DOCUMENT RESUME

ED 378 238 . ™ 022 616

AUTHOR Reimann, Peter)

TITLE Supporting Instance—-Based Learning in Discovery
Learning Environments.

PUB DATE Apr 94

NOTE l11p.; Paper presented at the Annual Meeting of the

American Educational Research Association (New
Orleans, LA, April 4-8, 1994),

PUB TYPE Reports - Evaluative/Feasibility (142) —-
Speeches/Conference Papers (150)

EDRS PRICE MF01/PCO1 Plus Postage.

DESCRIPTORS *Discovery Learning; *Experiential Learning};
*Learning Strategies; *Problem Solving}
*Simulation

IDENTIFIERS *Case Based Tutor; Case Method (Teaching
Technique) '

ABSTRACT

Recent research has demonstrated that knowledge about
specific instances may be of more relevance to reasoning than has
previously been assumed. Students can rely on principles they have
learned, or they can recall something similar previously experienced,
and base the new prediction on it in an instance—based approach.
Instance-based (or case-based) problem solving is important in
simulation environments. The CAse-BAsed Tutor (CABAT) is a tool that
supports case—based learning in a simulation environment,
specifically. the computer—simulated laboratory environment DIBI.
CABAT stores simulated experiments done by the student and uses the
episodic knowledge when the student does a new experiment, reminding
the student of the former solution. The interface for elaborated
examples is described, and some early empirical results with a chess
game that used the same approach are presented. Three figures

illustrate the simulation approach. (Contains 17 references.)
(SLD)

vvvvvvvvvv

e S v v ve v v 2% v e e ale eale v s Fe v Fe ot 2 e o A v e e de e o deate Tedde e e e v e e dle b e dlede dle dle vl de e dlede e de e e de e e dleale de e dle ek ok

”

Reproductions supplied by EDRS are the best that can be made
from the original document.

U0 0

%

¥

%

gD 378 238

Supporting Instance-Based Learning in
Discovery Learning Environments’

o L e Peter Reimann I e s
UGN O N ormaTIoN University of Freiburg L7 5)
i ument has been reproduced 88 = M
'«g%lm i parson or orgamaston Department of Psychology A
O Minor changes neve bean made to mprore Niemenstr. 10
' ﬂ?::‘:é'&%’f?.Z?{ia"ﬁ@“&zmm'mc% D-79085 freiburg, Germany TO THE EDUCATIONAL RESOURCES
ORI positon of POLEY reimann@psychologie.uni-freiburg.de INFORMATION CENTER (ERIC)

1.0 Instance-based reasoning and learning

Most exploratory learning environments and instructional simulations in particular are
based on the principle of leaming by induction: The student can generate for herself
specific instances and is supposed to generalize over such observations or
experiments. From this point of view, the pedagogical idea behind simulation
environments is completely in line with the idea in concept acquisition and problem
solving research, namely, that learning consists of discarding specific, superficial
information in favor of general, abstract information. However, as Medin & Ross
(1989) point out, equating intelligence with the use of abstract knowledge, discarding
specific, superficial information may be a dangerous oversimplification. As recent
research on concept formation (e.g, Brooks, 1987) and problem solving (e.g., Ross &
Kennedy, 1990) illustratcs, knowledge about specific instances may be of more
relevance to reasoning ‘han has been assumed so far both in psychology and
pedagogy.

Let me illustrate the point by looking at a specific example. In the computer-simulated
laboratory environment DIB! (Stumpf et al. 1988) students can acquire knowledge
about principles governing elastic impact phenomena by designing experiments and
predicting the outcomes. Focusing on the prediction step, we can phrase this as a
small problem solving task: Given the current experimental configuration, predict its
outcome. In order to solve this problem, students can follow two strategies: They can
rely on their more or less general knowledge (beli=fs, hypotheses) about principles in
the domain and apply this knowledge to the current case. Alternatively, they may
recall a similar experimental design encountered before and base the new prediction
on the observations made in the former, similar experiment. Roughly put, they may
work principle-based or instance-based.

Taking the instance-based view seriously is important for two reasons. For one,
working instance- (or case-) based is a powerful means for problem solving: If one
does not have the required general knowledge (or applying it would be too resource-
consuming bgtause of the problem's complexity), then relying on instances and
reasoning analogously may help. Secondly, instance-based problem solving may
lead to more general knowledge, by learning processes such as incremental
generalization.The current problem and the remembered/reconstructed similar
solution instance form the basis for the generalization process. These remindings,

1. Paper given at the Annual AERA Meetin%. New Orleans, April 4-8, 1994; Division C- Symposium: Learning in
Computer Simulation Environments: An analysis of discovery learning.

