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LATENT VARIABLE MODELING OF LONGITUDINAL

AND MULTILEVEL DATA 1,2

Bengt Muthen

CRESST/University of California, Los Angeles
Graduate School of Education & Information Studies

Abstract

An overview is given of modeling of longitudinal and multilevel
data using a latent variable framework. Particular emphasis is
placed on growth modeling. Examples are discussed where repeated
observations are made on students sampled within classrooms and
schools.

1. Introduction

The concept of a latent variable is a convenient way to represent statistical
variation not only in conventional psychometric terms with respect to constructs
measured with error, but also in the context of models with random coefficients
and variance components. These features will be studied in this paper. The
random coefficient feature is shown to present a useful way to study change and
growth over time. The variance component feature is shown to correctly reflect
common cluster sampling procedures.

This paper gives an overview of some aspects of latent variable modeling in
the context of growth and clustered data. Emphasis will be placed on the
benefits that can be gained from multilevel as opposed to conventional modeling,
which ignores the multilevel data structure. Data from large-scale educational
surveys will be used to illustrate the points.

1 Invited paper for the annual meeting of the American Sociological Association, Section on
Methodology, Showcase Session.
2 I thank Ginger Nelson Goff for expert assistance.
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The paper is organized as follows. Sections 2-6 will discuss theory and
Sections 7 and 8 applications. To save space, the theory sections will by
necessity be terse. Some results are given for easy reference and the reader is
referred to previous papers for the modeling rationale and the derivations of
estimators (see, e.g., Muthen, 1990, 1992, 1994a, 1994b). In Section 2,
aggregated versus disagg,regated modeling will be discussed. Section 3 discusses
intraclass cormlations and design effects in the context of a two-level latent
variable model. In Section 4, a two-level latent variable model and its estimation
for continuous-normal data will be presented as a basis for analyses. In Section
5, it is shown how a three-level model can be applied to growth modeling and
how it can be re-formulated as a two-level model. Se,:tion 6 shows how this
modeling can be fit into the two-level latent variable framework. It is shown
that the estimation can be carried out by conventional structural equation
modeling software. The remaining secticns present applications. Section 7 uses
two-wave data on mathematics achievement for students sampled within
classrooms. Section 7.1 discusses measurement error when data have both
within- and between-group variation and gives an example of estimating
reliability for multiple indicators of a latent variable. Section 7.2 uses the same
example to discuss change over time in within- and between-group variation
taking unreliability into account. Section 8 takes the discussion of change over

time further using a four-wave data set on students sampled within schools.

Here, a growth model is formulated for the relationships between socio-economic
status, attitude towards math, and mathematics achievement. Issues related to
the assessment of stability and crosslagged effects are also discussed.

2. Aggregated Versus Disaggregated Modeling

Consider the following two-level data structure. Let ygi denote a p-
dimensional vector for randomly sampled groups and randomly sampled
individuals within each such group and decompose the ygi into between- and
within-group variation,

Ygim YBg+Ywg,

and consider the decomposition of the corresponding (total) covariance matrix
into a within- and a between-group part,

(1)

ET = EB + Ew (2)
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In a typical educational example, 2,w refers to student-level variation and
EB refers to class-level or school-level variation. It is assumed that parameters
of the covariance matrices capture the essential aspect of the data. In line with
Muthen and Satorra (1993) (see also Skinner, Holt, & Smith, 1989) we will use
the term "aggregated modeling" when the usual sample covariance matrix ST is
analyzed with respect to parameters of ET and "disaggregated modeling" when
the analysis refers to parameters of Ew and EB. In our terms, a multilevel model
is a disaggregated model for multilevel data. Such data can, however, also be
analyzed by an aggregated model, that is, a model for the total covariance matrix
ET. In terms of estimating ET parameters and drawing inferences, multilevel
data present the usual complications of correlated observations due to cluster
sampling. Special procedures are needed to properly compute standard errors of
estimates and chi-square tests of model fit. Effects of ignoring the multilevel
structure and using conventional procedures for simple random sampling are
illustrated in the next section in the context of a latent variable model. The
model is, however, that of a conventional analysis in that the usual set of latent
variable parameters are involved. In a disaggregated (or multilevel) model the
aspiration level is higher in that the parameters themselves change from those
of the conventional analysis. A much richer model with both within and between
parameters is used to describe both individual- and group. level phenomena.

A theme in our discussion is the comparison of ET analysis and Ew analysis
with respect to the magnitude of estimates. This comparison has a strong
practical flavor because if the differences are small, the multilevel aspects of the
data can be ignored apart from perhaps small corrections of standard errors and
chi square. This is frequently the case. Even in such cases, however, there may
be information in the data that can be described in interesting ways by
parameters of EB. In other words, the most frequent shortcoming when ignoring
the multilevel structure of the data is not what is misestimated but what is not
learned.

