fingerprints look almost exactly like the originals {see Figure 3).

Bradley and Brislawn have also applied wavelet techniques to another kind of
data compression: managing the numerical geysers that gush out of supercom-
puters when running such things as global climate models. “High-performance
computers are reaching the point where their ability to churn out data is surpass-
ing our capacity for storing and analyzing it.” says Brislawn. In the approach he
and Bradley have developed. the computer decomposes the solution (for exam-
ple. a color-coded map of global ocean temperatures) into wavelets: the user can
then control the output by specifying how much detail -that is. how many of the
wavelet components-—he or she wants to see. One challenge is to figure out how
much you can compress the output without sacrificing quantitative capabilities of
a model. such as long-term statistical predictions of climatic conditions. Brislawn
notes. “This looks like a tough question that we won't be able to answer until we
get a better idea of what the models are capable of predicting.”

Other rescarchers are studying the use of wavelets not as post-processing ools.
as Bradley and Brislawn are doing. but directly in scientific computation itself.
Gregory Bevlkin at the University of Colorade has been studying applications

. L. THUMB

Figure 3 Lefr! Orngmal 708« 708 8-hy Corgit s dde fingor o it i
Chres Bristawn Los thamos Nattonad Taboraton
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Figure 2. . Fourier aniddle b and
wenvelet (hottom t reconstrug tion of d
function itop) with a sharp discontinn-
ity. The Fourier reconstruction uses 63
nonzero coefficients, the wavelet recon-
struction ondyv 18, (In hoth cases, the
discontinuity cawses an overshoot. known
as a Gibbs phenomenon. but it is much
more localized in the waveler reconstruc-
tion.
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Wavelet theory is making
some of the hard-won
insights of mathematicians
working in the abstract
reaches of analysis
accessible to researchers
in many fields.
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of wavelets in numerical analysis. Many problems such as solving a system
of partial differential cquations that describes the flow of oil underground - boil
down to working with huge matrices, or square arrays of numbers. Such matrices
are easier to work with if many of their entries are zero. Beylkin has shown that
wavelet analysis can reduce a wide class of matrices to the desired form.

Wavelets are especially suited to analyzingsound. Indeed. there’s a strong resem-
blance between wavelets and musical notes. The mother wavelet can be likened to
aparticular note - say a quarter note at middle C- played at a particular time. Its
translates represent the same quarter note at middle C played at other times. while
its contractions and expansions are eighth- and half-note C’s. played at higher and
tower octaves. Ronald Coifman at Yale University and Victor Wickerhauser at
Washington University in St. Louis have developed a technique they call udapted
waveform analysis. in which a catalog of waveforms is automatically searched
for the wavelets best suited to a particular problem. Among the applications is
removing noise from recorded sound.

Coifman and his colleagues recently cleaned up an old piano recording of
Johannes Brahms playing one of his own Hungarian Dances. Over the years. the
recording had acquired several tayers of noise. Brahms's live performance was
recorded in 1889 on a wax cylinder. which later partially melied. The damaged
cylinder was re-recorded on 4 78 rpm disk: the version Coifman began with had
been recorded from a radio broadeast of the 78, By then the music. competing
with pops. hiss. and static. was all but inaudible. Wanelet technigues made 1t
possible to remove enough noise to hear Brahms playing.

Wavelets are also helping researchers clean house in theoretical statistics. “As
soon as we were exposed to wavelets. we made the equivalent of about ten yeary”
progress in months.” says David Donoho. a Stanford University statistician who
has led the way in applying the new theors.  Donoho and his colleague Tain
Johnstone have developed a “wavelet shrinkage™ method for remoy ing numerical
noise from data. Their method. which theyve shown to be optimal from several
technical vantage points. first decomposes dita into waselets and then shrmks
cach wavelet comporent according to a rule that elimmates small components
altogether,

Donoho cxpects the insights wavelels supply to set a new agenda tor theoret-
ical statistics. Having solved many of the technical problems theorists had tong
struggled with. “we're in a betier position to say what the right questions are for
statistival theory to tocus on.”™ he says.

Indeed. that miy be wavelets” miost important legacs. Wavelet theory s making
some of the hard-won insights of mathematicians work ing in the absiract reaches
oF analysis accessible to researchers in mam fields. “Wa clets teach YOU I Was Lo
think about problems so that a ot of ideas in abstract harmonic analyasis become
natural.” Donoho says. The theory of wavelets does more than simply decompuose
and reconstitute complicated mathematical functions. In Donoho’s view, “I1's a
tool to restructure your thoughts.”

Daubechies agrees. A lot of things are starting to come together.” she savs.
Athe same tume. she adds, it ele st that we still need new advances in order to
tulith alt the promises that we think aie there”
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Random Algorithms
Leave Little to Chance

Us a common experience: You're walking down an office corridor or a vity

sidewalk when. without warning, you snd yourself face to face with someone
in an equal hurry going the other way, You both stop before vou collide. und sou
both step aside  to your right. You both smile amkwardly and both step aside
again o your Iefr. You both smile again. This time you wait for the other to
make 1 move. You borh wait for the other. Finally one of you breaks the pattern.
and the impasse ends. You both Lwagh. say “thanks tor the dance.” and walk away
wondering how long you could have both been stuck there.

That scenario generally plays out to comic effect in eversdiy hie. Curiously.
something similar occurs in computers  but with ctfects that are less amusing,
When a singleminded program meets the wrong input, the result can be u devas-
tating slowdown. And according to Murphy s Law I any thing can go wrong. it
will™ il there's o data set on which a program runs slowly, then that’s the data set
the program will be asked to process.

There may beaoway out. though, Mathematicians and computer scientists are
studs ingra new approach to programmng that avoids the computational gridlock
associated with many problems. This new approach refies on a humble but tinye-
honored technigue: flipping coins,

The technical termis “randomization.” butit boils down to heads and tails. The
idea 15 to msert occasional random decisions into a computation to woid getting
caught up m some unespected conspiraey between program and data. While
random algorithms are susceptible to runs of bad luck. such runs can be made
eve sdmgly improbable, Maoreover, that kind of bad uck is independent of the
data.

“When you put coin flips into sour algorithm. then it doesn't matter hew your
datais structured.” explains Joel Spencer of the Courant Institute of Mathematical
Serenves at New Yorh University, “There's no particular hind of duta that's bad.”

Here™ Tow the idea works in the case of the sidewalk tango. Suppose that
sou. the program. hive o stricth deterministic pattern of responses to the other
pedestrian tthe data. whicliin this case is another programo. 11 <. vou always
viele through the responses Lette Right, Wait, then vou'll be OK it the data has
some other pattern. But it the data happens o be structured the wrong way.
then you're stuck torever. On the other hand. it you randomly choose among the
possible actions cach time. then no matter how the data is structuted. it is highly
unlikely sou'll be blocked for fong. Even if the data “wants™ to block you. o
can’t - unless ity somehow clairvosant. i which case your'se got bivger problems.,
Cits also posstble you've stumbled acress a mirror.)

Computers, of comse rarels goowalking doven the sdewath, N mere reahislie
setimgsshere randomness helpsis the task ofsorting. Computersare often fed long
st vol names say. or addiessest to be put into alphabetceal or nunmierical order:
10 the and of “mindless™ activ iy computers exeel at And that's the problern: A
machine witl pladly spend all day or all decade sorting census data, and it will
do just that o soudon't worry about the eHictenes with which it v orks,
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The efficieney of a sorting algorithm twhat computer scientists call its “ecom-
putational complexity™ is measured by the number of pairwise comparisons it
mitkes  that is. how often the algorithm compares two objects to see which one
comes first. Han alzorithm is unlucky tor stupid) it can wind up comparing every
pair of items. That's not so bad if you're just trying to put a bridge hand in order.
But it's a arim prospect if you've just spilled o thousand alphabetized index cards
onto the floor-—you could wind up making nearly halt a million comparisons.
And when the number of items, say on o political party’s mailing list. climbs into
the millions or tens of millions. the potential worst-case number of comparisons
hegins to make the national debt le ok like a pittance.

One popular sorting algorithm is called QuickSort. The basic idea is to choose
onc item on the list. such as the item currentdy on top. and thercompare everything
clse with it. forming two piles: those “above™ and those “beiow.” The key then is
to repeat this procedure with the “above™ and “below™ piles sepuratedy there is
no need ever to compare items from difTerent piles. This process. which theorists
call “recursive.” is guaranteed to work.

