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Olson (1976, 1979) suggests thc Pillai-Bartlett trace (V') as an omnibus
MANOVA test statistic for its superior robustness to hetcrogencous variances.
Stevens (1979, 1980) contends that the robustness of V, Wilk’s A (W) and the
Hotelling-Lawley trace (T) arc similar and that their power functions are
highly scnsitive to slight covariance incqualitics.  Yect under conditions of
diffusc noncentrality structures, V is a clear choice. A Monte Carlo simulation
of V., W, and T as omnibus tests under conditions of covariance heterogencity
and variancc homogeneity investigates the robustness of cach test.  Conditions
of concentrated covariance and noncentrality structurc werc imposed to
compare power. Results indicatc that the assumption of homogencour
variance-covariance matrices in form of covariance incqualities does not
affect the robustness of V, W, or T, while T is slightly more powecrful under

such conditions.

Paper presented at the annual mecting of the MidWestern Educational
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Choosing a MANOVA Test Statistic When Covariances are Unequal

In applied research with a single dependent variable, the F-ratio is the
unifcrmly most powerful test that is invariant to linear transformations
(Scheffe', 1959). It is therefore the most flexible and most used test statistic.
Due to trends in both computer technology and the philosophy of science over
the past three decades, behavioral researchers have adopted a belief in a
multivariate reality (e.g., Fish, 1988). Thus, research which utilizes
multivariate statistics has become more prominent; however, there is no
unique multivariate analog to the F test. Only in two special cases do the four
most popular MANOVA test criteria lead to identical results. That is, when the
number of variables p = 1 and/or when the numerator degrees of freedom
(dfn) equals one, the criteria are equivalent to a univariate F-ratio. Thus, in
onec of the most common educational rescarch situations (i.c., multiple group
comparisons), when the null hypothesis is tcsted against a completely general
alternative, no multivariate test has both thc required invariance and the
property "of uniformly greatest power. Therefore, considerable debate has
occurred among siatisticians over which tests to recommend.

Olson (1976, 1979) has argued that the Pillai-Bartlett trace (V) is superior
to other test criteria as an omnibus test in MANOVA because of its greater
robustness to violations of the assumption of homogeneous variance-
covariance matrices. Olson noted that when groups differ on only a single
depcndent variable, a concentrated noncentrality structure, Roy's maximum
root (R) is gencrally most powerful. However, because R is based on a
maximum eigenvalue, severe problems with Type 1 crror exist, and therefore,
R is rarely rccommended under conditions in which assumptions have becn
violated. Thus, the Hotelling-Lawley trace (T') or Wilk's A (W) is usually
preferred under such conditions. Olson contends, however, that in educational
and psychological rescarch, a concentrated noncentrality structure is rare, in
that it is morc likely for groups to differ in a more diffuse manncr (i.c., in
morc than onc group and/or on morc than onc dependent variable).  Thus,
although di./crence in power arc slight because V is preferred under
conditions of diffuse noncentrality structures (Olson, 1976).

In reply, Stevens (1979) concluded that the conditions Olson used to
demonstrate the superiority of V had cxtreme differences in subgroup

variances which arc unlikely to occur in most rescarch. In a review of
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scveral related studies, Stevens showed that under four conditions of subgroup
invariance that are more likely to occur, the Type I error rates of V, T, and W
are very similar.  Furthermorc, hc rcported that for concentrated
noncentrality structures with heterogencous variances, the slight robustness
advantages of V arc offset by the greater power of T and W. For diffuse
structures, however, V remains the clcar choice. Thus, under conditions of
subgroup invariance, one may choose a MANOVA test statistic accordingly.

The MANOVA assumption of homogencous variance-covariance matrices is
not fully addressed by Stevens nor Olson, however. That is, the issue of
heterogencous covariances (and covariance/variance ratios) regardless of
subgroup variances remains a concern. Stevens (1980) showed that the power
of MANOVA test statistics generally increasc as thé intercorrelation among
variables increases, but that the power of such tcsts are highly sensitive to
small covariance inequalities with equally sized groups. Sincc little debate
exists over the use of V under condi.ions of diffuse structures, thc present
paper focuses on the robustness and comparative power of T,V, and W as
omnibus tests under a varisty of conditions of covarianie inequality with
concentratced structures.

Methods
Conditions

Using K = 3 and 4 groups, p = 2, 4, and 6 variablcs, and » = 10 and 20 subjccts
per cell, the Type I error rate of T, V, and W "werc compared under two
conditions of concentrated covariance inequality across groups, whilc group
varianccs on all variables rcmained homogcnecous at s2 = 1. Furthcrmore,
these combinations of hcterogeneous covariance structurcs werc examined
under two conditions of concentrated noncentrality structures 10 compare the
powcr of cach statistic as an ommnibus test.

