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I. RATIONALE

Fit analysis is widely used in IRT-based test development. It is usually performed at the item
level to evaluate the fit of individual items to the IRT model being used. It is often used to assess
item consistency (the extent to which an item is consistent with other items in measuring
examinee ability), or interitem dependency (the extent to which the items are statistically
dependent for examinees of the same ability). Such information is important for test developers
in the selection, revision or analysis of individual items.

While fit analysis at the item level is useful, it may be insufficient for examining the statistical
characteristics of performance-based items or tasks which typically involve multiple steps and are .
scored on a polytomous scale. For such tasks, item fit statistics may serve as an index of 'global’
fit, but they do not provide information as to where, or at whick step(s), the misfit occurs. In
addition, such global indicators do not report the extent of misfit in terms of the number of steps
involved. Fit analvsis at each step of the performance task is needed, particularly when the
primary purpose of the fit analysis is to revise the item or to adjust the scoring rubric.

The purpose of the current investigation is to explore a step or category fit analysis procedure,
which is an extension of IRT-based item fit diagnostics applied to the response categories present
in popular performance-based tasks. The step fit procedure involves (a) computing category fit
statistics, and (b) constructing category fit plots. The category fit statistics are used to flag
possible misfit at the response category level, in much the same way as item fit statistics are used
to flag possible misfit at the item level. The category fit plots, on the other hand, are used to
facilitate investigation of potential fit problems by displaying the magnitude and the pattern of
deviations for each step of a polytomous item. A step-by-step description of the procedure is
presented, followed by discussion of findings from a simulation study and a real data application.
The paper concludes with a summary of the strengths and the limitations of the procedure.

II. THE PROCEDURE
Mean Square Category Fit Statistics

Wright and Masters (1982) describe two mean square fit statistics: infit mean square and outfit
mean square. Infit mean square is information weighted and outfit mean square is sensitive to
outliers. When data fit the model, both statistics have an expectation of 1. A value considerably
larger than 1 may suggest inconsistency, while a value considerably smaller than 1 may indicate
item de endency.

BIGSTEPS, a popular Rasch model computer program (Linacre & Wright 1993), also provides
mean square fit statistics at the category score level. These statistics are computed by averaging,
with or without weighting by item score variance, the residuals only across observations within
each score category. For example, the mean squares for score category 1 are computed by
averaging the residuals only across the examinees who scored in category 1. At both the item
and the category levels, the same item score residuals are used for computation. The mean
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squares computed in this way are really item fit indices at the category level. They describe how
well the item fits the model for examinees at each score category.

The current study explores an alternative way to compute mean square fit statistics at the
category level. First, the category standardized residuals are generated. These residuals are the
standardized differences between the observed and the expected category scores. The category
standardized residuals are then averaged over examinees in all score categories to compute mean
square category fit statistics. These mean squares can be interpreted as category fit indices which
describe how well the category fits the model across all examinees. Those who score in a
particular category are expected to have a high probability of scoring in that category. Those who
do not score in that category are expected to have a low probability of scoring in the category.
The category misfits the model to the extent the observed responses depart from model
expectation.

The computation of the new category fit statistics is a simple extension of the computation of
item mean squares to the category level. They are computed as follows:

1. Calibrate the data with the Rasch partial credit model (Masters, 1982; Wright & Masters,
1982) to obtain B,, the ability estimate for person n, and D;;, the difficulty of step j of item

i. There are m step difficuity estimates for an item with m+1 score categories.

2. Using the estimates obtained in step 1, compute P, the probability of person n scoring in
. the kth category on item i by

expy (B,=D;;)

n my k

B -D..
;expjf_%( 2~ Dis)

where k= 0,1,.., m,, and E (B,~D;;) =0
3=0
3. Create a person by category response matrix using the iiem scores. For each score category,
an examinee is assigned a score of 1 if the score falls in that category, or 0 if the score falls
in any other category (see Table 1) . '




Table 1. A person by category score matrix

X, (Category Score)

n X
(Person) (Item score) O 1 2 ... K

—
o

w
e
—
e

4. Using the dichotomous category score, X, as the category 'observed' score and P as the
category expected score, compute Z,, the standardized category score residual by

Xnik~Pnik

VWoix

Znik=

where W, =P (1-P), the variance of X ;.