On most lists, QuickSort works quite well. More precisel. when averaged over
all possible arrangements of a list, the number of comparisons the algorithm makes
i~ proportional to the number of items in the list multiplied by the logarithm of that
number. But there are times when QuickSort doesn't work well at all. Troniealls, if
the list is already sorted. then Quick Sort docs the worst possible thing: Ttcoi pares
every pair of items,

“1es not enough that an algorithm does well on average o there's o4 pateh of
probhlems on which it does very badly, and that patch of problems happens to
come up in the real world.” says Spencer. “That's exactly the case with QuickSors,
because in the real world vou de sort things that are aready sorted.”
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A randomized version of QuickSort solves the problem of “bad ™ dati: Instead
ol starting with the first item on the dist. or any other predeternined itenm. pick
an item at random. Most ol the time. the teo piles will be of roughly the e
stze. By choosing a random itens at cach stage. the algorithm will
excecdingly unlucky
total.

QuickSort. whether randomized or not. alw.as praduces a correct ans er
that 15 a properhy sorted list, What you'te gambling on is not the anwer. but
how long it tikes the algorithm to ind it In other applications. an algorithm’s

unless vou are
niohe close Lo an average-case number of comparisons m

run tme s guarentecd. but the answer it prodaces s only approvimate. but with
a high probabilits ol being sery close. One such problem concems computing
vor estimating: the “volume™ ol an a-dimensional shape. This is not just an
arcane mathematical pursuit: the size ot higher-dimensional geometrie shapes is i
central concern in many problems in theoreticin physics. chemistry statisties. and
clevhiere,

Theoreticdal computer scientists have proved tiat estimating the volume ot un
n-dimenstonal shape to a speattied aceuracy s compatationally intractable. it the
aleorithm used is deterministic,. “Intractable™ micans that the amount of compu-
tation itcreases exponentially with the dimension . eading to a kind of compu-
tattonal inflation that makes all but the smallest problems too expensive to solve.
In general. theorists consider i problem tractable it there is a “polynomial time™
alporithm for sobving it it is an algorithm whose computational demands
merditse no fister thitn some poser ol the size of the problem vin thiscase the
dimension s, For estimating volume. there is no such algorithm.

Nosuch dererministic algonithm, that s,

In 1989, Martin Dyer at the Universits of Teeds m Fopland and Al Friese
and Ravi <annan at Carnegie Mellon Eniversits found a random algerithm tos
estimating volutne thar broke through the problew’s exponential barrier. therr
algorithm. which computes the solumes o convey bodies. s based ona ethod
for queckly “wetting lost™ ymside an s-dimensional shape.

Phe starting point for Dyver Fneze and Kannans alyorithin resembles apootiy
plaved game of dart~. I vou throw darts without giming the fraction that ut a
particular region of o dartionrd v approsimatedy equal to that region’s fractiog
of the darthoard s area tsee Figure 200 Curtoushy enough. an aceurate estinnate loi
the 1eEIon’s ared reauires Jan fdecrate gim,

In n dimensions, the traditional “darthoard™ is an a-dimenstonal "cube” and
“darts are thrown bs preking a random number for cach of the 2 coordinates ol
& point in the cube. But that alone doesn’t solve the problent. Estimating volume
this win requires a number of darts that grows exponentialls with . The reason
i somewhat counter inteitive: An obiect can (it snagly mito the »-dinvensional
cibe but st oceaps just an espenertially tiny portion ob the cube’s valume 1o
crample. the z-dimensional “sphere™ ol diameter 1 touching all sides ol @ unit
cube hasvolurae less than /2700 12 taee box aet t pager. Theretore to have
any reasonable chanee of estimating the volume oF sav.a Hi-dimensional spieer
vord have o thvow more dirts than there are elementary paraelesin the universe.

Fhe three theonsts dodge that problem by phcig the “target™ teglon sl
The dartboards
sre cratted so the target occupies a substintial fraction ol the
sl st owhich eccupios g substantial braction of the nestsmallet

a nested set of darthoards. really. just vonvex shapes i 2i-

dimen-ional space
and ~oon anti
the largest dartboard accupres a pood bit of the cube teee Brgare 300 By random?s
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throwing darts at the smallest darthoard. you can estimate the target’s volume
as o fraction of that board, Likewise, cach dartboard’s volunie as o rction of
the next Lirzer board can be ostimated by randomiy throwing darts at the larger
board. The final result  an estimate for the volume of the target as a traction of
thecabe s obtained by multiplying all these fractions together.

The Incredible Shrinking n-sphere

5 i -
The areu and volume formulas 7r and (4/3)zr" are familiar 1o anvone who has
studied circles and spheres. Less familiar. perhaps, is the formula

which pives the “volume™ of an n-dimensional “sphere™ of rudiu. r.

The denominator, I't(n/2) + 1), takes some explaining. The ganmia function, as
its called, is o much-studicd special function. 1t plays important roles throughout
mathemati~s. liom geometry to number theory. The gamma tunction generalizes
the fuctorial function n? = i~ 1 - 2y 3. 2 L= iteelf a centrad character
in combinatoric, and probability theory,  For computational purposes. the main
property of the gamma function is the “recurston relation™ I'tx < 1) - vIie). Thus,
for example.

e 3103y 321020 - 3.2 01,

Likewiae.

(4 33t

To round out the application to the #-sphere, it enough to know that I'rh)
and 172 Y7 Thus, for ceample. the volumes of the 3. 5. and 6-spheres of
diameter 1 Cadins 1/2) are 27722, 27 /60, and 1:\,’384, respectively, In gencral, the
volume ot the i sphere gets smalier as i gets Targer: The nunierstor (2 /47 degreases
exponentiitlly. while the denominator 'tin/2y -+ Phcreines. Asareuit, even though
the nesphere fits snugly inside a cube, the fraction of the cube’s voluine it if oecupies
sesponentially small making it a tiny target i you iry plasing “darts” on the cube
s maln story )

Butthatstiategy cnly tades one prob smtor another that seems equally diflicult
prcking random pomt mside by shaped eeion

Aramo b youre not coneracd with downy things quickls there's no problens,
MbEsou have to doos use random rumbers to generate the coordinates of pomts in
redimensienal space but discard any pomis that happen to fall outside the desid
tegton. Lo heep the computation tractalde Trowever Dyer Fese and Kannan
had to find aaother strategy and then prove that it works,

Fhe approach thes found involves one o the staples ol pmlml»ilil_x theots
random watks Fhe new strategy doesn't produce tub tandom peints but it
voines cose encugh for mamy purposes. including the n-dimensionat volume-
catinatton problem Phe tandom waths take place onan i-dunensional eind - wee
Prowre B Starting bony o pomt thats bncwn to bem the ewion of mitered,
the rendonywalker pieks one of the 2r coordmate diections ot random m thiee
dimensons dor esample she nught rolla dic to deade wheiher o po baek. torth
ere neht up o downsand then meves one step m that diuection prosided
domg sovdoc-n't take hes outade the region

Rescarchions have bnoscn lor o long tme that a vandonn wall.er cventinibfy o ets

PR At s -~ L A —

bt BEST COPY MVAILASLE




ERICST

[/ n.uu Provided by ERIC

losU 0 dhie sense that atter o certain number of steps shie has nearly equal prob-
ability of bemg tound at any gnven grid point. The open guastion was how long
it takes to get lost does the number o' steps grow evponentially or polyonally
with the diniension n?

“We showed we can get lost in polynomial nme.” explams Kannan. b other
words. even though the number of grid points grows esponentially with the dimen-
sion g, the number U random steps it ke to getanyw here on the prid with nearly
equitl probuability grows no faster than some power of e To prove it “we needed
4 Larr bit ol mathematies” including “vartous results fron dierential geometrs
that had st been proved m the 19807 Kannan siys,

Dyer TFreze and Kannan's result applies ondy to conves regions and even
then. some technseal restrictions apphy. - IUs not kard to see why the method
doesn’t work m general: 1your region is honrglass-shaped. as i Feore 3 then
a randon walk starting moone compaiiment may require evponentiadly many
steps to “discover” the other compartment. The thiee theonsts onginal preol
showed that the amtount of computation regquired for siecurate volume estinates
in e dimensions s hounded by 17 0 marked noprovernent oser the exponentul
Pounds of determmtstic algorithins but stll e rom practival. By contiast the
wotst-vase behavior of determamistic QaickSort - boanded by o Subscguent
work by cmomber of researchiers thongh has Towered the bomd Most recontly
Kanan Taszlo Tovase of Yale Universits and the Borvos Lorand Uneseraty n
Binhapest. and Miklos Simonovitz ol the Flunpanan scademy of Saoe have
meeduced tedhimgues et e the bound tooe d b aceoan o coture
true down toont The alyonthm wheh could bave o mulutade of apphcitions
now versny on the practival ™ Kamman vy

B be somie tiee betore randont alyorthims become commonplace m com-
puter appheatiens. Fhore’s areed preference wnoig e people i the aeal
world tor detenmmme-tic alyonthne 7 Spencerachnovledzes Butthe theory v b
ceonmy and the poteniad ey real Save Speneer T Eheres omethue that's
not comadental in the ettectiveness of tanduraizad aleorthims. They e not justa
dunk ik theyrereally puporant tor computer =aicnee ™