BEST COPY AVAILABLE
. 2

2

especially in novices, are often based on supetficial features of problems, i.e.,
features that are not essential for problem solving. This must not necessarily impede
learning because superficial features are often correlated with structural ones, and
superficial and structural features become discriminated by incremental
generalization. Incremental generalization is a by-product of analogical problem
solving, not an automatic learning process. When the student has recalled a previous
problem solving episode or example, she may attempt to map from the previous
problem to the new one and transfer the former solution to the new problem. This will
almost always require to ignore certain differences between the remembered and the
current problem. To the extent that the old solution can still be mapped and the
problem be solved, the differences ignored point out superficial features thai one can
generalize over. This incremental generalization method will lead to conservative
generaiizations containing only the minimal amount of abstractions required to make

the mapping go through (see Ross & Kennedy, 1990, for more details and
experimental support).

We claim that simulation environments, in particular those for semantically rich
domains, should not only support the generation of generalizations (hypotheses) but
also the management of specific information. This requires mainly to support the
student in recalling fitting instances and transferring the former instance to the current
problem. I will illustrate this idea with CABAT, a tool that supports case-based
learning in a simulation environment, and SeeChess which was developed to elicit
case descriptions from studying worked-out examples about chess endgames.

2.0 Supporting Instance-based learning in exploratory
learning environments

2.1 Automatic Remindings

A first possibility to guide learning processes in the context of simulation
environments is to support reminding. That can be done, for example, by providing
the student with automatically generated remindings of previous problem situations
that are in certain aspects similar to the current one. Following this idea, Schult
(1993) developed the system CABAT ("CAse-BAsed Tutor") as a component of DIBI,
the above menticned microworld leaming environment for conducting experiments
concerning elastic impacts. The student's task in this microworld is to find out about
regularities in the domain by arranging experiments and by predicting and evaiuating
their outcome. CABAT stores all experiments done by the student and uses this
episodic knowledge whenever the student arranges a new experiment. If an
analogous experiment can be retrieved, the system reminds the student of this
previous one and explains the particular kind of similarity. CABAT shows the student
the retrieved experiment, his prediction (hypothesis) of the ocutcome, and the
system's fe 2dback (correct solution), so that the student can use this former soiution
tc predict the outcome of the current experiment. Similarity is computed based on
domain formulas and several general heuristics in two steps. First, the formulas are
simplified to gain constraints that can be used to classify situations in the domain with
respect to structural features. Then, if there are several experiments that are
structurally similar to the current one, one of them is selected based on superficial
features. Since this procedure defines similarity only syntactically, it is in principle
domain-independent. The only requirement is that the domain knowledge can be
described by formulas (cf. Fig. 1).

Figure 1.CABATs domain (a) and how it partitiones the space of experiments
according to the similiarity between experiments (b)

CABAT solves the indexing problem for the student since it coraputes structurally
important features automatically. Besides the fact that this is only possible in domains
where structural features can be identified easily, this approach also assumes that
the student will accept the cases retrieved by the computer as analogous, i.e., grasp
the nature of the structural similarity. Not ail students may be able to gain this sort of
insight. Arguing from a pedagogical perspective, one may even claim that CABAT
takes away an important task from the student, namely, to come up with cescriptions
of cases that identify superficial and structural features.

2.2 Annotating Learning Experiences

We (Beller, Reimann & Schult, 1994) have developed a tcol to support instance-
based reasoning in a domain where structural features are not easily identified and
where it is up to the student to generate useful case descriptions. SeeChess allows a
student to enter descriptions of worked out solutions to chess endgame problems in
such a way into the computer that she can later one use this knowledge by means of
a case-based reasoning module (see Figure_ 1). We use a hypertext tool to elicit from
the student the necessary case descriptions’ and case-base reasoning algorithms to
provide a somewhat intelligent retrieval component®. The crucial point is that cases
are produced by the student explicitly, with the understanding that they can be of use
for later (case-based) problem solving. The instructional situation is one of
exploratory learning: The relevant chess heuristics are not given to the leamer, but he
or she is supposed to infer them on the basis of analyzing worked-out examples and
own problem solving experiences (i.e., playing the game). The computer tool in its
current form (without a retrieva! component) should help the learner to keep records
of the relevant experiences and to structure this external ,memory* of learning
episodes in a way that makes it useful for later problem solving. In the next stage (not
described here), when the program can actively support the student by providing
remindings automatically (or on demand), the burden of searching memory will be

lifted from the student and he or she can focus on adapting the former experience to
the problem at hand.

