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Preface by Series Editor

Mathematics education is established worldwide as a major area of study, with
numerous dedicated journals and conferences serving national and international com-
munities of scholars. Research in mathematics education is becoming more theoret-
ically orientated. Vigorous new perspectives are pervading it from disciplines and
fields as diverse as psychology, philosophy, logic, sociology, anthropology, history,
feminism, cognitive science, semiotics, hermeneutics, post-structuralism and post-
modernism. The series Studies in Mathematics Education consists of research contri-
butions to the field based on disciplined perspectives that link theory with practice.
It is founded on the philosophy that theory is the practitioner's most powerful
tool in understanding and changing practice. Whether the practice is mathematics
teaching, teacher education, or educational research, the series intends to offer
new perspectives to assist in clarifying and posing problems and to stimulate
debate. The series Studies in Mathematics Education will encourage the development
and dissemination of theoretical perspectives in mathematics education as well as
their critical scrutiny. It aims to have a major impact on the development of
mathematics education as a field of study into the twenty-first century.

Unusually for the series this book (Volume 4) and Volume 3 are edited
collections. instead of the sharply focused concerns of a research monograph the
books offer a panorama of complementary and forward-looking perspectives. In
the spirit of the philosophy of the series Volumes 3 and 4 illustrate between them
the breadth of theoretical and philosophical perspectives that can fruitfully be
brought to bear on mathematics and education. The companion to the present
volume is Mathematics, Education and Philosophy: An International Perspective. It
offers a reconceptualization of mathematics from a range of philosophical, educa-
tional and social perspectives, as well as philosophical reflections on mathematics
education itself. The present volume provides a complementary focus. Its empha-
sis is on epistemological issues, encompassing multiple perspectives on the learn-
ing of mathematics, as well as broader philosophical reflections on the genesis of
knowledge. The two books aim to set a research agenda for the philosophy of
mathematics education, a rapidly developing area of enquiry. Together they sur-
vey research, providing a report on advances made so far, as well as indicating
orientations for potentially fruitful work in the future.

0

Paul Ernest
School of Education
University of Exeter

March 1994
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Introduction

Paul Ernest

To introduce epistemological considerations into a discussion of education
has always been dynamite. Socrates did it, and he was promptly given
hemlock. Giambattista Vico did it in the 18th century, and the philo-
sophical establishment could not bury him fast enough. (von Glasersfeld,
1983, p. 41)

This book is a contribution to the philosophy of mathematics education, that
loosely defined cluster of interests at the intersection of mathematics, education
and philosophy. These interests indicate an attitude of mind, the desire to enquire
into philosophical and reflective aspects of mathematics and mathematics education,
as well as a relish for discussion and argument over deep-seated epistemological
issues. They also embody the move towards interdisciplinarity that is sweeping
the social sciences and humanities, which is driven by the desire to break down
barriers between disparate fields of knowledge, and to apply some of the exciting
new methods and perspectives from one field to another. What all of these interests
share is the potential to ignite controversy, as the above quote from von Glasersfeld
suggests.

Central to the philosophy of mathematics education are two problems. First,
there is of course the problem of the nature of mathematics itself. Second, there
is the problematic relationship between philosophy and epistemology and the
learning and teaching of mathematics. Traditionally the first problem belongs to
the philosophy of mathematics. But this field is changing, reflecting a controversy
and a new interdisciplinarity. The philosophy of mathematics is in the midst of a
'Kuhnian revolution'. The Euclidean paradigm of mathematics as an objective,
absolute, incorrigible and rigidly hierarchical body of knowledge is increasingly
under question. One reason is that the foundations of mathematics are not as
secure as was claimed. Technical results such as Goders theorems have shown that
formal xdomatic systems can never be regarded as ultimate. Another reason is a
growing dissatisfaction amongst mathematicians, philosophers, educators and
multidisciplinary scholars with the traditional narrow focus of the professional
philosophy of mathematics, usually limited to questions of the foundations of pure
mathematical knowledge and of the existence of mathematical objects (Kitcher and
Aspray, 1988).

A revolutionary new tradition in the philosophy of mathematics has been
emerging termed quasi-empiricist (Lakatos, 1976; Kitcher, 1984; Tymoczko; 1986),
maverick (Kitcher and Aspray, 1988) and post-modernist (Tiles, 1991). This is
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primarily naturalistic, concerned to describe the nature of mathematics and the
practices of mathematicians, both current and historical. It is quasi-empiricist and
fallibilist in its epistemology, thus displacing mathematics from its place as the
secure cornerstone of absolutism. A number of philosophers and mathematicians
are contributors to this new tradition, including Wittgenstein, Lakatos, Putnam,
Wang, Davis and Hersh, Kitcher, Tymoczko. These authors have proposed that
the task of the philosophy of mathematics is to account for mathematics more
fully, including the practices of mathematicians, its history and applications, the
place of mathematics in human culture, perhaps even including issues of values
and education, in short, describing the human face of mathematics.

This concern with external, social dimensions of mathematics including its
applications and uses, has given rise to the desire to see a multidisciplinary account
of mathematics drawing inspiration from many currents of thought. These in-
clude ethnomathematics (Ascher, D'Ambrosio, Zaslaysky), social constructivism
and the rhetoric of science (Billig, Knorr-Cetina, Latour), post-structuralism
(Foucault, Walkerdine), post-modernism (Derrida, Lyotard), semiotics (Peirce,
Eco), social constructionist psychology (Gergen, Harr& Shotter), feminism
(Harding, Rose), Critical Theory (Habermas, Marcuse), externalist philosophy of
science (Feyerabend, Hacking, Kuhn, Laudan), social epistemology (Fuller,
Toulmin), and philosophy in general (Rorty, Bernstein).

Consequently, there is a number of researchers who are drawing on other
disciplines to account for the nature of mathematics, including Bloor and Restivo,
from social constructivism in sociology; Wilder and Livingston, from cultural
studies and ethno-methodology; Rotman from semiotics, Aspray and Kitcher,
Joseph, Kline and Gillies from the history of mathematics.

Thus a growing number of scholars shares a common concern with external,
social dimensions of mathematics including its history, applications and uses. Many
share a desire to see a multidisciplinary account of mathematics that accommo-
dates ethnomathematics, mathematics education studies, and feminist and multi-
cultural critiques. What drives this for many is a sense of the social responsibility
of mathematics. For once mathematics is reconceptualized as a social construction,
then the social function of mathematics in society must be examined. Its relation
with broade. issues of power, social structure and values, needs to be considered
to see whos' interests it serves. The question must be asked: who in the world
economy gains by mathematics, and who loses? An ethics of mathematics is called
for, once it is seen as an instrument and product of values and power. For one of
the conclusions to be drawn from a radical social view of mathematics is that it
plays a key role in the distribution of life chances. For example, there is wide-
spread concern with how mathematics acts as a 'critical filter' in depriving minor-
ity and women students of equal opportunities in employment. Philosophical and
ethical considerations like these thus have important implications for mathematics,
and especially for educational theory and practice.

Within mathematics education there is an increasing awareness of the signifi-
cance of epistemological and philosophical issues for important traditional areas of
inquiry. Theories of learning have themselves been epistemologically orientated
for some time, with widespread discussion of the philosophical assumptions of
constructivism and various forms of social constructivism and socio-cultural cog-
nition. The present volume makes a significant contribution to this area. A grow-
ing number of scholars is trying to accommodate fallibilist views of mathematics

xi
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and knowledge in their accounts of learning and teaching. Issues and concerns that
now draw on the philosophy of mathematics and philosophical perspectives in
general include mathematical thinking, problem-solving, problem-posing and
investigational pedagogy, curriculum theories and ideologies, teacher education
and development, teacher beliefs, learner conceptions and beliefs, and applications
of such theories as the 'Perry Scheme' (Perry, 1970) and Women's Ways of Knowing
(Beleriky et al., 1986). Scholars are also reflecting on broader social issues including
the culture of mathematics and its politics, its philosophy, its social context, its
language, and issues of gender, race and class.

Philosophical considerations are also central to empirical research in math-
ematics education and its methods of inquiry, with researchers becoming increas-
ingly aware of the epistemological foundations of their methodologies and inquiries,
and referring to them explicitly. Constructivist researchers in particular have helped
raise awareness of this, and the present volume also makes a contribution on these
issues. Multiple research paradigms are now widely used, with proponents of the
scientific, interpretative and critical theoretic research paradigms discussing and
comparing their philosophical and methodological bases (when not engaged in
internecine paradigm war, a la Gage, 1989).

Problems of the Philosophy of Mat. ,ematics Education

This introduction outlines some of the areas of activity in the philosophy of
mathematics education. A more systematic insight into its central questions or
problematique arises from considering Schwab's (1978) four 'commonplaces' of
teaching. These are the subject (mathematics), the learner, the teacher, and the
milieu of teaching. Each gives rise to a characteristic set of problems and ques-
tions, providing a research agenda for the philosophy of mathematics education.

Aims and the Social Context

What are the aims of mathematics education? Are these aims valid? Whose aims
are they? For whom are they intended? What values are they based on? Who gains
and who loses? How do the social, cultural and historical contexts relate to math-
ematics, the aims of teaching, and the teaching and learning of mathematics?

The Nature of Learning

What philosophical assumptions, possibly implicit, underpin theories of the learn-
ing of mathematics? Are these assumptions valid? Which epistemologies and learn-
ing theories are assumed? How can student learning in mathematics be studied
empirically? How can the social context of learning be accommodated? This is the
-entral set of problems addressed in this volume.

The Nature of Teaching

What philosophical assumptions, possibly implicit, does mathematics teaching
rest on? Are these assumptions valid? What means are adopted to achieve the aims

xii
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of mathematics education? Are the ends and means consistent? What is the role of
language and mediating tools in teaching, such as computers, and what is their
impact?

The Nature of Mathematics

What is mathematics, and how can its nature be accounted for? What philosophies
of mathematics have been developed? Whose? What features of mathematics do
they pick out as significant? What is their impact on the teaching and learning of
mathematics?

The Nature of Mathematics and its Relation to Teaching

All mathematical pedagogy, even if scarcely coherent, rests on a philos-
ophy of mathematics. (Thom, 1973, p. 204)

The issue, then, is not: What is the best way to teach? but, What is math-
ematics really all about? . . . Controversies about . . . teaching cannot be
resolved without confronting problems about the nature of mathematics.
(Hersh, 1979, p. 34)

A central problem of the philosophy of mathematics education is the issue of the
relationship between philosophies of mathematics and mathematics education)
The question is: What is their impact on the teaching and learning of mathematics?
Thom and Hersh claim that different philosophical positions have significantly
different educational implications. Steiner elaborates this claim as follows.

Thesis 1. Generally speaking, all more or less elaborated conceptions,
epistemologies, methodologies, philosophies of mathematics (in the large
or in part) contain often in an implicit way ideas, orientations or
germs for theories on the teaching and learning of mathematics.

Thesis 2. Concepts for the teaching and learning of mathematics more
specifically: goals and objectives (taxonomies), syllabi, textbooks, cur-
ricula, teaching methodologies, didactical principles, learning theories,
mathematics education research designs (models, paradigms, theories,
etc.), but likewise teachers' conceptions of mathematics and mathematics
t aching as well as students' perceptions of mathematics carry with
them or even rest upon (often in an implicit way) particular philosophical
and epistemological views of mathematics. (Steiner, 1987, p. 8)

Thus the claim is that the association is bi-directional. First, that all learning and
teaching practices in mathematics rest upon possibly implicit epistemologies or
philosophies of mathematics. Some of these issues are treated in this volume.
Second, that any philosophy of mathematics (including personal philosophies) has
powerful implications for social and educational issues, and many educational and
pedagogical consequences. However, it must be stressed that such consequences

14
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are not strict logical implications of a philosophy, and additional values, aims and
other assumptions are required to reach such conclusions (Ernest 1991, 1994).
Because the link is not one of logical implication, it is theoretically possible to
consistently associate a philosophy of mathematics with almost any educational.
practice or approach. A neo-behaviourist or cognitivist (such as Ausubel) and a
radical constructivist may both be concerned to ascertain what a child knows
before commencing teaching, despite having diametrically opposite epistemologies.
Likewise a traditional purist mathematician and a social constructivist may both
favour a multicultural approach to mathematics, but for different reasons (the
former perhaps to humanize mathematics, the latter to show it as the social con-
struction of all of humanity for social-justice reasons).

Although there is no logical necessity for, e.g., a transmission-style peda-
gogy to be associated with an absolutist, objectivist epistemology and philosophy
of mathematics, such associations often are the case (Ernest, 1988, 1991). They
may be due to the resonances and sympathies between different aspects of a per-
son's philosophy, ideology, values and belief-systems. These form links and as-
sociations and often become restructured in moves towards maximum coherence,
consistency, and the integration of the personality.'

In particular, the observed consistency between the teachers' professed
conceptions of mathematics and the way they typically presented the
content strongly suggests that the teachers' views, beliefs and preferences
about mathematics do influence their instructional practice. (Thompson,
1984, p. 125)

Research over the past several years on teacher's beliefs gives strong testi-
mony that teachers' conceptions make a difference in how mathematics
is taught. (Cooney, 1988, p. 356)

Much work in the philosophy of mathematics education pertains to exploring the
link between the philosophies of mathematics implicit in teachers' beliefs, in texts
and the mathematics curriculum, in systems and practices of mathematical assess-
ment and in mathematics classroom practices and the results with learners. Whilst
much progress has been made, much work remains to be done in the area.

The Philosophy of Mathematics Education Network

The burgeoning of this area of shared interest led to the founding of a philosophy
of mathematics education network in 1990. This is a network of interested per-
sons revolving around an organizing group, a newsletter and periodic conference
symposia.

The Philosophy of Mathematics Education Organising Group is an informal
collective of interested and cooperating scholars, who have made significant con-
tributions to the area in their own personal research. The members are the follow-
ing: Raffaella Borasi (USA), Stephen I. Brown (USA), Leone Burton (UK), Paul
Cobb (USA), Jere Confrcy (USA), Thomas S. Cooney (USA), Kathryn Crawford
(Australia), Ubiratan D'Ambrosio (Brazil), Philip J. Davis (USA), Sandy Dawson
(Canada), Paul Ernest (UK), Group Chair, Ernst von Glasersfeld (USA), David
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Henderson (USA), Reuben Hersh (USA), Christine Keitel-Kreidt (Germany),
Stephen Lerman (UK), John Mason (UK), Marilyn Nickson (UK), David Pimm
(UK), Sal Restivo (USA), Leo Rogers (UK), Anna Sfard (Israel), Ole Skovsmose
(Denmark), Francesco Speranza (Italy), Leslie P. Steffe (USA), Hans-Georg Steiner
(Germany), John Volmink (South Africa), Yuxin Zheng (Peoples Republic of
China).

The Philosophy of Mathematics Education Newsletter is edited in rotation
by members of this organizing group, including, to date: Sandy Dawson, Paul
Ernest, Stephen Lerman, Marilyn Nickson and Leg Rogers. The newsletter is
mailed to several hundred subscribers in many countries including all continents
of the globe. Its aims are to foster awareness of philosophical aspects of math-
ematics and mathematics education, understood broadly and inclusively; to dis-
seminate news of events and new thinking in these topics; and to encourage
international cooperation and informal communication and dialogue between teach-
ers, scholars and others engaged in research in the area. The newsletter has carried
discussions on many themes, including radical constructivism, ethnomathematics,
the popular image of mathematics, post-modernism, revolutions in mathematics
and the philosophy of mathematics education itself.

There are also periodic Philosophy of Mathematics Education symposia at
national and international conferences. The most significant of these was the
Philosophy of Mathematics Education Topic Group at the 7th International Con-
gress of Mathematical Education, Quebec, August 1992, which played an impor-
tant part in the genesis of this book. There have also been philosophy of
mathematics education symposia and discussion groups at the First British Con-
gress of Mathematics Education (Loughborough, 1991), the British Society for
Research into Learning Mathematics (Bath, 1990), and the conferences of the
International Group for the Psychology of Mathematics Education numbers 14
(Mexico, 1990), 16 (USA, 1992) and 17 ( Japan, 1993).

This Volume

This book represents some of the most interesting aspects of current work in the
philosophy of mathematics education, as well as an indication of some of the more
exciting new departures. The aim is both to survey the field and to try to predict
future areas of fruitful research. A few of the chapters began as contributions to
the Philosophy of Mathematics Education symposium at the ICME-7 conference
in Quebec, 1992, but most have now changed beyond recognition. Almost all of
the chapters were specially written for the book, and were solicited from leading
figures as well as from promising young researchers in the field. The response to
the invitation to contribute was so overwhelming, that even when only the very
best chapters were retained, there was enough to make two good-sized volumes.
Therefore this book is published at the same time as a companion volume entitled
Mathematics, Education and Philosophy: An International Perspective. Together the
two volumes survey current research in the philosophy of mathematics and math-
ematics education. As editor, one of the most exciting features of putting this
collection together is that many of the most important contributors to the field are
themselves represented in it.

The contents of this volume have been divided into four sections.

G
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Constructivism and the Learning of Mathematics. This is the largest
section in the book. It explores constructivist and social theories of learning
mathematics, and their relationships, viewed from multiple perspectives. It
also includes discussions of the role and impact of the computer in the
learning of mathematics. Overall, this continues to be one of the most
central areas of philosophical research in mathematics education, and has a
great deal to yield in the way of insight, as well as controversy. How we
view learners' interactions with mathematical situations has to be one of
the most important issues that mathematics educators face.

Psychology, Epistemology and Hermeneutics. This section ties in both
with the preceding section, and with that on post-modernist and post-
structuralist approaches in Volume 1. It brings new analyses from psycho-
analysis, Hermeneutics and other perspectives to bear on issues of
mathematics and learning.

Enquiry in Mathematics Education. This is concerned with both the na-
ture and the outcomes of reflective research that illuminates mathematics in
some significant way. One of the themes in this and the preceding section
is that of the role of language in mathematics education. This is beginning
to emerge more widely as a central issue of concern in research in math-
ematics education, not least because it is implicated in a number or leading
social theories of learning.

History, Mathematics and Education. This relates the historical develop-
ment of mathematics to the teaching and learning of mathematics; a vital
and growing area of research. This section exemplifies the increasing atten-
tion that is being paid to the parallel between cultural and personal episte-
mological developments in the mathematics education community.

As the title of the book indicates, each of these areas concerns epistemological
issues in mathematics education research. The primary focus is the construction of
mathematical knowledge and meaning during the process of learning mathemat-
ics, whether accounted for in individual terms or socially. Also included are an
enquiry in mathematics and mathematics education, and the construction of knowl-
edge in these fields, and over the course of history. The volume can thus legit-
imately claim to embody the epistemology of mathematics education in its concerns
with the nature, genesis and development of knowledge.'

The four themes in the other volume are as follows.

xvi

Reconceptualizing the PhiloLophy of Mathematics. This includes con-
tributions on fresh approaches to the philosophy of mathematics from
fallibilist and social perspectives.

Post-modernist and Post-structuralist Approaches. This is the largest
section, made up of a number of innovative chapters applying post-
structuralist and post-modernist perspectives to both mathematics and math-
ematics education. It offers a challenging and controversial but illuminating
set of theoretical perspectives applied to mathematics education. Overall, it
represents one of the areas of growth in philosophical research on math-
ematics and "cation, and it is expected to bear significant fruits in the
future. It al- ties in with the section on Psychology, Epistemology and
Hermeneutics in this volume.
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The Human Face of Mathematics. In varying ways, this section shows
how the human face of mathematics can be revealed by contrasting indi-
vidual mathematicians, disciplines, or even cultures.

The Social Context of Mathematics and Education. This adds to the
issues raised in the previous section, but considers particularly social as-
pects of mathematics, including the crucial issues of race and gender. Be-
cause of the political implications, and the challenges offered to traditional
ways of thinking, this remains one of the most controversial and important
areas of research.

The titles and groupings indicate some of the central themes in both v :umes.
However there are other themes shared by the chapters too, some remarked above
and some not. These include the relationship of mathematics with art, computers,
history, gender, race, social critique, language and curriculum. Shared perspec-
tives in the chapters include those of social theory, sociology of knowledge, and
various insider, outsider and educational viewpoints. All these recurring themes
serve to illustrate the rich complexity of the chapters and their interconnections,
and the value of interdisciplinary perspectives on mathematics and mathematics
education.

Notes

1. This issue remains controversial, as a reading of, e.g., Kroon (1994) shows.
2. Of course 'splitting' and the simultaneous adoption of inconsistent social roles are

also possible.
3. The one aspect of epistemology that is understressed is the issue of the warranting

of knowledge. See the other volume, Ernest (1993) and Noddings (1991) for a
discussion of this issue.
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Part 1

Constructivism and the Learning of
Mathematics

We can know nothing that we have not made. (Vico, 1710, p. 76)

Until recently, mathematics has supported the deceptive appearance of being fully
formed and perfectly finished knowledge. Hence only a few decades ago, the
dominant view in mathematics education assumed that the teaching and learning
of mathematics only required the effective transmission of mathematical knowl-
edge. After all, did not Shannon and Weaver's Communicatim Theory indicate
that all that is necessary is that the message of mathematics be adequately coded,
transmitted, received by the addressee, decoded and represented internally? Al-
though the 1960s brought a softening of this view, with its emphasis on 'discov-
ery learning', underpinning it was still an empiricist view of mind. Instead of
receiving the message transmitted by the teacher, the learner now looked for
mathematical knowledge in the world, albeit a carefully arranged and orchestrated
corner of the world. Discovery learning also assumes that mathematical knowl-
edge is pre-existing: it just needs to be actively noticed to be discovered. Further-
more, because it is 'truth', when discovered, it is recognized unproblematically.

The outlooks I have just described are not the products of naive error. To
assert this would be false and unjust. Instead, they ari a function of an empirical
scientific or positivistic epistemology and methodological paradigm. This was the
legacy of mathematics education, emerging from the disciplines of mathematics
and experimental psychology. Even the influence of Piaget on the 1960s' discov-
ery learning approach was assimilated into this scientific research paradigm. How-
ever in the decade that followed a different paradigm emerged better reflecting
Piaget's psychology and his clinical interview method. Other strands combined
with this, drawing on Kelly's Personal Construct Theory, Problem-solving re-
search from the Gestalt psychologists and early cognitive scientists such as Newell
and Simon, as well as advances in cybernetics and other areas. The outcome was
a new research paradigm for mathematics education, that of constructivism.

Piaget's constructivism has its roots in an evolutionary biological metaphor,
according to which the evolving organism must adapt to its environment in order
to survive. Likewise, the developing human intelligence also undergoes a process
of adaptation in order to fit with its circumstances and remain viable. Personal
theories are constructed as constellations of concepts, and are adapted by the twin
processes of assimilation and accommodation in order to fit with the human organ-
ism's world of experience. Indeed Piaget claims that the human intelligence is
ordering the very world it experiences in organizing its own cognitive structures.
L'intekence organise lc monde en s'organisant elle-mew (Piaget, 1937, cited in von
Glasersfeld, 1989a, p. 162). Epistemologically, what is of tremendous significance
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in Piaget's constructivism is (1) the notion that knowing is embodied, and essen-
tially implicates interaction with the world, and (2) his 'Genetic Epistemology'
that sees knowledge of the individual and group as historical and evolutionary,
growing and changing to meet challenges and contradictions. This first aspect
directly challenges the separation of mind and body in Cartesian Dualism that has
so long dominated western thought. In their survey Varela et al. (1991) distinguish
the three stages of Vognitivism, Emergence and Enactive' in the development of
cognitive science, and locate Piaget's contribution already in the last stage.

As part of the broader interdisciplinary movement of Structuralism, Piaget
was seduced by the Bourbakian account of mathematics as logically constituted by
three mother structures. Like many thinkers before him, Piaget afforded a privi-
leged place to mathematical knowledge in his scheme However, a scholar who
has been influential in freeing constructivism from these constraints is von
Glasersfeld. He has taken the scepticism of Piaget's constructivism further, and
argued in a radical version of constructivism that all knowledge, including math-
ematics, is constructed and fallible. That conclusion embroiled radical con-
structivism in a great deal of controversy in mathematics education, where until
recently absolutist views of knowledge prevailed. However, the debate over the
nature of mathematical knowledge, and in particular, that between absolutism and
fallibilism, is not reflected in this present section on constructivist theories of the
learnin: of mathematics.' For the contributors to this section, this debate is largely
settle:. Instead a new set of controversies has set in concerning such things as
individual versus social construction. Epistemological issues, such as those raised
by constructivism do seem to be dynamite in education!

Ultimately, the import of any theory of learning mathematics consists in facil-
itating interventions in the processes of its teaching and learning. Constructivism
accounts for the individual idiosyncratic constructions of meaning, for systematic
errors, misconceptions, and alternative conceptions in the learning of mathemat-
ics. Thus it facilitates diagnostic teaching, and the diagnosis and remediation of
errors. A growing number of instructional projects is based on a constructivist
sensitivity to children's sense making and on the spontaneous strategies they have
been observed to develop (Grouws, 1992). Until recently, the available literature
on constructivist learning theory in mathematics has been limited to one or two
monographs like Steffe et al. (1983). However, a growing number of publications
is appearing offering a discussion of constructivist views on the learning and
teaching of mathematics (e.g., Davis et al., 1990; Steffe, 1991; von Glasersfeld,
1991, 1994). In addition, there is a growing literature about the relationship be-
tween radical and individualistic versions of constructivism and social constructivism
(e/g., Ernest, 1991, 1993; Steffe, in press). The present section adds to this litera-
ture, and begins to explore a number of significant issues for the future, such as
the role of microcomputers in helping learners to construct mathematical knowl-
edge and meaning. Microcomputers have great potential here, because they en-
courage children to think 'outside their heads', providing direct evidence of
children's learning and thought processes.

Note

1. But see the section on 'Reconceptualizing the Philosophy of Mathematics' in the
companion volume Mathematics, Education and Philosophy.
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Chapter 1

A Radical Constructivist View of
Basic Mathematical Concepts

Ernst von Glasersfeld

I am not a mathematician. My interest is in conceptual analysis, and mathematical
concepts are extremely interesting especially the seemingly simple ones that are
linked to the basic elements of arithmetic. The most basic of these elements are
the symbols that we call 'numerals'.