The Guru of Random Algorithms

The cury of random algorithms i o mathematictan who has never teuchad & eom-
puter. iaut Erdos. ong of the best-known and most colortul mathenniticnns of the
twenticth centry, Erdos. who tusned 80 1993 15w freguont visitor te scwcanh
centers around the world. He has written hundreds of papers and co-authored many
hundreds more, Joel Spencer credits him with invigorating the theony of combina-
torics and creating what Sponeer colls the probablistic methnd which, white paiciy
mathematical, 1s what makes random algorithms tick,

Onz of Erdos’s speuialties is proving the existence of cotabirtorial stoutuee,
without actually construching tham. The probahilistic mathod, for example. doesthes
by shuwuig that. under the right circumstances, un obyect piched ot random from o
certain class of combinatorial objects will hase the desired structure with probabilin
greater than zere and that can happen only f abjeets with tie dusirad structure vdst
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The guru of random algo-
rithme is a mathematician
who has never touched a
computer,

LT IR et e AP0 uiakere m o S Seerm S R 6 A

W WIS PPN G IN N
SRR NN Y RN IO IR [ N
Q

Aruitoxt provided by Eic:

Spencer™ favorite example is FrdOv's very linst: a resultin graph theory dating back
to 1947 The problem is casiest to vtate in terms of socia’ engineering: s it pos-ible
to the w a party for, say. # guests, at which there are no large groups cither of mutual
fricnds or of mutual strangers? {To be precise, by “Large” we mean twise the logarithm
base 2of .y Erdis’s unswer: Yes. Juststart with a roomful of mutual strangers, bring
cach i topether and either introd e them or not, depending on the toss of a coin.
By an mgenious proof. Erdis showed that the probability of getting a party with the
decired Midis not just greater than zero. it's extremely close o certuinty.

That might seem ta suggest that Frddss random introductions could be replaced
by some determmistic rule But so tar, no one has found one that works, 1 The
problem of coure. s tofind o rule thit works for alf values of 12.) * No one has even
come close to this result by o construtive fulgorithm]  and it been 46 year<” says
Spencer. Lhe redson. he sprecul stes, s that “shen vou start 1o construet thing . you're
puthing stracture into them and this problem scems 1o denind o fucZ of structure,”
But who Knows? Oue of Erdds's many protépés might sull find o construciion st
sefve the mohlem

Fhat's happened with ather problems. Indeed. “derandomization” i a hot topie in
the theory ot random wlgorithms, Spencer notes, 10BN always poaible and it often
it s the inner workings of an algorithm hatder to undesstind. but derandomization
oty theoretival s ehts of s owr, AUthe very Least 1 gives theonists wotn thing: to
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Soap Solution

Ceos e 3 s B as seme e u

oup s slippers stoll Soapparentl s e mathe ndicat theary of soap

Bubbles that s Wheniteomestothe geometric propertios ol soap bubbles
there e Moty questiomis thay answers. Yndesen whoe e missesr seens Hrmly m
hasrd the pe tean beas hard o get holdolas well vt bar o soap.

¢ hielamong the unsolved problems: Wit shape o shoagpes will aclusier of soap
pubblesaas ane! 105 well known that o anele bahble mininnzes sts s tace area tor
the solamie tvoniains by a.unmy the <hape otasphere. But whaot happens when
e brhbles get torether? Tsounds Tk strarehtborward problens e peom iy,
with o htthe Bt ol calenbos dnown in Surprsmply, the answer sotul ot koo,
On rather the ansver - thoueht o be bnoson bt socban ticre s no proet that the
HIUIG S TN I
Phere was been prozees hoswevet. For the Fast soverad sunsers croups ol
ctidentom o cnmer Research Eaperionee tor Underpnaduae s REE - proaam
AU Cotieee i Wlbons downs Maeeachireett have votten then hend bt
witl the thevny ol woap bubbles Working wath faculee advior Frank Morean
At evpert i reometrie measure theony the students e ke on - and solved
ot bl prebbame m the scometry o soap O eronp’s et appeated
[yt paper e the Pactic Bl of Mathomeatcs other papers ae e the
prpching

The Wallnam € etere RET asone of severab dosen e e propsems anonnd
the conntiy oftenie <tudents o chane teowork omopen probles e romathers e
Shoae i hunedied ety hase pariiapated e e Walligos prostam s
P wab iy oo problenrone the theotie o ob bnets aumbees and caphe aloae
with the veoinetr ob soop badibics

Worb i the Willoons REE “oadeanc look on e henatics ditferenthy 7 i
Jocb Fores whoes o o eado ate stadent at Daab e Uoreraty o cn vt
Bl e becauc D hnow that Poncapable of done organabressach,”

ol Bros ko o cvaduate s ot ot tie Unacerats of Caliterin at Beek el
abees Pl sk eaperienee s eduointe time point” i b e We
vere v tremend e meun et e dot toovoabont ot eowe Bhed 7 Bock
recalls TWhen s wore vone wedl boonbhdspend honecat st tinnb meeabone
A s readly esotimye hen we cctadh ted et e a7

Thow Jad eeod teason oot vaned T the teseared feadig to thow Fraom,
and Brock alone wath
SMaaoal Stare Sickctoos Hodees and Lson Zusba soboed the 2-dmenstonadd

o pop s crn o the e e Ve fay
“chouble bobdde™ probban Coven o proscembot aneas bid o pai ot Shepean the
plane whose combined penmeter 1vas snedeas poasabic Bnother soads soppos
coni want te el pue ob corrads ol poarteabee e oo b octe tor vonr heep
for o s
this!

Pho g coted anvece was thie oo cetad e stidand ™ dosnt s Toadehl

andd 2acie Flov Shoeol Do bro o the coriads toaee o bl
N GRI AT
woc b
T fhe tae babblb o soparated bowa th e e the phoves and frons cachootb
Py concalan creswhnch et atangic ob 200 demces e o babble s ane o cqual
v thentho v iy

ctheer ko ot donbde babd s b
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IEay seem aprising that this pro®lem hadn’t boen solved lone ago Al
Al the sinele-bubble version ahich weserts that the cirele 1+ the shortest curve
coch e waven weain the phine was solved ne ol 300 yens aze wath the
adventor the caleutus of varmtions which treats actions rather than nembeis
as vartables  Fhe problemy el dates back 1o anbguity. \ecording to levend.
when Queen Dido founded Carthage <he merely™ ashed for s mvuch Tand as she
vould contanewithm the fude ot ball she then ant thie hide mto tin stop.
Lo an cncrmeust fone bele shich encompa e od asaable area, Whether
Dide tuably bnew about the wea masimizng progerts of the cocle - unclear

' Far Carthase wasod digo Powel fod nand v

. Soahat heldap the donble bubbte?

Poaome thine s e even cettun that aolution estated - Coneer bl there
conld bedeguenve b mcreasig s comphicated bubble arsoieanients cadh with
e e ter Vhan s predecessor bt not coneremye ey debimte Binal lorm
Such prabicneoare pereniab i the cabolus of canabions For coamiple amony
sccotiicnres o sl feneth trere sorone dhat imimimizes U anea boneath e
cubve s Breane T Phe e dovreas s the teetl oot b Bt e ot
ATER | CARTONY [

For Bubbles e S dimenaons and Tnehier ombe i the et 200 e e e
searchersrubad deany the ove oce panC el he theone b the nond 1L red

Mo ot Poocot e oy mtrodve cd o e ceotns e ot | o
Peabmresand prosed that s olations curt to paobleine o s oparane apoatied ol
o ath ool e bace eea U Aliren crent s Loane e o e Banelr s
Farcraty provcd that thess eathanatcal - oluton s ond the bt paogann
Sutiacc st nnthaeccat e b oo ceaarh bl oo aiad the conn s onne
B Ulour abos b ab aneles o approsin debs oo dsaees Thes romabane”
picebort s hand Beon eh iued e o o bbbl e T e g
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More recently Morean has proved analogous existence and regularity results tor
2edunensiona! bubbles both tor the plane and for more general reurved s surtae s,
Morvan™s results vanve the stadents a theoretical basis Trom which tostart.