Under Type 1 concentrated structure conditions, thc population location
on all variables is diffcrent in a single group (Olson, 1974). For this onc
group, constants of ¢ = .3 and .6 wcrc added to all variablc vectors, which
resulted in small to modcrate cffect sizes, respectively.  For the conditions Type
1 concentrated covariance incquality (C1), all but onc group had identical
covariances of r = .10 on all covariance clements of the within-group
variancc-covariance matria  whilc thc remaining group had diffcrent
covariances (r = .30 or r = .50) on all variablc pairs. In thc casc of p =2

variables, there is no C1 concentrated covariance structurc.  This resulted
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Under conditions of Type 2 concentrated structures, the population
location differed on only one variable in one group (Olson, 1974). For this
one group, constants of ¢ = .3 and .6 werc added to one variable vector, which
resulted in small to moderate effect sizes, respectively. For the Type 2
concentrated covariance inequality (C2), this means that all but one group had
identical covariances of (r = .10) on all variable pairs while the remaining
group had a different covariance (r = .30 or r = .50) on one element of the
variance-covariance matrix..

All conditions were crossed so that Type 1, Type 2, and no differences in
location occurred under conditions of C1, C2, and equal covariances.
Furthermore, under different conditions, location constants were addec to a
group with r = .10 and to a group with an aberrant covariance.

Procedures.

A normally distributed » x p data matrix Z with a mean of zero and
variance of one far each variable (column vector) was randomly generated
using the RANNOR function in SAS/IML (SAS Institute, 1990). Based on the
fundamental postulate of principal components analysis (Forster & Dickman,
1962), a SAS/IML algorithm suggested by Beasley (1994) was uscd to imposc a
correlation/covariance matrix on to Z while cach variable (column vector) of
Z. From this transformation of Z, the various differences in location were
imposed by the addition of the given parameters. This involves a linear
transformation of the variable vcctors; thereforc, no changes in
covariance/variance ratios (r) should occur. For cach of the conditions
claborated, 1,000 replications of the data gcneration and transformation
processes were completed. A SAS/IML MANOVA algorithm created by Shechan
(1994) calculated T,V, and W as an omnibus test from the E(H + E)-! matrix.
Critical valucs derived from Seber (1984) and Timm (1975) were used to avoid
precision problems associated with F approximations of thesc test statistics in
simulation studies. The number of rejections at the o = .05 level of significance
was uscd as an index of cmpirical robustness and power.

Results

in any Monte Carlo study which comparcs thc power and/or robustness of
diffcrent procedures, one must consider the sampling crror of the simulation
process. Bascd on the nominal alpha of o = .05 and 1,000 replications, the
standard crror of cach cstimatc is s¢ = .007. To avoid the issuc of Typc | crror

ratc within this study, thc standard crror is not used as & mcans to test
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whether one proccdure is "significantly” better than the other. Rather, the
standard error is used as general heuristic to compare methorls.
Type I Error

Tablc 1 shows the empirical Type I error rates for X = 3 and 4 groups, p = 2,
4, and 6 variables, and = cell size of n =20. As can be scen, the actual Type |
error rates were within two standard error units of thc nominal Type I error
rate (o = .05) under all conditions, even when heterogeneity of covariance was
introduced. These results held regardless of the type of concentrated
covariance structure introduced. Nearly identical results were found for a cell
size of n = 10 but are not tabled.

Power

Tables 2 and 3 show thec comparative power estimates for K =3 groups with
location constants of ¢ = .3 and .6 under all conditions of covariance
contamination for cell sizes of n =10 and 20, respectively. Table 4 shows thesc
power estimates for K = 4 groups and n = 10 subjects per ccll. The results for
K = 4 groups and cell size of n =20 wcie consistent with thce other three
situations and are not tabled.

Overall, the effcct of assigning differences in location to the group with
the aberrant covariance was not clear-cut. Under a fcw conditions, it
appearcd that when the group with thc aberrant covariance also had
diffcrences in location more power was exhibited as compared to differences
in location for the group with the base covariance of r =.10. Yet under other
conditions, these tendencies werc slightly rcversed or madce little difference.
Thercfore, in rcporting thesc results this distinction is not madc and the
rcsults wcre averaged. Thercfore, these results for the C1 and C2 conditions
arc bascd on 2,000 rcplications which gives a standard crror of s¢ = .005.
Whether the power of any of these omnibus tests, based on Typc 1 or Type 2
concentrated covariance structures, is affected by which group has
diffcrences in central iocation nceds rmore systematic investigation.