There is an old statement that mathematics has to do with symbols and the
manipulation of symbols. Frequent repetition of this statement has encouraged the
belief that it is only the symbols that matter and that their conceptual referents
need not be examined presumably because to adults who have become used to
doing arithmetic, there seems to be no difference between numerals and the con-
cepts they refer to. But symbols do not generate the concepts that constitute their
referents; they have to be linked to them by a thinking agent, even when this
linkage has become automatic. It is, indeed, a ground rule of semiotics that a
sound or a mark on paper becomes a symbol only when it is deliberately associ-
ated with a conceptual meaning.

I trust that yot, will agree that mathematics could not have happened if the
concepts of 'unit' and 'Plurality of units' had not somehow been generated. How
this was done may not be quite so obvious.

Thinkers as diverse as Edmund Husserl, Albert Einstein, and Jean Piaget have
stated very clearly that the concept of 'unit' is derived from the construction of
'objects' in our experiential world.

Einstein's description of this construction is one of the clearest:

I believe that the first step in the setting of a 'real external world' is the
formation of the concept of bodily objects and of bodily objects of various
kinds. Out of the multitude of our sense experiences we take, mentally
and arbitrarily, certain repe. edly occurring complexes of sense impressions
(partly in conjunction with sense impressions which are interpreted as
signs for sense experiences of others), and we correlate to them a concept

the concept of the bodily object. Considered logically this concept is
not identical with the totality of sense impressions referred to; but it is a
free creation of the human (or animal) mind. (Einstein, 1954, p. 291)

I have elsewhere shown that the concept of 'plurality', (unlike that of unitary
physical object) cannot be derived from 'sense impressions', but only from the
awareness that the recognition of a particular physical object is being repeated.
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In Piaget's terms, it is not an empirical abstraction from sensory-motor ex-
perience, but a reflective abstraction from the experiencer's own mental opera-
tions. This is an important distinction. Let me try to make it as clear as possible.
Initially, the operations of constructing or recognizing physical objects do require
sense impressions; but the realization that one is carrying out the same recognition
procedure more than once, arises from one's own operating and not from the
particular sensory material that furnishes the occasions for this way of operating.

'Units' and 'pluralities', however, do not yet constitute a basis for the devel-
opment of mathematics or even arithmetic. At least one other concept is needed:
the concept of 'number'.

In our book on counting types, Steffe, Richards, Cobb, and I have presented
a model of how an abstract concept of 'Number' may be derived from the activity
of counting (Steffe et al., 1983). So far, I have not seen a more plausible model.
But irrespective of the adequacy of that particular model, I have no doubt that
both the notions of ordinal and cardinal number derive from the operations an
active subject carries out and not from any specific sensory material.

If you agree that the concept of 'Number' requires both the concepts of 'unit'
and 'plurality' and if you further agree that without a concept of 'number' there
can be no development of a mathematics of numbers, then it is clear that this
mathematics is an affair of mental operations that have to be carried out by an
active subject. As Hersh says:

Symbols are used as aids to thinking just as musical scores are used as aids
to music. The music comes first, the score comes later. (Hersh, 1986,
p. 19)

If this is so, it would seem to follow incontrovertibly that a string of math-
ematical symbols remains meaningless until someone has associated specific men-
tal operations with the symbols. These operations, because they are mental
operations, cannot be witnessed by anyone else. What can be witnessed, are the
symbols that an acting subject produces in a spoken or written form as the result
of his or her mental operations and one can then examine whether or not they
are compatible with the symbols one would have produced oneself.

This involves a two-fold process of interpretation:

First, the other subject's interpretation of the string of symbols he or she
has produced;
Second, one's own interpretation of these as one perceives them.

I submit that this awareness of processes of interpretation would have far-
reaching consequences for any theory of proof. But this is not my present concern.

Here, I want to emphasize that the conceptual analyses I have suggested
would have far-reaching consequences also for the teaching of arithmetic. If
mathematical symbols have to be interpreted in terms of mental operations, the
teacher's task is to stimulate and prod the student's mind to operate mathemat-
ically. Sensory-motor material, graphic representations, and talk can provide occa-
sions for the abstraction of mathematical operations, but they cannot convey them
ready-made to the student. The frequently used expression 'mathematical objects'
is misleading, because the meaning of mathematical symbols is never a static
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object but rather a particular way of operating. This goes for plurality and number,
for point and line, and consequently for all the more complex abstractions of
mathematics. The teacher's task, then, is to orient the students' mental operating;
and to do this, the teacher needs at least a hypothetical model of how the student's
mind operates at the outset of the lesson (von Glasersfe1d and Steffe, 1991).

To conclude, I would summarize these consequences by saying that, if we
really want to teach arithmetic, we have to pay a great deal of attention to the
mental operations of our students. Teaching has to be concerned with understand-
ing rather than performance and the rote-learning of, say, the multiplication table,
or training the mechanical performance of algorithms because training is suit-
able only for animals whom one does not credit with a thinking mind.
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Chapter 2

Interaction and Children's
Mathematics

Leslie P. Steffe and Ron Tzur

Knowledge implies interaction, and we cannot step out of our domain of
interactions, which is closed. We live, therefore, in a domain of subject-
dependent knowledge and subject-dependent reality .. . We literally cre-
ate the world in which we live by living it. (Maturana, 1978, pp. 60-1)

In recent years, the social interaction involved in the construction of the math-
ematics of children has been brought into the foreground in order to specify its
constructive aspects (Bauersfeld, 1988; Yackel, et al., 1990). One of the basic goals
in our current teaching experiment is to analyse such social interaction in the
context of children working on fractions in computer microworlds. In our analy-
ses, however, we have found that social interaction does not provide a full account
of children's mathematical interaction. Children's mathematical interaction also
includes enactment or potential enactment of their operative mathematical schemes.
Therefore, we conduct our analyses of children's social interaction in the context
of their mathematical interaction in our computer microworlds.1

We interpret and contrast the children's mathematical interaction from the
points of view of radical constructivism and of Soviet activity theory. We chal-
lenge what we believe is a common interpretation of learning in radical
constructivism by those who approach learning from a social-cultural point of
view. Renshaw (1992), for example, states that 'In promulgating an active, con-
structive and creative view of learning, . . . the constructivists painted the learner
in close-up as a solo-player, a lone scientist, a solitary observer, a meaning maker
in a vacuum.' In Renshaw's interpretation, learning is viewed as being synony-
mous with construction in the absence of social interaction with other human
beings. To those in mathematics education who use the teaching experiment meth-
odology, this view of learning has always seemed strange because we emphasize
social interaction as a primary means of engendering learning and of building
models of children's mathematical knowledge (Cobb and Steffe, 1983; Steffe,
1993).

We see at least three possible reasons why constructivist learning could be
interpreted as a univocal process. The first is that mathematics may be viewed as
being innate, a view similar to Choinsky's (1980) view of language as being
innate. Among the neo-Vygotskians, however, this assumption would be in
conflict with Vygotsky's general genetic law of cultural development. A second
more plausible reason is the radical constructivists' view of human beings as
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self-organizing, self-reproducing, living systems. This second reason, when cou-
pled with the principle of subject-dependent knowledge and reality, may very
well lead to interpreting learning as a univocal. process. A third reason for the
belief that radical constructivists omit social interaction in their accounts of learn-
ing is seemingly based on a belief that Piaget did not regard social interaction as
being essential in logical-mathematical development. However, Piaget's work can
be legitimately interpreted as a socio-cultural approach even though those who
concentrate specifically on social interaction interpret Piaget as taking an almost
exclusive biological approach to genetic epistemology (Shotter, 1994).

We view learning as the capability of an individual to change his or her
conceptual structures in response to perturbation (Konold and Johnson, 1991). To
the extent that these conceptual structures are operative mathematical schemes,
mathematical learning occurs as a result of using the schemes in some type of
interaction. By working intensively with children in teaching experiments, we
have come to believe that children's learning of mathematics is much more com-
plex than we ever imagined. In view of our concept of the mathematics of chil-
dren as a dynamic and living subject, it is too much to expect that the grand
theories of Piaget and Vygotsky would include an account of mathematical learn-
ing. Our purpose in this paper is to begin formulating a model of mathematical
learning that supersedes the meanings of learning in Piaget's and Vygotsky's theo-
ries. We first delineate some basic Piagetian and Vygotskian notions for the pur-
poses of comparison and contrast.

Piaget's and Vygotsky's Views on Learning

Piaget (1964) regarded learning as being subordinate to development. He viewed
the development of knowledge as a spontaneous process tied to the whole process
of embryogenesis.

Embryogenesis concerns the developmenc of the body, but it concerns as
well the development of the nervous system, and the development of
mental functions. In the case of the development of knowledge in chil-
dren, embryogenesis ends only in adulthood. It is a total developmental
process that we must re-situate in its general biological and psychological
context.

Learning presents the opposite case. In general, learning is provoked
by situations provoked by a psychological experimenter; or by a teacher
with respect to sonic didactic point: or by an external situation. It is
provoked in general, as opposed to spontaneous. In addition, it is a lim-
ited process limited to a single problem, or to a single structure.
(Piaget, 1964, p. 8)

Piaget's view of learning as being provoked by situations is compatible with
our understanding of human beings as interactive organisms. Piaget did not re-
gard the situations in the framework of the classical stimulusresponse paradigm.
He believed that a stimulus was a stimulus only when it was assimilated into a
structure, and it was the structure which set off the response. Because the concep-
tual structures setting off the response were the products of development, learning
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could be understood only in terms of development. In the case of mathematics,
a particular structure might be provoked or learned if it is based on an existing,
simpler developmental mathematical structure.

Piaget regarded the basic mental operations involved in mathematics learning
as products of spontaneous reconstruction.

This brings us back to the child, since within the space of a few years he
spontaneously reconstructs operations and basic structures of a logico-
mathematical nature, without which he would understand nothing of
what he will be taught in school . . . He reinvents for himself, around his
seventh year, the concepts of reversibility, transitivity, recursion, recipro-
city of relations, class inclusion, conservation of numerical sets, measure-
ments, organization of spatial references. (Piaget, 1980, p. 26)

Piaget's notion of development as a spontaneous reconstruction is in contrast to
learning as being provoked. In our superseding model of learning, two aspects of
spontaneous reconstruction are of importance. The first is the unintentionality of
spontaneous reconstruction. Children certainly do not intend to reconstruct op-
erations and basic structures of a logical mathematical nature. The intentionality
of other human beings with regard to children's reconstructions is not as certain.
But we believe that only rarely do other human beings with whom children
interact intend for the children to reconstruct operations and structures of a logical
mathematical nature. The second is the independence of spontaneous recon-
struction. Children contribute the operations and basic structures of a logico-
mathematical nature to their interactions in their milieu. But we do not interpret
Piaget as having meant that the child is a solo player, a lonely voyager, or a
meaning maker in a vacuum even though he viewed mathematics as a contribu-
tion of the child. Piaget (1964) made it clear that the mathematical operations and
basic structures he identified are reconstructed by children as a product of their
interactions within their physical, social, and cultural environments. In this sense,
Piaget explained mathematical development as a result of children interacting in
their environments as self-regulating and autonomous organisms.

Vygotsky (1978) criticized the view of learning being subordinate to devel-
opment. He also rejected the view of learning being development; in which learn-
ing is perceived as the process of elaborating innate structures. Instead, Vygotsky
(1978) emphasized the essential influence of learning on development. In his work,
he concentrated on means by which children acquire language as a result of social
and natural processes. We appeal to Vygotsky's general genetic law of cultural
development for insight into how he understood the influence of learning on
development (Vygotsky, 1978; quoted in Wertsch and Tom, 1994):

10

Any function in the child's cultural development appears twice, or on
two planes. First, it appears on the social plane, and then on the psycho-
logical plane. First it appears between people as an interpsychological
category. This is equally true with regard to voluntary attention, logical
memory, the formation of concepts, and the development of volition . . . It

goes without saying that internalization transforms the process itself and
changes its structure and functions. Social relations or relations among
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people genetically underlie all higher functions and their relationships.
(Wertsch and Toma, 1994, p. 162)

Consequently, social interaction would seem to play a major role in Vygotsky's
approach to learning. Interpreters of Vygotsky have made this clear.

One of the basic tenets of the Vygotskian approach to education is the
assumption that individual learning is dependent on social interaction.
However, it should be clear from the outset that this is not merely a
statement of correlation between individual learning and social context.
This thesis should be interpreted in its strongest possible form, propos-
ing that the qualities of thinking are actually generated by the organiza-
tional features of the social interaction. (van Oers, 1992, p. 2)

Wertsch and Toma (1994) also interpreted Vygotsky's general genetic law of
cultural development in its strong form. 'In an essential sense, the same mental
functions appear on the social and individual planes' (p. 162).

Both van Oers and Wertsch and Toma emphasized that individual mental
functioning is not a simple and direct copy of social interaction because of the
genetic transformations involved in internalization. Internalization, the fundamen-
tal process involved in learning, makes it possible to hypothesize personal forms
of what van Oers regarded as the cultural meanings of mathematics. The gener-
alized knowledge and skills for dealing with the world that have been built up
throughout cultural history, according to van Oers (1992), 'can be transformed
into curriculum content and, as such, it can be taught. Personal meaning (sense),
however, cannot be taught directly; it can only be built up by the involvement in
an educative relationship' (p. 3). Through one of his major concepts the zone
of proximal development Vygotsky stressed that cultural meanings can be-
come intermingled with personal sense through an educational process.

By claiming that cultural meanings can be taught, we interpret van Oers as
implying that through social interaction, children internalize the organizational
features of the social interaction by means of their personal concepts. This may
be more than van Oers would say, but based on his following comments, it is
necessary to somehow conclude that the personal meanings are a contribution of
the individual.

The meaningfulness of the learning process refers to the process of at-
taching personal sense to the actions, rules, methods and values as pro-
vided by a school subject . . . Learning as a process of appropriation of
culture, then, is meaningful as far as it encompasses both kinds of meaning.
(van Oers, 1992, p. 4)

Toward a Superseding Model

In our opinion, we should retain the most fundamental and essential points of
Vygotsky and Piaget while formulating a superseding model of mathematics learn-
ing. That is, we must try to formulate a model in which mathematical learning
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is not perceived as being provoked as opposed to spontaneous. To do this we
separate the intentionality of adults and the unintentionality of children and strive
to maintain the second aspect of spontaneity we identified in the preceding sec-
tion. Because learning will always involve other people or external situations and
will be usually intentional on the part of adults, we also strive to maintain an
emphasis on something similar to what van Oers called cultural meanings of
mathematics.2 But rather than cast cultural meanings in some idealized form,
independent of the knowledge of human beings, we stress our mathematical
knowledge and how we use that knowledge when working with children. The
crucial realization for us is that the children cannot construct our knowledge,
because our knowledge is essentially inaccessible to them. The best they can do
is to modify their own knowledge as a result of interacting with us and with each
other.

It is always possible for a teacher to enact his or her knowledge in some form.
For example, a teacher might demonstrate how to find a family of fractions while
explaining and discussing his or her actions. The social interaction with the chil-
dren would then be with reference to the actions of the teacher and the children's
attempts to understand and reproduce these actions. In this, there would be cul-
tural meanings of mathematics to learn (the teacher's meanings) even if a major
focus of the social interaction was with respect to the children's personal concepts.
Their personal concepts would be viewed from the frame of reference of the
teacher's concepts, and it would be the goal of the teacher for the children to
appropriate the teacher's concepts. This is how we interpret van Oers' (1992)
comment that the meaningfulness of the learning process refers to the process of
attaching personal sense to the actions, rules, methods, and values as provided by
a school .subject. Our view of mathematical learning is quite different in that we
begin with the children's mathematical concepts and operations as we understand
them.

When teaching children, we base our interactions with them on schemes we
observe the children use independently in mathematical activity. This is our fun-
damental way of acknowledging the children as self-organizing, living systems
who have their own mathematical knowledge. Our emphasis on children's schemes
is compatible with Piaget's emphasis on spontaneous reconstruction as well as
with Vygotsky's ontogenetic orientation, which asserts 'that it is possible to under-
stand many aspects of mental functioning only if one understands their origin and
the transitions they have undergone' (Wertsch and Tema, 1994, p. 161). The mental
functioning to which the mathematics of children refers consists of children's use
of their mathematical schemes. But it is not that we want to simply observe
children's mathematical activity; rather, we want to be involved in the transitions
it undergoes. in the process of doing so, we learn how we can bring forth the
mathematics of children and how we can modify it. The mathematics of children
is not independent of our mathematical concepts and operations because it is con-
structed partially through their interactions with our goals, intentions, language,
and actions.

Our orientation is compatible but not identical with Vygotsky's ontogenetic
orientation. It is compatible because by seeking to bring forth and to modify the
mathematics of children, we are involved in its construction. It is not identical
because we acknowledge that the mathematics of children is an observer's concept
springing from our own conceptual operations as we attempt to explain children's

12

`,) u



Interaction and Children's Mathematics

language and actions. Although we regard children as having a mathematics of
their own, the only access we have to their mathematics is through our interactions
with them. We contribute our conceptual operations to our interactions just as
children contribute their operations and basic structure of a logico-mathematical
nature to their interactions.

The mathematics of children appropriately includes those operations and basic
structures identified by Piaget. But it is not restricted to those products of spon-
taneous development. In contrast to Piaget's approach, in which no agent intends
for children to construct reversibility or transitivity, for example, we do intend
for children to construct mathematical concepts and operations of a particular
kind. We imagine how the children might engage in mathematical activity before
we actually work with them. We analyse the children's current cognitive schemes,
plan specific situations, and discuss what we consider to be appropriate interac-
tions in their zones of potential constructions. We also discuss how we might
interact with the children so that they might form goals for action and initiate and
sustain mathematical activity. In the actual teaching episodes, it is our intention to
look for the children's contributions to the situations and to interpret the language
and actions of the children on-the-spot. We attempt to act on those interpretations
in ways we perhaps did not foresee in our planning sessions. The children's lan-
guage and actions guide us as we interact with them. This is an important point
and one which we believe distinguishes our approach from those who work from
a Vygotskian perspective. We do our very best to give voice to the children's
mathematics. Nevertheless, when observing the mathematics of children, we co-
create our occasions of observation with children. This is critical for us because it
is one of our goals to learn how to act when teaching children mathematics.

We plan specific situations for the children with respect to computer
microworlds we designed for the teaching experiment. When designing the
microworlds, it was our intention to create possible actions, which, when used by
children with specific intentions and purposes, could be implementations of their
mathematical operations. In this sense, the possible actions can be regarded as
mathematical tools for the children to use. As tools, the possible actions are not
independent of the children's mathematical operations. The use to which the poss-
ible actions are put depends on the operations of which the children are capable.

Our design of the possible actions of the microworlds is compatible with
Vygotsky's belief that a defining feature of human mental functioning is its
mediation by tools and signs (Wertsch and Toma, 1994). Vygotsky (1981) be-
lieved that `by being included in the process of behavior, the psychological tool
alters the entire flow and structure of mental functions' (p. 137). He went on to
say that the psychological tool 'does this by determining the structure of a new
instrumental act, just as a technical tool alters the process of a natural adaptation
by determining the form of labor operations' (p. 137). The possible actions of a
microworld can be regarded as technical tools that can be used by children to
serve their goals and intentions in the context of doing mathematics. We believe
Vygotsky would agree that, for a child who has constructed the mental operations
of partitioning, the possible action parts could indeed be a useful device. But it is
the child who makes the possible action useful by assimilating it and by coordin-
ating it with his or her mental operations. To the extent that the assimilated
possible actions are psychological tools, their use is dependent on the overall goals
and intentions of the individual using them. In this view, psychological tools can
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Figure 2.1: The Computer Screen of Sticks
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modify actions, operations, and intentions, but they do not determine the struc-
ture of those modified actions and operations because the operations were avail-
able to the subject prior to the assimilating activity.

The possible actions in the microworld Sticks (see Figure 2.1) are planned and
programmed with respect to the mental operations we believe are involved in the
generation of the rational numbers of arithmetic. These possible actions include:
draw, copy, marks, parts, cut, join, repeat, break, image, pull parts, and measure.
With 'draw' activated, a stick may be drawn by sweeping the cursor horizontally
across the screen. This stick can be copied as many times as desired by using
'copy'. Another possible action is to mark a stick with a vertical hashmark by
clicking on the button 'mark', positioning the cursor on the stick where the mark
is to be made, and clicking on the stick. The stick can be also marked into any
number of equal pieces by activating 'parts', dialing a whole number between 2
and 99, and then clicking on a stick. A stick may be cut as many times as desired
using 'cut', joined to any other stick using 'join', or dragged to any position on
the screen (including a trash box). A stick can be repeated any number of times
and automatically joined to those preceding end-to-end using 'repeat' (a short-cut
of 'copy' and join'). Any marked stick may be broken using 'break', and any
mark can be moved or erased using menu commands. Using 'image', an image
of a stick can be made and dragged to any desired position. One can also pull any
number of parts out of a stick without changing its original appearance by using
'pull parts'. Any stick can be measured using any other stick by copying the stick
to be used as a measuring unit into the ruler, activating 'measure', and then
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clicking on the stick to be measured. Two auxiliary possible actions are 'fill' and
'label'. Any stick or part of a stick can be filled in with one of ten different colours
or labelled by a fraction symbol.

An Analysis of a Teaching Episode in Sticks

To illustrate our approach, we describe how Arthur and Nathan, two 10-year-old
children, used their partitioning and iterating operations in the microworld Sticks.
We argue that the children had already reconstructed these operations in a way
Piaget described and that -,Are brought the operations forth through social inter-
action. We also argue that the two children used what we refer to as an iterative
partitioning scheme as they worked in the microworld Sticks in a goal-directed
mathematical activity. The iterative partitioning scheme appeared in the children's
mathematical activity without suggestion from their teacher.

Partitioning and Iterating Operations

In a teaching episode held on 8 October 1992, the teacher asked Arthur and
Nathan to make a set of fraction sticks based on a unit stick Arthur has just made.

Protocol I (8 October 1992)
T: What I want you to work on together is to make a set of fraction

sticks. What do I mean by a set of fraction sticks based on that unit
stick?

A: Thirds (holds up three fingers) it would be thirds.
N: A set of fifths would be five, sevenths would be seven, and hun-

dredths would be a hundred.
T: Okay. What would be the largest fraction to start with?
A: One-half!
T: Start with one-half, then go to the next, the next, .. .

The teacher's primary goal was to establish a situation that could lead to inde-
pendent mathematical activity. The situation as it was eventually formed could be
called open-ended in that the children could use various strategies in making an
indefinite number of fraction sticks.

Based on Arthur's comment, 'Thirds, it would be thirds.' and on Nathan's
elaborating comment immediately following, we infer the children formed a shared
goal to make fraction sticks sticks partitioned into equal sized pieces. We also
infer that the children could mentally project a specific numerosity of units of
equal size into the original stick, and that they could disembed any one of these
units from the stick and iterate that unit a sufficient number of times to reproduce
a partitioned stick of length equal to the original.

The children seemed to have established what we regard as partitioning and
iterating operations. These operations are the basic reason why the children could
form a shared goal as well as a shared open-ended situation. Without these com-
mon operations, it would have been implausible for the children to form a shared
goal or to engage in collaborative mathematical activity for any length of time.
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An Iterative Partitioning Scheme

After the children established a shared starting point and goal, the teacher assumed
the role of listener, making as few interventions as possible into their independent
mathematical activity. Trying to mark the unit stick into two equal pieces, the
children took turns using the mouse. The challenge of marking a stick into two
equal pieces could have been circumvented by allowing them to use 'parts'. We
chose, however, to configure the microworld so that 'parts' was unavailable to
the children; it was our goal to find what actions the children would use in the
microworld to mark the stick into its halves.

Protocol II (Continuation of Protocol I)
A: (After making a copy of the original stick) Let's see, we'll have to

break it, so marks. (Clicks on 'marks' but does not mark the stick;
gives the mouse to Nathan.)

N: Marks, right? But how will we make the marks?
A: Wait. (Fast) wait, wait, wait, wait (takes the mouse from Nathan

and refuses to let go while smiling at Nathan). 1 need it.
N: (Lets go of the mouse.)
A: (Works for approximately three minutes. Draws a stick while mum-

bling 'one- half'. Repeats it using 'repeat', producing a stick marked
in the middle that is shorter than the original stick. Starts over,
drawing a stick on top of the original stick, visually estimating where
to stop; repeats the new stick, producing a stick marked in the middle
but shorter than the original. Draws a stick directly beneath the
original stick, again visually estimating where to stop drawing; re-
peats this stick, producing a stick marked in the middle but this time
longer than the original. Cuts the stick using 'cut' making it equal
to the original. Gives the mouse to Nathan.)

Arthur's strategy of visually estimating where to stop drawing, indicates that
he focused on the length of the original stick. His use of 'repeat' indicates that
'one-half' referred to one of two equal parts of the original stick, and that the
parts he made were iterable parts of the whole stick. Consequently, we attribute
an iterative partitioning scheme to him and the assimilating operations of parti-
tioning and iterating.

An iterative partitioning scheme is also indicated by Nathan's actions. When
Arthur gave Nathan the mouse, there were three sticks on the screen of same
length; the original, the copy that Arthur had made, and the last stick that Arthur
made using 'cut'.
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Protocol III (Continuation of Protocol II)
N: (Works for approximately four minutes. Places two of the three
sticks end-to-end and the third stick over the two, trying to gauge when
the adjacent endpoints of the two sticks separate the third stick into two
pieces of the same size. Marks the two sticks lying end-to-end at the
endpoints of the third stick, then moves the third stick above the two
others).