Fven so. thets was o ot ol work Tett to be done “The esistenee theory adnuts
some vers Tunny things.” sass Morgan. Fhe neanstumbling block is the theoretical
possibilits that the best way o mmimize the total perimeter enclosing several
preseribe b areas sor the total surtiace area enclosing several prosabed volumes
i~ to split cach area mio seseral disconnected compe ents, Foresamples the best
“double™ bubble meht actually be a cluster with nine comy nents fve of which
comprise one sred and the rest the other “see Ticure 30 Hhe enstence theory even
ablosvs tor the possibilits that the estenon regton ns more than ene component
it e there naeht be “enpry chambers™ within a petimeteraninimizing buhble
oo e b
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The last fogical steps for
the planar triple bubbic
and the double bubble in
Space renwin to be tuken
—perhaps by some future
group of undergraduates.
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solution for three arcas v assumed 1o consist of conpected regions then the
Sstandard™ form wins out over two other combinatorial possibilities 1see Figure
S More reeently, Hutehings, now i graduate student at Hanvard Usiversity.
has gone back o the double bubble  but up a dimension. It's known tiat the
surfice _rea-minimizing double bubble is 4 “surface ol revolution”™ obtained by
totating some pline curve around an asis. The likely answer is the shape that
results when the 2-dimensionat standard double bubble is spun avound s anis of
syimmetry. buta proot renuins clusive However, Hutchings has shown that the
solution. whatever it may ook like. hues no empts chambers, Moreover, in special
cases.sueh as when the two preseribed volumes are eqtud, he has proved that the
cnclosed reprons are also connected.

The fast Togical steps for the planar triple bubble and the double bubble in
space remain to be then perhaps by ome future vroup ot undargraduates. e
prablemsare good ones tor students. savs Tutchings. because the high-level part
of the probleny e doneand the rest can be approached with clementary methods.
"ot requires some deternination and a hitle inpenuy.”
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Straightening Out Nonlinear Codes

-

ver shice computers staried Gikane ovar the bulk ot e work madaia
wocessiig and telecomniunmications, people who nse them e worried N oarroet] R .
! ! peol ¢ Frror-correcting code

over o fudamental gue tons How dovou cope when the machoe maltunctions tL‘ChIl()I()‘,{}' i l]()“'ildﬂ}'S 08

common as compact disks:
 n .

But g hndvare advanced and progracs oo sore elaborate the prospect o !" s what allows your favor-
mictoscopie taws that alter Bow aone bime e on Bowoat handles data becanie ite Mozart or Madonna
reab coneert Wath chips petting smalion evers year and conrpisters getuny Lister C'D to play perfectly even
the clunee o a oceasional coeos stippimye e gets better and better Fven when “l()ll}_{h your at’s been

Hrat chatiee s vive e a dillone o compatet tnmmy b 2% mevations the spead L’lil“’illg the disk.

of List vear s Liptops porderov-dy low by supercompuatine ~Lindands - oo
Lo ceev i 0 s an o What' to be done

I the hegtnmmy computers and the provrams thes ranwere simple enough that
physical Larbures usoadly the death o aovaenum wbe were readily apparent

Phe ansaer reseancher foannd Lo e it e nvson o crron aonrectimy codes
The mathenntical theory of these ondes developaed over the List Bescars e
chabled computer crentimtGoand engneet s o deavn astem thal won ko rchabls at
Hic veredee ot then phy scal capabilities Toor cortectime code techinodoes -
o tday s comimoan s compaet disfos s st o seur bnenste Mozt o
Madonna CD to pla potecty even thotedbes o™ beenddave the dede The
setne technedees has been uscd medeepspace proboesdlosne spacean v
boveecs P to wond bach spark e clean pactune - of detant plhanets s hide w2 b
P e cretoe crator helithe b
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Foor-comrecome techaodooy s soon get even better thanbto onne now
corvettes i eodir ooy Baoosoparate gronpe o vesarchiorcrecenth found the
bos tooa et of peacial vororcorrectnng codes that hase the awbend propat,
ef beme  mnlmea ™ Pogs Hamraons e Huvho oSN eraorh Sustene m Gy
nomtewr Shoonod and Ve Kem o the Uneeerats o Somthzon Calderm
reamed up with Reboo Caldaih b and Sal Stoane at VBT BUEE shoaaton e
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Coding theorists have
known for decades that
nonlincar codes of a given
length can have more code
words than their linear
counterparts.
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in Murray HIlL New Jersey. and Patrick Solé at the Centre National Recherches
Scientifigque in Sophia Antipolis. France. to show that many nonlinear codes ¢in
acticlly be considered Imear  when looked at in the nght way.

Fhar dindings, which will appear in the TEELE Transactions in Information The-
onr. open the gates™ to the use of nonlincar codes. says Kumar, Among the
promising applications is “sequence design™ for digital cellular communications,
which will eventually replace the analog technology now dsed in wdgets such as
car phones. Systems hased on nonlinear codes could serve many more users with
the available bundwidths,

But firstolall what are error-correcting codes. imd what does hnearity have o
do with the subject?

I peneral. a mathematical code s simply o set of “words.” cach of which i~
nothing more than o string ol syinhols. The most commoaly vsed “alphabet”
his just two symbolss 0 gnd 1 Typicalls, the words ina code all hive the same
“length™  that s the sime number of Os and Tso cNotall codes work that way,
The familiar Morse code. for example uses acsimple dor to represent the frequenthy
appearing “word” e bat a longer dor-dor-dashi-do Tor the Tess common /.

The error-cortecting capability o code is based on a notion of “distance™
hetween code words. The distance briween two words is simply the numbe
of places i which they ditfer. 11 the distance between any two code words is
at least 3 then the code can correct single errors. For example. in the code
chntnh TETOD.00TTL FINEE . the nusread word 01100 ¢on be corrected 1o 1t
“nearest perehhor™ THOO from which it difers inondy one digie - dulers iom
the other code words m two threes sad fow places. respectiseds 1 Likewise, when
the distimce between code words o at least 30 the code can correct double errors
tipde error-correcting requires distance 7 o motes and so forth,

Fhe code 1000 TEH00 a0 T TTOTEY 18 abo an example of a lacar coder I
sotadd two code wond L topether usig the binary addition rule 11 0 rhe
result s another code v ord. Foresample, THHOO - TI0TE o1 T inearnty
eive aeode an adeebrare structure that makes decoding messayes mnch casier
and nakes encodmg them a snap. I precise mathentatical erms, a hineanr code
ieavector s pace over the finate held 2+ sothe tull foree of inear olgebra can be
brouyeht to boear,

But hnear codes abso Tunve thar aownside. The mam problem is that lincarits
vitzirestiicts the number ol possible code words, which hinder<the code’s abiliny
to cany antormation. Iyou're not worvied about lincarits you can toss in as a
new code wordany strine that matatains the appropriare disiance fromeverns thing
Already i the codes But i you insist on lineanits. dhen sou have to check these
distances not pust tor the prospective new code word, but alsa for all its sums with
words abrcady in the code

Codmy theonsts have knowon for decades that noulinzar codes ofa gneen lenyth
cant have more code words than their Tineir counterparts. Among lincar codes
ob lengte 160 for cvample the best doubleernior-correctne code Tas 128 code
voords, Butw 967 AW Nordstrom and John Rebinson construeted a noatinear
code conbinamg 256 words ENordstrom was @ high-selhoo! student it the tite,
Robinson an clectrical engmeer at the University of Towa. Inefieet, only 7 digrits
m cach code word of the Imear code carre information (e other ¥ do the ereor
correctmg, whereas i the Nordstrom: Robinsoncode 8 digies car s intermation.
wmproventent el approanuiely, 0 Researchers have Geveloped many other
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01100 00110
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00100 ) (w0111 )
00010

- 00000
11000 -~

10000 00001
11011
1001 |

Figure 1 Fhe code sondy JO0DOG TVTO0 00TV VROV aned sontn o tho ool

11100
01000

Q0011

11001

exampies of nonlmear codes: meluding two families of codes Lnown as kerdoek
and Preparata codes. both of which generalize the Nordstiony Retanon vode

Even so dmedr codes ave predonnmated in practice. becausc thear estia e
ture makes them casier o work with. which trinslates into fastor ond pue efherent
aleorithms Tor encoding and decoding Nonlincar codes” apparent fack of e
tie Bas Tett themn the dust,

taul now.

The tive researchess ane discovered a simple trick that toome nany Tanuliar
notover 7+ though. but over /4 the alpebraic
sstem {0 L2 3 wathitherules2 -2 -3 2x2 oand v r * v
More proasas. thes hase Tound that many nonlinear codes can he obitained as

nonlineas codesinto linear codes

“tmages” of codes thatare linear over Zy using o particularhy simple mappingt.

[he sastetn Z s
often represented by Tour points of o compass: Oand 2 at I ast and Weat, Tand 3
at North and South. Adjacent digits are considered to difler by 1 opposite dipits
by 2 the distance between code words reflects these difterences Tor exantple.
the distance between 0060 nd 0123 45 4 smee the digits difter b 001 2 and 1

Tlhe wrick is a kind of squaring ol the cirele tsee Figure 2

respectivels. The new idea is 1o tohe o linear code over 274 and replace the digits
012 and 3with 00001 T and 100 respectively, The tesult v a nonhinear code
ovel Zx that tereally justa limear code over Zy i disguise!