It is not easy to provide an interface that lets students translate the externally
provided example informatior and their own inferences into a case representation
format. The problem is aggravated by the fact that students' conceptions about the
features that are important to describe examples may change over time. For
example, a learner may find out after having processed some examples that a
property he didn't attend to so far is indeed important and should be included in all his
~example descriptions. We call this the non-monotonicity problem, an issue that
plagues all knowledge acquisition methods, but is particularly frequent in novices'
knowledge acquisition by novices.

What are the tasks a student is confronted with when describing an example to
himself? These elaboration tasks (Chi, Bassok, Lewis, Reimann & Glaser, 1989;
Vanl.ehn, Jones & Chi, 1992) comprise:

e Selecting relevant given objects and their relevant properties
e Inferring the existence of objects and their properties

e Selecting relevant given relations

e Inferring additional relations

e ldentifying the operators applied

e Inferring operators not explicitly specified

e Inferring conditions on operators

e Inferring effects of operators

1. By now realized
2. Under development

l

Student analysis ,
- using SeeChess

Example

Case I__ibrary

: Student solves using
SeeChess (later
! ChessRetriever) I

Figure 2.The Scenario

Problem

e Inferring goals
e Organizing operator applications (actions) belonging to a goal

¢ Inferring relations between goals

2.2.1 The Interface for Example Elaborations

in order to allow students to accomplish these tasks on a computer screen in a
flexible manner without imposing too many constraints, tedious work or even
programming on them, SeeChess provides them with a point-and-click interface,
realized with Asymmetrix” ToolBook under Windows. The students’ task is to enter
comments to the examples using the example analysis interface shown in Figure 2.
In the upper portion of the screen, endgames examples are shown move by move on
a board. In the lower par, the student can enter comments to the move that is
currently shown on tiie board. Comments (i.e., elaborations) can be given either as
free text or by using comment templates that cover frequently used, chess-specific
components. The board is not only used to display example draws, but the student
can also use it to perform further analysis; for instance, he or she can try out moves
that are different from those in the example and watch the effects!. These variants
can be annotated in the same manner as it it done with the example moves.

1. The elaboration tool is interfaced with a chess program (written in Lisp) that can play against the student. This
program is also used to check the move suggestions of the student for coirectness, i.e., whether they do not
violate the chess rules. lllegal moves are rejected.

== BOARD 1 v
Board Move Help

Variation

Analysis | Commentary] Game:| 3

Board . 5 White
' ' ' " Game
wK b6 b5

Back

bKc3 attacks wBc4.

wKb6 protects wBc5.

wBc¢d4 controls b3, a2, d3, e2, f1.
wBcb controls b4, a3, d4, e3, 2, g1.

The white king has to protect both bishops so that they
can hold their position!

' R ATRTATATS = R . v - = e
R R R R R aaw R R
AR S SR X% I SCHEREIE N M ROMREEE N EOR PR SRR B RORASSIEIE HHNCH O H SRR B NN I,
P A I N T A D FHAT IS AORICRRE A SR RN R R KR I N I IRNRCA K
Bal o v e "9@({‘(’ SN AN IR, RN R SR IE LI IKOERE
| el R LA PR IRIIN O IR KRR S0 ARSI,

Figure 3.The analysis screen used to view examples and enter elaborations

222 Using elaborated Examples for Problem Solving

The elaborated examples are available to the leamer when it comes to actually
playing the game (against a computer chess program). In the current version, they
are available exactly in the format that was used during the example elaboration
phase, i.e., as a sequence of annotad moves. When working on chess problems
(e.g., playing against a computer chess program) the student can page through the
example games and look for situations that are similar to his or her current problem.
(As mentioned before, in the next version of SeeChess, retrieval of similar example

situations will be done in part automatically by a computerized module, called the
ChessRetriever).