Type of noncentrality structure. The two different concentrated
noncentrality structurcs wecre affccted differently by the heterogencity of
variancc-covariance matriccs. The Typc 2 noncentrality structurc was not
affccted by thc introduction of covariancc hetcrogencity in a  consistent
manncr under the low cffcct size condition. Further, in most cascs the
rejection rates remained within two standard crrors of the power levels

without assumption violations. Thc pattern becamc more consistent when the
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effect size was increased. The cmpirical power valucs almost always increascd
when heterogeneity of covariance was introduced when the effect sizc was
moderate. The increased power was at least two standard errors greater than
the power without assumption violations with at least one of the types of
violation. In contrast, the rejection rates of the Type 1 noncentrality
structure decreascd as hcterogencity of variance-covariance was introduced.
The decrease was greater for a moderate effect size than for a small effect size.

Degree of contamination. The effect of the degree of contamination
was not consistent with a low effect size. However, when a modcrate effect size
was introduced the effects of contamination werc greater when the degreec of
contamination increased, with few exceptions. For the Type 2 noncentrality
structure, this meant that as the covariance inequality increased from r = 3 to
.5 in the contaminated group, the rejection rates increased. For the Type 1
noncentrality structure, as the covariance inequality increased from r = .3 to
.5 the rejection rates gencrally decrcased.

Concentration of contamination. The relaiive effects of the two
concentrated levels of contamination depended on the typc of noncentrality
structure and the level of the effect size. With a low effect size there was not a
consistent pattern. With a moderate effect size in the Type 2 noncentrality
structure, the C1 contamination had slightly more of an effect than the C2
contamination. In other words, the increase in the empirical power was
greater when contamination involved unequal covariances on all variable
pairs. Thus, when a single group differs on a single variable, morc power is
demonstrated when covariance incqualities occur across all variables.

The reverse was true with the Type 1 noncentrality structure. The cffects
of contamination were greater with the C2 rather than the Cl levels of
contamination. That is, the decrease in power that was greater when the
covariance contamination involves all variables. Thus, outside of equal
covariances, the most powecrful situation i, when, when a single group differs
on all variables, but covarianccs differ on a single variable. This is probably
because the C2 situation presents a lesser contamination of variance-
covariancc hcterogencity.

Test criteria. When the variance-covariance matrices were cqual, the
ordering of the test criteria was typically T > W >V in terms of power. When
this pattern did not hold, the difference in rejection rates among the test

criteria. was usually less than two standard crror units. When heterogencity of
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covariance was introduced the order of the rejection rates of the test criteria
typically remained the same as without assumption violations; T > W > V.
Discussion

Past research on the effects of heterogeneity of variancc-covariance on
the omnibus MANOVA test criteria have focused on introducing heterogeneity
of variance-covariance by creating heterogencous variances (Olson, 1974;
Sheehan, 1994). These studies have found that Type I error rates become
greatly inflated in the presence of hetcrogeneous variances, and the test
criteria are differentially affected. Further, thesc studies found that the power
values arc also differcntially affected by introducing heterogencous
variances. This had led to the general recommendation of using the Pillai-
Bartlett trace when hetcrogeneity of variance-covariance is suspected,
because it tends to be more robust against inflated Type 1 error under these
conditions (Olson, 1974). The important implications of this study is that these
findings do not appear to hold under all types of violations of heterogeneity of
variance-covariance. These results affirm that when heterogeneity of
variance-covariance is introduced with uncqual covariances across the
groups, the Type I crror rates of threc of the MANOVA tcst criteria, the Pillai-
Bartlett trace, the Hotelling-Lawley trace, and Wilk's' X, arc robust. Further,
the rclative power of the three test critcria remain consistent with the power
levels without assumption violations.

These findings have implications for the choice of a MANOVA test statistic
when  heterogeneity of variance-covariance is suspected. If the heterogeneity
is due to heterogeneous variances, the recommendations of Olson (1974) hold.
However, if thc heterogeneity is due to uncqual covarianccs across the groups,
the Hotelling-Lawley trace would be recommended. Since all of the test criteria
were robust to Type I error under there conditions, the choice of a test statistic
would be made based on power lcvel, and the Hotelling-Lawlcy trace appears to
have the greatest rclative power among thc test criteria investigated in this
study.