3. Design Effects

Drawing on Muthen and Satorra (1993), this section gives a brief overview
of effects of the cluster sampling in multilevel data on the standard errors and
test of model fit used in conventional covariance structure analysis assuming
simple random sampling.

6
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Consider the well-known design effect (deft) formula for the variance
estimate of a mean with cluster size c and intraclass correlation p,

Vc /17sRs = l + (c 1) p (3)

where Vc is the (true) variance of the estimator under cluster sampling and VsRs
is the corresponding (incorrect) variance assuming simple random sampling
(Cochran, 1977). The intraclass correlation (icc) is defined as the amount of
between-group variation divided by the total amount of variation (between plus
within). This formula points out that the common underestimation of standard
errors when incorrectly assuming SRS is due to the combined effects of group
size (c) and icc's (p's). Given that educational data often have large groups sizes
in the range of 20-60, even a rather small icc value of 0.10 can have huge effects.

However, it is not clear how much guidance, if any, this formula gives in terms of
multivariate analysis and the fitting of latent variable models (see also Skinner,
Holt, & Smith, 1989). Muth6n and Satorra (1993) carried out a Monte Carlo
study to shed some light on the magnitude of these effects.

In our experience with survey data, common values for the icc's range from
0.00 to 0.50 where the higher range values have been observed for educational
achievement test scores and the lower range for attitudinal measurements and
health-related measures. Both the way the groups are formed and the content of
the variables have major effects on the ice's. Groups formed as geographical
segments in alcohol use surveys indicated icc's in the range of 0.02 to 0.07 for

amount of drinking, alcohol dependence, and alcohol abuse. Equally low values

have been observed in educational surveys when it comes to attitudinal variables
related to career interests of students sampled within schools. In contrast,
mathematics achievement scores for U.S. eighth graders show proportions of
variance due to class components of around 0.30-0.40 and due to school
components of around 0.15-0.20.

Muthen-Satorra generated data according to a ten-variable multilevel
latent variable model with a two-factor simple structure. This is a
disaggregated model of the kind described above. In this case, the loading
matrices are equal across the two levels, EB = Ew, which means that the same
covariance structure model holds on all three levels: within, between, and total.
Conventional analysis of the total matrix can then be studied in a case where the
model is correct, but standard errors and test of model fit are not. Data were
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generated as 200 randomly generated groups and group sizes (total sample size)
7 (1,400), 15 (3,000), 30 (6,000), and 60 (12,000). These are common values in
educational achievement surveys. One thousand replications were used.

Table 1 gives chi-square test statistics for a conventional analysis
incorrectly assuming simple random sampling. The model has 34 degrees of
freedom. Using the terms above, this is an analysis of an aggregated model
using the usual sampe covariance matrix ST. The within and between
parameters are not separately estimated, but only the parameters of the total
matrix. It is seen that an inflation in chi-square values is obtained both by
increasing group size and increasing ice's, implying that models would be
unnecessarily rejected. Only for small values of the ice's and the group size
might the distortion be ignorable, such as for the combinations (0.005, 7), (0.05,
15), and (0.10, 7). Judging from this table it seems that even for a rather small

Table 1

Chi-Square Testing With Cluster Data

Intraclass correlation

Group size

7 15 30 60

0.05

Chi-square
Mean 35 36 38 41
Var 68 72 80 96
5% 5.6 7.6 10.6 20.4
1% 1.4 1.6 2.8 7.7

0.10

Chi-square
Mean 36 40 46 58
Var 75 89 117 189
5% 8.5 16.0 37:6 73.6
1% 1.0 5.2 17.6 52.1

0.20

Chi-square
Mean 42 52 73 114
Var 100 152 302 734
5% 23.5 57.7 93.1 99.9
1% 8.6 35.0 83.1 99.4

8
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icc of 0.10, the distortions may be large if the group size exceeds 15. The
standard errors of the estimates show an analogous pattern in terms of deflated
values. Muthen-Satorra go on to show how standard errors and chi-square tests
of fit can be corrected by taking the clustering into account. They also show that
the ML estimator of the disaggregated, multilevel model performs well, but the
estimator does have problems of convergence at small icc values and small group
si-es and is also sensitive to deviations from normality. In the normal case with
ice's of 0.10 and groups sizes ranging from 7 to 60, the multilevel ML estimator
also performs well when the number of groups is reduced from 200 to 50. In our
experience, reducing the number of groups much below 50 does not give

trustworthy results by this estimator.