5. Compﬁte U,, the unweighted category mean square for category k on item i by
N
U=y Zaix/N
n=1
and V,,, the weighted category mean square by

N N
- 2
Vik=Y, Waix*Zaix/ Y, Wnik
n=1

n=1

As shown in the foregoing, the category mean squares are computed in the same way as item
mean squares for dichotomously scored items (Wright & Stone, 1979), and are intended for the
same type of interpretation. Just as item fit statistics describe the extent to which an item is
consistent with the set of items as a whole in rank-ordering examinees, category fit statistics
indicate the extent to which a particular response category is functioning consistently with the
test to measure examinee ability.
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Category Fit Plot

The purpose of generating the category fit plot is to help interpret the category fit statistics
by displaying the pattern.as well as the magnitude of the deviations. Two types of plots are
proposed: (1) the expected and the observed proportion plot, and (2) the residual plot.

The observed and the expected proportion plot is constructed as follows:

1. Divide the examinees into K ability groups using equal-distance interval method, equal-
frequency method, or total raw score categories.

2. Compute E,, the expected proportion of examinees in the kth group scoring in each category
by averaging the probabilities of the examinees in the group responding in that category.

3. Compute O,, the observed proportion of examinees in the kth group scoring in each category.

4. Compute SE,, the standard error of the expected proportion for the kth group by

E (1-E
SE’k=,‘ ke Tk {Nk i

5. Compute the upper and the lower error bound for O, (e.g., +2 and -2 times SE,).
6. Plot E, vs O, and the upper and lower error bounds for each category across the intervals.

The residual plot is constructed by following steps 1 through 3 listed above. Then, for each
ability group or interval, the residual proportion is computed by subtracting the expected
proportion from the observed proportion. The residual proportions are then plotted for each
category across the intervals.

III. A SIMULATION STUDY
Design of the Simulation Study

A simulation study was conducted to explore the statistical properties of the category mean
squares in relation to examinee sample size and the number of score categories in an item. The
examinee sample size varies from 500 to 900 by increments of 200. The number of item score
categories varies from 4 to 8 by increments of 2. Each calibration set consists of nine 'null' (non-
misfitting) items and one misfitting item. 100 replications were conducted for each sample size
and each number-of-score-category level.

Both the examinee ability and step difficulty estimates were simulated using the standard
normal distribution. The step difficulties were randomly generated for each rephication to control
for the effect of the step difficuity on model-data fit. The misfitting item was simulated using a
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secondary ability distribution imperfectly correlated (r=.6) with the primary ability distribution
used to simulate the remainder of items.

Findings

Tables 2 and 3 present, for each score category, the mean of the mean square statistics over
replications (and over items for the null items), and the percentage of replications in which the
category is flagged as misfitting (mean square value greater than or equal to 1.2 or less than .8).
The following observations, among others, are notable:

1. For the null items, the means for the infit (weighted) mean squares are close to 1 and the
percentage of misfitting replications is below 1 across all categories. This finding suggests
that the infit category mean square under the null situation is sensitive to neither the sample
size nor the number of response categories in an item.

2. For the misfitting item, neither the infit mean square nor the percentage of misfitting
replications is sensitive to sample size, but both appear to be sensitive to the number of score
categories. As the number of score categories increases, both the mean square and the
percentage of misfits increase (if we compare the values for the first and the last score
category across different number-of-category levels). The magnitude of the sensitivity is,
however, small.

3. For outfit (unweighted) category mean squares, the mean square values and the percentage
of misfits are sensitive to the number of score categories for both the null and the misfitting
items. The mean squares become increasingly smaller than 1 for the null items and
increasingly greater than 1 for the misfitting item as the number of categories increases. The
percentage of misfits is high even for the null items and rapidly increases as the number of
categories increases. They are not, however, sensitive to sample size in both the null and the
misfitting situations.