Recommendations

The findings of this study indicatc that it would be wise to rcinvestigate
the cffects of hetcrogencity of variance-covariance of Roy's Greatest Root.
Since, this test statistic has grcater power than thc other MANOVA test criteria,
it would bc the preferred test statistic under conditions of unequal covariances

if it too is robust to inflated Typc 1 crror. Also, a systematic investigation into
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the comparative power of MANOVA test criteria when differences in location
occur in groups with covariance incqualities under concentrated and diffuse
structures is warranted. Furthermore, this investigation into the properties of
MANOVA test statistics has only addressed V, W, and T as omnibus tests. Ramsey
(1980) commented that simultaneous test procedures (STP's) based on the
overall multivariate test statistic as a means of multiple comparisons can be
used to avoid the problems of "protected" univariate follow-up tests which
disturb both Type I error rates and power. Thus, it has been argued that
invest:gations into the choice of a MANOVA test statistic should be based on the
power and robustness of MANOVA STP's rather than the omnibus tests (Bird &
Hadzi-Pavlovic, 1983).
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Table 1.

Covariance Inequalitiecs in MANOVA

Empirical Type I Error Rate for T, V, W under Conditions of Equal, C1, and C2

Covariance Structures for K= 3 & 4 groups, p= 2, 4, & 6 variables, and cell size of

n = 20.
Groups
Covariance
Structure K=3 =4
Variables T | w T |% w
=2 H .043 .043 .038 .048 .048 .047
C2(3) .045 .044 .044 .048 .045 .046
C2(5) .050 .046 .044 .050 .054 .048
p=4 |20; .052 .046 .049 .044 .043 .042
C1(3) .048 .034 .043 .048 .047 .043
C1(5) .048 .038 .046 .054 .051 .052
C2(3) .051 .036 .048 .045 .046 .043
C2(5) .052 .034 .047 .050 .051 .049
p=6 H .049 .048 .044 .052 .048 .043
C1(3) .052 .047 045 053 .055 .051
C1(5) .056 .055 .051 .049 .051 .046
C2(3) .057 .058 .050 .052 .051 .049
C2(5) .047 .047 .043 .056 .055 052

Note. EQ = Equal Covariance Structure; C1(3) = Typc 1 Concentrated Covariance
.3 as thc aberrant covariance; C1(5) = Type 1 Concentrated
.5 as the aberrant covariance; C2(3) = Type 2

Structure with r

Covariance Structure with r
Concentrated Covariance Structure with r

= .3 as the abcrrant covariance;
C2(5) = Type 2 Concentrated Structurc with r = .5 as the aberrant covariance.
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Table 2.
Comparative Power for T, V,W under Conditions of Equal, C1, and C2 Covariance
and Type 1 and Type 2 Noncentrality Structurcs for K= 3 groups, p = 2,4, & 6

variables, ¢ = .3 and .6, and cell size of n = 10.

Noncentrality  Structure

Covariance
Variables Structure Type 1 Type 2
c=.3 T 1% w T 1% w
p=2 |30 .100 .088 .098 .076 .067 .076
C2(3) .090 .082 .089 071 .064 .061
C2(5) .093 .082 .092 .084 .078 .085
p=4 R 115 112 117 .058 .054 .057
Ci1(3) .074 .070 .075 .099 .090 .086
C1(5) .106 .095 .103 .064 .059 .062
C2(3) .117 107 118 .060 .066 .065
C2(5) .104 096 . .1C0 .07 .066 .074
p=©6 28 117 121 121 .064 067 .067
Ci1(3) .095 . .096 .094 .065 .064 .066
Ci(5) .084 .086 .086 .068 .065 .073
c2(3y .117 117 119 .059 .067 .064
C2(5) .102 .100 .099 .068 .069 .070
c=.6 T 1% "4 T 1% w
p=2 B .297 274 .298 .184 163 181
C2(3) .286 .265 .286 .191 177 .190
C2(5) .269 247 272 .186 173 .188
p=4 |20; .357 324 .348 130 121 .130
C1(3) .303 275 .303 127 118 130
C1(5) .289 267 289 .138 126 .138
C2(3) .335 .297 327 .138 127 .139
C2(5) .321 282 .309 .150 .145 .148
p=6 B 357 317 .348 .103 .102 .105
C1(3) .283 .265 285 114 .109 117
C2(5) .254 .239 .246 127 .121 125
C2(3) .342 322 .346 .106 .106 107
C2(5) .342 322 .346 .124 127 127
Note. EQ = Equa_l Covariance Structure; C1(3_)—= Type 1 Concentrated Covariance
Structurc with r = .3 as thc abcrrant covariance; C1(5) = Typc 1 Concentraicd
Covariance Structure with r = .5 as thc aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structure with » = .3 as the aberrant covariance;
C2(5) = Type 2 Concentrated Structurc with r = .5 as thc aberrant covariance.