We conclude from these simulations that ignoring the multilevel nature of
the data and carrying out a conventional covariance structure analysis may very
well lead to serious distortions of conventional chi square tests of model fit and

standard errors of estimates.

4. A Two-Level (Disaggregated) Model

This section gives a brief review of the theory for two-level modeling and
estimation. Specific latent variable models are not discussed here. The specific

latent variable model used in growth modeling is given in the next section where

it is shown how it fits into the framework given in the present section.

In line with McDonald and Goldstein (1989) and Muthen (1989, 1990),
assume g = 1, 2, ..., G independently observed groups with i = 1, 2, ..., Ng
individual observations within group g. Let z and y represent group- and
individual-level variables, respectively. Arrange the data vector for which

independent observations are obtained as

dg = (zg, Yg1,3rg2, , Yg' Ng) (4)

where we note that the length of dg varies across groups. The mean vector and

covariance matrix are

kidg = [p; ,livg ® /4 (5)

9
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Ezz
=

1Ng

Ey
symmetric

'Ng C) Ivy + 1Ng 1Ng 0 EB
(6)

Muthen (1994a, pp. 378-382) discusses the above covariance structure and
contrasts it with that of conventional covariance structure analysis.

Assuming multivariate normality of dg, the ML estimator minimizes the
function

G

F = E
1

{log I Ed I + (dg ,udg)- Edig (dg _ pdg)
g=

(7)

Here, the parameter arrays are potentially of large size if there are many
individuals per group. A remarkable simplification which makes the sizes not
depend on group size is given as (cf. McDonald & Goldstein, 1989; Muthen, 1989,
1990)

where

F = ID Gd 11111Endl tr [E-k(Ski+ Nd(Vd (Vd 0')]}

(N G ) 1 in 1E14,1 + tr [Zvi Spjl (8)

Nd Ezz
1Bd= (Nd Eyz

symmetric
Ew + NdEB

Gd

SBd = Nd dG-1 E
-15

[Zdk j
[(Zdk (YdkYdY

Ydk yd

z
Vd

w
G Ng

-1 Tr,Sp = (N G)-
(V gi g) (ygi gr

10
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Here, D denotes the n-imber of groups of a distinct size, d is an index
denoting a distinct group size category with group size Nd, Gd denotes the
number of groups of that size, SBd denotes a between-group sample covariance
matrix, and Spry is the usual pooled-within sample covariance matrix.

Muthen (1989, 1990) pointed out that the minimization of the ML fitting
function defined by equation 8 can be carried out by conventional structural
equation modeling software, apart from a slight modification due to the
possibility of singular sample covariance matrices for groups with small Gd
values. A multiple-group analysis is carried out for D + 1 groups, the first D
groups having sample size Gd and the last group having sample size N G .
Equality constraints are imposed across the groups for the elements of the
parameter arrays Ezz, Eyz) EB, Ew. To obtain the correct chi-square test of
model fit, a separate H], analysis needs to be done (see Muthen, 1990 for details).

Muthen (1989, 1990) also suggested an ad hoc estimator which considered
only two groups,

F' = G{ 1 n I EBB I + tr + c ,u) (17 ,u)')]

+ (N G ){1n lEwl + tr [E wl Spw]} (9)

where the definition of the terms simplifies relative to equation 14 due to
ignoring the variation in group size, dropping the d subcript, and using D = 1, Gd
= G, and Nd = c, where c is the average group size (see Muthen, 1990 for details).
When data are balanced, that is, the group size is constant for all groups, this
gives the ML estimator. Experience with the ad hoc estimator for covariance
structure models with unbalanced data indicates that the estimates, and also the
standard errors and chi-square test of model fit, are quite close to those obtained
by the true ML estimator. This observation has also been made for growth
models where a mean structure is added to the covariance structure, see Muthen
(1994b).

In Section 6 we will return to the specifics of how the mean and covariance
structure of equations 8 and 9 can be represented in conventional structural
equation modeling software for the case of growth modeling. The growth model
will be presented next.

11



Program Two, Project 2.4 9

5. A Three-Level Hierarchical Model

Random coefficient growth modeling (see, e.g., Laird & Ware, 1982), or
multilevel modeling (see, e.g., Bock, 1989), describes individual differences in
growth. In this way, it goes boyond conventional structural equation modeling of
longitudinal data and its focus on auto-regressive models ,see, e.g. Joreskog &
Sorbom, 1977; Wheaton, Muthen, Alwin, & Summers, 1977). Random-coefficient
modeling for three-level data is described, for example, in Goldstein (1987), Bock
(1989), and Bryk and Raudenbush (1992).