4. Except for the infit mean squares in the null situation, the percentage of misfits is far greater
in the extreme score categories than in the middle categories.
One major limitation of the category mean squares is the excessive sensitivity of the
unweighted category mean squares to the number of categories in an item. Recall that the
unweighted category mean square is an unweighted average of Z..'s. It is computed by

N
U. =i§ Zz-k=_1, (Xn.ik'—Pn.ik)2
NGt T N& Ppye(1-Ppy)

and

K
Z: Ppi=1
=0




As K increases, P, decreases, so does the variance of X ;. It can be shown that, as K increases
ana the category score variance decreases, Z;, will become increasingly small for X ;=0, and
increasingly large for X_,=1. The more extreme Z becomes, the more likely it is for Uy to be
either considerably larger or smaller than 1.

Table 2. Mean of Infit Category Mean Squares and % Misfitting

Score Category

Categoxy N Mean $ Mean $ Mean % Mean % Mean ¥ Mean % Mean % Mean %

Null

3 500 .98 .1 .99 0O .99 0 .98 .1
700 .98 .0 .99 0 .99 0 .98 O
900 .98 .0 .99 0 .99 0 .98 O

5 500 .98 .3 .98 0 .99 O .99 O .99 O .97 .4
700 .97 .3 .98 0 .99 0 .99 O .99 O .98 .2
900 .97 .2 .99 0 .99 0O .99 0 .99 O .98 O

7 500 .97 .8 .98 0 .99 0 .99 O .99 0O .99 O 98 O 98 1
700 .97 .2 .98 0 .99 O .99 O .99 0O .99 o 98 0 98 .3
900 .97 .2 .98 0 .99 0 .99 O .99 0 .99 O 98 0 97 .1

Misfitting

3 500 1.2 75 1.1 0 1.1 2 1.2 68
700 1.278 1.1 0 1.1 2 1.2 69
900 1.2 75 1.1 0 1.1 1 1.2 72

5 500 i.384 1.1 2 1.1 0 1.1 0 1.1 3 1.3 77
700 1.382 1.1 3 1.1 0 1.1 O 1.1. 2 1.3 176
900 1.3 812 1.1 3 1.1 0 1.1 O 1.1 2 1.3 175

7 500 1.386 1.1 9 1.1 0 1.1 0 1.1 0 1.1 0 1.1 6 1.3 80
700 1.3 87 1.1 7 1.1 1 1.1 0 1.1 0 1.1 0 1.1 4 1.3 77
900 1.386 1.1 6 1.1 1 1.1 0 1.1 O 1.1 0 1.1 3 1.3 82




Table 3. Mean of Outfit Category Mean Squares and % Misfitting

Score Category

category N Mean ¥ Mean % Mean % Mean % Mean % Mean ¥ Mean $ Mean %

Null
3 500 .87 40 .95 EB .98 3 .87 41
700 .88 37 .95 2 .96 2 .86 37
900 .88 36 .95 2 .96 2 .87 35

5 500 .77 74 .85 45 .91 14 .92 14 .87 40 .73 75
700 .77 73 .85 41 .91 11 .92 10 .86 37 .73 73
900 .76 74 .85 37 .91 8 .92 9 .86 34 .75 70

7 500 .68 84 .74 73 .83 50 .87 35 .87 34 .83 49 .74 73 .65 88
700 .67 85 .75 73 .82 50 .87 31 .87 30 .83 47 .74 71 .65 87
900 .67 85 . .75 72 .83 46 .87 25 .87 27 .83 43 .75 72 .66 86

Misfitting

3 500 2.2 99 1.4 51 1.3 51 2.1 99
700 2.2 99 1.3 50 1.3 47 2.2 99
900 2.2 99 1.4 54 1.3 49 2.2 99

5 500 3.4 97 2.8 95 1.7 93 1.7 80 2.591 3.5 99
700 3.6 98 2.7 95 1.7 93 1.7 91 2.5 95 3.6 99
900 3.7 97 2.7 94 1.7 97 1.7 95 2.5 95 3.6 99