11
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Table 3.
Comparative Power for T, V, W under Conditions of Equal, C1, and C2 Covariancc
and Type 1 and Type 2 Noncentrality Structures for K= 3 groups, p = 2, 4, & 6

variables, ¢ = .3 and .6, and cell size of n = 20.

Noncentrality Structure

Covariance _
Variables Structure Type 1 Type 2
c=23 T |4 % T 1% w
p=12 20 177 173 167 11 .103 .106
C2(3) .162 158 152 112 113 .108
C2(5) .161 .159 .154 118 .118 112
p=4 K. 197 157 212 .093 .071 .088
Cc1(3) .203 .154 .193 .077 .055 .070
C1(5) .175 .134 .164 .091 .069 .085
C2(3) .208 158 195 .107 .080 .097
Cc2(5) .172 .129 .159 .098 .073 .091
p=6 H) 217 216 .205 .085 .087 .075
C1(3) .190 .189 175 .090 .088 .082
C2(5) .163 .162 152 096 .095 .087
C2(3) .200 .198 190 .080 .081 076
C2(5) .199 .198 .182 .088 .092 .082
c=.6 T 1% w T Vv w
p=2 58] .607 .603 .596 .349 .340 332
C2(3) .622 611 .608 .382 .370 .366
C2(5) .566 .553 .547 381 373 367
p=4 20) 744 671 726 .266 213 .250
C1(3) .658 578 .636 .294 225 279
Ci1(5) .587 .509 .567 .280 218 .265
c23) .716 .629 .690 .288 227 274
C2(5) .656 574 .633 .308 .238 .288
p=6 H) .788 765 .761 216 217 .201
Cl(5) .682 .660 657 .233 .235 217
C1(5) .542 .559 .554 258 257 .240
C2(3) .754 .723 722 .245 .235 225
C2(5) .733 713 .710 .244 .246 .230
Note. EQ = Equal Covariancc Structurc; C1(3) = Type 1 Concentrated Covariance
Structure with » = .3 as the abcrrant covariance; C1(5) = Type 1 Concentrated
Covariance Structurc with r = .5 as the abcrrant covariance; C2(3) = Type 2
Concentrated Covariance Structurc with r = .3 as thc aberrant covariance;
C2(5) = Type 2 Concentrated Structure with r = .5 as the eberrant covariance.
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Table 4.
Comparative Power for T, V, W under Conditions of Equal, C1, and C2 Covariance

and Type 1 and Type 2 Noncentrality Stractures for K= 4 groups, p = 2,4, & 6

variables, ¢ = .3 and .6, and cell size of n = 10.

Noncentrality Structure
Covariance

Variables Structure Type 1 N Type 2
c=23 T 1% w T 1% w
p=2 j20) .091 .091 .089 .080 .082 .082
C2(3) .096 .095 .098 .060 .059 .059
C2(5) .088 .089 .088 .079 .081 .079
p=4 20] .105 102 .098 .061 .055 .054
C1(3) .112 .10¢ .106 .057 .049 .048
C1{5; .084 .079 .077 .063 057 .055
C2(3) .097 .091 .086 .063 .057 .058
C2(5) .098 .095 .091 .064 .061 .058
p=6 20 .107 .101 099 072 .069 .064
C1(3) .099 097 .098 .058 .057 .055
C1(5) .104 .096 .097 .072 067 .068
C2(3) .102 097 .094 .067 .063 .063
C2(5) .097 .091 .094 .060 .055 .053
c=.6 T v w T v w
p=2 59) 270 271 273 159 160 .160
C2(3) .273 271 271 166 .170 167
C2(5) .252 256 257 150 157 151
p=4 |20 .343 311 319 124 112 114
' C1(3) .280 .263 262 124 .120 115
Ci(5) .268 252 .249 136 135 124
Cc2(3) .320 291 .300 125 131 A17
C2(5) .310 285 290 120 .114 .108
p=56 20] .340 312 328 .108 .096 .098
Cc1(3) .297 267 .285 124 .114 111
C1(5) .261 235 238 .103 .101 .096
C2(3) .332 287 .307 115 110 .109
C2(5) .314 267 287 111 .099 .102
Note. EQ = Equal Covariance Structure; C1(3) = Type 1 Concentrated Covariance
Structurc with » = .3 as thc aberrant covariance; C1(5) = Type 1 Concentrated
Covariance Structure with » = .5 as the aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structurc with » = .3 as thc aberrant covariance;
C2(5) = Type 2 Concentrated Structurc with r = .5 as thc aberrant covariance.
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