Consider the three-level data

Group g = 1,2,...,G
(School, class)
Individual : i = 1,2,...,n
Time : t = 1,2,...,T

Ygit individual-level, outcome variable
xit individual-level, time-related variable (age, grade)
vgit individual-level, time-varying covariate
W gi individual-level, time-invariant covariate
zg : group-level variable

and the growth equation,

Ygit = agi I3gi x it + Ygit vgit Cgit

An important special case that will be the focus of this paper is where the time-
related variable xit = xt. An example of this is educational achievement studies
where xt corresponds to grade. The xt values are for example 0, 1, 2, ..., T-1 for
linear growth. We will also restrict attention to the case of Ygit = Ygt The three
levels of the growth model are then

Ygit = agi xt + Ygt vgit Cgit

{a; = an + 7r, ww + 6fy ,6, 6 ...... ..gi ......gi

I3gi = fig + rpwwgi + öpgi

12

(12)
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{ag = a + rawgg + Kazg + Sag

I3g = f3 + lip WBg + KoZg + 613g
(13)

where the variation in the individual-level, time-invariant covariate wgi is
decomposed into between- and within-group parts

Wgi = Wgg + W (14)

In the case of growth modeling using a simple random sample of
individuals, it is possible to translate the growth model from a two-level model to
a one-level model by considering a T x 1 vector of outcome variables y for each
individual. Analogously, we may reduce the three-level model to two levels as
follows.

(ygit

ygi =
Ygit

= [1 x]
gi

+ Cgi
gi

which may be expressed in five terms

a S S
ygi = [1 x] )+[1 xi )-F c* + [14 +c*.

(13
sag

g g
sag`

1@gi gi

(15)

(16)

The first term represents the mean as a function of the mean of the initial
status and the mean of the growth rate. The second and third terms correspond
to between-group (school) variation. The fourth and fifth terms correspond to
within-group variation.

6. Latent Variable Formulation

For the case of simple random sampling of individuals, Meredith and Tisak
(1984, 1990) have shown that the random coefficient model of the previous
section can be formulated as a latent variable model (for applications in
psychology, see McArdle & Epstein, 1987; for applications in education, see

13
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Muthen, 1993 and Willett & Sayer, 1993; for applications in mental health, see
Muthen, 1983, 1991). The basic idea can be simply described as follows. In
equation 1, ai is a latent variable varying across individuals. Assuming the
special case of xit = xt, the x variable becomes a constant which multiplies a
second latent variable /3i.

The latent variable formulation can be directly extended to the three-level
data case. In line with Muthen (1989, 1990), Figure 1 shows a path diagram
which is useful in implementing the multilevel estimation using the multilevel
fitting function F or F. The figure corresponds to the case of no covariates v, w,
or z. It shows how the covariance structure

Ew + NdXB (17)

can be represented by latent variables, introducing a latent between-level
variable for each outcome variable y. On the within side, we note that the a
factor influences the y's with coefficients 1 at all time points. The constants of xt
are the coefficients for the influence of the /3 factor on the y variables. This
makes it clear that non-linear growth can be accommodated by estimating the xt
coefficients, for example, holding the first two values fixed at 0 and 1,
respectively, for identification purposes. The within-level a and /3 factors
correspond to the Saig and Sig residuals of equation 12. The between-level a
and /3 factors correspond to the Sag and (513g residuals of equation 13. From
equation 16 it is clear that the influence from these two factors is the same on
the between side as it is on the within side. Corresponding to this, in Figure 1
the E B structure is identical to the E w structure. A strength of the latent
variable approach is that this equality assumption can easily be relaxed. For
example, it may not be necessary include between-group variation in the growth
rate. These latent between-level variables may also be related to observed
between-level variables zg as in Section 4.

A special feature of the growth model is the mean structure imposed on u in
the ML fitting function of equation 8, where p. represents the means of group-
and individual-level variables. In the specific growth model shown in Figure 1,
the mean structure arises from the five observed variable means being expressed
as functions of the means of the a and /3 factors, here applied on the between
side, see equation 16. Equation 8 indicates that the means need to be included
on the between side of Figure 1 given that the mean term of F is scaled by Nd,

14
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Figure I. Latent variable growth model formulation for two-level, five-wave data.

15
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while the means on the within side are fixed at zero. This implies that dummy
zero means are entered for the within group. The degrees of freedom for the chi-
square test of model fit obtained in conventional software then needs to be
reduced by the number of y variables.

Further details and references on latent variable modeling with two-level
data are given in Muthen (1994b), also giving suggestions for analysis strategies.
Software is available from the author for calculating the necessary sample
statistics, including intraclass correlations.