The surprise is that this trick aceaunts Tor essentially all of the nonlincar codes
thit theorists hine studied <o tar, indluding the Nordstrom Robinson, kKerdock.
and Preparata codes. Tedidnt have to work out that way: the trek might have
produced enly o limited subclass of nonlinear codes- - and uninteresting. useless
ones.at that. The theory's suceess hints at deep connections wmong the various

are v - Ry
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Figure 2. The kev to nonlinear codes:

hinds of codes with more surpri-es po-sibly it store, . “squaring the cirele.”
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The theory’s success hints
at deep connections among
the various kinds of codes.
with more surprises possi-
bly in store.
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The theory has already cleared up a longstanding mvstery: the fact that many
nonlinear codes seem to come in “dual pairs™  even though “duality™ is defined
only for lincar codes. In particular. cach Kerdoek code has properties “dual”
to those of a Preparata code. while the Nordstrom Robinson code looks like a
“self-dual™ code. Researchers had long puzzled over this seeming coincidence.,
The new results explain it all: the nonlinear codes over 2> inherit the appearance
of duality from their lincar precursors over Zy. which really are dual.

Hammons and Kumar first discovered a 7y conncction for the Kerdock and
Prepuarata codes in carly 1992, They had been investigating mathematical aspects
of a communication technique known as code division multiple aceess (CDMA).
an up-and-coming candidate technology for digital cellular radio. CDMA allows
many users simultaneous access 1o a communication channel by assigning cach
user a separate code word: the distance between code words prevents users” signals
from getting mixed up. With more code words. more people can use the system at
once.

Stoane. Calderbank. and Sol¢ made the same discoveries independently later in
the year. According to Sloane. David Forney at Motorola Codex and Mitchell
Trott at MIT asked him at a conference in October about the possibility of a
connection between the Nordstrom Robinson code and self-dual linear codes
over Zy. Sloane was the right person to ask. He and John Canway at Princeton
University had recently completed a study of such codes. so he immediately knew
which code would give the connection. if there was one: a self-dual code over Z
known as the octacode.

“Ewent home and. in two minutes thinking about it. it became clear that ves
indeed. the octacode was really the same thing as the Nordstrom Robinson code.”
Sloane recalls. 't called up Conway and said. "Look! How could we have missed
this? We should have noticed tnis years ago!™™

Calderbank and Solé contributed several key ideas to Sloane's observation. and
the three of them soon had an extensive theory. including eflicient algorithms for
decoding the Kerdock und Preparata codes. Then Calderbank discovered that
Hammons and Kumar had found many of the same resalts. The two groups
agreed to publish their results jointly.

More recently. Sloance and Conway have found Zy precursors tor o number
of single-error-correcting codes that are nonlinear over /- while Calderbank.
Kumar. and Tor Helleseth at the University of Bergen. in Norway. have discovered
some new codes over Zy which are better. by various teehnical standards. the vany
of the previously known families over Z», Together with Peter Cameron at Queen
Mary and Westlield College in London. Bill Kantor at the University of Oregon.
and Taap Seidel at the Technical University of Eindhoven in the Netherlands.
Calderbank has also begun investigating a surprising connection hetween the /-
lincarity of the Kerdock codes and some seemingly unrelated problems in finite
geometry. Nonlinear codes may finally be getting straightened out. but it looks
fike coding thearists can still count on quite a fow twists and turns.




Quite Easily Done

he line between easy mathematical problems and hard ones is finely drawn.

Some problems seem to cross back and torth: First they look casy. then
they seem hard. and then. when they're finally solved. they look casy again.
A recent example is a simple-sounding combinatorial puzzler called the Dinitz
problem. First posed in 1978, the Dinitz problem has finally been solved with a
surprisingly simple prool. but onlv after fifteen sears during which it seemed a
very tough nut to crack.

The story starts in the kite 1970s. Jeft Dinitz, then @ giaduate student at Ohio
State University tnow a professor at the University of Vermont). was studying
properties of combinatorial arrangements known as latin squares. A latin square
isann - narray ofnsymbols  saya 3+ Sarray ol stars. squares. circles. diamonds.
and triangles  in which no symbol appears more than once in any row or column
(see IFigure 11, Latin squares are usetul. for example. in the design of experiments.
to protect against bias. [ say. you want to compare five different herbicides in a
corn field. but want to make sure the results aren’t atfected by variations in soil
quality [rom one side of the field to another, then dividing the field intoa 5 v 3
latin squatre pattern is an ellicient way to desigic the experiment.

Latin squares are casy to come by, Indeed. their numbar explodes with the
size of the square. from two 2+ 2 squatres to twelve 37« 3 squares to more than
10" squares of size 8 + &  But Dinitz cooked up a variant on the problem of
constructing latin squares tor which it wasn’t clear  until now  that any solution
could be found.

In an ordinary 7~ n latin square. there is only one set of 1 symbols. and an
clement [rom that set must be chosen for cach location in the square. In Dinitz’s
version  called & “partial latin square™  cach location is assigned its evwn set of
i possible symbols: these sets may vary from location to location. The problem
15 still to choose a symbol for cach focation. but now the sy mbol must come from
the set assigned to that location. The goal. however. remains the same: to avoid
choosing the same symbol twice in any one tow or column,

In FFigure 2. a three-clement set is assigned to cach location in a 3 - 3 square:
the elements in orange constitute a partial latin square. The Dinitz problem asks:
Given any assignment of s-element sets of symbols to the 77 locations inan # ~ n
array. is it always possible to find a partial latin square? Or to put it negatively.
among all the wavs 1o assign n-element sets to the locations ol an # - n array.
are there any for which it's impossible to pick an element from each set without
picking some symbol twice in the same row or column?

At tirst glunce. the answer seems obvious: Since the problem. in general. uses
more than 7 symbols. it should be easier to satisty the nonrepetition requirement
for a partial Tatin square than tor an ordinary latn square. But that gliance
overlooks a cruciial aspect of the problem: Not esery symbol is available at every
location. One way to construct an ordinary latin square is to specify where in
cach row you'll place the first ssmbol. where the second symbol. and so on: that
approach doesn’t even make sense for partial latin squares,

Another telling difference between ordinary and partial kitin squares casts fur-
ther doubht on the “obviousness™ of the answer, Ordinary latin squares can always
be filled i mrow by row,” 1 says the linst two rows of a0 5 - 8 square have been
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filled in successfully (without doubling up in cither row or any column). then the
rest of the rows can also be filled in to give a latin square. That means that when
you're trying to create a latin square. you'll never paint yourself into a corner - you
won't get down to the last row. for example. and find yourself unable to complete
the square. With partial latin squares. by contrast. you can paint yourself in. For
example. if the sets in the first row of a 2 x 2 array are {4. B} and {B. C'}. it’s
natural to choose A4 and B as the symbols in that row- but then you get in trouble
when you see the sets {A. C'} and {B. C'} in the next row.

Complications notwithstanding. Dinitz's conjecture - that partial latin squares
can always be found  turns out to be true. It just took fifteen years for a proof to
be found. In the meantime. the problem served as a kind of drawing card for the
theory of combinatorial design and a testing ground for new ideas.

Dinitz's conjecture can be verified directly for 2 x 2 arrays. because there are so
few different possibilities. In principle. the conjecture can be checked for arrays of
any given size. That's because there are only finitely many cases to check: The total
number of distinct synibols for an n x n array cannot excced 3. so the number of
cases is less than 1 1o the power #° (more precisely. it's at most the n* power of

(,:,.) ). But the numbers involved in such a brute-force. case-by-case analysis grow
astronomically with #. The 3 x 3 problem is small enough for this approach to be
practical. but the 4 x 4 case is already out among the stars.

In 1991. however. Noga Alon and Michael Tarsi at Tel Aviv University in Isracl
proved a theorem that made it casy to verify (by computer) Dinitz’s conjecture
for 4 x 4and 6 x 6 arrays. Their theorem is not specific to Dinitz's problem. It
coneerns a general problem in graph theory called “list coloring.™

In combinatorics. a graph is a set of points (called vertices) and a set of lines or
curves (called edges) connecting them. Many applications of graphs in scheduling
or network theory can be interpreted as coloring the edges of a graph. with the
stipulation that no two edges of the same color meet at a common vertex. To
schedule a college football season. for example. let each team be represented by
a vertex. draw an edge connecting teams waat are slated to meet. and then color
cach edge according to the week on which the two tecams are to play (say red for
week 1. blue for week 2. and so on). The condition that no like-colored edges
should micet at & common vertex simply means that no team should be asked to
play two games simultancously.