(After breaking the two marked sticks lying end-to-end, checks to
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Figure 2.2: The Screen after Arthur's Attempt
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find if the two pieces of one stick are of equal size by placing them on
the third stick. They are visually asymmetrical, so drags the two pieces
away. Joins the two pieces of the remaining broken stick and drags the
joined stick to the third stick; breaks it and cuts a small piece off the
longer of the two pieces; repeats the remainder of the cut piece, produc-
ing a stick marked in the middle; he compares this stick with the third
stick by placing it beneath it and finds that they are of the same length.

Nathan's actions of placing the two sticks end-to-end and the third stick on
top of these two indicated the presence of partitioning operations of the same
nature as Arthur's. Cutting a piece off the longer of the two pieces of a stick and
then repeating that part is quite similar to Arthur's actions of repeating a drawn
stick and comparing it to the original. The comparison both children made be-
tween the stick produced by using 'repeat' and the original stick illustrates the
necessity they must have felt that a stick together with its replicate must produce
the original stick or one of equal length. This necessity was a result of the chil-
dren's conceptual operations that they enacted in the microworld.

Both Arthur and Nathan used the possible actions of the microworld to
achieve their goal of marking a stick into two equal pieces. In this sense, the
possible actions constituted tools. But, as tools, the possible actions were not
somehow independent of the children's mental operations. Rather, they served in
the enactment of the children's mental operations. For example, the children's use
of 'repeat' constituted an enactment of their mental operation of unit iteration.
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Figure 2.3: The Screen during Nathan's Attempt
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The children did not simply repeat a stick, but did so with the intention of making
a stick of length equal to another stick. We would not say, however, that the
possible microworld actions as assimilated by Arthur and Nathan determined the
structure of their actions. Rather, their intentions as well as the conceptual opera-
tions available to them were also involved. Nevertheless, 'repeat' made it possible
to act in ways that simply would not have been possible in other media. We claim
that this and other possible actions became a constitutive part of their partitioning
and iterating operations. Our claim provides an alternative interpretation of
Vygotsky's claim that a defining feature of human mental functioning is its me-
diation by tools and signs.

Mathematical Interactions

Given the lack of verbal interaction in Protocol II. it might seem as if no math-
ematical communication had occurred between tl, children. To offset this mis-
leading interpretation, it is important to interpret their mathematical activity as
occurring in the context of their agreed upon open-ended situation and goal of
making fraction sticks. While the children were working, there were four indica-
tions of an implicit consensual agreement between the two that they were trying
to make one-half of the original stick, and further, one-third, etc. Arthur's refusal
to be dominated and his subsequent collaboration with Nathan is the first indication
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of a consensual agreement. Arthur had just recently joined the teaching experiment,
but Nathan had been a participant for one year. Therefore, we interpret Arthur's
establishment of co-ownership of the mouse as an attempt to establish equality
with Nathan. The next indication is the exchange of the mouse between the two
children without any verbal comments of the sort that Arthur was done and that
Nathan should begin. The third indication is that Nathan made no suggestions for
how Arthur should proceed while ne was working Arthur had indeed estab-
lished his equality. The fourth indication is that each child understood what the
other was doing without interrupting the other. The two children's use of the
results of the actions of the other to serve in their achievement of a goal consti-
tutes reciprocal interactions.

Maturana and Varela (1980) suggested two cases of interactions by which an
organism can affect the behaviour of another organism:

(a) By interacting with it in a manner that directs both organisms toward
each other in such a way that the ensuing behavior of each of them
depends strictly on the following behavior of the other . . . A chain of
interlocked behavior can thus be generated by the two organisms. (p. 27)
(b) By orienting the behavior of the other organism to some part of its
domain of interactions different from the present interaction, but com-
parable to the orientation of that of the orienting organism. This can take
place only if the domains of interactions of the two organisms are widely
coincident; in this case no interlocked chain of L ehaviour is elicited be-
cause the subsequent conduct of the two organisms depends on the out-
come of the independent, although parallel, interactions. (Maturana and
Valera, 1980, pp. 27-8)

We could not say that the ensuing behaviour of each child, as described in
Protocols II and Ill, depended strictly on the following behaviour of the other
it was not a chain of interlocked behaviour. The relation between the two children
could be more adequately understood by the second case, in which, according to
Maturana and Varela (1980), the two organisms communicate. To infer that the
two children were indeed communicating as explained by Maturana and Varela,
we would need to establish that their interactions in the microworld were widely
coincident. The indications are that (a) the children established a shared goal of
making fraction sticks, and (b) each child understood and used the results of the
other.

Maturana and Varela (1980) commented that 'the second case is the basis for
any linguistic behavior' (p. 28). We certainly agree with them, but there was a
marked absence of linguistic exchange between Arthur and Nathan during the
period of their consensual activity. So, rather than use 'mathematical commun-
ication' to refer to what transpired between them, we make a distinction between
two types of mathematical interactions: (a) non-verbal mathematical communica-
tion to emphasize their interactions in the microworld and their concomitant non-
verbal interpretations of each other's interactions, and (b) verbal mathematical
communication to emphasize their verbal interactions with each other and with
their teacher as they established the goal of making fraction sticks. Both types of
mathematical communication are examples of social interaction.
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The verbal mathematical communication between Arthur and Nathan in Pro-
tocol I illustrates a difficulty when simply applying Vygotsky's general learning
theory to explain what goes on in a consensual domain of interactions. The par-
titioning and iterating operations of the children were brought forth through
social interaction in the context of the teaching episode. But we could not say that
these operations first occurred between the children in social interaction and on',
then were they internalized. Rather, the operations had been already interiorized
(not internalized) prior to the teaching episode. There was nothing that would
lead us to infer that these operations first appeared in social interaction intermentally,
and then, through a process of internalization, intramentally.

The non-verbal mathematical communication between Arthur and Nathan
also presents a difficulty in applying Vygotsky's general learning theory to explain
what goes on in a consensual domain of interactions. This communication was
social, but it was dependent upon the children enacting their iterative partitioning
schemes in the microworld to make fraction sticks. We could not say that the
qualities of thinking were generated by the organizational features of the social
interaction, as suggested by van Oers. Rather, the social interaction was depend-
ent on the children's iterative partitioning scheme. This operative scheme served
as the basis of the organization of the children's communication rather than being
a result of the organization.

The question now is whether there was ever a time when the operations
appeared in social interaction prior to their interiorization by Arthur and Nathan.
This same question is germane to all of the operations Piaget identified as being
developmental, such as reversibility or transitivity. What is the role of social
interaction in children's construction of these operations? Although this interest-
ing question lies outside of the methodology of the teaching experiment, we do
have some thoughts on the more general question of the relation between social
interaction and children's construction of basic mathematical operations. It is im-
plausible, for example, that children's construction of representational space (Piaget
and Inhelder, 1963) would first appear on the social plane and only then on the
intramental plane. That is not to say that social interaction does not contribute to
children's construction of representational space. But we fail to understand how
social interaction can be the primary source of children's construction of represen-
tational space. Fundamental operations such as re-presentation (von Glasersfeld,
1991) that is, the regeneration of a past experience in visualized imagination
are the primary sources of representational space. Like the non-verbal interaction
between Arthur and Nathan, we believe these operations are indispensable in
children's mathematical interactions. In particular, they form the basis of what
children contribute to social interaction and in turn are modified by the social
interaction. 1 hese operations also serve in more general subjectenvironment
interactions of which social interaction is but one type. We look at these funda-
mental mental operations and to general subjectenvironment interactions for
an explanation of children's construction of operations like partitioning and iter-
ating. Limiting our explanations of higher mental functions to social interaction
leaves out operations like unitizing, uniting, and re-presenting as well as subject
environment interactions that are not social. Such a limitation is unnecessary and
counter-productive. But neither do we want to limit our explanations in such a
way that they leave out social interaction, because social interaction is the primary
means of interacting mathematically with children.
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Learning a Units-Coordinating Partitioning Scheme

Based partially on our knowledge of the partitioning and iterating operations of
Arthur and Nathan, we decided to guide the children toward establishing fraction
families. We knew that the children had constructed a units-coordinating scheme
in multiplicative contexts (Steffe, 1992). That is , the children could coordinate the
production of, for example, a unit of four and a unit of five by distributing the
unit of five across each element of the unit of four, producing four units of five
as a result. We intended for the children to combine their units-coordinating
schemes and their unit fraction schemes to produce families of equal fractions.'
The children had not established fraction families prior to our working with
them.

We decided to work with the fraction 1/3 rather than with 1/2 because chil-
dren's special knowledge of doubles often makes it unnecessary for them to inten-
tionally cany out conceptual operations to achieve their goals. It was the specific
goal of the teacher to establish a situation of learning rather than to encourage.,
independent mathematical activity. So, the situation was initially not open-ended
from the point of view of the children.

Protocol IV
T: (To Arthur) could you draw a long stick for me?
A: (Draws a stick.)
T: (To Nathan) mark the stick into thirds before you make a copy.
N: (Activates 'parts', marks the stick into three parts; makes five copies;

upon the teacher': request, fills 1/3 of the original stick).
T: (To Arthur) can you pull that ()lit?
A: (Activates 'pull pans', pulls the coloured part of the original stick

from the stick, leaving the original stick intact as shown in Figure
2.4).

Upon the teacher's request, the children contributed the actions involved in
establishing the situation, but the situation was open-ended only from the point
of view of the teacher.' The children had formed no goals that would sustain
independent mathematical activity of the nature illustrated in Protocols II and III.
But at point, we were not interested in establishing an open-ended situation
that would bring forth independent mathematical activity. Rather, we were inter-
ested in establishing a situation of learning that might lead to an accommodation
of the children's fraction schemes.' Prior to the teaching episode, we had consid-
ered a zone of potential construction for the children by imagining a consensual
domain of mathematical interactions like those in Protocol IV. We thought we
knew enough about the children that we could anticipate what they might do.

Protocol V (Continuation of Protocol IV)
T Now, what is a way to represent that one-third by another fraction?
N Two sixths!
T. Arthur, how world you do that?
A: (After thinking . approximately 15 seconds) cut the third into

one-half! (Dials '2' and clicks on the stick pulled from the original
stick.)
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Figure 2.4: The Screen after Arthur Had Used 'Pull Parts'
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T: That would be?
A: Two-sixths (activates label', labels the marked stick '2/6').
T: Okay, Nathan, could you use a copy to do another one?
N: (Activates 'parts', dials '3,' and clicks on a stick marked into thirds;

activates `pull parts' and pulls the first three parts from the stick,
yielding the arrangement pictured in Figure 2.5. Activates 'meas-
ure', clicks on the 3/9ths stick, yielding '1/3'. Pulls one part of the
three from this stick and measures it, yielding '1/9%)

T: Can you tell me another way to figure out ninths?
N: There are three in each third, and er,ree times three is nine!

Nathan's utterance `two-sixths' oriented Arthur toward finding a way to
reconstitute one of three equal pieces into sixths. 'Sixths' had two meanings for
Arthur. It meant six equal parts as well as any one of these six parts iterated to
reconstitute a partitioned whole. However, he faced the additional constraint of
finding a way to transform three equal pieces into six equal pieces. This transfor-
mation involved a coordination of breaking the pulled part into two pieces and of
breaking the three parts of the original stick into six pieces. In the coordination,
the pulled part had to be maintained both as a part separate from the marked stick
and as a part belonging to the marked stick. In this, Arthur had to simultaneously
apply partitioning operations to the three pieces to produce six pieces without
destroying the three pieces. The transformation was even more demanding be-
cause the six pieces had to remain embedded in pairs within the three pieces so
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Figure 2.5: Computer Screen after Nathan's and Arthur's Work
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that one piece out of three yielded two smaller pieces out of six. These operations
constituted the beginnings of recursive partitioning, a sophisticated form of units-
coordination.

Arthur's coordination is an explanation of what he learned. But it does not
fit our understanding of what it means to solve a problem because, as will be
confirmed in Protocol VI, he activated the units-coordinating scheme he used in
multiplying to partition the three parts of the partitioned whole. Hence, he had a
coordinating scheme ready-at-hand and did not need to construct a mechanism of
coordination. Nevertheless, we consider the activation of the units-coordinating
scheme an event of learning because it was activated in the context of Arthur's
apparently novel situation. Moreover, there were two other novelties in its appli-
cation. First, he knew the results of applying it (six), as well as the numerosity of
one of the composite units (three), and he had to find the numerosity of the
second composite unit, which was unknown. Second, he had to use it in simul-
taneous partitioning rather than in distributing, which can be sequential rather
than simultaneous.

The Function of Social Interaction in Learning

A primary goal of social interaction in mathematics learning is to induce
perturbations of the nature experienced by Arthur. We had no foresight that
Nathan would immediately say 'two-sixths', and such unexpected events will

41
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always be the norm in mathematics teaching. Nevertheless, we anticipated prior
to the teaching episode that both Arthur and Nathan would be able to bear the
perturbation created by the teacher's question and to neutralize the perturbation
by conceptually coordinating schemes they already had available.

Planning situations that lead children to sense perturbation and to successfully
modify their currently functioning schemes is an essential component of our in-
volvement in children's construction of mathematics. It is crucial to present a
situation in such a way that the children activate one or more schemes. Also, the
schemes must be insufficient for the children to achieve the set goal. In this, we
strive to think like the children in order that our language and actions are in
harmony with the children's current knowledge. Being in harmony with the
children serves as a background against which we can initiate provocations that
might induce the children to modify their current mathematical knowledge.

From the perspective of an observer of the interaction in Protocol IV, it is
legitimate to say that the teacher's knowledge of rational numbers constituted
cultural meanings of mathematics and that Arthur and Nathan were trying to
make sense of those cultural meanings. But this global analysi.i did not help us in
specifying how we should interact with the children in order to bring forth,
sustain, and modify their mathematics. For instance, the teacher could have cho-
sen to demonstrate how to make one-sixth from one-third, while explaining and
discussing what he was doing. If this had been the case, the quality of the chil-
dren's thinking might have been actually generated by the organizational features
of the social interactions. However, this method of teaching demonstrating,
explaining, and discussing does not respect the mathematics of children nor
does it contribute to our concept of children with mathematical knowledge of
their own.

We could not say what Arthur learned (Protocol V) was actually generated
by organizational features of the social interaction. Nathan did say 'two-sixths',
but that served only to orient Arthur. Nathan did not perform the actions of
breaking each third into sixths, nor did he indicate in any way to Arthur that this
was what he would do if he were to find another fraction to represent one-third.
Rather, Arthur contributed his own operations to neutralize the perturbation he
seemed to experience during the 15 second-thinking time. When he said. 'Cut the
third into one-half', he constructed a way of proceeding that belonged to him. He
had learned how to act (interact) in the microworld with regard to the situation
at hand. We claim that Arthur had learned a very general way of interacting in the
microworld, and he could now communicate with Nathan concerning those
potential interactions.

Still, the mathematical interactions that transpired between the teacher and
the children (Protocols IV an V) did influence the quality of what Arthur (and
subsequently, Nathan) learned. The children's willingness to carry out the re-
quests of the teacher led to a situation they co-produced. This co-production of
the situation kept the children active and involved, and when the teacher posed the
question. 'Now, what is a way to represent that one-third by another fraction?'
(Protocol V), both children could interpret the teacher's question relative to their
current and immediate records of operating. The children were in a state of acti-
vation, and the teacher's question made sense to them relative to their past oper
ating and to possible actions they could perform to make another fraction.

It wasn't as if the children were trying to make sense of a mathematical object
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`out there' another fraction. What they were trying to do was to find a way of
interacting in the microworld so that they could make another fraction based on
the one they had already made. 'Making sense', then, can mean (a) to construct
ways and means of operating in a medium, based on current knowledge, in order
to neutralize perturbations induced through social interaction, and (b) to become
explicitly aware of those potential ways and means of operating through a process
of symbolization. In this, the children must be able to bear the perturbations. This
is how we interpret van Oers' comment that mathematics learning is a process of
making sense of mathematics as brought to us by cultural history.

Symbolization in Learning

After Arthur and Nathan had taken turns making 2/6, 3/9, 4/12, and 5/15 and had
labelled each marked stick with the appropriate fraction numeral, the teacher de-
cided the children could engage in symbolic activity.' The goal was for Arthur
and Nathan to transform the potential actions of producing equal fractions into
symbolic action. Using 'label', the teacher selected'1/18' and asked the children
what the numerator should be.

Protocol VI
A: Six! Because three times six is eighteen.
1': (Selects '1/66')
N: Twenty-two! Because three times twenty-two is sixty-six.

Symbolizing the potential operations involved in making and coordinating parti-
tions of the part and the whole was possible and almost immediate. Both children
abstracted the multiplicative scheme (the units-coordinating scheme) they had
combined with their unit fraction schemes to produce fractions based on 1/3.
It might appear as if the children had constructed an equivalence scheme for
fractions on a symbolic level. However, they had yet to construct fundamental
operations as indicated by the following protocol.

Protocol VII
T: (Asks Nathan to put the numeral '22/66' on the screen and to make

a copy of the unmarked original stick) I want to see how you would
do that one.

N: Ah, Urn . . .

T: Could you do it using this one here (points to one-third of a marked
stick)?

N: Yeah, there would be (can't use the teacher's suggestion, so begins
dialing up to 66 using 'parts'.

1': You can't do it that way. Can you find another way to figure it out?
N: (Dials to '33' and clicks on the stick; pulls ten parts from the stick,

dials '2' and marks each of the ten parts into two equal parts. Using
'repeat', repeats the stick three times, pulls six parts from it, and
then joins that stick to the stick marked into sixty parts, forming a
stick marked into 66 parts.)
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In a subsequent task, where the children's activity was evolving into inde-
pendent mathematical activity, Arthur selected '1/69' as the denominator. In his
attempt to make 23/69 using an unmarked unit stick, Arthur dialed to '23', and
then marked the original stick into 23 parts. He then dialed '3' and marked each
of the first nine parts into thirds in an attempt to generate 23 of 69 parts. Being
unsuccessful, he then pulled 23 of the 27 parts, intending to repeat this stick to
make a stick with 69 parts.

Although Arthur's actions exemplify an awareness of the units-coordination
of three and 23 to make 69 parts, there was still no indication of an awareness of
the structure of operating with his unit-fraction scheme. Neither he nor Nathan
structured their actions starting with one out of three equal parts. Had the children
constructed equivalent fractions, the most likely method for making 22/66 or 23/69
would have been to partition a stick into three parts of the same size and then
partition each one of the three parts into 22 or 23 parts. There is always the
possibility that the children could have operated in this way, but in subsequent
teaching episodes, it proved to be a conceptual obstacle for both children.

Coordinating a partition of a third pulled from the whole with the same
partition of each of the three parts in the whole apparently does not imply an
inversion of the partitioning operations. That is, it does not necessarily imply a
coordination of uniting the subparts of the partitioned third into a composite unit
and uniting the subparts of the three parts of the whole into three composite units.
When the children symbolically partitioned a part pulled from the three parts of
the stick, say into 22 subparts, and then each of the three parts in the whole stick,
yielding 66 subparts, the results of the partitioning actions seemed to consist of
composite units of subparts of the second partition. That is, the children seemed
to focus on the 22 and 66 subparts rather than on partitioning the unit into three
parts each partitioned into 22 subparts. They seemed to lose the first partition
when focusing on the second. Symbolizing their potential operations was well
within their zone of potential construction, but the symbolizing process did not
reveal to the children the structure of operating that was obvious to us as we
observed what the children did.

Uniting operations assemble individual unit items into a composite unit and
partitioning operations break a simple unity into parts individual unit items.
These operations, when established as inversions of each other, yield an operative
scheme for finding fractions equivalent to a given fraction. But even this revers-
ible scheme is qualitatively distinct from an equivalence relation for fractions as
understood by the children's teacher. Furthermore, Protocol VI provides a case of
children not making sense of their teacher's helpful hints, because they could not
assimilate and interpret those hints using their current schemes.

Perspectives

In the superseding model of mathematics learning we arc building, we are trying
to reformulate the concepts of learning and 'development so they arc useful in
social interaction with children. Learning is regarded as accommodation in the
context of scheme theory (von Glasersfeld, 1991) and occurs as a product of
interaction. This view of learning has two advantages.

First, learning can be regarded as being a result of intentional interaction on
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the part of the adult, but be non-intentional on the part of children. Although
children can participate in educational contexts with an intention to learn, that
intention .cannot include an intention to learn a specific item. It can be only a
general willingness to be involved in situations of learning in which the children
know that something is going to be learned. What is being learned is regarded as
the result of a particular accommodation of the children's current mathematical
concepts or schemes, which usually occurs outside of the awareness of children.

Second, the teacher's interventions are essential in children's learning. But in
this, we speak in terms of perturbations as well as in terms of provocations,
because it is the children who must experience the perturbations. A provocation
by the teacher can only induce a perturbation in the child, and there is no neces-
sary correspondence between the two.

Neutralizing Perturbation

There are three basic ways for children to neutralize perturbation. First, it is quite
possible for children to take action which neutralizes a perturbation without
modifying their current schemes. This was essentially the case when Arthur and
Nathan found a way to mark a stick into two pieces of equal size in Protocol II.
Another way children have to neutralize perturbation is to modify their current
schemes, which is what we mean by learning. This latter case is illustrated in
Protocol V by Arthur modifying his unit fraction scheme to find another fraction
for 1/3. His search for a way to proceed was made easier by Nathan's comment
'two-sixths', because Arthur knew how to make any fraction using possible ac-
tions of the microworld. The learning event was different from what it might
have been had Nathan not made the comment, but this only illustrates differing
possibilities for a teacher's interventions. What Arthur learned was not limited to
the particular context of learning, because he could find fractions other than 2/6
equal to 1/3, barring practicalities. Moreover, in future teaching episodes, he
demonstrated that he could find fractions equal to any proper fraction, which
demonstrates what we mean by potential actions. His combination of his units-
coordinating scheme and his unit-fraction scheme was indeed an accommodation.
However, even this scheme was qualitatively distinct from what we regard as
fractional equivalence.

Third, a child may neutralize a perturbation by a major reorganization of a
current scheme. None of the accommodations illustrated in the protocols were of
this nature. The most likely candidate was Arthur's construction of his units-
coordinating partitioning scheme. His construction of the scheme opened a broad
range of mathematical activity for him that was on a par with that in which
Nathan could already engage. Nevertheless, the possibility of Arthur combining
his units-coordinating scheme and his unit-fraction scheme was ready-at-hand and
did not constitute a major reorganization of the latter scheme although it was a
reorganization. It was not a major reorganization because, from all indications, it
was constituted at the same level of interiorization as his unit-fraction scheme.

Arthur's scheme for making two-sixths was more complex than the schemes
he modified. But it is somewhat misleading to say that the more complex struc-
ture might be learned if it is based on a simpler structure, because the observer ran
know only in retrospect what a child does learn. What the child learns may not
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Figure 2.6: Social Interaction, Learning and Development

Subject - Environment Interactions

AEMTgaie

be what was intended by the teacher, and this simple realization is what blocks us
from adopting the point of view that cultural meanings of mathematics may be
taught in any straightforward way.

Had Arthur been able to start with 23/69 and produce 1/3 in such a way that
one could infer inversions of those operations that he used when producing 23/69
starting with 1/3. then there would have been a solid indication that he was aware
of how he operated in the latter case. Such an awareness indicates interiorization
of operations, which is one thing we mean by mathematical development.

Social Interaction, Learning and Development

The relationships we perceive among social interaction, learning, and develop-
ment is diagrammed in Figure 2.6. We view learning as engendering mathematical
development of a particular kind, but there are developmental patterns that are
difficult to adequately explain solely on the basis of learning. For example, math-
ematical learning is not sufficient to explain children's construction of number
sequences, because this construction involves a metamorphosis of children's
sensory-motor counting schemes (Steffe, 1991).7 Nevertheless, we regard the pro-
cess of metamorphosis to be set in motion in experiential contexts as a result of
a particular kind of accommodation an accommodation where children repro-
cess results of operating. We call such an accommodation engendering in that case
where it leads to auto-regulation of those processes that constituted the accommo-
dation. If auto-regulation yields a reorganization of the scheme or schemes modi-
fied in the engendering accommodation at a new level of interiorization, then we
refer to the accommodation as metamorphic or developmental. This is another
way to express the insufficiency of experience in the construction ofmathematics.
In this, we can legitimately say that learning contributes to development in a way
that is compatible with Vygotsky's claim, while retaining the Piagetian notion
that de!elopment contributes to as well as constrains learning.

The kind of learning in which we are most interested occurs through social
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Figure 2.7: Types of Interaction

Subject-Environment
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Mathematical
Communication
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Communication

Mathematical
Interactions

interaction, one type of the subjectenvironment interactions depicted in Figure
2.6. We have illustrated that mathematical interactions include mathematical com-
munication, non-verbal and verbal, as illustrated in Figure 2.7. But they also
include non-communicative mathematical interactions. One is the mathematical
interactions of human beings with non-human elements in their environments
and another is the mathematical interactions with others that are interlocked as
explained by Maturana and Varela.

Mathematical Interactions and Independent Mathematical Activity

An important realization is that not all social interaction between two or more
human beings leads to learning. We illustrated in Protocols II and III how Arthur
and Nathan engaged in non-verbal mathematical communication without learning
anything mathematical that was observable to us. As the two children interacted
mathematically in the microworld, they implemented conceptual operations that
were already available to them; partitioning unit sticks and iterating a substick to
produce the original unit stick. But they did not establish a general method for
finding where to mark a stick into two equal pieces. Nevertheless, each engaged
in actual mathematical activity the other child could interpret. We regard such
independent mathematical activity as being of central importance in the math-
ematical education of children because it represents, along with mathematical
activity involving verbal mathematical communication, a major portion of what
we regard as the mathematics of education.

We believe that it is a fundamental responsibility of mathematics teachers to
learn how to bring forth independent mathematical activity of children through
social interaction and how to establish mathematical communication with and
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among children. Although it is possible for this independent mathematical activity
to engender learning, it is not the only context in which we encourage learning.
Another major responsibility of the mathematics teacher is to establish situations
of learning that he or she believes will engender learning activity of the children.
These situations of learning should generate perturbations in what we regard as
the children's range of bearable perturbations. A perturbation is likely to be bear-
able if a child also experiences the satisfaction of assembling those actions that
neutralize the perturbation. This places the teacher in a very delicate position,
because the situations of learning should not be so far removed from children's
current ways and means of acting mathematically that the children cannot modify
those ways and means to neutralize the experienced perturbations.