It is clear that the Figure 1 model can be easily generalized to applications
with multiple indicators of latent variable constructs instead of single outcome
measurements y at each time point. The covariates may also be latent variables
with multiple indicators. Estimates may also be obtained for the individual
growth curves by estimating the individual values of the intercept and slope
factors a and 0. This relates to Empirical Bayes estimation in the conventional
growth literature (see, e.g., Bock, 1989).

7. Analysis of Two-Wave Achievement Data

We will first consider data from the Second International Mathematics
Study (SIMS; Crosswhite et al., 1985) drawing on analyses presented in Muthen
(1991, 1992). Here, a national probability sample of school districts was selected
proportional to size; a probability sample of schools was selected proportional to
size within school district, and two classes were randomly drawn within each
school. The data consist of 3,724 students observed in 197 classes from 113
schools with class sizes varying from 2 to 38 with a typical value of around 20.
Eight variables are considered corresponding to various areas of eighth-grade
mathematics. The same set of items were administered as a pretest in the fall of
eighth grade and again as a posttest in the spring.

Muthen (1991) poses the following questions:

The substantive questions of interest in this article are the variance decomposition of

the subscores with respect to within-class student variation and between-class

variation and the change of this decomposition from pretest to posttest. In the SIMS

... such variance decomposition relates to the effects of tracking and differential

curricula in eighth-grade math. On the one hand, one may hypothesize that effects of

selection and instruction tend to increase between-class variation relative to within-

16
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class variation, assuming that the classes are homogeneous, have different
performance levels to begin with, and show faster growth for higher initial

performance level. On the other hand, one may hypothesize that eighth-grade
exposure to new topics will increase individual differences among students within

each class so that posttest within-class variation will be sizable relative to posttest

between-class variation.

7.1 Measurement error and reliability of multiple indicators

Analyses addressing the above questions can be done for overall math
performance, but it is also of interest to study if the differences vary from more
basic tc more advanced math topics. For example, one may ask if the differences
are more marked for more advanced topics. When focusing on specific subsets of
math topics, the resulting variables consist of a sum of rather few items and
therefore contain large amounts of measurement error. At Grade eight, the
math knowledge is not extensively differentiated and a unidimensional latent
variable model may be formulated to estimate the reliabilities for a set of such
variables. Muthen (1991) formulated a multilevel factor analysis model for the
two-wave data. Given that the amount of across-school variation was small
relative to the across-classroom variation, the school distinction was ignored and
the data analyzed as a two-level structure. At each time point unidimensionality
was specified for both within- and between-class variation, letting factors and
measurement errors correlate across time on each level. Table 2 presents
estimates from both the multilevel factor analysis (MFA) model (see the Within
and Between columns) and a conventional analysis (see the Total columns).
Reliability is estimated from the factor model as the proportion of variance in the
indicator accounted for by the factor. As is seen from Table 2 the estimated
student-level (within) reliabilities are considerably lower than reliabilities
obtained from a total analysis.

In psychometrics it is well-known that reliabilities are lower in more
homogeneous groups (Lord & Novick, 1968). Here, however, it seems important
to make the distinction shown in Figure 2.

The top panel of Figure 2 corresponds directly to the Lord and Novick case.
The three line segments may be seen as representing three different classrooms
with different student factor values r, and student test score values y. The
regression line for all classrooms is given as a broken line. All classrooms have
the same intercept and slope. For any given classroom, the range of the factor is

17
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Table 2

The Second International Mathematics Str,dy: Analysis of Math Achievement From Two Time
Points

Variables # Items

Re liabilities

Pretest Posttest

Total
MFA

Within
MFA

Between Total
MFA

Within
MFA

Between

RPP 8 .61 .44 .96 .68 .52 .97
FRACT 8 .60 38 .97 .68 .49 .98
EQ EXP 6 .36 .18 .83 .55 .32 .92

INTNUM 2 .34 .18 .81 .43 .25 .88

STESTI 5 .44 .25 .86 .52 .34 .89
AREAVOL 2 .29 .18 .82 .38 .23 .84

COORVIS 3 .34 .18 .92 .42 .26 .80

PFIGURE 5 .32 .17 .78 .46 .31 .77

restricted and due to this restriction in range the reliability is attenuated
relative to that of all classrooms.

The bottom panel of Figure 2 probably corresponds more closely to the
situation at hand. Here, the three classrooms have the same slopes but different
intercepts. The regression for the total analysis is marked as a broken line. It
gives a steeper slope and a higher reliability than for any of the classrooms. One
can argue, however, that the higher reliability is incorrectly obtained by
analyzing a set of heterogeneous subpopulations as if they were one single
population (cf. Muthen, 1989). In contrast, the multilevel model captures the
varying intercepts feature and reveals the lower within reliability which holds
for each classroom.