7 500 4.1 99 3.5 96 3.1 97 2.4 96 2.1 96 2.9 96 3.7 99 4.2 99
700 4.5 99 3.7 99 3.098 2.597 2.3 98 3.099 3.899 4.3 99
900 4.5 99 3.9 99 3.199 2.599 2.3 99 3.0 99 3.9 99 4.5 99

VI. A REAL-DATA APPLICATION

The step fit procedure has been applied to a large pool of try-out performance-based tasks
scored on a 4 or 5 point scale (0-3 or 0-4) developed at The Psychological Corporation. These
tasks cover five content areas in eleven grade levels and have been administered to a national
sample of elementary and high school students. Each form consisted of 8 to 11 tasks for each
content area and was administered to 400 to 1000 examinees. The purpose of this application
is to examine the sensitivity of the category fit statistics with real data, and to illustrate how the
category fit plots can help in the interpretation of the fit statistics.




Sensitivity of the category fit statistics

As item and category mean squares are indices for the same performance characteristics at
different score levels, they are expected to function consistently in identifying model-data misfit.
To examine the consistency between the item and the category mean squares and their relative
sensitivity, the percentage of items with at least one category flagged for misfit was compared
with the percentage of items considered misfit at the item level. An item or a category is flagged
for misfit if the mean square value is less than .8 or greater than or equal to 1.2. Figure 1
presents the aumber and the percentage of items in each of the four classification categories:

misfit for (1) neither the item nor the category, (2) the category only, (3) the item only, and (4)
both the item and the category.

For infit mean squares, the item and the category fit values are quite consistent with each
other. Less than five percent of the items fall in category 2 or 3, where the item and category
do not agree in rejection. For outfit mean squares, however, there appears to be a great deal of
discrepancy between the item and the category fit statistics in flagging the misfitting status. 61.5
percent of the items not flagged for misfit at the item level had at least one misfitting category.
On the other hand, only 2 items (.2%), flagged for misfit at the item level, were not flagged for
misfit at any of the score categories. This suggests that the unweighted mean squares are too
sensitive when the same rejection criteria as those for the weighted mean square values are used.

Figure 2 presents the relative frequency distributions of item and category mean square
statistics. For this plot, only those items (n=921) scored on the four point (0 to 3) scale were used
so that 0 and 3 were the extreme score categories for all fae items. For the weighted mean
squares, the relative frequency distributions for categories O and 3 are quite close to the
distribution for the item, except that they are a bit more leptokurtic (peaked) than the distribution
for the item mean squares, particularly for category 3. On the other hand, the relative distributions
for the two middle categories are considerably more peaked; hardly any items fall in the rejection
regions. This could be due to the fact the extreme categories are far more discriminative than
the middle categories and are therefore more likely to produce high residual values.

Item Fit Item Fit
Yes No Yes No
Yes 923 52 n Yes 203 2 n
Step 86.7 49 % Step 19.1 2 %
Fit No 46 43 n Fit No 655 204 n
43 4.1 % 61.5 19.2 %
Infit . : Outfit

Figure 1. Relative sensitivity of item and category fit statistics
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The unweighted mean square distributions are, in general, considerably more platykurtic (flat)
than the weighted mean square distributions. The distributions for the two ext-eme categories
are more flat than the distribution for the item. This indicates that the unweightsc. category mean

squares are more sensitive than both the weighted category mean squares and the item mean
squares (weighted or unweighted).

Using category fit plots to help interpret the fit statistics

The category fit plots may enhance the interpretation of fit statistics. This feature will be
illustrated using the category fit plots for three second grade Language items, all extracted from
the same calibration set. One item was scored on a four point (0 to 3) scale, and the other two
on a five point (0 to 4) scale. Figures 3 through 5 show the expected and observed proportion
category fit plots for these items. These plots were constructed by first rank-ordering examinees
in 20 groups according to their ability estimatcs. The expected and the observed proportions in
each response category were then computed for each of the 20 groups. The error bounds for these
plots were constructed using plus and minus 1 standard error of the observed proportion for each
group.