Perturbations have a dual nature that we always consider they drive math-
ematical activity and learning, but they also can be debilitating in those cases
where paths of action cannot be found to neutralize them. By stressing the chil-
dren's independent mathematical activity, we strive to foster the confidence in the
children that they can do mathematics and that their methods are acceptable to
their teacher. We also strive to foster the confidence in the children that they can
Icarn mathematics, and to do so we believe that the children must be successful
in modifying their current mathematical schemes.

Notes

1. The research reported in this chapter was conducted as part of the activities of the
NSF Project No. RED-8954678, Children's Construction of the Rational Num-
bers of Arithmetic. All opinions expressed are solely those of the authors.

2. 'External objects' means that the objects are external to the individual's present
cycle of operations, but not external to the possible experiential worlds of the
individual.

3. In a unit fraction scheme, starting with a fractional whole the child must be able
to find n parts of the whole such that n iterations of any part yields the whole. In
this, starting with the fractional whole, the child must be able to find a part such
that the whole is n times the part and the part is one of n parts of the whole.

4. There are two broad types of open-ended situations. The first brings forth inde-
pendent mathematical activity like that in Protocols II and III and the second
brings forth problem-solving activity in which children must modify their current
schemes to be successful. Situations of the second type are legitimate situations of
learning. Here, we are speaking of open-ended situations of the first type.

5. We consider learning to include problem-solving activity, but we do not equate
learning and problem-solving. Learning is much broader and includes modifica-
tion of current schemes in their use. Such modifications can occur in situations
established through interlocked mathematical interaction. The mathematical inter-
action in Protocol IV is mainly of this type.

6. When activating 'label', a numeric key pad appears on the screen that enables
children to scroll through the unit fractions indefinitely, beginning with '112'.
Children can select any unit fraction and any numerator using the numeric key pad,
and after selecting the fraction click on the screen to form the fraction numeral.

7. Here, we consider mathematical learning to occur in experiential contexts. It is
useful to distinguish these cases of learning from cases where changes occur in a
scheme when, from an observer's perspective, the scheme is not in activation.

3()
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These latter cases may be regarded as developmental accommodations if they
involve a metamorphosis of the scheme.
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Chapter 3

Radical Constructive Criticisms of
von Glasersfeld's Radical
Constructivism

Robert S.D. Thomas

Introduction and First Criticism

Now that radical constructivism has been paid the high compliment of being
debunked, but, not being bunk, will not go away, it may be useful to try to
improve upon it; hence this attempt at constructive criticism, some of which is
radical (see Suchting, 1992, pp. 223-54). Radical constructivism holds that one
constructs one's own notion of the world in accordance with a confluence of
genetic and evolutionary epistemologies (Piaget, 1950; Campbell, 1974; and see
Ray, 1993). One of the most important consequences of this fact is that all one can
claim for one's world notion is viability, more in keeping with evolving evolu-
tionary than with genetic epistemology (Varela et al., 1991). Being grateful to von
Glasersfeld for having pointed out to me what I now accept, 1 have no desire to
attack radical constructivism. There are, however, three ways in which I find it
seriously, even radically, deficient, and I want in this chapter to set them out in
the hope that my doing so will be some use where 1, and apparently von Glasersfeld,
care most about usefulness, in education. These deficiencies are a lack of due
emphasis on the construction of the self, whether over against the world or as a
part of it, the denial of the possibility of knowledge of the world, and von
Glasersfeld's ignoring of the massive social assistance in one's construction of
one's notion of the world. The latter two of these deficiencies have considerable
importance for education, and that is my reason for airing my criticisms in this
place.

Since it is of less educational importance, let me deal at once with my first
point. While von Glasersfeld, echoing Piaget, does acknowledge that one con-
structs oneself while constructing the rest of the world, he puts less emphasis on
this side of what is really a symmetrical matter. Rather frequent observations that
one is unjustified even in concluding that there is a world that one knows should
be balanced by observations that one is equally unjustified in concluding that there
is a knower. (For instance, von Glasersfeld (1983, pp. 207-18) where he writes,
'words cannot refer to things that "exist" independently of an experiencer' a stronger
statement even than that we cannot know anything about such things, which
weaker statement does refer to such things, as (naughtily) does the stronger.)
Instead, von Glasersfeld thinks that his consciousness has 'the capability to find
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[him] self' (von Glasersfeld, 1991, pp. 57-68). What one clearly does have is
knowings, but the world and the knower are symmetrically problematic. One
might say that from Descartes' cogito follows logically only cogitation. The sym-
metry of the situation has been brought home to me by the argumentation of
Varela, Thompson, and Rosch's impressive book The embodied mind which, against
Kant's noumena without, sets the equally inaccessible noumenon within. The con-
sequences of this are far-reaching but not specifically educational, and so I do not
wish to pursue them here. Let me mention only one argument that some persons
will find attractive. Descartes argued that the world is not totally illusory because
God would not deceive us. A similar argument is quoted in Rupert Riedl's treat-
ment of evolutionary epistemology: the world is not totally illusory because our
adaptation to it cannot be totally mistaken or we would not be viable (Riedl, 1984;
Pepper, 1958, p. 106).

Second Criticism Abandonment of Knowledge

My second criticism of von Glasersfeld's recent writings, such as I have read, is
that he seems to deduce from constructivism, which I have no wish to deny, that
one cannot have knowledge of the world. Whether this is a change of ground
from earlier work, as I think it may be, I think that it is both important and
wrong. He seems to have begun by saying that constructivism requires that we
change what we mean when we claim to know something about the world, not
that we cannot do it at all. In 1985 he was attempting 'to pick apart and recon-
struct the concept of knowledge', as usual of 'experiential reality', explained as
follows.

By 'experiential reality' I mean ordinary reality, which is, of course, the
reality of relatively durable structures that we are able to establish, to main-
tain, and to use in the ordering and management of our actual experience.
(von Glasersfeld, 1985)

Perhaps daunted by the prospect of convincing everyone of what they mean by
knowing the world as well as how we learn about the world, he seems to have
shifted to denying that such knowledge is possible. In one sense, this is easy to
see to be true. If one's idea of knowing is altogether unrealistic, then one does not
'know' the world in that unrealistic sense. For instance, if one means by knowing
the kind of certainty demanded by Descartes or even the more popular aim of
belief that is both warranted and true. But one still does know the world in the
way that other persons do, and with an appropriate change in one's notion of
knowledge, one can be said, simply, to know the world. Since knowledge of the
world is of very great educational moment and a denial of its possibility would
alarm more than just Neanderthal back-to-basics parents, this is a point of some
political importance and worth straightening out if possible.

Once one adopts the constructivist point of view on knowledge, one sees that
epistemology since at least Kant has been heading in that direction. Knowing as
the construction of a viable notion of the world, not as the 'correct' mirroring of
external reality and, even more difficult for the mirroring point of view, internal
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reality relieves us of the necessity of striving for an unattainable perfect mir-
roring (see Rorty, 1979). The cartographers' ideal of the full-scale map of the
universe can be set aside (if one can find somewhere to put it). The relation of
knowledge to the world, misunderstood as a mirror image's relation to the object
reflected must be replaced by the relation of reference. When one says 'cat', one
refers to cats; one does not, as von Glasersfeld agrees, 'capture' or reflect anything
of or about cats (von Glasersfeld, 1992, pp. 421-32). Knowledge and even lies and
fiction refer; he seems to have forgotten this important but unique relationship,
the existence and importance of which is widely acknowledged.' One routinely
refers even to what one denies exists; this seems to me to refute any limitation on
what one can know.' There seem to be no bounds to what we can refer to and
so potentially have knowledge of. It needs to be said that having a viable notion
of a piece of the world is to know that piece of the world. The fact that there are
numerous ways in which to know even that piece of the world has to be recog-
nized and taught. If there is any lesson to be learned from the history of science,
it is that the knowledge of one time is not the knowledge of another time.

One may wish to standardize what one means by knowledge by saying that
scientific knowledge is always within some shared understanding. One can only
know the atomic number of oxygen within an understanding of chemical ele-
ments that assigns atomic numbers. Within an understanding, a piece of supposed
knowledge can be marked right or wrong accordingly as it agrees or disagrees
with the official knowledge within that understanding. Then it can be a goal of
science teaching to help students to achieve various understandings within which
to have knowledge.'

The one piece of epistemology that might with benefit be passed along with
the history of science is the point that to seek perfect knowledge within a single
understanding is to ignore the inherent limitations of that understanding. That
such perfect knowledge is possible is an enlightenment myth that needs to be
eliminated, if only to benefit the next generation of students through their teachers,
since it is probably already too late for the current generation of students, whose
surrounding culture clings to this myth fervently.

With a properly circumscribed claim, we can claim to know the world. What
else? If we had only our own observations to go on, then we might reasonably
be concerned whether our knowings were indeed of the world. But since our
scientific knowledge is concordant with that of others within common under-
standings of the world, there is no practical room for doubt that it is the common
world that we understand and have knowledge of. It is all, very well for von
Glasersfeld to be 'post- epistemological', but to insist that it is not the world that
we know is more like the post-modernist cutting off the branch on which one sits
(von Glascrsfeld, 1992, pp. 421-32). Amusing as creative writing, but not to be
taken seriously or taught to children. The very discussion of constructivism relies
on common understanding; it is important for consistency and for teaching that
it does not lapse into a self-contradictory absurdity comparable to that of a pros-
elytizing solipsism.

Mathematical knowledge in particular needs the idea of constructivism as the
means of gaining knowledge to prevent its customary appearance as the revelation
of truth pre-existing human rationality but miraculously commensurate with it.
My view of mathematics as the gradual exploration and working out of the con-
sequences of rationality is a view of mathematics as knowledge in spite of its not
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being truth. If it were not knowledge, however, we would not work for it or
teach it or value it.

Can one apply t.11-; )tion of knowledge to itself? Yes, and then the question
is whether it is viable iJ posit a world that one knows. This question is interesting
because it does not have a simple answer. In quantum theory quite notoriously
and in psychotherapy too, observation typically. has a sufficient effect upon the
observables that they cannot be held to be there independently of observation (see
for example, Lofgreen, 1992). It seems to be the case therefore that the positing
of a knower-independent reality to be known may be viable at certainscales and
in certain circumstances but break down in the atomic and the interpersonal. At
the common scales where our language does its best work (see Rosch on con-
cepts'), the positing of a world does seem to be viable. With the lessening of the
threat of global nuclear annihilation, we have more reason to hope so than in
recent years.

I am going to conclude these remarks on the need for a redefinition of knowl-
edge rather than its abandonment by contrasting knowledge with something more
than knowledge rather than with something less, which seems to be more often
done. Like von Glasersfeld and Varela. whom I have already cited, I have a rela-
tionship with psychotherapy. For the last ten years, I have enjoyed a meta-therapy
session once a week with a therapist for the discussion of his practice, in particular
the knowledge difficulties he encounters with his clients and knowledge difficul-
ties that they persist in. His and their difficulties are of different sorts, but we have
come to describe the events by which persons construct themselves, including
their notions of the world, as 'structuring events'. Each structuring event consists
of the differentiation of something from the field of possible foci of attention, the
categorization of this thing in accordance with the structure of previous experi-
ence which this categorization modifies as the current experience becomes past

the feeling that colours the event, and the action that is its result (Romeyn and
Thomas, Undated). This crude analysis, while our own, appears to be a simpli-
fication of the Buddhist wheel of life, and 1 introduce it in order to contrast
knowledge of a person, which could be the basis of such an event with no appre-
ciable feeling component, with sympathetic understanding of the same person's
situation, which 'could differ on account of a feeling component both appreciable
and appreciated (Varela et al., op. cit., Chapter 6). As I remarked in my first
criticism, we are not in a .position to know even ourselves in the mythical way
that knowledge was once thought to work. But in the redefined knowledge, it is
rather important that sympathetic understanding is based on knowledge, however
far from mythic its proportions. Therapists and teachers often have and need it.
And frequently sympathetic understanding is based on knowledge, although that
knowledge may 124 incommunicable and at best is only viable (see Polanyi's 'tacit
knowledge', 1964).

Third Criticism Social Constructivism

The knowledge on which sympathetic understanding is based is much more likely
to be self-deceptive than scientific knowledge is, and so for the sake of writing
about knowledge that is socially viable and not just good enough for private
purposes 1 turn to scientific knowledge, including mathematical knowledge. Much
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of what von Glasersfeld has written about constructivism has implicitly placed
one, as knower, in a vacuum.5 Especially in educational rather than resear. con
texts, this is particularly strange, since in educational contexts one typically is able
to check one's constructions' descriptions against the descriptions of others' con-
structions. It is of course an important matter of principle that one cannot check
one's constructions as though they were done with straightedge and compasses
but is limited to checking descriptions including consequences. Much of this
checking is not even voluntary but is imposed upon one by being at school.

Some, including those that think that everyone thinks only with words, seem
to consider that we can check our constructions (which they very likely do not
think of as constructions) against those of others. If, however, one adopts the
constructivist point of view on knowledge, then one is forced to admit that this
is impossible. It is therefore impossible in principle to compare constructions..
From this it is possible to conclude that one cannot know that one's knowledge
is concordant with that of anyone else; hence apparently von Glasersfeld's knower
in a vacuum. But such a conclusion is a mistake. With knowledge redefined as in
my second criticism, one knows that one's knowledge is concordant with an-
other's or with official knowledge merely with viable knowing. How else? This
is potentially as good a piece of knowledge as any other. It is a hypothesis for
which there can be evidence, quite good evidence, while admittedly being subject
to disproof. I say that one's knowledge may be concordant and not identical
because there seems to me no precise meaning that can be given to identity in such
a context. Life experiences differ, and so what one builds one's knowledge with
differs from what another's knowledge is built with; how could the results he
exactly the same in any neuron-by-neuron sense?' And as to agreement with
official knowledge, official knowledge does not even exist in the bottom-level
neuron-by-neuron sense; it exists only in persons' constructions concordant with
official symbolic expressions. If the symbolic expressions of one's knowledge
agree physically with the symbolic expressions of another's knowledge or official
knowledge, that is evidence that they are concordant. This point is not a new one,
and there is even a name for the resulting view, social constructivism (see Ernest,
1991).7 I explained elsewhere before I was aware of social constructivism, my
view of the main mechanism by which individual subjective knowledge is welded
into community objective knowledge, namely an assimilation that is much like
Piaget's (Thomas, 1991, pp. 3-38). By this assimilation we consciously and arti-
ficially put together the separate persons' constructions concordant with official
symbolic expressions. The usual word for what we do here is 'identification', but,
since in a constructivist context one is concerned to emphasize that these separate
constructions are neither identical nor identifiable but are on principle distin-
guished, I insist on using the word 'assimilation' for what we do. We know that
they cannot be the same, but we insist for practical purposes on treating them as
the same. As I explained in the reference given, this process is assimilable to the
way we treat as 'the same' whatever we represent by common nouns for practical
communicative purposes. The differences among, say, dogs, seem to me to be not
wholly unlike the differences among various persons' ideas of dogs in this one
respect (and probably only in this one respect), that they can safely be ignored for
many purposes.' It is probably safer to assume that a group understands the same
thing by '17' than that it understands the same thing by 'dog'. The reason why
it is important to insist, as von Glasersfeld has done, on the radically personal
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construction of each person's notion of the world is that so much of what is
accomplished in communication and therefore in education depends on the device
of assimilation, which is precisely the ignoring of the distinctions he draws our
attention to. The use of one's notion of the world as a stand-in for the world is

and should be recognized as one's assimilation rather than an identity inde-
pendent of oneself.'

Conclusion

If we are to be consistent, we must admit that any scepticism to which construc-
tivisrh leads us with respect to the world of outer experience should be reflected
in a similar scepticism with respect to the self. I do not suggest that either of these
scepticisms is appropriate fare for school children.' Ontology aside, constructivism
does not need to lead to scepticism with respect to the possibility of knowledge,
only to a profitable redefinition of knowledge as viable rather than as mirroring
nature. And for maximum profit as well as viability, that redefinition needs to be
social constructivist rather than radical constructivist.

Notes

I. I do not mean this literally. Reference is mentioned, for instance, in the paper,
'A constructivist approach to experiential foundations of mathematical concepts',
in S. Hills (Ed) History and philosophy of science in science education, Proceedings of
the Second International Conference on History and Philosophy of Science and
Science Teaching, Kingston, Ontario, May 11-15, 1992, Volume 2, pp. 553-71,
and see von Glasersfeld, 1983, pp. 207-18.

2. To be more precise, to deny the possibility of knowing anything about X is to
know that X is unknowable. One smells Russell's barber's shaving soap. Not a
viable statement.

3. As Clive Sutton of the University of Leicester remarked during the constructivism
discussion at the Second International Conference on History and Philosophy of
Science and Science Teaching, Kingston, Ontario, May 11-15, 1992.

4. Rosch references at n54 to Chapter 8 of F.J. Varela, E. Thompson, E. Rosch,
op. cit.

5. Not explicitly, however. In 'Reconstructing the concept of knowledge', Archives
de Psychologie, 53 (1985), pp. 91-101, he insists, 'The consideration of Others,
therefore, is no longer a requirement of ethics alone, but has become an indispen-
sable requirement of the construction of reality', other minds lending objectivity
in its intersubjective interpretation. The need for 'others' is stressed, though they
are given an inadequate role, in 'Steps in the Construction of "Others" and
"Rtality": A Study in Self-regulation', in Robert Trappl (Ed) Power, Autonomy,
Utopia, New York, Plenum, 1986. And in 'A constructivist approach to teaching'
(Ms for meeting in Athens, Georgia, February 20-23, 1992), he quite rightly
defends Piaget against the charge of 'not having considered social interaction in
his theory of cognitive development' by pointing out that other persons, for
Piaget, are 'part of the environment.' However, he claims that for ' Piaget, just as
for the contemporary radical constructivists, the "others" with whom social in-
teraction takes place' are 'no more but, also no less' than other physical objects.
That is not an adequate estimate of the inllh .,ce of social factors, native language
among them.
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6. This question has only been given its due, so far as I know, by E. von Glasersfeld
in many writings beginning with 'Radical constructivism and Piaget's concept of
knowledge', in F.B. Murray (Ed) impact of Piagetian theory, Baltimore, Maryland,
University Park Press, 1979.

7. The problem of intersubjectivity is the last of Suchting's four criticisms of radical
constructivism, op. cit.

8. This difference-ignoring basis of what is usually called identification is discussed
by E. von Glasersfeld in 'The constructs of identity or the art of disregarding
differences' (preprint) with the appropriate references to William James's Psychol-
ogy and Pragmatism.

9. The false mental identification of what can viably be assimilated is like the iden-
tification of word and object held to be characteristic of mythical thinking by
E. Cassirer, The philosophy of symbolic forms, New Haven, Connecticut. Yale
University Press, 1955. I owe a reminder of Cassirer's side of this analogy to
F. Seeger and H. Steinbring, 'The myth of mathematics', in this volume. These
authors discuss revealingly the implicit view of mathematics as myth among
children.

10. So I share with Michael Matthews and Peter Dayson-Galle, 'Constructivism and
science education: some cautions and comments', in S. Hills (Ed) History and
philosophy of science in science education, Proceedings of the Second International
Conference on History and Philosophy of Science and Science Teaching, King-
ston, Ontario, 11-15, May 1992, Volume 2, pp. 135-43, the view that one need
not talk about the sceptical ontology of some constructivists.

References

CAMPBELL, D. (1974) 'Evolutionary epistemology', SC:1111.PP, P.A. (Ed) The philosophy
of Karl Popper. La Salle, Illinois, Open Court.

ERNEST, P. (1991) The Philosophy of Mathematics Education, London, The Falmer Press.
LopcuN, L. (1992) 'Complementarity in language: toward a general understanding', in

CARvAno, M. (Ed) Nature, Cognition, and Systems, 2, Dordrecht, Kluwer (preprint).
MAGET, J. (1950),Introduction a repistemologie gingtique, Presses universitaires de France.
PEPPER, S. (1958) The Sources of Value, Berkeley, University of California Press.
POLANYI, M. (1964) Personal Knowledge, New York, Harper and Row.
R,sv, Y. (1989) 'Philosophical problems of mathematics in the light of evolutionary

epistemology', Philosophica, 43, pp. 49-78, revised and reprinted in RESTIVO, S.
VAN BENDEGEM, J.P. and Fiscelim, R. (Eds) (1993) Math Worlds: Philosophical and
Social Studies of Mathematics and Mathematics Education, SUNY Press, pp. 80-109.

RIEoL, R..(1984) Biology of Knowledge: The Evolutionary Basis of Reason, Wiley, trans-
lated by P. Foulkes (1981) from Biologie der Erkentnis, Verlag Paul Parey.

ROMEYN, J.A. and THOMAS, R.S.D. (Undated) 'A skeleton for psychotherapy', Un-
published manuscript and ROMEYN, J.A. and THOMAS, 12.S.D. 'A note on the
process underlying the effectiveness of therapeutic interventions: Rediscription of
'structuring events', Unpublished manuscript.

RoRTY, R. (1979) Philosophy and the mirror of nature, Princeton University Press.
SUCHT1NG, W.A. (1992) 'Constructivism deconstructed', Science and Education, 1.
THOMAS, R.S.D. (1991) 'Meaning in ordinary language and in mathematics', Philosophia

Mathcmatica, 2, 6.
VARELA, F.J., TilompsoN, E. and Roscii, E. (1991) The Embodied Mind: Cognitive Sci-

ence and Human Experience. MIT Press.
VON GLASERSFE1.1), E. (1983) 'On the concept of interpretation', Poetics, 12.
VON Gi.Asismrap, E. (1985) 'Reconstructing the concept of knowledge', Archives de

Psychologie, 53, pp. 91-101.

t
39



Robert S.D. Thomas

VON GLASERSFELD, E. (1991) 'Distinguishing the observer: An attempt at interpreting
Maturana', Methodologia, 8, 5.

VON GLASERSFELD, E. (1992) 'Aspects of constructivism: Vico, Berkeley, Piaget', preprint
in English of paper published in Italian in Cou.rn, M. (Ed) Evoluzione e Conoscenza,
Bergamo, Pierluigi Ludrina.

40



Chapter 4

Articulating Theories of Mathematics
Learning

Stephen Lerman

The preceding chapters highlight the fascinating and controversial state of current
discussions in the academic community of mathematics education regarding learn-
ing theories. Constructivism is certainly the dominant theory, but it is being
subjected to much criticism. Not that this is new for constructivism; it gained in
support during the 1980s despite strong attacks and even political manoeuvrings
in its early days. In this chapter I will attempt to create the written equivalent of
a snapshot. What can be seen in the picture is a scene at one instant. By the time
the snapshot has been developed, when the book is published, the scene will look
different, people and places will have moved on. Yet the snapshot will have
captured something, although I do not pretend that the snapshot has captured any
'truth', however temporary. It is my fiction as I write it, and the reader's fiction
as it is read. It is a photo-journalist's creation: the angle, the light, the subjects,
all chosen to convey the effect the photo-journal.;st wishes to be seen, to carry that
particular story.

Radical constructivism is a neo-Piagetian position in that it draws on the
theoretical foundations of Piaget's work and is aiso a reinterpretation of those
foundations. Radical constructivism appeared on the scene of the mathematics
education community at a time when there was a strong egalitarian and demo-
cratic desire to shift the locus of control from the teacher. In this sense it was in
the tradition of child-centred learning (Walkerdine, 1984) and a continuation of
the process of turning away from behaviourist traditions of teaching. In the UK,
members of the Association of Teachers of Mathematics (ATM) had been en-
gaged in introducing investigations to mathematics classrooms. The notion of the
active creative child, building her or his own concepts, was offered a theoretical
rationale by constructivism, which argued that learning is something that children
can only do for themselves. At the same time there was a strong focus on, or at
least great interest in, individualized learning in mathematics, again an egalitarian
desire by teachers to avoid competition, seen as an anti-socialist feature of society,
and to avoid labelling children as failures. Constructivi s claim that each child
responds to its interactions with the world from its own individual conceptual
state provided a seductive rationale for individualized learning too.

Other influences contributed to the rapid popularity of constructivism in the
mathematics education community. The appearance of microcomputers in class-
rooms, a technology that called on just one person to interact with it directly, and
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perhaps two others at most to cooperate reinforced the individualistic view of
learning. Many of the researchers in the academic community were inspired by
the Piagetian ideas of Papert, and the notion that the computer offered each child
the possibility to be a mathematician. In the philosophy of mathematics the ideas
of Lakatos, Popper and Kuhn had challenged absolutism and offered a fallibilistic
perspective in its place. Confrey (1980), Nickson (1981) and Lerman (1983) intro-
duced these ideas into mathematics education, each suggesting that aspects of the
teaching and learning of mathematics could be radically influenced by such views.'
Fallibilism in mathematics too seemed to be in line with radical constructivism
(Lerman, 1989; Ernest, 1991). As a final point, although I do not claim that these
are exhaustive, the mathematics education community has always been influenced
by developments in educational psychology, and in that community Piaget's work
was still dominant and there was a growing interest in constructivism. Piaget's
work had been subjected to much criticism during the 1970s for the rigidity of the
perception of ages and stages and the ineffectiveness of teaching to bring children
across those stages. Constructivism refocused attention on Piaget's ideas about the
nature of knowledge and the need to look at a genetic epistemology in place of
the inadequate epistemologies of platonism and 'naïve empiricism.

Thus the climate was suitable for fostering constructivism, and the math-
ematics education research community at large has adopted a trivial form, focus-
ing on the active child constructing her or his knowledge and seeing the teacher's
role as setting up a 'constructivist' classroom and making models of children's
understanding. Some of the radical constructivists continued, and continue, the
debate at the edges of the theory, as can be seen in the chapters by von Glasersfeld
and Steffe (see also Confrey, Cobb etc.). In some senses, then, one can glean a
perception of the state of development of constructivist theories by a reading of
these chapters, not least of all because the writers are amongst the foremost think-
ers and researchers in this domain.