The Table 2 between reliabilities are considerably higher than the within
values. These between coefficients concern reliable variation across classrooms
and therefore have another interpretation than the student-level reliabilities.
The results indicate that what distinguishes classrooms with respect to math
performance is largely explained by a single dimension, that is, a total score, and
that on the whole the topics measure this dimension rather similarly.

18
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Figure 2. Regressions of an indicator on its latent variable.
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7.2 Attenuation of intraclass correlations by measurement error

We will consider the size of the intraclass correlations as indicators of
school heterogeneity. This can be seen as a function of social stratification giving
across-school differences in student "intake," as well as differences in the
teaching and what schools do with a varied student intake. The U.S. math
curriculum in Grades 7-10 is very varied with large differences in emphasis on
more basic topics such as arithmetic and more advanced topics such as geometry
and algebra. Ability groupings ("tracking") are often used. In some other
countries, however, a more egalitarian teaching approach is taken, the
curriculum is more homogeneous, and the social stratification less strong. In
international studies, the relative sizes of variance components for student,
class, and school are used to describe such differences (see, e.g., Schmidt, Wolfe,
& Kifer, 1993).

Table 3 gives conventional variance component results from nested,
random-effects ANOVA in the form of the proportion of variance between
classrooms relative to the total variance. This is the same as the intraclass
correlation measure. It is seen that the intraclass correlations increase from
pretest to posttest. The problem with these values are, however, that they are
likely to be attenuated 'ay the influence of measurement error. This is because

Table 3

The Second International Mathematics Study: Analysis of Math
Achievement From Two Time Points

Intraclass Correlations
(proportion between classroom variance)

Variables # Items

ANOVA MFA

Pre Post Pre Post

RPP 8 .34 .38 .54 .52

FRACT 8 .38 .41 .60 .58

EQ EXP 6 .27 .39 .65 .64

INTNUM 2 .29 .31 .63 .61

STESTI 5 .33 .34 .58 .56

AREAVOL 2 .17 .24 .54 .52

COORVIS 3 .21 .32 .57 .55

PFIGURE 5 .23 .33 .60 .54
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student-level measurement error adds to the within-part of the total variance,
that is, the denominator of the intraclass correlation. The distortion is made
worse by the fact that the student-level measurement error is likely to decrease
from pretest to posttest due to more familiarity with the topics tested.

The MFA columns of Table 3 give the multilevel factor analysis assessment
of intraclass correlations using the one-factor model in the previous subsection.
Here, the intraclass correlations are computed using the between and within
variances for the factor variable, not including measurement error variance. It is
seen that these intraclass correlations are considerably higher and indicate a
slight decrease over time. This is a change in the opposite direction from the

ANOVA results. Results from ANOVA would therefore give misleading evidence
for answering the questions posed in Muthen (1991).

8. Analysis of Four-Wave Data by Growth Modeling

The Longitudinal Study of American Youth (LSAY) is a national study of
performance in and attitudes towards science and mathematics. It is conducted
as a longitudinal survey of two cohorts spanning Grades 7-12. LSAY uses a
national probability sample of about 50 public schools, testing an average of
about 50 students per school every fall starting in 1987. Data from four time
points, Grades 7-10, and one cohort will be used to illustrate the methodology for

analysis of individual differences in growth.

In this analysis, mathematics achievement and attitudes toward math will
be related to each other and to socio-economic status (SES) of the family. The
data to be analyzed consist of a total sample of 1,869 students in 50 schools with
complete data on all variables in the analysis. Mathematics achievement is
quantified as a latent variable (theta) score obtained by IRT techniques using
multiple test forms and a large number of items including arithmetic, geometry,
and algebra. The intraclass correlations for the math achievement variable for
the four grades are estimated as 0.18. 0.13, 0.15, 0.14, indicating a noteworthy
degree of across-school variation in achievement. Attitude toward math was
measured by a summed score using items having to do with how hard the
student finds math, whether math makes student anxious, whether the
student finds math important, etc. As expected, the intraclass correlations for
the attitude variable are considerably lower than for achievement. They are
estimated as 0.05, 0.06, 0.04, 0.02. The Pearson product-moment correlations
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between achievement and attitude are estimated as 0.4-0.6 for each of the four
time points. The measure of socio-economic status pertains to parents'
educational lavels, occupational status, and the report of some resources in the
home. It has an intraclass correlation of 0.17.

The analysis considers a growth model extending the single-variable, two-
level growth model of Figure 1 to a simultaneous model of the growth process for
both achievement and attitude. SES will be used as a student-level, time-
invariant covariate, explaining part of the variation in these two growth
processes. No observed variables on the school level will be used. The model is
described graphically in Figure 3.