2.2.3 First Empirical Results

Empirical results are currently available on a episodic level, since data gathering was
only recently completed. We ran a small study with three experimental conditions:
Group 1 received an elaboration training before learning from examples; Group 2 did
receive no such training; Group 3 did only leamn by doing, i.e., did not see worked-out
solutions. Group 3 received the (three) example solutions not as exampies, but as
training problems to work on. All three groups had to solve target problems, Group 1

and 2 after studying examples, Group 3 after working on training problems. All three

groups used SeeChess to annotate examples and problem solving episodes,
respectively. Subjects in all groups had basic chess knowledge, but did not play the
game on a regular basis. Usually, they learned the basics during the youth and had
not played the game since then.

The data analyzed sofar reveal that all three groups leam from the experience in the
experiment, not only the two example-learning groups, but aiso the learning-by-doing
group. However, it seems as if the two example-learning groups acquire more
knowledge since these subjects are able to solve more problems that are dissimilar to
the training problems. Sofar we cannot indentify a specific effect of the elaboration

training.
Subjects show with varying frequency the following types of elaborations:
e Determining positive consequences of example moves (frequentiy;

e Determining the conditions for example moves (rarely);

e Determining positive and negative consequences for alternative moves (often).

What distinguishes good example elaborators from bad ones (as mentioned, this is
as far as we can see by now not correlated-with elaboration iraining)? The crucial
difference seems to be that good elaborators are not satisfied with descriking the
examples moves in general terms (“ king needs to be comered in”) but spznd some
effort to make such heuristics operational, that is, refine them down to a level that

allows for move selection and execution (“ king should not be able to move tw. '

squares toward the middie”).

How did subjects use SeeChess? They all used it without feeling annoyed, and they
used it after getting used to mousing fairly eﬁectiveI% (an individual session took three
to four hours; one couldn't do it much faster with paper and pencil). In general,
subjects annotated examples sparingly; in particular, they made little use of the
opportunity to use color coding for representing features of piece configurations and
they made usually only few free comments. This may be due to the fact that the
endgame examples where of a basic type with only a few pieces on the board so that

8

8

the situation was managabie relying only on mental capaciiies. Subjects did in the
average use their annotated examples during problem solving, i.e., they worked in an
analogical, case-based fashion. °

3.0 Comparison with other Approaches te support learning
in exploratory learning environments

Because of the cognitively challenging characteristics of exploratory learning
environments, simulations in particular, a variety of approaches have been developed
aimed at helping the learner to cope with these challenges. For instance,

e Reification: Visualizing concepts that are usually not visible and empowering the
student to manipulate them. For instance, in ARK (Smith, 1986) theoretical
concepts such as force and gravity are presented to the student in a way so that
he or she can manipulate them directly. SeeChess incorporates a simple

reification component: notions such as opposition and thread can be represented
graphically on the board.

e Data analysis tools: In instructional simulations that are based on quantitative
relations, students are often provided with tools to gather and analysis quantitative
data (for instance, the spreadsheet tools in REFRACT {Reimann, 1992) and
SMITHTOWN (Shute, Glaser & Raghavan, 1989)). The r.otion of “data” needs to
be distinguished from the notion of a “case”. A case has more of a macro-structuie,
is like a story, containing more or less complex sequences of situation - action -
effect chains. One can learn a lot from a single case, whereas on can learn only
from looking at many data.

® Capturing theory: Based on the problem solving theory of inductive learning in
general and scientific discovery in particular (Simon & Lea, 1974; Klahr & Dunbar,
1988), several researchers have developed means to represent hypotheses and
the relation between evidence and hypotheses in exploratory learning
environments (Reimann, 1989; Shute et al. 1989; van Joolingen & de Jong, 1994).
In SeeChess, it is not distinguished between evidence (i.e., examples) and
hypotheses (e.g., heuristic rules) as two principally different classes of concepts.
Rather, elaborations are seen as lying on a continuum ranging from inferences that
go just a little bit beyond the information given up to absiractly formulated
heuristics of how to play the game.

e Coaching: The most advanced but also most difficult to realize form of support
attempts to infer the knowledge state of the specific learner from the interaction
with the learning environment and to formulate advice for the student based on a
comparison between the student model and a normative model of performance
(e.g., SOPHIE (Burton, Brown & Bell, 1975), WEST (Burton & Brown, 1979)).
Advice may also be given not on domain relations, but on “metacognitive” issues
such as systematicity of discovery behavior (Burton et al., 1975; Shute et al.,
1989). SeeChess will incorporate in its next incarnation a module that can
providing students automatically with remindings about former situi. ions that are

1. Since this is done using color coding, it is not displayed in Figure 2.

similar to the current one. This way, one can for instance remind students of similar
mistakes they have made before. This is only an indirect form of coaching since it
is up to the student to draw conclusions based on these remindings. The
advantage of this approach however is that now explicit student model is required,
but only a similarity measure. From a pedagogical point of view, it may make
sense to give students a chance to diagnose their mistakes themselves (e.g., by
comparing similar mistakes they made) before intervening with direct advice (as a
coach would do).