In a recent paper by Steffe (1993), one is immediately confronted by a defence
of radical constructivism against a perceived Vygotskian attack:

We are guided by the children's mathematical language and actions in our teach-
ing episodes. This is a crucial point and one which we believe distinguishes
our approach from those who work in a Vygotskian perspective.
Of course, a psychological tool modifies actions and intentions, but the
psychological tool alone does not determine the structure of those modi-
fied actions and intentions.
We contrast the interactive mathematical communication of Arthur and
Nathan with Vygotsky's general genetic law of cultural development to
illustrate the difficulties of simply applying a general learning theory to
what goes on in a consensual domain of interactions. (Steffe, 1993)

There are instances where Steffe wants to incorporate some of Vygotsky's insights
into his work: 'Our emphasis is compatible with Vygotsky's ontogenetic orien-
tation . . .' but his general aim appears to be to present the inapplicability of
fundamental aspects of Vygotsky's work as he interprets it (for a discussion of the
range of interpretations of Vygotsky's ideas, see Newman and Holzman, 1993).

It appears that von Glasersfeld too is partly concerned with a defence of
radical constructivism:
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Teaching has to be concerned with understanding rather than performance
and the rote-learning of, say, the multiplication table, or training the
mechanical performance ocalgorithms because training is suitable only
for animals whom one does not credit with a thinking mind. (von
Glasersfeld, this volume)

One could read these words as an attack on behaviourism. However, given that
this paper was written in 1992 and presented at ICME, not to experimental psy-
chologists, one may conjecture that this is an attack on a more modern theory. If
this is the case, von Glasersfeld would not be alone in ascribing a transmission
metaphor of teaching to a Vygotskian view (Olivier, 1993). Indeed it has been
called an absolutist theory too (Steffe, personal communication).

Steffe's (1993) paper in particular, and his chapter in this book, can be read
at least partly as a defence of radical constructivism against attack from `those who
approach learning from a socio-cultural point of view'. Clearly, I am one of those
(Lerman, 1992, 1993a, 1993b, 1994). In this chapter, though, I want firstly to
examine how various constructivist writers, in particular those in this collection,
deal with the major challenge, that of social life. Secondly, I will attempt an
examination of the semiotic function of mathematical symbols, as I read von
Glasersfeld's interpretation through his paper. These two critiques are foreground
elements in my snapshot, the first being a growing trend which incorporates
socio-cultural notions into radical constructivism resulting, I argue, in incoher-
ence, the second an illustration of the narrow limited view offered by radical
constructivism.

Radical Constructivism and the Troublesome 'Social'

It is widely recognized by radical constructivists that the role of language and
social interaction is undervalued, or at least underelaborated in that theory. Many
writers (e.g., Bauersfeld, Voigt, Confrey, Ernest, Cobb) have made attempts to
incorporate social interactions into constructivism and the chapter by Thomas in
this volume is just such an example. These writers work with the assumption that
the cognizing individual is central as the meaning-maker, and in various ways
have developed rationales for how the environment, including other people, plays
a part in the construction of that personal meaning. Thomas achieves this by
arguing that to know a piece of the world is to have a viable notion of that piece
of the world, viability being achieved through comparison of one's knowledge
with others. However he insists on retaining the constructivist's separation be-
tween people: `We know that they [constructions] cannot be the same, but we
insist for practical purposes on treating them as the same.' That peoples' construc-
tions cannot be the same is a very strong claim and one wonders why there is a
need for such stre.!gth My concern, however, is with the argument that the
search for viability through the comparison of one's ideas in social interactions
overcomes the solipsism of radical constructivism, in this sense another version of
the private language issue answered, in my view, by Wittgenstein (e.g., 1974).
One wonders how the comparison process becomes unproblematic, so that cases
of a misfit or a fit will be seen as such by the participants and observers, i.e.,
students and teachers. If people's knowledge is in the end individual, arc not
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people's perceptions of misfits or fits? I may well adapt my view, given an inter-
action with a teacher or peer, but I may net. It is entirely my private affair.

Other social constructivists argue for a complementarity of social knowledge
and personal knowledge:

. .. we can observe that when we talk of students' constructive activities
we are emphasising the cognitive aspect of mathematical learning. It then
becomes apparent that we need to complement the discussion by noting
that learning is also a process of acculturation. (Cobb, Yackel and Wood,
1992, p. 28)

. . . although the primacy of focus of each of conventionalism [Ernest's
term for intersubjectivity] and radical constructivism is sacrificed in social
constructivism, their conjunction in it serves to compensate for their
individual weaknesses . . . (Ernest, 1991, p. 86)

The fundamental orientation of the work in our own classroom springs
from the radical constructivist principles and an integrated and compat-
ible elaboration of the role of the social dimension in these individual
processes of constructing as well as the processes of social interaction in
the classroom. (Bauersfeld, 1992, p. 2)

The same complication arises, though, in that if the individual is the source of
meaning, then so too is he or she the source of recognition of something that
someone else says as causing a cognitive conflict, or a perturbation, as Steffe terms
it. The major confusion that arises from the desire to claim that knowledge is
constructed by the individual but that sometimes knowledge is absorbed from
culture (Cobb, et al.), or as social convention (Ernest) or through the role of the
social dimension (Bauersfeld) is that as long as the individual is at the heart of the
process, as the one who ascribes meaning, any social interaction is itself inter-
preted individually. The complementary role these writers desire for 'the social'
has no 'bite'.

The other way of incorporating social aspects of human life into the individu-
al's constructions is to argue that Piaget intended this theory to be understood as
such a mixture. Steffe (1993) writes:

In this sense it is legitimate to interpret Piaget's work as a social-cultural
approach in which he explained the mathematical development of chil-
dren as self-regulating, autonomous organisms interacting in their envi-
ronments. He - seemed to take the social-cultural milieu of the children as
a given without attempting to alter their most general experiences. (Steffe,
1993)

Later, he characterizes the sense-making process as follows:

44

'Making sense', then can mean to construct ways and means of operating
in a medium to neutralise perturbations induced through social interac-
tion. (ibid.)
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It seems to me that this too does not escape from the complication described
above. As long as there is a separation between the subject and the world, includ-
ing other people, one has to go all the way with solipsism, or give it up. When
the source of knowledge and of meaning is the individual, social interactions are
on the same plane as physical interactions; they are filtered, or refracted, through
the perceptions of the receiver. In some senses the possibility of cognitive conflict
is less likely through social interactions than physical ones. I can imagine that I
could challenge my belief that I can walk through a wall and I would probably
receive a rather strong perturbation. When I attempt to challenge my belief that
constructivism is misguided by discussing ideas with radical constructivists, no
perturbation is set up; I interpret their disagreement as their not listening to me,
or that they are too entrenched in their view, and vice versa of course! The
`problem' of the social is no problem at all if one accepts that social interactions
are indeed on the same plane as physical interactions and both are separate from
the autonomous meaning-maker. In the context of the construction of mathemati-
cal meanings, von Glasersfeld writes here:

Sensory-motor material, graphic representations, and talk can provide
occasions for the abstraction of mathematical operations, but they cannot
convey them ready-made to the student. (von Glasersfeld, op. cit.)

The individual constructs his or her knowledge through reflective, or refrac-
tive, abstraction and no one can ever know another's knowledge, nor that. any-
thing one offers, in particular as the teacher, will certainly create a perturbation.
I take Steffe to be maintaining this position, from the (1993) paper and the chapter
in this volume, and presumably von Glasersfeld too, although he doesn't address
social interactions here. The incoherence which I am attempting to describe arises
when the social constructivists attempt to place much greater emphasis on the
social, without any satisfactory mechanism whereby it impinges on individuals
without their choice. Where meaning is carried in social practices and people are
positioned by those practices one can begin to analyse and describe the nature of
people as social beings. However this is to argue that one starts from a notion of
a priority of the social plane over the individual, a Vygotskian idea rejected by the
radical constructivists. I have argued that social constructivism introduces inco-
herence into radical constructivism and I will now try to show the restricted view
of communication and learning offered by radical constructivism.

The Semiotic Function of Mathematical Symbols

I want briefly to consider von Glasersfeld's description of the semiotic function of
mathematical symbols. I believe that an analysis will reveal some of the limitations
of the radical constructivist position. In doing so, I will be guided by the critique
of Piaget's interpretation of semiotics offered by Walkerdine (1988):

For Piaget the relationship of signifier to signified is one of representa-
tion; the semiotic function: 'consists in the ability to represent something
(a signified something: object, event, conceptual scheme, etc.) by means
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of a signifier which is differentiated and which serves only a representa-
tive pui pose.' [Piaget, quoted in Gruber and Voneche, 1977, p. 489]

Although this view grants to the semiotic function a major role in raising
thought to a representational level, it sees the signified as arising extra-
discursively, from the general co-ordination of actions which form op-
erational structures which themselves arise outside of any relationship to
systems of signs. (Walkerdine, 1988, p. 3)

Von Glasersfeld argues th4 there are fundamental operations of the mind
(common to all, a la Kant?) and it is these operations from which one conceptu-
alizes unit and plurality, the former derived from the conceptual construction of
'objects' and the latter from an awareness of repetition of the recognition of ob-
jects. Neither are merely the result of sense impressions but the result of reflective
abstraction on those sense impressions. A further notion is needed, von Glasersfeld
argues, that of number, and he has argued elsewhere (Steffe et al., 1983) that it
may arise from the activity of counting. Thus, he claims, mathematics is a matter
of internal mental operations, and meaning is an association of mental operations
with mathematical symbols. This is a private process, which 'cannot be witnessed
by anyone else'; all one has to go on is the visible results of those mental opera-
tions, the writing, speaking or other behaviour of students. Nevertheless, von
Glasersfeld argues that the teacher's task is to 'stimulate and prod the student's
mind to operate mathematically', and that teaching 'has to be concerned with
understanding'.

What then is the nature of symbols and their referents and their connection
to each other and to the mind of the individual, in von Glasersfeld's analysis?
'Symbols do not generate the concepts that constitute their referents, they have to
be linked to them by a thinking agent . . . It is, indeed a ground rule of semiotics
that a sound or a mark on paper becomes a symbol only when it is deliberately
associated with a conceptual meaning.' Von Glasersfeld wants the listener/reader
to agree that the foundations of mathematical understanding are the common
mental operations of unit, plurality and number and as a consequence 'this math-
ematics is an affair of mental operations that have to be carried out by an active subject.'
Thus the link between the signifier, the symbol, and the signified, the referents,
is one carried out by the individual by associating a symbol with mental opera-
tions. The association, though, is between the mental operations and the symbols.
The active subject constructs the concepts of unit and plurality and then associates
the symbol '3', usually preceded by association with the sound 'three', with the
unit repeated twice more. Repetition of this process leads to the concept 'number'.
The only mention of 'meaning' is in this context; mathematical symbols remain
meaningless until such association takes place and a mark on paper (or a sound)
becomes a symbol only with that association. Von Glasersfeld's concern is with
the psychological process of the association of mental structures with symbols.
What remain unproblematized and unconsidered are: the counting process as a
socio-cultural phenomenon; the role of others, parents, siblings and teachers in the
activities and settings in which the practice of counting is experienced (learned?);
the sign system as a system, rather than a collection of symbols each with its
referents; and the sign system as a socio-cultural phenomenon through which
subjects are regulated. The point I wish to make here is that it is not surprising
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that these aspects of the semiotic analysis are not considered. With the individual
as the source of meaning and sense-making, nothing is carried in any way by the
symbols. Their social origins and import are ignored. At this point, a radical con-
structivist reader may well indicate that I am claiming that the symbols do all the
work; that the symbols convey their sense to the learner in and of themselves. It
seems as though there are only two choices for the radical constructivists; either
one maintains that knowledge is conveyed ready-made by symbols to the student,
a naïve empiricism which they reject, or the student privately constructs the mental
operations associated with those symbols, the view they maintain. In its desire
to deny any form of external experience for fear of falling back into the trap of
having to explain how the cognizing subject gains that experience, radical
constructivism isolates the individual into a closed shell. Ultimately, meaning is
personal.

They do not recognize that there is another view, namely that meaning is
carried in practices and that cognition is situated. This view does not acknowledge
the separation between the subject and the world, but sees consciousness as con-
stituted through social and discursive practices. This is not to deny individuality
but to set its constitution within a social focus rather than an autonomous indi-
vidual one.

The Limitations of Constructivism

There appears to be an insurmountable gap between the private mental operations
of the individual and the world. According to radical constructivism, meaning
does not flow with language or communication of other sorts, it is the private
association of mental operations with symbols. 'If mathematical symbols have to
be interpreted in terms of mental operations, the teacher's task is to stimulate and
prod the students' mind to operate mathematically' (von Glasersfeld, Chapter 1,
this volume). The teacher does not communicate, merely somehow prods the
student's mind. From behaviour, for example the comparison of one's own math-
ematical symbols with those produced by the acting subject, the teacher infers
something undefined and unapproachable, namely understanding, although of
course there would be a denial that the two are identical and reducible one to the
other, namely behaviour and understanding. I would not argue, as does Suchting
in an irritating and pedantic attack (Suchting, 1992), that radical constructivism as
offered by von Glasersfeld is inconsistent or incoherent. On the contrary, it is a
strong and consistent position. It is also, in my view, a very limited one which
is unable to explain a great deal of human behaviour and relationships, and leaves
unconnected with its theory such important issues for education as what actions
of the teacher will prod the right mental operations so that correct (in terms of
mathematical concepts accepted by the community of mathematicians) mathematical
associations are formed. Texts play a role that cannot be interpreted within the
theory. Regulation through power relations manifested in discourses, appropria-
tion of cultural experience, and the notion of cognition situated in practices rather
than abstracted by the cognizing subject from experience ali appear to be irrel-
evant to the individual's construction of knowledge, which comes about by reflec-
tive abstraction on common mental operations. How can individuals arrive at the
mathematical concepts generally accepted by the mathematics community or at
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least the mathematics education community? It seems that the radical constructivists
can only argue that their analysis results in common concepts by a right intuition,
as the mathematical constructivists claimed, a' Kantian view of necessary features
of the mind.

What makes radical constructivism incoherent is the attempt to incorporate
a social view of knowledge into it, to form some kind of social constructivism.
I argued above that this attempt to shore up a limited theory opens it to an
inherent contradiction, namely that the individual's knowledge is private and can
never be shared, but a perturbation will be seen to be a perturbation in common.

Conclusion What Practice Am I Engaged In?

Discussions in this area often take the form of people putting ideas to each other,
sometimes in quite emotionally charged settings, but ending up retaining their
original points of view. What is the nature of that activity, and indeed what is the
nature of the activity in which I an engaged at this moment, in replying to some
other papers and putting forward my own view? At one level it is an attempt to
compare theories in different theoretical frameworks. But the disputants sit in
those differing situations and thus talk across each other. (I might want to use the
term 'paradigms' in discussing, for example, research perspectives in these differ-
ent theoretical frameworks. However I would not want to argue that the dispu-
tants are in separate incommensurable programmes and unable to communicate.)
Positions adopted carry with them much more than 'ideas'; indeed it would con-
tradict my support for the assertion that knowledge manifests in practices were 1
to claim that those ideas are independent of social practices. We are engaged in
typical activities of academic communities including: defending the 'corners' one
may have argued in meetings and conferences and in papers; identifying one's
own view by comparison with another, which includes 'selective' presentation of
that other view; claiming phrases of the moment as part of one's case, such as
'overcoming Cartesian dualism'; identifying with groups of people.

Can these discussions take other forms? Perhaps not, although in presenting
this chapter in the setting of a self-selected snapshot it is intended to emphasize the
practice in which I am engaged in writing this, as are these few final comments.
Perhaps my attempt at pointing out the practice can shift the discussion into
another ,(meta-)practice in which we can share and compare snapshots.

Note

1. Dawson (1969) preceded these writers but his work was not widely known until
recently.
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Chapter 5

Is Radical Constructivism Coherent?

Michael Otte

John Bigelow begins his review of Penelope Maddy, Realism in mathematics, Oxford
1990, with the following remark:

Mathematics has three striking features. It discovers truths which are
necessary, not contingent. It proceeds by a priori methods, and does not
justify its claims by appeal to experience. It has a distinctive subject matter,
not material objects, nor plants, nor animals, nor thoughts and feelings,
nor societies but numbers and other things of that sort. (Bigelow,
1992, p. 235)

Now the third point, the question whether mathematics possesses objects
of its own, is itself an object of extremely controversial debates. Nominalism has
always denied that there are mathematical objects at all. And since 1870 when it
was formulated the following definition of mathematics has met with a lot of
approval: 'Mathematics is the science which draws necessary conclusions. This
definition of mathematics is wider than that which is ordinarily given, and by
which its range is limited to quantitative research. The ordinary definition, like
those of other sciences, is objective; whereas this is subjective' (Peirce, 1965, Vol.
4, par. 229).

Let us thus focus first on the two other points. These two features are prim-
arily expressed in mathematical proof. Proof is what characterizes mathematics
and, in particular, mathematical method. Proof as a means of truth absolute and
independent of experience is inevitably confronted with the demand that it proves
its effectiveness in a given sense. This means that the proof must be followed by
the proof that the proof is correct, and this again by the proof that the correctness
of the proof is correct, and thus ad infinitum. Traditionally, there have always been
two ways to cut through this infinite regression. First the assertion that there is
an immediate identity between thinking and being, as it is found in Parinenides
and later in the Cartesian foundation of western rationality and in all subsequent
forms of conceptualism and intuitionism.

All the epistemological theories derived from linguistic analysis belong here
as well. It is for instance, a central point of logical positivism in the sense of
Moritz Schlick and the Vienna circle of philosophers that all knowledge can only
be expressed in sentences and that all epistemology must thus be logical linguistic
analysis in the end. The orientation towards proof fosters this view. Proof and the
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analysis of proof in terms of critical discussion requires verbalization and the view
that understanding is not primarily of ideas or objects but pertains to sentences.
It is suggestive that this approach privileges the concept of number among the
mathematical concepts and consequently strives to arithmetize all of mathematics.

The other way of avoiding the above infinite regression is to convert proof
into a perfectly mechanized, as if automatical activity. No questions of meaning
could arise, because a proof would just be a fact, as if reality spoke for itself.
Instead of assuming that man is a cognizant being and is rational, this approach
assumes man to be a being who acts, retransforming this activity, again, into a
self-regulated event, quasi into a physical process. This is paradoxical insofar as
the subject is, as has been said, distinguished from the object by considering man
not as dead matter but as a being who acts and reasons on the one hand, and there
is at the same time an intention to fit this subjective side to the objective side resp.,
to have it confirmed by some self-control on the other. Reasoning would fall in
one with being, were it to be `being' itself. In order to attain convergence with
nature, activity itself must become naturalized, that is be mechanized.

In conclusion one finds that the two solutions, which I should like to refer
to as the Cartesian and the Leibnizean solution, both fall back on philosophical
nominalism. This means that both of them destroy the proof as something that
is a general of reality itself. How could the proof keep its predictive power?
Because of this feature, the property of being general or what amounts to the
same of having predictive power, the proof is of a different logical or categor-
ical type than the facts to which it refers, it is of the `nature of a representation',
that means, of the nature of `a general principle that is operative in the real world',
as Peirce (1986) said (Chapter 5, p. 105). Because of this difference in type it
entitles the addressee of its argument to self-regulated and creative action. Now
all this holds equally true with respect to the laws of nature; they resemble math-
ematical proofs to the details (see Peirce, 1986, Chapter 5, pp. 102-07). 'This
however implies that concerns for the dignity of the individual human subject and
nominalist episteinological conceptions do not go together and I believe that radi-
cal constructivism is therefore incoherent.

At first of course those foundationalist endeavours failed to perceive their
own paradoxical construction, as they were based on an absolute guarantor, that
is on God. How problematical this was became fully visible only at the turn of
the twentieth century. Only then intuitionism was challenged with the inexplica-
bility and a historical al oluteness of its foundations, and `formalism' with its
intention to make man into a machine. Only then it became important to distin-
guish both between consciousness and communication and between human,
creative behaviour, and automatical, mechanized behaviour, in both cases for socio-
historical reasons.

At the same time, the persistent search for absolute foundations of rationality
itself had to appear as an anachronism. The approach in that was in principle the
same as in the rationalism of the seventeenth century even if there was no longer
a direct evocation of God. The anachronism is, as Luhmann says, that nowadays
it should be clear `that there cannot be a Cartesian self-confirmation of rationality
which can use itself as a starting point for distinctions (e.g., for that between true
and false), as soon as it has been confirmed' (Luhmann, 1992, p. 86).

By this, however, knowledge loses its absolute certainty, and the concept of
risk becomes a feature of rationality. Scientific fruitfulness or technological success
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begin to play a fundamental role in the construction of concepts and in the
mathematical development of knowledge. The task thus is to transform the
conceptualization of rationality from the search for absolute foundations into an
orientation towards the future and towards future developments. Hermann Weyl
already responded in this way to the debate on foundations (Weyl, 1968, Vol. 4,
p. 334). He was also, besides Peirce, one of the first, however, to introduce
another element, the problem of the human subject, the problem of the subject's
self-control, the problem of values and relevance, the problem of the negative role
of nominalism, etc. into the debate, thus again introducing an absolute element
into epistemology.

Peirce in considering the matter from the point of view of the human sub-
ject's real life, also makes it an issue of the opposition between nominalism and
realism. The flavour of this twist comes out quite nicely in the following short
statement. 'Generality is, indeed, an indispensable ingredient of reality; for mere
individual existence or actuality without any regularity whatever is nullity' (Chap-
ter 5, p. 431). The mearnag of a natural law, we recall for instance, is to be seen
in its power to make predictions. This implies that the foundation or reality of a
general, like a natural law, lies in the future and is based on the fact 'that general
principles are really operative in nature' (p. 100). The same holds true with respect
to the meaning of any proposition, that means, that form in which the proposition
becomes applicable to human conduct, 'for future conduct is the only conduct that
is subject to self-control' (p. 425).

This introduces an evolutionary perspective into epistemology and from this
perspective, the third aspect named above by Bigelow, the question as to the
specific objectivity of mathematics, again becomes more important, for every
programme of foundations which is not absolutist relying on some self-authenti-
cating experiences must necessarily make allowance for the fact that cognition is
dependent on its content. Forms and methods of reasoning develop simultaneous-
ly with new contents of reasoning and new experience. This is the very conclu-
sion Chaitin and others have drawn from Godel's theorem. The question where
mathematics takes its certainty from is thus most closely linked with the question
as to its objects. Epistemology always seems to have been based on the distinction
between cognition and object, and on the question: how does cognition get its
object? Now there is the assertion (Heidegger, Luhmann) that 'the distinction
between cognition and object is itself only a distinction, that is a construction used
to injure, to decompose, to observe the world' (Luhmann, 1990, p. 51).

But is this really the case? For us, subjects and objects are distinct by their
mode of communication. We talk with other subjects about objects, and not vice
versa. To me, this seems to have implications. It is said that the problem of
mathematical certainty is quite decisively linked to the problem of the infinite.
Now the infinite is nothing unified. It obviously makes a difference whether we
use, for instance, the principle of continuity as a heuristic principle in mathemati-
cal proofs, an approach common since the says of Euclid, or whether we rather
spoke of the continuum as of something given, grasped it conceptually by defi-
nition. In his 1925 lecture 'On the Infinite', Hilbert treats these two forms of the
infinite by saving that one of these forms has been clarified by Weierstrass, but
that this was not yet sufficient to clarify the significance of the infinite for math-
ematics. 'While the infinitely small mid the infinitely large have been eliminated
in Weierstrass' analysis by reducing the appropriate propositions to relationships
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between finite quantities, the infinite still oc,purs in the infinite series of numbers
which define the real numbers, and furthermore in the concept of the system of
real numbers which is conceived of quite as a totality given in a complete and
closed way.' (quote translated from Hilbertiana, Wissenschaftliche Buchgesellschaft,
Darmstadt, 1964, pp. 79-80).

Hilbert's proposed solution to the problem consisted, finally, in the distinc-
tion and mutual relationship between mathematics and meta-mathematics. This
could be the mark of realism, nominalism moving around within one overall
context, presumably that of the subject's own mind. The relationship between
knowledge and meta-knowledge was in a way intended to replace that between
cognition and object, on which epistemology had been traditionally based. Hilbert
had seen that none of the two proposed modes, neither conceptualism which
identified concepts with their extensions, nor mechanism which did completely
without the infinite, could do. Too much was sacrificed, in the case of mechanicism
while conceptualism became entangled in the well-known paradoxes.

If mathematics and science are to have relevance for human life we have to
apply them and to speak about their truths in terms of a common human world.
We know, however, from the paradoxes of set theory that this common world
or absolute universe of discourse cannot be conceived of in terms of a totality of
individual objects. Hence results the importance of the continuum arid the idea of
the inexhaustible infinite represented by it. This does not mean that we have
a strict separation between subject and object. We rather prefer to conceive of
epistemology in terms of a complementarity of means and objects. The continuum
itself can be a means, as in geometric theory, or it can be an object, as in sensation
or philosophical discourse. Complementarity is a concept required to express the
fact that time and evolution are the essential dimensions for certain relationships,
such as the relationship between foundation and development of knowledge which
is our focus here. In this sense, the concept of complementarity resembles the
traditional philosophical concept of dialectics. It is different from the concept of
duality and polarity in that it simultaneously strives for the unity of that which is
distinguished. in our case of object and means of cognition. According to certain
forms of constructivist epistemology, the unity of this distinction is 'nothing
more than the blind spot which someone makes use of who produces observations
and descriptions by means of this distinction. If one assumes with constructivism,
however, that this is always a real process within a real environment, that is
always subject to the limitations by the environment, where then is the problem?
The problem could be situated in the question of how a system succeeds in refor-
mulating such limitations into conditions for increasing its own complexity. The
non-arbitrariness of cognition then would be nothing other than the selectivity of
this process of transformation controlled in an evolutionary way. Other than
under the auspices of idealism, constructivist cognition finds no ground and does
not search for one. It reflects the change of world orientation from unity to
difference and diversity. It begins with distinctions, and it ends with distinction,
fully aware of the fact that this is its own affair, and nothing necessitated by that
which evades it as the external world' (Luhmann, 1990).