Let the top row of observed variables (squares) represent achievement at
each of the four time points and the bottom row the corresponding attitudes.
The SES covariate is the observed variable to the left in the figure.

Consider first the student- (within-) level part of Figure 3. The latent
variable (circle) to the right of the observed variable of SES is hypothesized to
influence four latent variables, the intercept (initial status) factor and slope
(growth rate) factor for achievement (the top two latent variables) and the
intercept and slope factors for attitude (the bottom two latent variables). The
intercept for each growth process is hypothesized to have a positive influence on
the slope of the other growth process. In order not to clutter the picture,
residuals and their correlations are not drawn in the figure, but a residual
correlation is included for the intercepts as well as the slopes. For each growth
process, the model is as discussed in connection with Figure 1. Preliminary
analyses suggest that nonlinear growth for achievement should be allowed for by
estimating the growth steps from Grade 8 to 9 and from Grade 9 to 10, while for
attitude a linear process is sufficient. In fact, for attitude, a slight decline is
observed over time. The reason for this is not clear, but does perhaps reflect that
among a sizeable part of the student population there is an initial positie
attitude about math which wears off over the grades either because math gets
harder or because they stop taking math. For each growth process, correlations
are allowed for among residuals at adjacent time points. Residual correlations
are also allowed for across processes at each time point. Cross-lagged effects are
allowed for as indicated in the figure. It should be noted, however, that even
without cross-lagged effects the model postulates that achievement and attitude
do influence each other via their growth intercepts and slopes. For example, if
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0 0

0 0
Figure 3. Two-level, four-wave growth model for achievement and attitude related to socio-
economic status.
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the initial status factor for attitude has a positive influence on the growth rate
factor for achievement, initial attitude has a positive influence on later
achievement scores.

The hierarchical nature of the data is taken into account by inclusion of the
between- (school-) level part of the model. The between-level part of Figure 3 is
similar to the within-level part. Starting with the SES variable to the left in the
figure, it is seen that the variation in this variable is decomposed into two latent
variables, one for the within variation and one for the between variation (the
between factor is to the left of the SES square). At the top and the bottom of the
figure are given the between-level intercept and slope factors for achievement
and attitude, respectively. As in Figure 1, the influence of these factors on
achievement/attitude is specified to have the same structure and parameter
values as for the within-part of the model. A minor difference here is that the
intercept for one process is not specified to influence the slope of the other
process, but all four intercept and slope factor residuals are instead allowed to be
freely correlated. Also, on the between side, correlations among adjacent
residuals over time are not included in the model.

As a comparison to the above growth model, a more conventional auto-
regressive, cross-lagged model will also be analyzed. This is shown in Figure 4
in its two-level form. On the within level, the figure shows a lag one auto-
regressive process for both achievement and attitude with lag-one cross-lagged
effects, where SES is allowed to influence the outcomes at each time point. The
between-level part of the model is here not given a specific structure but the
between-level covariance matrix is made unrestricted by allowing all between-
level factors to freely correlate.

For simplicity in the analyses to be presented, the two-group ad hoc
estimator discussed in Section 4 will be used and not the full-information
maximum-likelihood estimator. This means that the standard errors and chi-
square tests of model fit are not exact but are approximations; given our
experience they are presumably quite reasonable ones. Consequently,
statements about significance and model fit should not be interpreted in exact
terms.

It is of interest to first ignore the hierarchical nature of the data and give
the incorrect tests of fit for the single-level analogs of the auto-regressive and
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Figure 4. Two-level, four-wave auto-regressive model for achievement and attitude related
to socio-economic status.

growth models. To this aim, the conventional maximum-likelihood fitting
function is used. The lag-one auto-regressive model obtained a chi-square value
of 534.7 with 12 degrees of freedom. To improve fit it was necessary to include a
lag-three model for the auto-regressive part and this gave a chi-square value of
22.3 with 6 df. The correct two-level tests of fit using the lag-one model of Figure
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4 resulted in a chi-square value of 518.8 with 12 df, while a two-level, lag-three
model gave a chi-square value of 28.1 with 6 df. The degrees of freedom are the
same for the single-level and two-level models because the two-level model
doubles the number of parameters as well as the number of sample variances
and covariances that are analyzed (a mean structure is not involved in th;r-i
model). The two-level, lag-three model shows positive and significant student-
level cross-lagged effects of achievement and attitude on each other. The lag-
three auto-regressive structure of the model, however, makes it a rather complex
and unelegant representation of the data.