Jefl Diniiz

In a list-coloring problem. each edge in a graph is assigned a prescribed set.
or list. of allowed colors. The Dinitz problem can be viewed as a special case of
list coloring. for graphs in which each of 1 “row" vertices is joined to each of n
“column™ vertices (see Figure 3). Graphs of this type. in which the vertices are
scparated into two sets and all edges cross from one set to the other. are known
as “bipartite™ graphs: the particular graph associated with the Dinitz problem is
called a complete bipartite graph. because it includes all possible edges between
the two sets of vertices. There is a general conjecture regarding how large the
palette of possible colors for euch edge of a graph must be in order to ensure that
alist coloring is possible. Viewed from this angle. the Dinitz problem is just the
tip of an immense theoretical iceberg.

Alon and Tarsi's theorem gives a condition which. if satistied. guarantees the
existence of a list coloring from scts of a particular size. Their condition is simple
cnough to be verified explicitly for the graphs associated with the 4 x 4 and
6 x 6 Dinitz problems. In principle. the condition can be checked for «ff even n.
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but once again. the amount of computation involved gets quickly out of hand.
Furthermore. the condition is never satistied for odd n. (This doesn’t mean that
the Dinitz conjecture is false for add #. just that Alon and Tarsi’s theorem won't
help prove it for those cases.)

Other rescarchers. notably Roland Hiiggkvist at the University of Stockholm.
had made inroads on the list coloring problem and its relation with the Dinitz
conjecture. In late 1992, Jeannette Janssen. then a graduate student at Lehigh
University in Bethlechem. Pennsylvania (now a postdoc at Concordia University
in Montreal). proved a result that surprised cven many of the experts. Janssen
showed that Alon and Tarsi's theorem could be used to solve completely a siightly
weaker version of Dinitz's problem, Instead of focusing on squares. Janssen
looked at rectungles - arrays with fewer rows than columns. She showed that in
any r x n array with r < n. it’s enough to have n symbols (or colors) assigned to
cach location in order to guarantec that a partial latin rectangle exists.

Janssen's result comes close to the full Dinitz conjecture in two different (but
closely related) ways. First. it says that you can always fill in at least the first
n — 1 rows of a partial latin squarce (the previous best result guaranteed only
two-sevenths of the rows). Second. by starting with an # x (n + 1) rectangle and
then lopping off the last column. Janssen's theorem says that you can always find a
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Figure 3. Each cdge in o bipurtite graph corresponds to a location inan x w array.

Jeannetre Janssen. {Photo courtesy of

Cliff” Skarstedt. i
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Fred Galvin

partial latin square if 7+ 1 symbols have been assigned to cach location  again.
far better than previous results.

“Experts in the field lauded Janssen's breakthrough. "It is brilliant.”” said Herb
Will of the University of Pennsylvania. 1t moves the problem much closer to a
resolution than anyone had expected.™ Other theorists agreed. predicting the tull
Dinitz probleni would be solvess »on. perhaps within a vear. They wereright  but
not quite for the reasons they had in mind.

Fred Galvin. a mathematician at the University of Kansas. read Janssen’s proof
in the Bulletin of the American Mathematical Socien: this led him back 1o Alon
and Tarsi's paper in the journat Combinatorica. A remark in that paper made
Galvin realize that one of the ideas in Janssens work could be parlayed into a
prool of the complete Dinitz problem. provided one could prove a certain result
about the existence of something called a kernel.

Lowvsely speaking. a kernel of a graph is a “largest possible™ subset of vertices.
no two of which are connected by an edge. The precise definition is more technical.
but the way Kernels are used in Galvin's proof is simple: take any color. say red.
identify the set of focations that include red among their allowed cotars. find a
kernel of tha set. and then make red vour choice for all the locations in that
kernel. The Din'tz problem is solved by repeating this process with other colors
until every location has been colored  but this approach wouldn't work. Galvin
knew. if some set of locations didn’'t have a kernel.

“1 didn’t know much about kernels. so T decider] 1o go to the library and see
what's available in the way of kernel existence theorems.”™ Galvin recalls, He found
exactly what e needed in the second paper he iooked at. a theorem by Frédéric
Maftray which appeared in ihe Journal of Combinatorial Theory (Series B)in 1992,

“1was really surprised.” Galvin says. T read and reread [Maflray's paper]
several times. thinking maybe [ misunderstood one of the definitions.™ That can
happen in a technical tangle of terminology — but not this time. Maflray’s theorem
was indeed the missing ingredient: the Dinitz problem had been solved.

Galvin circulated a three-page. handwritten account of his findings carly this
vear (1994). He subsequently streamlined the prool 1o make it self-contained.
He is still surprised. almost embasrassed. by the proof’s simplicity and the way in
which he found it. “None of the ideas in the proof originated with me.” he savs.
“AlT did was put together a couple of things that were already in the literature.”

The experts are also surprised. “The proof is just amazing.™ says Jeil Kahn. an
expert on combinatorics a. Rutgers University. Adds Janssen: “Nobody thought
that if there would be a proof. it would fit on three pages.™

In fact. Galvin's three-page proof solves the list-coloring problem not just for the
complete bipartite graphs associated with the Dinitz problem. but for a/f bipartite
graphs. Janssen thinks the proof gives insight into the general list-coloring problem
for all graphs. Although Galvins proof uses none of the claborate theoretical
machinery in Alon and Tarsis paper or in Janssen's work. the heavy-duty stuff
may still be crucial in solving the general problem  the Dinitz problem may have
turned out casy to solve because itUs a special casc. Janssen says. On the other
hand. the list-coloring problem may ultimately turn out casy to solve as well,
perhaps because it's a special case of some even more geneval problem. If there's
a lesson to be drawn. it's that hard problems need not stay that way.
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The Road Least Traveled

Fred Galvin's solution of the Dinitz problem (see main story) not only shows that
partial latin squares exist. it also points to an efficient algorithm for finding them. That
doesn’t always happen: Computer science is rife with problems for which solutions
indisputably exist. but for which efficient algorithms to find them are lacking.

In the classic example. known as the Traveling Salesman Problem. a saler nan (or
woman) starts at the home office, visits a certain set of cities. and returns home. The
“cost” (in time, mileage. or money) of traveling between each pair of cities is known;
the objective is to complete the calls at the least possible total cost.

The Traveling Salesman Problem is an example of a “combinatorial.optimization™
problem—*“combinatorial” because it deals with ways of arranging things. and “op-
timization” because it asks for the best arrangement. Like the Dinitz problem. the
Traveling Salesman Problem can be phrased in graph-theoretic terms: The vertices of
the graph are the cities, and the edges are the roads connecting them.

The problem and its variants have a foot in the door of many applications in which
resources need to be routed. The manufacture of printed circuit boards presents one
example. In order to connect conductors on different layers of a printed circuit board.,
it's necessary to drill holes—as many as several thousand, nowadays. The job is best
done by a robot. which never gets bored or takes coffee breaks. But even a robot can
waste time. The drilling robot must pick up the right size drill bit, move from hole
to hole. and then return the bit (perhaps to exchange it for one of a different size).
Moving the drill about is necessary, but unproductive and tlme-consummg, ideally.
the drill will move as little as possible.

In principle. solving the Traveling Salesman Problem is easy: If the salesman has
n cities to visit (including the home office). then only (n — 1)!/2 different routes are
possible. so it’s just a matte. of checking to see which one is shortest (or cheapest). The
catch, of course. is in that “only.” The number of possible routes grows exponentiaily
with the number of cities. making a brute-force approach impractical for any problem

~ with more than a handful of cities.

Computer scientists draw the line at programs whose run time grows exponen-
tially with the size of the problem. They much prefer “polynomial-time” algorithms:
programs whose run time grows no faster than some power of the problem size (see
“Random Algorithms Leave Little to Chance.” pages 27-32). But so far no one
has found a polynomial-time aigorithm for solving the Traveling Salesman Problem.
Indeed. the general consensus is that no such algorithm exists: solutions to the Trav-
eling Salesman Problem. it’s thought. are inherently hard to find. even though they
obviously exist.

That hasn’t kept people from looking for better ways to tackle the problem. though.
In part because the Traveling Salesman Problem crops up repeatedly in applications, in
part to hone techniques that can be used in other combinatorial optimization problems
as well. and in part just because the challenge is there, researchers have developed
algorithims which, while still exponential. manage to solve some exceptionally large
instances of the problem.

David Applegate at AT&T Bell Laboratories. Bob Bixby at Rice University. Vasck
Chvatal at Rutgers University. and Bill Cook at Bell Communications Research (Bell-
core) in Morristown, New Jersey, have come up with what might be the best approach
yet. Their algorithm stems from a method introduced in 1954, when computers—-and
combinatorial optimization— were just getting off the ground. The basic idea is to
convert the original problem into a sequence of jinear programming problems; soiv-
ing them gives an increasing sequence of lower bounds for the cost of the salesman’s
cheapcst route. Each individual linear programming problem is easy to solve: the
catch is. it may requirc solving a huge number of them to get at the final answer.