This type of the epistemic attitude can be called, with Luhmann, systems
theory, or by the term I prefer, complementarism. It is still a large step from there
to radical constructivism. There is a substantial difference between the insight that
one does not see what one doesn't see, or, in other terms, that one cannot sec
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everything at the same time, and the contention that one does not really see any-
thing. Radical constructivism may nevertheless well be classified among founda-
tionalist conceptions of cognition. At least since Kant and his famous uncognizable
Ding an sich, constructivism has claimed to know fundamental limits of cognition;
in fact it is essentially a theory about the limits of human knowledge.

Such an assertion that there are fundamental limits of cognition is only an-
other expression for traditional epistemological foundationalism. So radical con-
structivism is not radical at all and it is not a realist but a nominalist philosophy.

Newton is deemed to be the greatest scientist of modern times not least
because of the fact that he was one of the first to radically advocate that it is the
object to be recognized which must be spoken of in scientific cognition, and not
the human st. Jject with all his desires, representations, and prejudices. His famous
hypotheses non fingo is the well-known expression of this attitude. Newton thereby
also encouraged the separation of science from philosophy and in the long run this
attitude ended up with positivism and nominalism, denying that generalizations
on which theory necessarily rests are real.

This has led Gregory Bateson to state an opposition between a Newtonian
world on the one hand and a world of communication on the other. The oppo-
sition 'is simply this: that the Newtonian world ascribes reality to objects and
achieves its simplicity by excluding the context of the context excluding indeed
all meta-relationships a fortiori excluding an infinite regress of such relations.
In contrast, the theorist of communication insists upon examining the meta-
relationships while achieving its simplicity by excluding all objects' (Bateson,
1973, p. 221).

This description reveals by itself that the perspective essential for understand-
ing and knowledge development consists in combining these two worlds. Philo-
sophically speaking the concern for the epistemic subject demands to also speak
about the object of its activity and vice versa, talking about objective reality
requires a consideration of the human subject. Radical constructivism sometimes
claims to have combined 'several ideas that the western philosophical establish-
ment left by the wayside in the course of history', as von Glasersfeld claimed at
the ICME-7 Conference in Quebec in 1992. It would be important to first of all
revive the philosophical concern in its broadest sense itself. This would imply
to develop a symmetrical consideration of subject and object of human world-
making. And this in turn requires to give up all kinds of epistemological
foundationalism concentrating instead on the circular connections between con-
texts and meta-contexts.

The reference to the learning or cognizing subject has an ineliminable role
within didactical or pedagogical contexts. Relevance is necessarily one of the key
terms in the debate about mathematics instruction. In this vein, there is no objec-
tion against radical constructivism's pointedly insisting on a switch from indoc-
trination to fostering individual building. Or against the fact that so-called
ethno-mathematics is anxious not to give the impression that mathematics is a
well-defined area of human activity, but rather emphasizes the diversity in the
mathematics both of individual groups and of the mathematics among individuals
within any group.

These are all good wishes but they should not tempt us into spoiling our
thinking and our epistemological insight. In the present case, this would be even
more a pity as so-called radical constructivism has fostered interest in questions of
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epistemology and in the awareness of the relevance of epistemological consider-
ations for mathematical education. There is no didactic and no pedagogy without
a philosophy! It should become possible to make implicit epistemic assumptions
explicit and to discuss their relative merits and disadvantages.

Von Glasersfeld states in his presentation for ICME-7 that human knowledge
is to be evaluated according `to its fit with the world of human experience' and
not.as a representation of the world as it might 'be beyond the interface of human
experience'. Is not radical constructivism like logical positivism just a variant of
traditional empiricism? And further on: Is there a difference between radical
constructivism and traditional logical empiricism? Michael Matthews states that
`epistemologically, constructivism is the well-known old empiricist wolf in con-
temporary sheep's clothing'. And von Glasersfeld too considers 'constructivism
an offspring of subjective empiricism'. And he continues: 'But since constructivism
is explicitly instrumentalist, it holds that all conceptual construction is carried out
not for the sake of representational knowledge of a given world, but to enlarge
the map of viable pathways in the world constituted by the subject's experience.'
This resembles logical empiricism very closely.

Are concepts considered mere schemes of action or are they also an outcome
of the application of the epistemic system onto itself? Must we not even say that
theoretical concepts are dispensable altogether? If knowledge is just a representa-
tion of the experiential and present theoretical terms will have the only function
of establishing relationships among givens. If I know these facts the same relation-
ships can be established without theoretical terms, so these terms are dispensable.
Theoretical terms serve a meta-perspective on tendencies, developments, possible
alternatives etc., etc.

Mathematics is also meta-mathematics and the meta-perspective means the
thinking of one thing within the context of another thing, means to move within
a particular context and at the same time within a meta-context that classifies or
relates 'contexts to each other. This other thing is traditionally called substance,
reality, nature, infinity or God.

Substance we call the sorts of thing we make subjects of predication. Sub-
stances are the real objects of knowledge. Such things do not exist in empiricism
nor for radical constructivists. Empiricism denies that things have natures or es-
sences and even that they are really substances if by substance we mean anything
more than a bundle of observable qualities. Of course we can know about a
thing's tendencies and powers by observing what it does, but theoretical recon-
struction thereby deals with the tendencies of a thing that it perceives, rather than
merely with its actual appearance. If we measure something, for instance eco-
nomic value, is there something beyond the individual numerical outcomes of
measurement as represented by exchange values? If we represent an idea is there
something beyond the individual symbolic representation? Are numbers different
from numerals? If we describe a mathematical system, are the theorems we state
about it invariant in their truth content with respect to changes of the description?

A mathematical concept, such as the concept of function, does not exist
independently of the totality of its possible representations, but it is not to be
confused with any such representation, either. A mathematical theory does not
exist independently of the entirely of its axiomatic characterizations, and it is still
not to be confused with one of them (Rota et al., 1988). A formal system can be
represented in various ways, and still the theorems have to be invariant in their
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truth content with regard to changes of the representation. This does not mean
that 'there is a hypostatized entity called a formal system which exists independently
of any representation' (Curry, 1970, p. 30). This example is, however, somewhat
queer, as in face of Godel's theorem such a system is necessarily incomplete. In
considering it with respect to its evolution one might claim that there is in fact an
entity behind, which is the subject of this evolution. Godel's incompleteness theo-
rem would then just state that we cannot define this entity in formal terms. I think
such was Godel's own view of the matter.

The central concept of the physics of Aristotle is the concept of !notion,
everything moves. Mathematics, however, is the realm of static forms. Aristotle's
thinking is riddled with two orientations diametrically opposed to each other.
Aristotle is most often regarded as the great representative of a logic and math-
ematics which rests on the assumption of the possibility of clear divisions and
rigorous classification. 'But this is only half the story about Aristotle; and it is
questionable whether it is the more important half. For it is equally true that he
first suggested the limitations and dangers of classification, and the non-conform-
ity of nature to those sharp divisions which are so indispensable for language . .

(Lovejoy, 1964, p. 58), and for mathematics, as one might add. How then can
mathematics be applied to physics? Or to state the problem in philosophical terms:
how are the principle of identity and the continuity principle related to each other?

When I had nearly finished this chapter I ran across a manuscript by Michael
Matthews 'Old wine in new bottles: a problem with constructivist epistemology'
which bears much resemblance to my own. In fact I completely agree with his
epistemological views and with most of what he has to say about the distinction
between the real and the theoretical object of theory. Matthews, in separating
epistemology from questions of ontology, however takes into account one side of
Aristotle only and then gets into difficulty when he has to explain how the British
empiricist of the seventeenth century could be avowed opponents of Aristotle and
at the same time maintain an Aristotelian paradigm of knowledge.

The seventeenth century philosopher who made most out of Aristotle's prin-
ciple of continuity which was rejected by Berkeley, was certainly Leibniz. Leibniz
after having read Berkeley's Principles of Human Knowledge notes at the end of the
book that he does not accept Berkeley's refusal of the continuum and of the
infinite divisibility of the latter (Breidert, 1989). The geometrical and temporal
continuum is the fundamental mathematical object.

In Leibniz' philosophy, the 'principle of continuity' (Principle 2) possibly
plays a part which is as central as that of the 'principle of the identity of
indiscernibles' (Principle 1). The latter consists in the theory that there are no two
substances which resemble each other entirely but only differ numerically because
then their 'complete concepts' would coincide. However, in general it would need
an infinite analysis to devise the complete concept of an individual substance that
would have to contain everything which belongs or will ever belong to that sub-
stance. Therefore only God's infinite mind can establish the complete concept of
a substance. While for Leibniz, as for the radical constructivists, the substance is
inseparably tied to the existent and observable the complete concept of a substance
i.e., the concept that characterizes it completely is only accessible to God.

To speak of both principles means, according to Gueroult, 'to assume a
central perspective from which one can behold the unity of this colossal world of
thought as well as the sometimes opposed components it contains'. Leibniz is also
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deemed to be the mathematician who developed the Cartesian unification of arith-
metic and geometry further toward algebraic reasoning which conceived algebra
no longer as a generalized arithmetic, but rather as a general calculus, a characteristic
a universalis, which permits to operate with the things themselves, making algebraic
calculation and conceptual analysis convergent processes. According to Leibniz'
nominalist views, however, relations do not have an ontological status on a par
with substances. They are merely things imagined, and no real-life entities. In this
light, the 'principle of continuity' appears to assume a somewhat different role,
even perhaps subordinate to Principle 1 above. The importance of the principle of
continuity for the seventeenth and eighteenth centuries is seen in the following
considerations dating from the mid-eighteenth century. In his work De la Nature,
J.B. Robinet states: It is 'the first axiom of natural philosophy' that the Scale of
Beings constitutes a whole infinitely graduated, with no real lines of separation;
that there are only individuals, and no kingdoms or classes or genera or species
. .. This great and important truth, the key to the universal system, and the basis
of all true philosophy, will day by day become more evident, as we progress 'in
the study of Nature (quoted from Lovejoy, 1964, p. 275).

The principle of continuity supports and supplements Principle 1 inasmuch as
we might sometimes have the impression that two entities A and B are merely
numerically two and that they are otherwise identical. In such a case, the principle
of continuity will guide us in discovering intrinsically 'imperceptible differences'.
And where we do perceive differences, the 'principle of continuity' will guide us
in looking for intermediate elements, for 'not one example can be quoted where
a property abruptly begins or disappears'. Thus, all orders of natural beings form
but one single chain, just as the 'coordinates of one and the same curve'. (letter
to Varignon in 1702, reprinted in Hauptschriften zur Grundlegung der Philosophic, 1966,
edited by Cassirer, Hamburg, p. 77). There are no classes but no sharp distinc-
tions between species either, the gradations being known distinctly only by God.

Leibniz' favourite examples to illustrate the application of Principle 2 are
from geometry, for instance, those concerning the fact that the various conic
sections can be continuously transformed into one another. The principle of con-
tinuity allows us to discover connections, where sense perception observes noth-
ing but differences. A ne considerer que la configuration externe des Paraboles, des
Ellipses et des Hyperboles, on seroit tente de croire, qu'il y a une interruption immense
d'une de ces Courbes a l'autre. Cependant nous savons qu'elies sont liees intimement, de
maniere qu'il est impossible de ranger entre deux quelque attire espece intertnediaire . .

(quoted from the same letter to Varignon).
In contrast to Poncelet, Leibniz, however, would understand this connection

confirmed by the 'principle of continuity' not as the reality of the various conic
sections as dependent of one genus of which they are particular species nor as
individual cases of a general, that were entitled to an equivalent or even superior
ontological status. Leibniz treats the relation between general and particular dif-
ferently, conceptually. He advocates an intensional view of concepts, similar to
the so-called prototype theory of present-day cognitive psychology. This means,
however, that his no-class conception is such that the individuals mentioned by
Robinet could be called 'general' or prototypical individuals or monads. Such a
monad is completely to be identified with its 'complete concept' or prototypical
category. Leibniz does not clearly distinguish between concepts and objects, as
Kant and post-Kantian epistemology do, for instance.
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Research in cognitive psychology has shown that the members of categories
which are considered most prototypical are those with most attributes in common
with other members of the category and least attributes in common with other
categories (Rosch and Mervis, 1975). Prototypes, because of the distance they
keep from each other, enable us to cognitively distinguish between categories. At
the same time they represent a certain continuum. In short they exemplify the
interaction of Principle 1 and Principle 2.

That both principles will cooperate productively in the movement of cogni-
tion only if cognition itself is conceived of as a movement between the particular
and the general, is also seen from Leibniz's conceptions concerning algebra as a
general science of signs. The entire programme is best expressed in Leibniz's
conception of mathematical proof. Leibniz has created the modern concept of
proof (Hacking, 1984) `Leibniz knew what a proof is. Descartes did not.' And:
`Leibniz thought that truth is constituted by proof. Descartes thought proof irrel-
evant to truth. This comes out nicely at the metaphorical level. Leibniz's God, in
knowing a truth, knows the infinite analysis and thereby knows the truth. That
is what true knowledge is' (p. 214). Leibniz's God recognizes proofs by realizing
the complete concept of substances. Proofs deal with these concepts. There does
in fact not exist according to Leibniz a sharp borderline between the perceptual
and the conceptual nor between discursive knowledge and directly as well as
apodictically perceived reality. Proof is the process which constitutes reality itself.
`But Leibniz, making proof a matter of ontology, not methodology, asserts that
all true propositions have an a priori proof, although in general human beings
cannot make those proofs' (Hacking, 1984, p. 221).

In this sense, the entire reality is anchored in God's mind, and it becomes
some kind of an algebraic calculation, it being impossible to subordinate algebra
to arithmetical science, as it has to do with substances, forms or qualities, that
means with the different and manifold, whereas arithmetic represents calculation
with the homogenous. Algebra becomes a characteristica universalis, by means of
which truth can be rendered stable, visible and irresistible, `so to speak, as on a
mechanical basis. Algebra, which we rightly hold in such esteem, is only a part
of this general device. Yet algebra accomplished this much that we cannot err
even if we wish and that truth can be grasped as if pictured on paper with the aid
of a machine. I have come to understand that everything of this kind which
algebra proves is due only to a higher science, which I now usually call a combi-
natorial characteristic' (Letter to Oldenbourg dated 28 December, 1675, quoted from
Hacking, 1984, p. 213).

That this programme of Leibniz has failed can be expressed by stating that the
situation of God, and e situation of the finite human subject of cognition, who
is only a part of the world, are not really distinguished. We may illustrate this
with respect to algebra itself. As Peirce mentions, algebra can be defined from the
viewpoint of the mathematician or out of the meta-perspective of the logician.
`The mathematician asks what value algebra has as a calculus . . The logician
does not wish the algebra to have this character .. . He demands that the algebra
shall Analyze a reasoning into its last elementary steps' (Chapter 4, p. 239). The
mathematician applies and develops the algebra within a certain context. A logi-
cian in the sense of Leibniz might consider it within the meta-context of 'all
possible worlds'. It is obvious that Leibniz considered algebra and its use in proof

58



Is Radical Constructivism Coherent?

from the logician's point of view and it can be shown that he did not succeed in
coordinating both perspectives (see Otte, 1989, 1993).

In spite of this argumentation Leibniz's programme should not be abandoned
but supplemented and corrected in the manner suggested. The questions of es-
sence and existence of substances make up the central concern of classical philo-
sophy. In this philosophy epistemology and metaphysics remained as unseparated
as did rationality and problems related to the sense of life. I am interested in this
philosophy because my concern is not only to show that so called. radical
constructivism espouses very old fashioned epistemological views but that it is
incoherent with respect to its humane intentions as well. The reference to history
adds, or better, makes aware of, a philosophical element to scientific reasoning
which refers precisely to the role of the subject's self-understanding.

How in general can a substance be conceptually be represented? Leibniz's
solution was by means of his famous principle of the identity of indiscernibles.
Leibniz proceeded from the insight that the real substance must contain all its
predicates, that is its determinateness must be the criterion of all truths about it.
The substance is the subject of all of its predicates. According to the principle of
indiscernibles the substance must therefore be the individual. The ultimate goal of
knowledge, which is, in general only to be accomplished by God through an in-
finite analysis, lies in the determination of the individual substances. This seems to
be in opposition to the Aristotelian theory of concepts as the modern empiricist tra-
dition has understood it and in this respect Matthew's description is appropriate.

Leibniz's principle is a way of trying to combine strict identity with concrete-
ness. Concrete entities, like a man or a mountain or whatever, constantly change
although they are, at different occasions, referred to as being the same. Leibniz's
principle amounts to the suggestion that a concrete substance, like a man, for
instance, includes the sequence of occasions constituting his life from birth to
death. This view essentially spatializes time and makes becoming a mere diversity

.of qualities in being. The whole conception rests on the interaction of the prin-
ciple of identity and the continuity principles as was illustrated above by means
of the prototype theory developed by cognitive psychology.

Bertrand Russell has concluded from the difficulties of Leibniz's principle that
either the substance is only defined by its predicates and 'then it would seem to
be identical with the sum of those predicates', thus losing its subject character, or
that the substance cannot be defined at all. Russell concluded that in the latter case
the substance would be 'wholly meaningless'. From this, Russell concludes that
Leibniz's principle makes no sense. As opposed to that, I believe that this fact
which sounds unacceptable at first expresses a profound philosophical truth, which
has become salient in our time in particular in the subjectmachine problem, but
which has more or less secretly determined the development of all fundamental
concepts of mathematics since the seventeenth and the eighteenth centuries. Among
these, the concept of (mechanical) motion would have to be named first, and,
correspondingly, the concept of function.

In the present debate on the question 'Can computers think?', the result is
that the (human) subject can neither be identified with the totality of his presently
accessible properties, for otherwise he could be simulated on a suitably programmed
computer, nor that the subject can be conceived of as a substance beyond all his
properties, because otherwise he would be inaccessible to his own self-reflection.

4.
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In this case, the human subject would lose his subject character, as human cog-
nition differs from mere information by the fact that the subject not only knows,
but knows that he knows. Knowledge and meta-knowledge are inseparably
connected in human cognition.

It may thus be said that certain current problems with science and technology
(the problem of meaning, the manmachine problem and others) have got all
kinds of nominalism into difficulties, difficulties which have to do with the sub-
ject's self-image and that all the aporias and dualisms, the polarity of the finite and
the infinite, the paradoxes of motion, of time and of the present etc. are manifest-
ed mainly in the subject, indeed in the cognizing subject's self-image as a (poten-
tially) universal and actually always limited being.

Let us have a look at the concept of (mechanical) motion. The first historical
expression of the problem inherent in this concept comes from Zenon's paradoxes.
You can find this paradox in any school textbook of mathematics. Zeno's prob-
lem is a paradox of motion.

In physics, motion is understood as continuous functions of time in three-
dimensional space g(t) = (x(t), y(t), z(t)), with t as a time parameter: 'We talk
of a movement when the coordinates of the body change over the course of time'
states a randomly selected physics textbook. The continuous function as a model
of motion actually very clearly reflects the double character of this concept: On
the one hand, it contains discrete aspects, such as it permits me to calculate single
values when it is written as a formula. On the other hand, it emphasizes contin-
uous aspects, for example, in the illustration of the functional graph that permits
me a qualitative overall idea of the function (motion). The function is simultane-
ously both qualitative and quantitative; conceptual and constructive. It is knowl-
edge (overall idea) and tool (calculation formula) in one.

Now from a physical point of view the essential difference of opinions is
whether motion is no more than just the occupation of successive places at suc-
cessive times or whether a moving body possesses more than just a position at a
given time, but also what amounts to an instantaneous velocity. Mathematically
the latter is represented by a vector or a derivative. So the function that describes
the motion is taken either in extension or in intension.

The function as a model of motion (or rather the relative movement of the
tortoise to the `standing' position of Achilles) now enables us to reproduce the
paradox on a new level because of its double character. The relative movement of
Achilles and the tortoise is a linear function, as both motions are uniform: f(x) =
ax + b (i.e., when Achilles reaches x, the tortoise is at f(x)). The problem: 'At
what point does Achilles really catch up with the tortoise?' is now: 'What is the
fixed point of fx)? The fixed point of f can be calculated simply as a function of
the constants a and b: x = f(x) = ax + b

If we adopt a permanent symbol T for the identity function we can rewrite
the above equation as i(x) = f(x) (for certain x). Zeno instead, intending to argue
that motion is impossible confuses `all' and `exists' by implicitly claiming i(x) =
f(x), for all x. Thus Zeno's problem involves a problem of logical types. And, it
is, as can be shown (see Otte and Steinbring, 1977) a problem which governs the
evolution of the mathematical concept of a continuous function.

Cauchy's definition of a continuous function on the one hand pre-supposes
very general and abstract notions of functional correspondence in the sense stated
above. On the other hand it provides these notions with mathematical operative
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meaning by expressing them within the more specific context of an arithmetized
version of the notion of continuity. Self-referentiality is just an expression of what
above has been called complementarism as an alternative to radical constructivism.

Complementarity of subject and object makes up the starting point of
epistemology. Epistemology is not independent of meta-physics, because if we
insist on identifying the object with the definition theory gives of it, we also,
perhaps unwittingly, tend to define the human subject. This is in opposition to
the idea that the essence of man is existential freedom. Mathematics may in part
construct its own reality but always in face of the continuum of yet undefined real
possibility. Otherwise such a construction loses its subject becoming instead a
quasi-mechanized process, as in the case of radical constructivism.
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Chapter 6

Social Constructivism and the
Psychology of Mathematics Education

Paul Ernest

Introduction: The Problem

It might be said that the central problem for the psychology of mathematics
education is to provide a theory of learning mathematics. That is, to give a theo-
retical account of learning which facilitates interventions in the processes of its
teaching and learning. Piaget's Stage Theory, for example, inspired a substantial
body of research on hierarchical theories of conceptual development in the learn-
ing of mathematics in the 1970s and 1980s (e.g., in the study of Hart and col-
leagues, 1981). Piaget's constructivism also led to the currently fashionable radical
constructivist theory of learning mathematics, (von Glasersfeld, 1991; Davis et al.,
1990). Part of the growth in popularity of radical constructivism is due to its
success in accounting for the idiosyncratic construction of meaning by individu-
als, and thus for systematic errors, misconceptions, and altern tive conceptions in
the learning of mathematics. It does this in terms of individual cognitive schemas,
which it describes as growing and developing to give viable theories of experience
by means of Piaget's twin processes of equilibration; those of assimilation and
accommodation. Radical constructivism also has the appeal of rejecting absolut-
ism in epistemology, something often associated with behaviourist and cognitivist
theories of learning (Ernest, 1991a, b).

It is widely recognized that a variety of different forms of constructivism
exist, both radical and otherwise (Ernest, 1991b). However it is the radical version
which most strongly prioritizes the individual aspects of learning. It thus regards
other aspects, such as the social, to be merely a part of, or reducible to, the indi-
vidual. A number of authors have criticized this approach for its neglect of the
social (Ernest 1991b, 1993d; Goldin 1991; Lerman, 1992, 1994)..Thus in claiming
to solve one of the problems of the psychology of mathematics education, radical
constructivism has raised another: how to account for the social aspects of learning
mathematics? This is not a trivial problem, because the social domain includes
linguistic factors, cultural factors, interpersonal interactions such as peer interac-
tion, and teaching and the role of the teacher. Thus another of the fundamental
problems faced by the psychology of mathematics education is: how to reconcile
the private mathematical knowledge, skills, learning, and conceptual development
of the individual with the social nature of school mathematics and its context,
influencr., and teaching? In other words: how to reconcile the private and the
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public, the individual and the collective or social, the psychological and the socio-
logical aspects of the learning (and teaching) of mathematics?

One approach to this problem is to propose a social constructivist theory of
learning mathematics. On the face of it, this is a theory which acknowledges that
both social processes and individual sense making have central and essential parts
to play in the learning of mathematics. Possibly as a consequence of this feature,
social constructivism is gaining in popularity. However a problem that needs to
be addressed is that of specifying more precisely the nature of this perspective. A
number of authors attribute different characteristics to what they term social
constructivism. Others are developing theoretical perspectives under other names
which might usefully be characterized as social constructivist. Thus there is a lack
of consensus about what is meant by the term, and what its underpinning theo-
retical bases and assumptions are. The aim of this chapter is to clear up some of
this confusion by clarifying the origins and nature of social constructivism, and
indicating some of the major differences underlying the use of the term. In
particular, I shall argue that a major division exists between two types of social
constructivism according to whether Piagetian or Vygotskian theories of mind and
learning are adopted as underlying assumptions. However to clarify what social
constructivism means it is necessary to go back further to its disciplinary origins.

Background Traditions

Although there are few explicit references to social construction in the work of
symbolic interactionists and ethno-methodologists such as Mead, Blumer, Wright
Mills, Goffman and Garfinkel, their work is centrally concerned with the social
construction of persons and with interpersonal relationships. They emphasize
conversation and the types of interpersonal negotiation that underpin everyday
roles and interactions, such as those of the teacher in the classroom. Mead (1934)
in fact offers a conversation-based social theory of mind. Following on from this
tradition, a milestone was reached when Berger and Luckmann (1.966) published
their seminal sociological text 'The social construction of reality'. Drawing on the
work of Schutz, Mead, Goffman and others, this book elaborated the theory that
our knowledge and perceptions of reality are socially constructed, and that we are
socialized in our upbringing to share aspects of that received view. They describe
the socialization of an individual as 'an ongoing dialectical process composed of
the three moments of externalization, objectivation and internalization . . . [and]
the beginning point of this process is internalization.' (Berger and Luckmann,
1966, p. 149)

From the late 1960s or early 1970s, social constructivism became a term
applied to the work of sociologists of science and sociologists of knowledge in-
cluding Barnes, Bloor, Fleck and more recently Knorr-Cetina, Latour, Restivo,
and others working in the strong programme in the sociology of knowledge
(Bloor, 1976). This tradition drew upon the work of Durkheim, Mannheim,
Marx, and others, and its primary object is to account for the social construction
of scientific knowledge, including mathematics (Restivo, 1988). Thus the empha-
sis is on the social institutions and processes that underpin the construction of
scientific and mathematical knowledge, and in particular, those that underpin the
warranting of knowledge. Recently, there has been further work in this tradition
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(e.g., by Restivo and Collins) in developing a social theory of mind. This draws
on the work of Mead and Vygotsky.