Turning to the growth model, the single-level model which ignores the
hierarchical nature of the data obtained the incorrect chi-square value of 44.0
with 8 df (p < 0.001). The two-level model obtained the chi-square value of 68.4
with 39 df (p = 0.003). This may perhaps be regarded as a reasonable fit at n =
1,869. The estimates of this model are given in Table 4.

What is particularly interesting about the two-level growth model is that in
contrast to the auto-regressive model, none of the student-level cross-lagged
effects are significantly different from zero. This makes for a very parsimonious
model where the achievement and attitude processes are instead correlated via
the correlations among their intercept and slope factors. The correlation
between the intercept factors (not shown in the table) is positive (0.27) while the
slope factor correlation is ignorable (0.08). The influences from the intercepts to
the slopes turn out to be not significant.

The student-level influence from SES is significantly positive for both the
achievement and attitude intercepts. It is insignificant for the achievement
slope and significantly negative for the attitude slope. It is not clear what the
negative effect represents, but this effect would be seen if students from high
SES homes have a strong initial positive attitude which later becomes less
positive. SES explains 12% of the student variation in the achievement intercept
while it explains only 1% of the student variation in the attitude intercept. In
terms of the achievement growth, the estimates indicate that relative to the
positive growth from Grade 7 to 8, the growth is accelerated in later grades. For
attitude, linear growth is maintained.
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Table 4
Results From Two-Level Random Coefficient Growth Model (n = 1,869)

x2 (39) = 68.38

Parameter estimates t-values

Within
Cross-lags

Timepoints
Achievement -4 Attitude

Grade 7 -4 Grade 8 -0.001 -0.05
Grade 8 Grade 9 -0.01 -0.79
Grade 9 -4 Grade 10 -0.01 -0.45

Attitude -4 Achievement
Grade 7 Grade 8 0.04 0.54
Grade 8 -4 Grade 9 -0.15 -1.74
Grade 9 Grade 10 -0.15 -0.85

Growth Model
Achievement Initial Status 0.003 0.39

-4 Attitude Growth Rate
Achievement Initial Status 0.23 1.29

-4 Attitude Growth Rate

Effects of SES on
Achievement

Initial Status 2.93 10.21

Growth Rate 0.16 1.84

Attitude
Initial Status 0.29 3.54
Growth Rate -0.08 -2.31

Factor Residual (Co) Variances
Achievement

Initial Status 57.84 14.50
Growth Rate 1.16 2.17

Initial Status, Growth Rate 1.57 1.16

Attitude
Initial Status 4.24 1.33
Growth Rate 0.71 0.67
Initial Status, Growth Rate -0.80 -0.50

Achievement, Attitude
Initial Status 4.38 6.71
Growth Rate 0.28 1.06

Initial Status Intercept
Achievement 52.47 117.38

Attitude 11.36 117.85
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Table 4 (continued)

x2 (39) = 68.38

Parameter estimates t-values

Growth Curve
Achievement

7th Grade 0*
8th Grade 1*

9th Grade 2.60 12.81
10th Grade 3.85 11.86

Attitude
7th Grade 0*
8th Grade 1*

9th Grade 2*
10th Grade 3*

Growth Rate Intercept
Achievement 2.37 9.82
Attitude -0.32 -9.10

Between
Effects of SES on

Achievement
Initial Status 7.96 5.24
Growth Rate 0.91 3.31

Attitude
Initial Status 0.31 0.91
Growth Rate 0.12 0.93

Factor Residual (Co) Variances
Achievement

Initial Status 6.11 3.38
Growth Rate 0.08 1.26
Initial Status, Growth Rate 0.15 0.64

Attitude
Initial Status 0.19 1.18
Growth Rate 0.02 0.66
Initial Status, Grosth Rate -0.03 -0.48

Achievement, Attitude
Initial Status 0.65 2.09
Growth Rate -0.02 -1.20
Initial Status, Growth Rate -0.06 -0.58
Growth Rate, Initial Status -0.08 -1.50

* Parameter is fixed in this model.

28



r

26 CREEST Final Deliverable

In the school-level part of the model, the correlation between achievement
and attitude intercepts (not shown in the table) obtains a rather high value, 0.61
(the student-level value is 0.27). On the school level it is seen that SES does not
have a significant influence on the attitude intercept or slope factors. The

influence on the achievement intercept and slope is, however, significantly
positive. This reflects across-school heterogeneity in neighborhood resources so
that schools with higher SES families have both higher initial achievement and

stronger growth over grades. It is interesting to note that significant student-
level influence of SES on the student-level achievement growth rate was not
seen, while strongly significant school-level influence of SES is seen on the
school-level achievement growth rate.
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