References

Chi, M.T.H.; Bassok, M.; Lewis, M.; Reimann,P.; Glaser, R. (1989). Self-explanations: How students
study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

Beller, S., Reimann, P., & Schult, T.J. (1993). SeeChess - a tool for annotating learning experiences in
chess end games. Technical Report in preparation. Freiburg, FRG: University of Freiburg,
Departmerit of Psychology.

Brooks, L.R. (1987). Decenti 1lized control ot categorization: The role-of prior processing episodes. In
U. Neisser (Eds.), Concepts and conceptual development: Ecological and intellectual factors in
categorization (pp. 141-174) London: Cambridge Univ. Press.

Brown, J.S., Burton, R..R., & Bell, A.G. (1975). SOPHIE: a step towards a reactive learning
environment. International Journal of Man-Machine Studies, 7, 675-696.

Burton, R.R., & Brown, J.S. (1979). An investigation of computer coaching for informal learning
activities. International Journal of Man-Machine Studies, 11, 5-24.

Joolingen, W. R. van, & Jong, T. de (1994). An extended duach search space model of discovery
learning (Technical Report). Enschede: Univ. of Twente.

Kiahr, D.; Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-
48.

Medin, D. L., & Ross, B.H. (1989). The specific character of abstract thought: Caiegorization, problem
solving, and induction. In Ed. Robert J. Sternberg (Eds.), Advances in the psychology of human
intelligence, Vol. 5. (pp. 189-223) Hillsdale: Lawrence Erlbaum, Hilisdale, NJ.

Reimann, P. (1989). Modeling scientific discovery learning processes with adapiive production
systems. In D. Bierman, J. Breuker, J. Sandberb (Eds.), Artificial inteligence in education (pp.
218-227) Amsterdam: |0S.

Reimann, P. (1992). Modeling active, hypothesis-driven learning from worked-out examples. In E. De
Corte, M. Linn, H. Mandl, L. Verschaffel (Eds.), Computer-based learning environments and
problem solving (pp. 129-149) Berlin: Springer.

Ross, B.H., & Kennedy, P.T. (1990). Generalizing from the use of earlier examples in problem solving.
Journal-of-Experimental-Psychology-Learning,-Memory,-and-Cognition, 161, 42-55.

Schult, Th. J. (1993). Tutorial remindings in a physics simulation environment. In P. Brna, S. Ohlsson,

& H. Pain (Eds.), Proceedings of Al-ED 93, the World conference on Artificial Intelligence in
Education (pp. 105-112) Charlottesville, VA: AACE."

10

Shute, V., Glaser, R., & Raghavan, K. (1989). Inference and discovery in-an exploratory laboratory. In
P.L. Ackerman, R.J. Sternberg, & R. Glaser (Eds.), Learning and individual differences (pp.)
New York: Freeman.

Simon, H.A.; Lea, G. (1974). Problem solving and rule induction: A unified view.. In L.W. Gregg (Eds.),
Knowledge and cognition (pp.) Hilldale, NJ: Erlbaum.

Smith, R.B. (1986). The Alternative Reality Kit. An animated environment for creating interactive
simulations. In IEEE (Eds.), IEEE Computer Society Workshop on Visual Languages, Dallas,
TX, June. (pp.). :

Stumpf, M., Brankat, S., Herderich, C., Newen, A., Opwis, K., Pl6tzner, R, Schult, T., & Spada, H.
(1988). The graphical user interface of DIBI, a microworld for collesion phenomena (Technical
Report). Freiburg, FRG: University of Freiburg, Dept. of Psychology.

\ anLehn, K.; Jones, R.M.; & Chi, M.T.H. (1992). A model of the self-explanation effect. Journal of the
Learning Sciences, 2, 1-59.

11