Not long after the development of these sociological traditions, in the 1970s
social constructionism became a recognized movement in social psychology through
the work of Harre, Gergen, Shotter, Coulter, Secord, and others. These authors
have been concerned with a broad range of social psychological issues such as
the social construction of the self, personal identity, emotions, gender, and so
on (Gergen, 1985). A starting point shared by the social constructionists, but
elaborated by different researchers in different ways, is that of Vygotskian theory
of mind. This is based on the notion that thought in its higher manifestations is
internalized speech or conversation. In consequence, one of the special features of
social constructionism in social psychology is the explicit use of conversation as
a central metaphor for mind, as well as for interpersonal interaction (e.g., Shotter,
1993).

Within the field of psychology there are other inter-related traditions which
build on the work of Vygotsky, and which propose more less well developed
social theories of mind. These include Soviet Activity Theorists (Vygotsky, Lurk ,

Leont'ev, Gal'perin, Davydov), and the dialogue theorists, or socio-linguisticians,
for want of a better term, including Volosinov, Bakhtin, Lotman, Wertsch, as
well as socio-cultural theorists such as Lave, Wenger, Rogoff, Cole and Saxe.

The term `social constructivism' does not seem to appear in philosophy until
the late 1980s, when the growing interdisciplinarity of sociological and social
psychological studies, and their terminology, spilled over into philosophy. A
social constructivist tradition in spirit, if not in name, can be identified in philo-
sophy, with its basis in the late work of Wittgenstein (1953). However, some
scholars, such as Shotter, trace this tradition or at least its anticipations, back to
Vico. There are strands in various branches of modern philosophy which might
be termed social constructivist. Ordinary language and speech act philosophy,
following on from Wittgenstein and Ryle, including the work of Austin, Geach,
Grice, Searle and others, makes up one such strand. In the philosophy of science,
a mainstream social constructivist strand includes the work of Hanson, Kuhn,
Feyerabend, Hesse and others. In continental European philosophy there is an
older tradition including Enriques, Bachelard, Canguilhem, Foucault which has
explored the formative relations between knowledge, especially scientific knowl-
edge, and its social structure and contexts. Although not known as social
constructivist, this strand traces the historical social construction of these tradi-
tions and ideas. In social epistemology there is the work of Toulmin, Fuller and
others, exploring how scientific knowledge is socially constructed and warranted.
Finally, in the philosophy of mathematics there is a tradition including Wittgenstein,
Lakatos, Bloor, Davis, Hersh, and Kitcher concerned with the social construction
of mathematical knowledge. Ernest (1991a, in press) surveys this tradition, and
represents one of the few, perhaps the only philosophical approach to mathemat-
ics which explicitly adopts the title of 'social constructivisin'.

In the early 1970s the 'social construction (of the knowledge) of reality' thesis
became widespread in educational work based on sociological perspectives, such
as that of Esland, Young, Bernstein, and others. By the 1980s theories of learning
based on Vygotsky were also sometimes termed social constructivist, and al-
though we might now wish to draw distinctions between their positions, re-
searchers such as Andrew Pollard (1987) identified Bruner, Vygotsky, Edwards
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and Mercer, and Walkerdine as contributing to a social constructivist view of the
child and learning.

It appears, however, that the term 'social constructivism' first appeared in
mathematics education from two sources. The first is the social constructivist
sociology of mathematics of Restivo, which is explicitly related to mathematics
education in Restivo (1988). The second is the social constructivist theory of
learning mathematics of Weinberg and Gavelek (1987). The latter is based on the
theories of both Wittgenstein and Vygotsky, but also mentions the work of Saxe,
Bauersfeld and Bishop as important contributions to the area, even though they
might not all have called themselves social constructivist. Unfortunately Weinberg
and Gavelek never developed their ideas in print. Bishop (1985) made a more
powerful impact with his paper on the 'social construction of meaning' in math-
ematics education, but he did not develop an explicit theory of learning math-
ematics. Instead he focused more on the social and cultural cont.nas of the teaching
and learning of mathematics. Social constructivism became a more widely recog-
nized position following Ernest (1990, 1991a, 1991b). However, a number of
other authors have used and continue to use the word in different ways, such as
Bauersfeld (1992) and Bartolini-Bussi (1991). Beyond mere terminology, there are
also a number of contributions to mathematics education which might be termed
social constructivist, in one sense or other, even though they do not use this title.
For example, the approach termed `socio-constructivism' used by Yackel et al.

(in press) which is discussed below, can be regarded as social constructivist.
Thus it can be said that social constructivism originates in sociology and

philosophy, with additional influences from symbolic interactionism and Soviet
psychology. It subsequently influenced modern developments in social psychol-
ogy and. educational studies, before filtering through to mathematics education.
Because of these diverse routes of its entry, probably combined with its assim-
ilation into a number of varying paradigms and perspectives in mathematics edu-
cation, social constructivism is used to refer to widely divergent positions. What
they share is the notion that the social domain impacts on the developing indi-
vidual in some formative way, and that the individual constructs (or appropriates)
his or her meanings in response to his or her experiences in social contexts. This
description is vague enough to accommodate a range of positions from a slightly
socialized version of radical constructivism, through socio-cultural and sociolog-
ical perspectives, perhaps all the way to fully-fledged post-structuralist views of
the subject and of learning.

The problematique of social constructivism for mathematics education may he
characterized as twofold. It comprises, first, an attempt to answer the question:
how to account for the nature of mathematical knowledge as socially constructed?
Second, how to give a social constructivist account of the individual's learning
and construction of mathematics? Answers to these questions need to accommo-
date both the personal reconstruction of knowledge, and personal contributions to
`objective' (i.e., socially accepted) mathematical knowledge. An important issue
implicated in the second question is that of the centrality of language to knowing
and thought. Does language express thought, as Piagetians might view it, or does
it form thought, as Vygotsky claims?

Elsewhere I have focused on the first more overtly epistemological question,
concerning mathematical knowledge (Ernest, 1991a, 1993b, in-press). However,
from the perspective of the psychology of mathematics education, the second
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question is more immediately important. It is also the source of a major contro-
versy in the mathematics education community. In simplified terms; the key
distinction among social constructivist theories of learning mathematics is that
between individualistic and cognitively based theories (e.g., Piagetian or radical
constructivist theories), on the one hand, and socially based theories (e.g.,
Vygotskian theories of learning mathematics), on the other.

Although this is a significant distinction, an important feature shared by rad-
ical constructivism and the varieties of social constructivism discussed here is a
commitment to a fallibilist view of knowledge in general, and to mathematical
knowledge in particular. This is discussed elsewhere (Ernest, 1991a, b, in press;
Confrey, 1991).

Social Constructivism with a Piagetian Theory of Mind

A number of authors has attempted to develop a form of social constructivism
based on what might be termed a Piagetian or neo-Piagetian constructivist theory
of mind. Two main strategies have been adopted. First, to start from a radical
constructivist position but to add on social aspects of classroom interaction to it.
That is, to prioritize the individual aspects of knowledge construction, but to
acknowledge the important if secondary place of social interaction. This is appar-
ently the strategy of a number of developments in radical constructivism which
seem to fall under this category in all but name (e.g., Richards, 1991). Likewise
Confrey (1991) espouses a radical constructivist position which incorporates both
social interaction and socially constructed knowledge. Researchers whose posi-
tions might be located here commonly prefer to describe their perspectives as
constructivist as opposed to social constructivist.

The second strategy is to adopt two complementary and interacting but dis-
parate theoretical frameworks. One framework is intra-individual and concerns
the individual construction of meanings and knowledge, following the radical
constructivist model. The other is interpersonal, and concerns social interaction
and negotiation between persons. This second framework is extended far enough
by some theorists to account for cultural items, such as mathematical knowledge.
A number of researchers has adopted this complementarist version of social
constructivism, including Driver (in press), who accommodates both personal
and interpersonal construction of knowledge in science education. Likewise Murray
(1992) and her colleagues argue that mathematical knowledge is both an individual
and a social construction. Bauersfeld (1992, p. 467) explicitly espouses a social
constructivist position based on 'radical constructivist principles . . . and an inte-
grated and compatible elaboration of the role of the social dimension in individual
processes of construction as well as the processes of social interaction in the class-
room'. Earlier Bauersfeld described this theory as that of the 'triadic nature of
human knowledge' the subjective structures of knowledge, therefore, are subjec-
tive constructions functioning as viable models, which have been formed through
adaptations to the resistance of "the world" and through negotiations in social
interactions.' (Grouws et al., 1988, p. 39) Most recently Bauersfeld (1994, p. 467)
describes his social constructivist perspiktive as interactionist, sitting between
individualist perspectives, siich as cognitive psychology, and collectivist perspec-
tives, such as Activity Theory. Thus he explicitly relates it to symbolic
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interactionism, but he retains a cognitive (radical constructivist) theory of mind
complementing his interactionist theory of interpersonal relations.

Another group of researchers is Cobb, Wood and Yackel of the Purdue Pro-
ject, who describe their position as constructivist, but also emphasize the social
negotiation of classroom norms. They have on occasion used the term `socio-
constructivist' for their position (Yackel et al., in press.) Cobb (1989) has explicitly
written of the adoption of multiple theoretical perspectives and of their corn-
plementarity. These re.. earchers explicitly draw upon the idea of the comple-
mentarity of cognitive aspects and acculturation. '[W]hen we talk of students'
constructive activities we are emphasising the cognitive aspect of mathematical
learning. It then becomes apparent that we need to complement the discussion by
noting that learning is also a process of acculturation' (Cobb et al., 1992, p. 28,
my emphasis). Thus it seems appropriate to identify them as complementarist.

In Ernest (1991a) I proposed a version of social constructivism, which al-
though intended as a philosophy of mathematics, also included a detailed account
of subjective knowledge construction..This combined a radical constructivist view
of the construction of individual knowledge (with an added special emphasis on
the acquisition and use of language) with conventionalism; a fallibilist social theory
of mathematics originating with Wittgenstein, Lakatos, Bloor and others.

The two key features of the account are as follows. First of all, there is
the active construction of knowledge, typically concepts and hypotheses,
on the basis of experLaces and previous knowledge. These provide a
basis for understanding and serve the purpose of guiding future actions,
Secondly, there is the essential role played by experience and interaction
with the physical and social worlds, in both the physical action and speech
modes. This experience constitutes the intended use of the knowledge,
but it provides the conflicts between intended and perceived outcomes
which lead to the restructuring of knowledge, to improve its fit with
experience. The shaping effect of experience, to use Quine's metaphor,
must not be underestimated. For this is where the full impact of human
culture occurs, and where the rules and conventions of language use are
constructed by individuals, with the extensive functional outcomes mani-
fested around us in human society. (Ernest, 1991a, p. 72)

However this conjunction [of social and radical constructivist theories]
raises the question as to their mutual consistency. In answer it can be said
that they treat different domains, and both involve social negotiation at
their boundaries (as Figure 4.1 illustrates [omitted here]). Thus inconsist-
ency seems unlikely, for it could only come about from their straying
over the interface of social interaction, into each other's domains . . . there
are unifying concepts (or metaphors) which unite the private and social
realms, namely construction and negotiation. (Ernest, ibid., pp. 86-7)

In commenting on work that combines a (radical) constructivist perspective with
an analysis of classroom interaction and the wider social context, Bartolini-Bussi
(1991, p. 3) remarks that 'Coordination between different theoretical frameworks
might be considered as a form of complementarily as described in Steiner's proposal
for TME: the principle of complementarity requires simultaneous use of descriptive
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models that are theoretically incompatible.' However, some researchers, such as
Lerman (1994), argue that there is an inconsistency between the subsumed social
theories of knowledge and interaction, and radical constructivism, in this (or any)
complementarist version of social constructivism.

In my view, the complementarist forms of social constructivism described
above leave intact some of the difficulties associated with radical constructivism.
There are first of all many of the problems associated with the assumption of an
isolated cognizing subject (Ernest, 1991b). Radical constructivism might be de-
scribed as being based on the metaphor of an evolving and adapting, but isolated
organism, a cognitive alien in hostile environment. Its world-model is that of the
cognizing subjeCt's private domain of experience (Ernest 1993c, 1993d). Any form
of social constructivism that retains radical constructivism at its core retains these
metaphors, at least in some part. Given the separation of the social and individual
domain that a complementarist approach assumes, there are also the linked prob-
lems of language, semiotic mediation, and the relationship between private and
public knowledge. If these are ontologically disparate realms, how can transfer
from one to the other take place?

Lerman (1992) proposes that some of the difficulties associated with radical
constructivism might be overcome by replacing its Piagetian theory of mind and
conceptual development by a Vygotskian theory of mind and language. The
outcome might best be seen as a form of social constructivism. More recently,
in explicitly taking leave of radical constructivism, Lerman (1994) extends his
critique. He argues that any form of social constructivism which retains a radical
constructivist account of individual learning of mathematics must fail to account
adequately for language and the social dimension. Bartolini-Bussi (1994), how-
ever, remains committed to a complementarist approach, and although espousing
a Vygotskian position, argues for the value of the co-existence of a Piagetian form
of social constructivism, and for the necessity of multiple perspectives. Thus, on
the basis of divided opinion and opposing arguments it cannot be legitimately
claimed that the Piagetian forms of social constructivism has been refuted or
shown to be unviable.

Social Constructivism with a Vygotskian Theory of Mind

In a survey of social constructivist research in the psychology of mathematics
education Bartolini-Bussi (1991) distinguishes complementarist work combining
constructivist with social perspectives from what she t':rms social consctructionist
work based on a fully integrated social perspective. Some of her attributions of
individual projects to these approaches might be questioned. For example, I would
locate the diagnostic teaching approach of Alan Bell and his colleagues at Not-
tingham in a cognitively-based post-Piagetian framework, not one of social
constructivism. Nevertheless, the distinction made is important. It supports the
definition of a second group of social constructivist perspectives based on a
Vygotskian or social theory of mind, as opposed to the constructivist and
complementarist approaches described in the previous section.

Weinberg and Gavelek's (1987) proposal falls within this category, since it is
a social constructivist theory of learning mathematics explicitly based on
Vygotsky's theory of mind. A more fully developed form of social constructivism
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based on Vygotsky and Activity Theory is that of Bartolini-Bussi (1991, 1994),
who emphasizes mind, interaction, conversation, activity and social context as
forming an interrelated whole. Going beyond Weinberg and Gavelek's brief but
suggestive sketch, Bartolini-Bussi indicates a broad range of classroom and re-
search implications and applications.

In Ernest (1993a,.1993c, 1993d, 1994, in-press) I have been developing a form
of social constructivism differing from the earlier version (Ernest, 1990, 1991a)
because it similarly draws on Vygotskian coots instead of Piagetian constructivism
in accounting for the learning of mathematics. This approach views individual
subjects and the realm of the social as indissolubly interconnected, with human
subjects formed through their interactions with each other (as well as by their
internal processes) in social contexts. These contexts are shared forms-of-life and
located in them, shared language-games (Wittgenstein, 1953). For this version of
social constructivism there is no underlying metaphor for the wholly isolated
individual mind. It draws instead upon the metaphor of conversation, comprising
persons in meaningful linguistic and extra-linguistic interaction. (This metaphor
for mind is widespread among 'dialogists' e.g., Bakhtin, Wertsch and social
constructionists e.g., Flarre; Gergen, Shotter.)

Mind is viewed as social and conversational because of the following assump-
tions. First of all, individual thinking of any complexity originates with, and is
formed by, internalized conversation; second, all subsequent individual thinking
is structured and natured by this origin; and third, some mental functioning is
collective (e.g., group problem-solving). Adopting a Vygotskian perspective means
that language and semiotic mediation are accommodated. Through play the basic
semiotic fraction of signifiersignified begins to become a powerful factor in the
social (and hence personal) construction of meaning or meanings (Vygotsky, 1978).

Conversation also otters a powerful way of accounting for both mind and
mathematics. Harre (1979) has elaborated a cyclic Vygotskian theory of the devel-
opment of mind, personal identity, language acquisition, and the creation and
testing of public knowledge. All of these are accommodated in one cyclic pattern
of appropriation, transformation, publication, conventionalization. This provides
descriptions of both the development of personal knowledge of mathematics in
the context of mathematics education (paralleling Berger and Luckmann's
socialization cycle), and describes the formative relation between personal and
'objective' mathematical knowledge in the context of academic research math-
ematics (Ernest, 1991a, 1993b, 1994, in press). Such a theory has the potential to
overcome the problems of complementarity discussed above.

Conclusion

It is important to distinguish Vygotskian from radical constructivist varieties of
social constructivism, for progress to be made in theoretical aspects of the psy-
chology of mathematics education. The adoption of a Vygotskian version is not,
however, a panacea. Piagetian and post-Piagetian work on the cognitive aspects
of the psychology of mathematics education remains at a more advanced stage and
with a more complete theorization, research methodology and set of practical
applications. Nevertheless, Vygotskian versions of social constructivism suggest
the importance of a number of fruitful avenues of research, including the following:.
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the acquisition of semiotic transformation skills in working with symbolic
representations in school mathematics;
the learning of the accepted rhetorical forms of school mathematical lan-
guage, both spoken and written;
the crucial role of the teacher in correcting learner-knowledge productions
and warranting learner knowledge; and
the import of the overall social context of the mathematics classroom as
a complex, organized form of life including (a) persons, relationships and
roles, (h) material resources, (c) the discourse of school mathematics, in-
cluding both its content and its modes of communication (Ernest 1993a,
in press).

Let me end on a cautionary note. Having delineated a fully social form of social
constructivism based on a Vygotskian theory of mind, it is tempting to lump
many social and cultural theories together, under this one umbrella. However,
significant differences remain between such theories as the sociological theory of
mind of Restivo and Collins, Soviet Activity Theory, socio-cultural forms of
cognition (Lave, Lave and Wenger), social constructionism in social psychology
(Harre, Gergen, Shotter), and Post-structuralist theories of mind (Henriques et al.,
1984; Walkerdine, 1988). These theories may have more in common with the
Vygotskian form of social constructivism than with Piagetian forms. But to lump
these diverse perspectives together would lead to far more confusion and incon-
sistency than that which I have been trying to dispel in this chapter with my
analysis of social constructivism.
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Chapter 7

Mathematics, Computers and People:
Individual and Social Perspectives

Erick Smith

In an interview on the PBS radio programme, 'All Things Considered'
(13 December, 1991) D. Ford Bailey jr., son of the first black member
of the Grand Old Opry was asked what made his father's harmonica
playing so different:

Bailey: He played his ideas.
ATC: What do you mean by 'he played his ideas'?
Bailey: You couldn't write them down. 1-le just played the ideas in his

head.

Introduction

In a recent paper on the role of computers in education, Gavriel Salamon states
that there has been 'a shift of attention from Piaget to Vygotsky' (Salamon, 1992,
p. 25). Although Salamon made this remark in connection with the importance of
understanding the social changes in the classroom that accompany the introduc-
tion of computers, he also captured the essence of an important debate which is
beginning to emerge in education. In this debate a challenge is being issued to
what might be called conventional constructivist views based on the work of
Piaget. This Piagetian view is often characterized as seeing constructive activity as
an individual process isolated from both cultural artifacts and more knowledge-
able others ((Scott, Cole and Engel, 1992, p. 191). The emerging challenge takes
two forms. One places primary emphasis on the social and linguistic basis of
knowledge (Ernest, 1991; Gergen, 1992; Restivo, 1993), while the second empha-
sizes the importance of social and cultural factors in individual learning (Cole,
1985; van Oers, 1992; Wertsch, 1979). Often these two forms are lumped together
under the general rubric 'social constructivism', a genre of constructivism which
emphasizes social/cultural factors and which is currently dominated by those
working in the legacy of Vygotsky. Thus the dispute is often seen as one between
the traditional (or Piagetian) constructivists and the social (or Vygotskian)
constructivists. Although in this chapter, 1 will argue for making a distinction
between two constructivist approaches, I will argue first that the Piagetian/
Vygotskian criteria may not he the most useful and second that the two approaches
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to constructivism I suggest are better viewed as complementary than as compet-
itilie. Ultimately, however, I argue that the essence of what we call human math-
ematical activity requires what I call an individual constructivist perspective.

The stage for this discussion is set by examining the role of computers in
mathematics instruction, specifically by asking the question: Can computers think?
This question has both literal importance, in relation to the role of the computer
in the classroom, and metaphorical importance in emphasizing that the heart of
the educational enterprise lies not in simply inducting students into the social
world, but in educating the whole person. This becomes even more true in
mathematics, where the history of formal symbolic (linguistic) trappings can too
easily lull us into forgetting or ignoring the individual as sense-maker in her
experiential world.

The Computer as Social Participant: Can Computers Think?

In his book Artificial Experts, Social Knowledge and Intelligent Machines Harry Collins
describes a test originally proposed by Alfred Turing for answering the question:
'Can machines think?' (1990, p. 181). In Collins' version of Turing's test, a person
and a computer are placed in separate rooms. An interrogator in a third room does
not know in which room each is located, but attempts to find out through written
interactions. The question is whether the interrogator will make a distinction
between the person and the computer. Turing himself, while believing that the
literal question of whether a computer could think was 'meaningless', also stated
'that at the end of the century the use of words and general educated opinion will
have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted' (quoted in Collins, 1990, p. 184). Thus turing seems
to frame the issue in terms of social relativism. The question of whether the
interrogator will make a distinction has more to do with how she has constructed
her concept of computer and of thinking than with how the computer is physi-
cally constructed or the particular software in use. To the extent that social (cul-
tural, linguistic) distinctions between computer activity and thinking diminish,
we will become less likely, as interrogators, to make this distinction.

Collins makes several additional observations: First Turing's test is designed
to 'mimic the interactions of a human being'. Thus it is a test that equates thinking
with acceptable social interaction, or 'a test of our abilities to make an artificial
human that will fit into a social organism as opposed to a test of a machine's
ability to mimic a brain' (p. 183). Second he raises the question of the attitude and
experience of the interrogator. Is the interrogator actively attempting to make a
distinction or simply interacting with a more social intention? The act of distin-
guishing between humans and computers is closely related to the intention to
make such a distinction. As Collins states: 'These different features of Turing Test
protocols must make a difference to what we think of as intelligence and what we
think of as the test' (p. 188).

Collins points out that Turing did not think of the test as a laboratory experi-
ment under controlled conditions run by an expert on computers, rather as a
'broad statement about likely trends in the development of computers and their
impact upon the general public' (p. 184). The issue, according to Collins 'has little
to do with the development of computers and much more to do with the way we
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think about them' (p. 184). In this sense, the real importance of the Turing Test
is not so much whether we can distinguish between computers and people as
whether we do make that distinction. Collins makes a metaphorical comparison to
artificial heart implants and the ability of the body to detect, and thus reject them.
Computers are the artificial implants of the social world, a 'social prosthesis'
(p. 14). He continues:

Luckily for transplant patients the sensitivity of the immune system is
not fixed; it can be reduced by drugs. According to the state of the
immune system, the same prosthesis might be treated as an alien invasion
or as a familiar part of the body. In the same way the social organism can
be more or less sensitive to artifacts in our midst; one might say that it
is a matter of the alertness of our social immune system.... One of the
things 1 will try to do . . . is to make our immune system more sensitive
to mechanical strangers, for just as reducing the sensitivity of the physi-
ological immune system carries with it enormous costs for the body,
reducing sensitivity to mechanical invasion has costs too. (Collins, 1990,
p. 15)

A question I want to raise revolves around what those costs may be in a
mathematical classroom. I would suggest that in a certain sense the distinctions we
make between people and computers are equivalent to the distinctions we make
between educating and training. The acceptance of computers as 'social prosthesis'
increases the difficulty of distinguishing between educating and training. As com-
puters become more integrated into our social world, how will we distinguish
educating from learning to act like a computer? In the balance of this chapter 1 will
first suggest that the uncritical acceptance of computers in classrooms, even when
introduced in conjunction with tool and simulation software, may diminish our
awareness of this social prosthesis. Like Collins, I will suggest that realizing the
potential of computers in education may be closely related to our ability to 'make
our immune system more sensitive to mechanical strangers'.

Student Examples

In a review of computers in education, Gaviel Salamon describes three historical
approaches to educational computing: computer-aided instruction/intelligent
tutoring systems (CAI/ITS), programming, and tools. By tools, he means 'cog-
nitive tools' and includes such software as "model builders, data sets affording
manipulation, conceptual map-makers, simulations and similarly partly or wholly
open-ended instruments for the student to operate and manipulate' " (1992, pp. 11-
12). Salamon claims that neither CAI/ITS nor programming have shown promise
and that the development and use of appropriate software tools provides the most
hopeful route to successful use of computers in schools. Although one can agree
with his conclusion, it is certainly also the case that even the best tools can he used
poorly, that is tool software itself is not the sole requirement for positive change.
Thus a question we face is what it means to use the tools 'well'. The example
below has been chosen to illustrate these issues, particularly in relation to the role
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of computer as social participant in the classroom. In this sense, I present it to
push at the edges of what it means to learn in a computer environment with
the intention of raising issues that challenge us to better define our pedagogical
commitments.

Can Computers do Mathematics?