Computer science is rife
with problems for which
solutions indisputably
exist, but for which effi-
cient algorithms to find
them are lacking.
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To avoid getting lost in endless computation. Applegate and colleagues have added
a “branch and bound™ technique. Their algorithm periodically picks a pair of cities
and divides the search for an optimal route into two branches: routes that visit the
two chosen cities consecutively. and routes that don’t. The search along a particular
branch is curtailed (bounded) if that branch offers nothing better than a route that’s
already known.

The ne. " method has already seen some success. Appicgate and colleagués have
used their branch-and-bound technique to solve more than a dozen longstanding
“challenge™ problems. including one with 3038 “cities” (see Figure 4 (left)). As it
happens. their toughest computaticn to date is, in a sense. already out of date: One
of the challenge problems was to find the shortest tour of all 4461 cities in the former
East Germany. The branch-and-bound algorithm chased the problem down a total
of 2929 branches before coming up with the answer (see Figure 4 (right)).

Figure 4. A traveling salesman's best route around a printed civcait board (left) and the former East Germany (right). (Figures cour-
tesy of Bill Cook, Bellcore.)
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(Vector) Field of Dreams

hat goes around. comes around. right? Not necessarily. In fact. in the

realm of 3-dimensional iopology. what goes around need never come
back around. At least that’s one way to describe a recent result of Krystyna
Kuperberg.

Kuperberg. a mathematician at Auburn University in Auburn. Alabama. has
resolved a fortysome-year-ola problem knowrn: as the Scifert conjecture. Dating
back to a paper by Herbert Scifert in 1950. the Seifert coniecture concerns the
topological properties of a 3-dimensioral space. or manifold. known as the 3-
sphere. A dircct generalization of the ordinary circle and sphere (see box). the
3-sphere is. topologically. the simplest 3-dimensional manifold. But even so. many
of its properties remain shrouded in mystery.

The Seifert conjecture. says John Franks. a mathematician at Northwestern Uni-
versity. “was the kind of question that we thought we should be able to answer--
and we couldn't.”™ Until now.

In technical terms. the Seifert conjecturc asserts that every smooth. nonzero
vector field on the 3-sphere necessarily has at least one closed orbit. This sounds
eminently reasonable. Indeed. in his 1950 paper. Seifert proved that all vector
fields of a certain class (namely. distortions of a vector ficld known as the Hopf

/k\ \ Krystyna Kuperberg,
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Figure 1. The “stereographic pp sjection” maps every point in the plane to a point on the
2-sphere by connecting it to the “north pole,” which can be thought of as corresponding to a
“point at infinity” in the plane.

Getting *Round in 7 Dimensions

The c1rcle l\nown to topologists as the 1-sphcre, or S°. I is the curve defined by the
equation X2+ v = lin the (t y)- planc Likewise, the “2-spherc” 52 is the surface
defined by the equation x* + y2 4 22 = 1 in 3-dimensional space. The n-sphere is a
straightforward generalization: It is the n-dimensional “hypersurface” defined by the
equation .\‘,2 + x% 4o+ )r,z,Jrl =-1in coordinates x;.x3. ..., Xz+1- Topologically, the
n-sphere is a compact version of n-dimensional Euclidean space with an extra “point
at infinity.” Figure 1 shows how the (x, y)-plane can be mapped onto the 2-sphere in

3-dimensional space. The corresponding picture in 4-dimensional space is left to the
reader’s imagination.
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Figure 2. The I-sphere (also known

as the circle) allows for wonzero vector
Jields (top), but every vector field on the
2-sphere has a “bald spot.”

fibration) do have closed orbits. But even so. mathematicians soon came to doubt
the gencral conjecture. Their doubts were well founded: The Seifert conjecture is
false.

By adding an ingenious new twist to some old ideas. Kuperberg has constructed
smooth vector fields with no closed orbits. thus putting the kibosh on Seifert’s
conjecture- -and not just for the 3-sphere. but fer all 3-dimensional manifolds.

Kuperberg’s counterexamples could have implications in the theory of dynam-
ical systems. where closed orbits correspond to periodic behavior. such as the
regular swing of a pendulum or the predictable variations in a predator-prey re-
lationship. Vector ficlds crop up constantly in the study of differential equations
and mathematical physics. Newton's law for gravitational motion and Maxwell’s
cquations for electromagnetism are just two examples where vector fields play a
key mathematical role in describing physical phenomena.

Looscly speaking. a vector field assigns a littie arrow to cach point of the surface
or space on which the field is defined. Arrows attached to different points can
pointin different dircctions. and they can have different lengths. The most familiar
cxample of a vector field is wind: At each point on the surface of the earth. the
wind can be described by an arrow pointing downwind. with length proportional
to the windspeed. (Of course wind also changes in time. A vector ficld can be
thought of as a wind that varies from place to place. but remains constant in
time.) Through each point. a vector ficld determines a trajectory --the path a dust
particle would follow if blown by the field’s wind. If the dust particle ever gets
blown back to where it began. it will endlessly follow the same path over and over:
The trajectory is what mathematicians call a closed orbit.

There arc only two essentially different continuous. nonzero vector fields on the
I-sphere (i.c.. the circle): one that points clockwise and one that points coun-
terclockwise.  On the 2-sphere. remarkably. there are none at all. Topologists
sometimes call this the hairy billiard ball theorem: You can’t comb the hair on
a billiurd ball, unless it has a bald spot (sce Figure 2). In general. there is a di-
chotomy between even- and odd-dimensional spheres: Odd-dimensional spheres
have continuous. nonzero vector ficlds. even-dimensional spheres do not.

To restate the dichotomy from a different point of view: Every dynamical system
on an even-dimensional sphere has at least one fixed point. whereas dynamical
systems on odd-dimensional spheres need not have any fixed points. In effect.
Scifert was asking whether dynamical systems on the 3-sphere have the next best
property: Do those without fixed points necessarily have closed orbits?

Scifert’s original question referred generally to continuous vector fields, not
specifically to smooth fields. (A vector Geld is “smooth™ if the lengths and di-
rections of the vectors change not just continuously. but smoothly - in technical
terms. if the field is “infinitely differentiable.”) Butin 1972. Paul Schweitzer at Pon-
tifica University Catolica in Rio de Janeiro. Brazil. produced a once-differcntiable
counterexample. A decade later. Jenny Harrison at the University of California at
Berkeley constructed nonzero. orbitless vector fields that were twice differentiable.
(Bascd on fractals. Harrison’s counterexamples could actually be differentiated up
to  but not including -three times. given appropriate definitions for fractional
differentiation.)

Schweitzer’s and Harrisons once- and twice-differentiable counterexamples
made Scifert’s conjecture seem unlikely to hold in the infinitely differentiable case
cither. On the other hand. there are plenty of theorems that hold for smooth
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functions but lose their grip at any lesser level of differentiability. In any cvent. the
constructions scemed stuck at the low-derivative end of things.

Kuperberg's construction breaks that impasse.  Expanding on ideas she and
Coke Reed. now at the Supercomputing Rescarch Center in Bowie. Maryland.
introduced in 1981 to resolve another conjecture about fixed points of dynamical
systems. Kuperberg has shown how to modify a smooth vector field so as to break
up any closed orbits that might be present. The censtruction is “very geometric.”
Kuperberg says. Keeping things smooth was not the hard part of the problem.
she explains: “The main difficulty turned out to be not to form additional circular
trajectories™ in the process of modifying the ficld.

The starting point for Kupcrberg's counterexample is a smooth vector field with
finitely many closed orbits. (It's well known that such fields exist. even though
vector fields with infinitely many closed orbits are easier to come by. Schweitzer
and Harrison used the same starting point.) The basic tool in Kuperberg's con-
struction is a topological gadget known as a “Wilson plug™ -a 3-dimensional
shape with a vector ficld that is constant on its boundary and which “traps™ at
Icast one trajectory that enteys i, The idea is to pick a point on one of the closed
orbits. look at a small neighborhood of that point using a coordinate system in
which the vector field is constant. and then replace a piece of that neighborhood

with the plug. arranging things so that the formerly closed orbit becomes one of

the trajectorics that enters the plug and gets trapped inside. The trick is to do this
without creating any new closed orbits.