Figure 3 shows an item that fits quite well in all categories. The infit values are all close to
1. All the observed proportion curves fall within the error bound. The outfit values are too high
for category 3 (1.57) and too low for category 4 (.77). But the observed proportion curve in
neither category exhibits any significant departure from the expected proportion curve. As noted

carlier, the outfit values could be spuriously high or low due to extremely small variances of the
category score.

Figure 4 shows a very unusual item. The item infit and outfit vaiues are 1.36 and 1.56,
respectively, which suggest that this item is inconsistent with the test as a whole in measuring
examinee ability. The examinee performance shown in each category clearly illustrates the
inconsistency. For category 0, both the expected and the observed proportions are well/l5elow 1
across all groups. Although both infit and outfit values fall within the acceptable range, this
category is not really discriminating among examinees. Category 2, on the other hand, is the most
probable response category for almost all the ability groups. The misfit pattern is quite obvious.
The observed proportion curve is considerably more 'flat' than the expected proportion curve. And
the observed proportion is constantly high across all ability groups. Even for the highest ability
group, the observed proportion for scoring in this category is nearly .6, almost .4 (or 40 percent)
higher than is expected by their overall test performance. Categories 2 and 3, the two higher
score categories, exhibit similar misfit patterns: Lower proportions of the high ability groups
scored in these categories than expected, while higher proportions of the low ability groups
scored in these categories.

Figure 5 shows a different kind of misfit. The item infit and outfit values are .79 and .71,
respectively, suggesting possible item dependency. One commonly observed fact »~sociated with
inter-item dependency is that the high ability examinees tend to score higher than expected and/or
low ability examinees tend to score lower than expected. Examining the plots for categories 0
and 4, the two most discriminative categories, we observe that for category 0, consistent:y higher
proportions of the low ability groups scored 0 while consistently lower proportions of the high
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ability groups scored 0. For category 4, on the other hand, lower proportions of the low ability
groups (from group 4 to 10) scored 4, while higher proportions of the three highest ability groups
(groups 18 through 20) scored in this category. The deviation patterns exhibited in these two
plots indicate that the high ability examinees, in general, are doing better while the low ability
examinees are doing worse on this item than expected by their overall test performance.

Figure 6 presents the residual plots for all three items discussed in this section. They provide
an alternative way to examine the magnitude and.the pattern of residuals. Figure 6A shows that
all the residual curves cluster tightly around 0. Figures 6B and 6C reveal different patterns of
the residual plots for different score categories as well as the magnitude of the residuals across
ability intervals. The residual plot for category 1 of item 4, for example, is consistently below
0 for most of the lower ability groups and is consistently above O for the five highest ability

groups. Among these high ability groups, the magnitude of the residuals increases as the ability
increases. '

V. SUMMARY AND CONCLUSION

This study explored a step fit procedure using category fit statistics and category fit plots.
The category fit statistics are a simple extension of the item mean square fit statistics to the
category score level. The weighted category fit statistics are as sensitive as and quite consistent
with the item fit statistics in identifying model-data misfit. The unweighted category fit statistics,
on the other hand, are too sensitive to be practically useful for category fit analysis. The
excessive sensitivity of the unweighted category mean square is largely a function of its
sensitivity to the number of categories in the item The category fit plots may enhance the
interpretation of fit statistics by displaying the pattern and the magnitude of the deviations at the
category level.

As educational testing tends toward performance-based tasks with polytomous scoring,
statistical analyses at the item-step level become increasingly important. The procedure explored
in this study looks beyond the item level into the more fundamental units that comprise the item.
This could be a promising procedure not only for examining the statistical characteristics at the
response category level, but also, when integrated with substantive analysis, for diagnosing
potential problems in item content at the category level and for clarifying and i~ proving the
scoring rubric. '
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Figure 6. The residual category fit plot for items 2, 4 and 9
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