Kuperberg pulls off the trick in three steps. Curiously. in the first step she con-
structs a plug that has mvo closed orbits. At this stage the plug looks like a thick
washer (sec Figure 3). The vector field points straight up on the boundary. but
inside the plug. the vectors change direction: Trajectories arc deflected counter-

—

Figure 3. The first stuge in Kuperberg's counterexample to the Seifert conjecture is known as
a Wilson plug. Trajectories that enter directh henearh the two circular orbits (dark lines) get
trapped inside. (Figure courtesy of Krysyna Kuperberg,)

Kuperberg has shown how
to modify a smeoth vector
field so as to break up any
closed orbits that might be
present.
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Figure 4. The sccond stage in Kuper-
berg’s construction.

clockwise in the bottom half of the plug. but clockwise in the top half. Asa result.
any trajectory that makes it ali the way through. exits the plug directly above where
itenters  as though the ficld inside the plug were still constant. Trajectories that
enter (and exit) near the inner and outer walls are deflected only slightly. The
amount of deflection is greater for trajectories that enter away from the walls. until
{iaily. trajectories that enter halfway between the walls pile up on a pair of circles
pointing in opposite dircetions. and thus get trapped inside the plug.

In the sccond step. Kuperberg refashions the plug to make it leok something
like a pretzel (sce Figure 4). The top and bottom suifaces of the plug no longer
lic in a planc. but the walls remain vertical.  Most important. there are now
places where the inner and outer walls arce close together. Finally. in the third
step. Kuperberg pinches off two picces of the plug near the outer wall and stuffs
them through the inner wall. giving cach piece a twist and skewering it on onc of
the closed trajectories (see Figure 5). These “self insertions™ arce the key to her
counterexample.

Figure 5. The final stuge in Kuperberg's construction, with cut-away sections to show the
self~insertions. (Figure courtesy of Krvstyna Kuperherg. ) )

“It's the sort of thing that you wouldn't think would be particularly helpful.”
says Franks. To be sure. the self insertions break up the two closed orbits the plug
began with. Butit’s not at all clear that a slew of new closed orbits aren’t ereated
in the process. Indeed. says Kuperberg. “if these sclf insertions are not chosen the
right way. new closed trajectorics may form,”

To control the trajectories created by the self insertions. Kuperberg relics on what
she calls a “radius inequality.” Roughly speaking. when a self insertion satisfies
this inequality. the resulting plug cannot contain any closed orbits. Instead. all
the trapped trajectories spiral endlessly around inside the plug.

These endless trajectorics do more than pull the plug on the Scifert conjecture.
Kuperberg’s conatruction produces a “minimal set.” which John Mather. a dy-
namical systems theorist at Princeton University. suspects may be of an entirely
new kind. Minimal sets are basic components of a dynamical system. Roughly
speaking. a set is minimal if the dynamics on the whole sct can be gencrated from
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the dynamics on any piece of it. In particular. closed orbits arc minimal sets.
as are fixed poinis. Other kinds of minimal sets are knowr.l_ says Mather. but By adding to the list of
“an overall picture of what minimal sets can be is just lacking.” By adding to Kknown examples, the
the list of known examples. the minimal set contained in Kuperberg's plug could minimal set contained in .
help theorists better understand the range of things that can happen in dynamical Kuperberg’s plug could o :
systems. >

Kuperberg’s construction also lowers the barrier to proving something much help theorists bettgr gnder-
stronger. namely that the 3-sphere itself is minimal for the dynamical system stand the range of things
associated with some vector field. Self-minimal manifolds are not that hard to  that can happen in dynami-
find: the simplest example occurs on the torus (see box). Had the Scifert conjecture cal systems.
been true. the 3-sphere could not have been self-minimal. because a closed orbit
can't generate the dynamics away from itsclf. At this point there’s no hard evidence
either way. but if it turns out the 3-sphere is scif-minimal. that would do much
more than refute the Seifert conjecture. It would darn near turn it inside out.

Mathematical Donuts

Picture a chocolate cake donut with colored sprinkles all around it. all lmed up to
point in the same direction (see Figure 6). The non-caloric. mathematical version of
this is known as a constant vector field on a tovus. If you start at the outer circumfer-
ence and follow the field once around. either you'll advance along the circumference by
a rational multiple of the circumference or you'll advance by an irrational multiple. In
the former case, the trajectory from any point will eventually close up: if the trajectory
advances by the rational multiple i/, it becomes periodic after # times around. But
in the latter case. the trajectories never close up. Instead every trajectory winds about
the torus forever. eventually coming arbitrarily close to every point on the surface,
For such a vector ficld. the entire torus is a minimal set (see main story).

Figure 6. /A vector field on a torus and part of one of its trajectories. The complete trajectory
may or may not be dosed. (Based on figure courtesy of Fredevick Wicklin, Geometry Center,
Minneapolis, Minnesota. )

WHAT'S HAPPENING IN THE

i ICE\T CO Y A ! !_ /\, BLE , 1 CB MATHEMATICAL SCIENCES

= |m-‘ Provided by ERIC

51




ERIC

Credits

ADVISORY BOARD

Noga Alon
Tel Aviv University

Randolph E. Bank
University of California. San Dicgo

Robert Osserman
Mathematical Sciences Rescarch Institute

Carl Pomerance
University of Georgia

Herbert S. Wilf
University ot Pennsylvania

About the Author: Barry Cipra, who also did the writing for volume 1 of What's
Happening in the Mathematical Sciences.is a freelance mathematics writer based in
Northficld. Minnesota. Heis currently a Contributing Correspondent for Science
magazincand also writes regularly for STAM News. the newsletier of the Society for
Industrial and Applied Mathematics. He received the 1991 Merten M. Hasse Prize
from the Mathematical Association of America for an expository article on the
Ising model. published in the December 1987 issuc of the dmerican Mathematical
Monthly. His book, Misteaks...and how 10 find them before the teacher does. ..
(a calculus supplement), is published by Academic Press.

About the Editor: Paul Zorn is Associate Professor of Mathematics at St.Olaf
Collegein Northficld, Minnesota. Hereccived the 1987 Carl B. Allendocrfer Award
from the Mathematical Association of America for an cxpository article on the
Bieberbach conjecture. published in the Junc 1986 issue of Mathematics Maguazine.
Project Administration: Samucl M. F ankin, 111. AMS Associate Executive Dircctor

Production Editor: Thomas {” < osta

Production: Ralph E. Youngen, Neil G. Bartholomew. Lori E. Nero. Maxine
Wolfson, and Lee Davol.

Design: Peter B. Sykes

The AMS gratefully acknowledges the support of the Alfred P. Sloan Founda-
tion for the publication and distribution of What's Happening in the Mathemati-
cal Sciences.

1C7




E

About the American Mathematical Society

The American Mathematical Socicty is a nonprofit organization devoted to
research in the mathematical sciences. For more than 100 years, the Society has

worked to support the advance of mathematical rescarch, the communication of

mathematical ideas., and the improvement of the mathematics profession. In recent
years. the Society has increased its attention to mathematics education. public
awareness of mathematics, and the connections of mathematics research to its uses.
The AMS is the world's largest mathematical organization, with nearly 30,000
members. As onc of the world's major publishers of mathematical literature, the
Society produces a wide range of book series, journals, monographs. and video-
tapes. as well as the authoritative reference. Mathematical Reviews. The Society.is
a world leader in the use of computer technology in publishing and is involved in
the development of clectronic means of information delivery. Another primary
activity of the AMS is organizing meetings and conferences. In addition to an
annual winter meeting. the Society organizes bi-annual summer meetings. as well
as numerous smaller meetings during the academic year and workshops, symposia,
and institutes during the summer. Other major Society activitics are employment
services, collection of data about the mathematical community, and advocacy for
the discipline and the profession.
~ The main headquarters of the Socicty. located in Providence. Rhodc Island,
employs nearly 200 pcople and contains a large computer system, a full publicition
facility. and a warchouse. Approximately cighty people are employed at the
Mathematical Reviews office in Ann Arbor, Michigan. The AMS also has an office
in Washington, DC. in order to enhance the Society's public awarencss efforts and
its linkages with federal science policy.

To order What's Hupperung in the Mathematical Sciences:

Send orders with remittances to: Send VISA or MasterCard orders to:
American Mathematical Society American Mathematical Socicty
P.O. Box 5904 £.0. Box 6248

Boston, MA 02206-5904 Providence, RT 02940-6248

Call toll free in the U.S. and Canada 1-800-321-4AMS (321-4267).
Outside the U.S. and Canada call 1-401-455-4000.

To order Volume 1. 1993, please specify HAPPENING/IWH.
Price $7.00

To order Volume 2. 1994, please specify HAPPENING/2ZWH,
Price $8.00

To order Volume 3. 1995, please specify HAPPENING/3WH,
Price $8.00

Call AMS Customer Services for information about bulk order discounts.
Standing urders arc available. please contact AMS Customer Services.

Allpricesetlective August 1. 1994, All prices inciude shipping and handling. Foroptionalair delivery
to loreign addresses please add $6.50 per copy. Prices subject to change without notice.

O

ERIC 166

TPHTOL MH

011313

h“‘ERICAN




ISBN 0-8218-8998-2

BN O '73803821 889985”

I
3