Three students are engaged as a group with one computer and the software tool,
Function Probe® (FP, Confrey, 1992a) in a mathematics classroom. They are using
the table window in FP to build a table of values for a contextual problem which
can be modelled linearly (distance as a function of years). They have filled one
column in the table window with years by using the 'fill' command and are
attempting to enter the values in the second column. They have already decided
that the initial distance is 241.5 inches and that this distance decreases by 2.75
inches each year. Since one option when using the 'fill' command in FP is to fill
a column by declaring an initial value, a final value, and an iterative arithmetic
operation (+, ,*, or +) by a specified value, one student, Dan, suggests that they
use the command to enter values iteratively in the distance column by starting
at 241.5 and subtracting 2.75 each row until 0 is reached. He attempts this, but
neglects to change the iterative operation from its default action (plus) to the
action he needs (minus). Thus FP attempts to fill the column by starting at 241.5
and ending at 0 by adding 2.75. Only one value is entered in the column, 241.5,
and the 'fill' stops. Dan assumes that he has made an operational mistake in the
programme. Another student, Tess, objects:

You have to make an equation don't you understand? Because we want
the years to correspond with the inches.

Since the goal is to create a relationship between years and distance, Tess'
argument seems to be that this correspondence can only be created through an
equation.' However, Dan insists that a should work and the third student,
Lila, seems to agree. They try several more times to fill the column, failing each
time for the same reason.' As they do so, Tess becomes increasingly upset, attrib-
uting their failure to their unwillingness to listen to her point. Although Dan still
expresses certainty about his method, Lila begins to waiver. Tess states:

I know but . . . you have to have an equation otherwise you have to do
each one separately ...

To which Lila responds:

I think Tess is right. We have to make an equation, otherwise it won't
know what to do. (my emphasis)

Reluctantly, Dan goes along and the group eventually finds an equation and fin-
ishes the problem.

Had the teacher reached this group at an appropriate time, he would very
likely have shown them how to use minus in the 'fill' operation. However, an
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interesting issue would be how a teacher could have responded to Tess and Lila,
had he taken seriously the reasons they attributed to the failure of 'fill' for the
group. How could he have responded to their suggestion that the computer in
some sense knew that years-and distance must correspond and thus was unable to
carry out an operation which, in their eyes, would fail to make this correspond-
ence? Although the students were fairly new to FP, they had worked with the
table enough to know that it could algorithmically carry out the indicated opera-
tions. Thus it would appear that they were attributing, in some sense, a very
human quality to the computer, an ability to create a 'problematic' (Confrey,
1991) within the problem, which one might describe as an ability for the compu-
ter to 'do mathematics'.

Seeking an Appropriate Role

The intention in providing this example is to point out how computers can be-
come an unrecognized 'social prosthesis' and how this can serve to undermine the
kind of exploratory constructive processes necessary for meaningful learning. If
students do not distinguish between 'meaningful learning' (Novak and Gowin,
1984) and learning to do what the computer does, then we have lost a significant
part of the educational process. On the other hand, the programme used in the
above example is representative of just that kind of tool software which Salamon
sees as the hope of educational computing. Thus we must find an appropriate role
for these tools which will allow them to reach their potential. They are valuable
as a 'social prosthesis', as long as they are recognized as 'mechanical strangers' and
as long as we build this understanding into our instructional practices. Thus we
might ask how our classroom practices allow students to understand what it is in
their own actions that is different from that which a computer does. This issue has
particular relevance in mathematics instruction, particularly in how it is that we
view our subject matter, mathematics.

Turing's dismissal of the po isibility of a computer being able to think seems
quite straightforward i many ar 'as. As Wittgenstein points out, Computers lack
that 'rest of behaviour'. (1953, par. 344). This is not something that will be over-
come as computers become more sophisticated, for that 'rest of behaviour' is that
which makes us distinctly human. If we could imagine a computer which had the
level of caring about others that people do, whose 'mental operation' was intrin-
sically tied to its participation in a social network, which had a sense of humour,
and which worried about being unplugged the same way we worry about dying,
we might be able to imagine a computer which could exhibit the 'rest of behaviour'.

But perhaps mathematics is different. It has recently been seriously proposed
that computers can do mathematics. Following the publication of a computer
algorithm that theoretically allows a computer to check any formal proof, one of
its authors states that since the creation of Principia Mathematica:

mathematicians have rested assured that all their ingenious proofs could,
in principal, be transformed into a dull-string of symbols which could be
verified mechanically. (I3abai, 1992, p. 1)
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Figure 7.1: Individual Constructivist Perspective

Researcher/
Observer Learner

Despite the optimism of the mathematician, one might ask him whether, in veri-
fying these mathematical proofs, the computer would come to know the math-
ematics. Is verification simply i matter of formal manipulation or does it require
one to answer the question `verified for whom?' Is there a distinction between
what a computer can do and mathematics? Mathematically, how important is the
`rest of behaviour'?

Individual Perspective Versus Social Perspective

In making a distinction between individual and social constructivists' perspectives,
I will argue that there is not a single answer to the questions raised above, rather
that different answers may be more or less viable depending on the perspective
that one takes that is on how one situates oneself as an observer. From the
claim that: 'Every distinction is made by an observer' (Maturana and Varela,
1987). 1 would further emphasize that the distinctions made are made as a result
of an observer who has chosen a perspective. Thus distinctions are not there for
the observing, but must be constructed by the observer. In this sense we can learn
something about constructivist researchers by initially asking ourselves where it
is that we see a researcher placing herself as observer. I have found two general
observer categories which I believe are useful in discussing educational issues,
particularly the kinds of issues raised in the above discussion. I have chosen to use
individual perspective (or individual constructivist) and social perspective (or so-
cial constructivist) to distinguish these two categories. From an individual per-
spective one imagines oneself as observer from the perspective of the mind of the
individual as sense-maker in his experiential world. This is not a claim that the
researcher can ever actually know what is in the mind of another, rather a claim
that the questions they wish to answer can best be facilitated if the models one
creates are made as if they represent the learner in relation to his experiential
world. Although social and cultural factors are often seen as intrinsic to learning
by individual constructivists, they tend to emphasize the individual constructive
activity regulated through a personal sense of 'viability' (von Glasersfeld, 1988).
This model is illustrated in Figure 7.1, where the researcher /observer attempts to
model the experiential world of the learner `through the learner's eyes'. In this
model, the social and cultural worlds are included in the learner's experiential
world.
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Figure 7.2: Social Constructivist Perspective

Researcher/
Observer

A second perspective that an observer might take is to place himself within
a social setting with a focus on language and other kinds of interaction and view-
ing the individual in relation to his or her role as social participant. Educational
researchers who take this perspective focus on issues best understood by model-
ling the interactions that take place between people. In Figure 7.2, the researcher/
observer places himself or herself outside a circle which encompasses the social/
cultural milieu, that is as observer of that milieu. This does not necessarily mean
that they will not focus on the individual, but the focus will be on individual as
participant in the social milieu, rather than on individual as sense-maker in an
experiential world. I will refer to such researchers as social constructivists. Al-
though social constructivists do not necessarily reject the individual constructive
actions of the learner, they tend to give language and the social/cultural context
primary importance.

By these criteria, it would seem clear that traditional Piagetian researchers
take an individual perspective while others take a distinctly social perspective
(e.g., Ernest, 19913; Restivo, 1993; Gergen, 1992; Lave and Wenger, 1991). This
distinction may not appear so obvious for either social interactionists or
Vygotskians. However, if one focuses on how th..se researchers focus their obser-
vations, it seems possible to make distinctions. For example, from a social inter-
actionist perspective, Yackel, Cobb, and Wood have, in recent years, provided an
explanatory framework for social interactions within elementary classrooms but
have done so from an individual perspective, that is imagining what it is like for
the individual in the social setting of the classroom (1990). Likewise I would place
the work of both Bauersfeld (1991) and Voigt (1992) in the individual constructivist
category. Although it is possible to use concepts developed by Vygotsky and his
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students to elividate an individual perspective (Smith and Confrey, 1990), when
one looks at current research being done in Vygotskian or socio-cultural frame-
work, one tends to see the social constructivist perspective dominating. For ex-
ample, in summarizing some socio-cultural work in relation to mathematics
education, Renshaw states: `.. . a particular meaning is never acquired in the sense
that all possible meanings can be reduced to or replaced by a single cultural meaning.
Rather, meaning is socially situated in an ongoing dialogue between the frame-
works that a child can bring to an activity, or that can be introduced into an
activity by other participants such as another peer or teacher' (1992, p. 24, his
emphasis). Although Renshaw is acknowledging the possibility of different mean-
ings among individuals, he is doing so from a social perspective, that is viewing
these meanings through the social interactions of the participants, rather than the
individual's construction of knowledge.

This might seem to bring up the question of whether these two perspectives
are necessarily separate or whether they might productively be bridged. I have
argued elsewhere that attempts to do so have been unsuccessful and such attempts
have often led to a linguistic 'knowledge slide', the use of the word 'knowledge'
without discrimination to indicate both social and individual constructs (Smith,
1993). In that work examples were provided with the suggestion that those who
1,7 hardest to bridge these two perspectives, primarily the social interactionists
and the Vygotskians, are most likely to fall into the use of a knowledge slide.
Rather than attempting to bridge the two perspectives, it is important to recog-
nize their complementarity. Each allows for a possible way of viewing and under-
standing that is difficult or impossible from the other.

As a convenient metaphor for distinguishing these approaches we might say
that for social constructivists: 'Individual constructivists don't see the forest for
the trees'. Whereas for an individual constructivists: 'Social constructivists don't
see the trees for the forest.' Just as the biologist and ecologist ask different ques-
tions from different perspectives, individual and social constructivists may do the
same, and it may be neither possible nor desirable to reduce their viewpoints to
a common perspective. However, results from one framework may (and should)
continually provide a rich source of new problems from the perspective of the
other (Smith, in progress). Using these two perspectives as a framework, we can
re-examine the questions regarding computers and mathematics described above.
To begin, it will be helpful to describe a recently published social constructivist
view of mathematics (Ernest, 1991).

Social Constructivist Mathematics

In his book The Philosophy of Mathematics Education (1991) Paul Ernest argues for
a social constructivist view of mathematics. This mathematics has three descrip-
tive characteristics:

1. It is descriptive rather than prescriptive.
2. It is based on quasi-empiricism, conventionalism, and radical

constructivism.
3. It consists of both subjective and objective knowledge.
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Objective knowledge consists of socially accepted forms of linguistic expres-
sions which evolve over time (thus are fallibilistic) through processes similar to
those described as quasi-empiricist by Lakatos (1976). In mathematics, this objec-
tive knowledge concerns the linguistic rules, theorems, formulas, and algorithms
which have become accepted within a particular culture, for example school
mathematics within the United States. Ernest attributes the certainty we feel for
this 'objective knowledge' to linguistic conventionalism.

Since the linguistic rules for 'objective mathematics' are fairly well-defined
and change slowly, one can imagine that a 'mathematical computer' might have
an easier time with the Turing test than a more conversational one. As computers
become more sophisticated, the linguistic traps, proposed by - Ccilins may be
harder to find in a world of 'objective mathematics' and may be ii visible to
unaware participants. Thus if we are to detect these mechanical strange, in Ernest's
social constructivist world, we may need a way to account for the 'rest of behav-
iour'. Ernest does attempt to bring an individual perspective to his work by
introducing individual or 'subjective knowledge' which he ties to radical con-
structivism. This, however, poses another problem.

Subjective Knowledge and Radical Constructivism

Once one places knowledge within a linguistic domain, it becomes difficult to
escape these bounds when discussing individual knowledge. Individual knowl-
edge is subject referential, that is it implicitly assumes a knower. To place such
knowledge in language requires some means of explaining how it is that individu-
als are knowers of that knowledge. For Ernest, all mathematical knowledge (both
objective and subjective) has a linguistic basis: . . the foundation of mathematical
knowledge, both genetic and justificatory, is acquired with language' (1991,
p. 75). Because Ernest depends upon the common linguistic basis to bridge his
'objective knowledge' to individual ('subjective') knowledge, however, he has
difficulty tying this knowledge to individual (radical) constructivism with its
emphasis on individual constructive actions. In fact, in arguing his case, I believe
Ernest conies perilously close to the use of a knowledge slide. From a radical con-
structivist perspective, operations are based on actions (Piaget, 1970; Steffe et al.,
1983; Confrey, 1991) and there is no direct relationship to linguistic structures.
For example, Confrey's recent work on splitting (1994) suggests that there are at
least two fundamental kinds of actions underlying the operation of multiplication
which young children develop despite the fact that our language provides little
basis for this distinction. This conflict is also apparent when looking at the issue
of fallibility. Recently, in separate discussions on the same day, Paul Ernest stated
that the mathematical statement 2 + 2 = 4 is fallible (personal communication, 1992)
and Ernest von Glasersfeld said that the same statement was true with certainty
(personal communication, 1992). Given Ernest's social constructivist perspective,
especially with its ties to conventionalism. he must allow that this statement, like
all mathematical statements is fallible, simply because language use changes and is
both culturally and historically dependent. For von Glasersfeld, however, to claim
certainty for this mathematical statement is to claim that one has abstracted the
mental operations of isolating two sets of two units each and has combined these
sets I to one set which numbers four. For von Glasersfeld, the mental operations
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create a certainty for which the language 2 + 2 = 4 is arbitrary and merely descrip-
tive. If one's use of language changes over time or situation, it will not alter this
certainty. Thus in articulating a radical constructivist view, von Glasersfeld would
not place the basis for mathematical knowledge in language. Henderson carries
this argument further emphasizing that diversity of background engenders diver-.
sixty of mathematics. A viable proof must 'answer my why question and relate my
meanings of the concepts involved. The proof that satisfies someone els.e may
not satisfy me because their meanings and why-questions are different from
mine.. . . Persons who are different from me (for example, in terms of cultural
background, race, gender) are most likely to have different meanings and thus
have different why-questions and different proofs' (Henderson, 1992, pp. 3-4).
These concerns about reconciling social constructivist mathematics with an indi-
vidual constructivist approach are similar to those raised by Confrey (1992b). She
also sees the role of the observer as central to the two perspectives:

This concern for the observer's status poses a fundamental dilemma for
the socio-constructivist. If the intermental exchanges are what creates and
determines the intramental thinking, then what would lead one to expect
diversity in students' interpretation of a statement, argument or justifica-
tion? Is it simply accorded to the diversity of social experiences children
have undergone? Giving voice, recognition and encouragement to these
constructive inventions is a primary goal of the constructivist. If class-
room interactional descriptions . . . ascribe a uniformity to students' ex-
perience, then the opportunities to build on the richness and diversity of
student approaches will evaporate. . . . The pivotal question as I see it is
how do they [socio-constructivists] bring such ideas and experience into
coordination (and, to some extent only, reconciliation or also, poten-
tially, confrontation) with the public arena of debate and negotiation.
(Confrey, 1992b, p. 27)

Confrey's concern is directly related to the particular context of education.
Without an individual perspective, one loses access to the richness of individual
constructions that are at the core of the learning process. Thus the `viability of the
child's model from the child's perspective' receives little attention (p. 19) and
many 'researchers in this tradition focus so heavily on the social interactions that
the rich world of individual constructs remains relatively unarticulated and dis-
cussed in their writings' (p. 24). If one accepts the validity of separating these two
perspectives as I have done, then a question to social constructivists would be:
Given that all eduction is situated within social and cultural settings, is that enough
to argue that a social constructivist perspective is sufficient by itself to account for
educational activity? The problem which I see, and which seems to be central to
Confrey's concern, is that with their focus on language and social interaction,
social constructivists may, like computers, leave out the `rest of behaviour', or in
this case, the 'rest of mathematics'.

Computers in a Social Constructivist Classroom

The concerns expressed about relying on a social constructivist perspective in
mathematics education carry over to models of computers in education. In
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particular, how does one, from a social constructivist perspective, recognize the
`mechanical stranger' if it is quite good at speaking the language of 'objective'
mathematics? The two social constructivist accounts discussed below provide one
basis for a addressing this question

Computer as Intellectual Partner
Pea and Salamon have recently proposed the idea of computer as intellectual part-
ner, 'a sharing of cognitive load, the off loading of a cognitive burden onto a tool
which partakes in the handling of the intellectual process' (Salamon, 1992, p. 17).
What makes computers unique according to Salamon is that they have intelli-
gence. Computers can not only handle lower-level tasks like calculating, drawing,
and so on, but allow a new conception of partnership, where cognitions become
`distributed' in the sense that computer and partner think jointly (Pea, in press,
from Salamon, 1992, p. 17). In this situation, Salamon argues for what he calls
`distributed intelligence', where instead of focusing on individual accomplishment,
the emphasis is on the 'joint product'. The computer becomes a 'performance-
oriented tool' (p. 18). This seems to be a strong socially situated view of knowl-
edge. As Salmon states:

The common assumption is that intelligence resides in people's heads
and that situations can invite, afford the employment of, or constrain the
exercise of this intelligence. The intellectual partnership with computers,
particularly that kind of partnership which is joint-performance-oriented,
suggests the possibility that the resources that enat,le and shape activity
do not reside in one or another agent but are distributed between per-
sons, situations, and tools. In this sense, 'intelligence is accomplished rather
than possessed' [Pea, in press]; it is brought about, or realized, when
humans and tools pool their intelligences and jointly tackle a problem or
task. (Salamon, 1992, p. 18)

There are two questions that are not directly addressed in this chapter. First,
one wonders if there is, in their view, no longer a distinction between the roles
of computers and individuals, or if so, how that distinction would be made in the
classroom. Second, if intelligence is 'accomplished', what is it that we are trying
to do in schools. Do we offer no possibility that students obtain 'something' that
they can carry away with them? If problem-solving is nothing more than solving
a particular problem in a particular setting, then the 'accomplishment' of solving
that problem does seem to be paramount and perhaps it makes little difference
how the task was divided between human and computer. The value of the experi-
ence lies only in the ability of the participants to be able to repeat under similar
conditions. Given the preponderance of evidence, however, that humans do have
the capability to creatively remake old knowledge in new situations, one must
wonder whether the distinctions between the roles of human and computer should
be so diminished.

These questions point to the focus on a social perspective in their work. From
this perspective, Pea and Salamon do offer valuable insights on the role of com-
puters. As computers become integrated into school settings, the nature of the
learning activity does change. Tools are riot simply amplifiers of an independently
existing subject matter (Pea, 1987), rather tool and problem (or subject matter) are
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inherently connected. Thus we can reject the idea that representations (including
computer interfaces) can be 'invisible' and begin to seek how our understanding
of what it means to learn mathematics changes when using computers.

Computer as Cultural Tool
In a move Vygotskian approach, Scott, Cole and Engel (1992) describe what they
call 'cultural constructivism' which they characterize, in contrast with Piagetian
constructivism, as assuming `not only an active child but an equally active and
usually more powerful adult in interaction . . . Moreover, cultural constructivism
emphasizes that all human activity is mediated by cultural artifacts, which them-
selves have been constructed over the course of human history' (p. 191). For them
computers play the role of a cultural tool which serves to mediate human activity:

From this perspective, the historically conditioned forms of activity me-
diated through computers must be studied for the qualitatively distinc-
tive forms of interaction that these artifacts afford and the social
arrangements that they help constitute. Moreover, one is encouraged to
seek explanation of current uses of computers in terms of the history of
the technology and the social practices that the technology mediates; one
needs to consider the 'effects' of interacting in this medium not only as
they are refracted through transfer tests or in local activity systems (such
as classroom lessons) but also in the entire system of social relations of
which they are a part. (Scott et al., 1992, p. 192)

There is much in the Scott et al. description that facilitates our understanding
of computers in the classroom. The idea that computer-as-tool mediates the
activity of learning supports the idea, also made by Pea (1987), that computers do
not simply `amplify' our ability to learn but alter the ways in which we learn and,
thus, the nature of what is learned. This suggests that the question of `what' is
learned may be a more important question than simply 'how much', for Scott
et al. as well as Pea seem to be arguing that the question of `what' is learned cannot
be answered without also knowing `how' that learning takes place. In addition,
Scott et al. also point out the importance of developing extended learning contexts
which become embedded in computer cultures, noting several research centres
which they describe as having 'an interest in sustaining learning contexts over
time and beyond the confines of their own experimentation and an interest in
creating a research agenda (and therefore an educational practice) in contrast to the
technicist tradition in :ducational computing' (p. 242).

There is a broad agreement among researchers of many persuasions in the
importance of developing sustained learning environments in which computers
become embedded in the learning culture. If this does not happen, there seems
to be little chance that computers will have a widespread significant influence
in education. However, as suggested in Harry Collin's work above, this can be a
double-edged sword. For just as the benefit of computers may be dependent upon
their becoming culturally embedded, this same process may foster other concerns.

Although Scott et al. provide little detail about how they would view stu-
dents' inter actions with computers within a subject-matter context, they do refer
to Wertsch s Interpretation of Vygotsky (1985). The idea of a tool 'mediating'
experience, in our case mathematical experience, brings forth the image of an
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individual and the mathematical subject matter with the tool somehow sitting
between, 'mediating'. Mathematical content is separated from the doing of math-
ematics. This seems to be consistent with the general Vygotskian view of the
individual and physical reality with culture mediating their interactions. As Wertsch
states, a tool 'serves as a conductor of humans' influence on the object of their
activity ... [It] changes nothing in the object, it is a means for psychologically
influencing behaviour ...' (p. 78). In this case, the 'object' is mathematics. One
need not postulate the independent existence of mathematics in this view, for it
would seem that Ernest's 'objective mathematics', a socially constructed view of
mathematics, would be quite consistent with the idea of mediation. However, this
also leads one to the same problem which faced Ernest, reconciling this view with
individual goal-oriented experience. For example, Confrey describes three possi-
ble methods which students might have .when working on a specific problem
involving multiplication, each a valid approach to the problem. She states: see
little in Vygotsky to help a more knowledgeable other to choose between the
options, for each option would be legitimate to a more knowledgeable
other . Vygotsky seems to argue that the more sophisticated method would be
the one that relied on semiotic mediation of psychological tools to accomplish
more complex operations' (1992, p. 18). Looking back at the student example in
this chapter, if one takes the view that finding the equation is the 'more sophis-
ticated method', then we must ask if, from a social constructivist perspective,
there would be any pedagogical concern that Dan was never able to successfully
fill the distance column, since the group did end up finding a correct equation.
How could one place a value in allowing Dan to explore this problem from his
own perspective, when his inability to do so ultimately led to the 'more sophis-
ticated' solution? One might then ask why the software programme should have
the capability to fill a column iteratively if the same result can be obtained with
an equation, or, perhaps, why the computer cannot become the cultural conduit
or 'more knowledgeable other'? Pushing this point a bit further, we might re-
member that when Turing originally posed his test, he was not asking whether
the interrogator could distinguish the computer from the person, but questioning
whether, in the course of normal interactions, the interrogator would make that
distinction. From a social constructivist perspective, one must wonder whether
there is any reason why students should make that distinction, if we eventually
reach the point where, in the 'normal' course of classroom interactions they do
not do so. Where are the 'enormous costs' that Collins was so concerned with?

Individual Constructivism and the Computer

Both of the above social constructivist models seem to want to 'pull the computer
in' to make it, in a certain sense, part of the way one thinks and acts on problems
which exist 'out there' in the social and physical world. From the social
constructivist perspective, the computer is part of the same social milieu as the
individuals, part of the interactive communicative processes that are being ob-
served. Thus Figur.: 7.3 represents an extension of Figure 7.2 which includes the
computer as part of those communicative processes. Individual constructivists, on
the other hand, see the individual as making sense of an experiential world
which includes both computers and mathematical. problems. From an individual
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Figure 7.3: Computer from a Social Constructivist Perspective

Researcher/
Observer

perspective the computer is not separable from the experiential world it is part
of the world from which the individual is constructing his or her mathematics,
and the computer as constructed by the individual in conjunction with the prob-
lem. Both, are 'out there' in the experiential world of the individual. This differ-
ence is illustrated in Figure 7.4 where the computer is part of the experiential
world of the learner. In terms of the previous distinction between social and
individual constructivism, one sees the social constructivist observer as observer
of 'culturally situated mathematics', observing the interaction between individual
and computer. The individual constructivist observer, on the other hand, would
be attempting to model the individual's possibilities for acting upon an experiential
world and seeing mathematics being constructed in relation to actions which the
individual sees as viable within his or her experiential world which includes a
computer.

Thus for the individual constructivist, instead of viewing computers as a tool
that changes the ways I do an independently existing (perhaps socially constructed)
mathematics, an individual constructivist tends to see the computer as intrinsically
related to one's understanding of mathematics itself. In the previougly mentioned
example from von Glasersfeld describing the possible mental actions one might
take in constructing the certainty that 2 + 2 = 4, it is clear that he places mathemat-
ics in the mental actions one takes. Those mental actions are created as tentative
viable responses to problematical situations within one's experiential world. Within
the experiential world, 'mathematical situations' and cultural tools are seen as
inseparable, that is one creates problematical situations in relation to how one
views possible ways to resolve those problems. Likewise, objects are created
and defined through our actions. Thus to say that tools do not affect the objects,
but only change the way we act is too weak a role. Statements such as: '1 made
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Figure 7.4: Computer from an Individual Constructivist Perspective

Researcher/
Observer

Learner

O

Learner's
Experiential
World

a graph', 'I filled a table column', or 'I divided two numbers' become statements
about a different mathematics when one has access to tool software versus paper
and pencil, just as they did when we started using writing tools. Computers are
not simply a tool with which we act upon the world, but become part of the
world upon which we act.

There is significant evidence in the literature illustrating how an individual
constructivist perspective allows one to see a change in mathematics that evolves
as students use computers (and this change grows as the 'computer culture' (Scott
et al., 1992) becomes more firmly established) For example, Rizzuti (1991) docu-
mented the power of a `covariation' understanding of functions by students work-
ing with the fill command in tables; Afamasaga-Fuatai (1992) described students'
construction of quadratic functions in contextual problems using a process of
evaluating net accumulations over time in the table window of Function Probe;
Borba (1993) has documented a fundamentally different understanding of func-
tional transformations when working with students who began their explorations
using visually dynamic mouse-driven actions directly on computer graphs; and
finally, my own work suggests that students' mathematical language when prob-
lem-solving in small groups may change significantly when their efforts are centered
around a problem-solving tool (Smith, 1993). In addition, much of the research
on the use of Logo supports the idea that technological tools lead to changes in
the how students think of mathematics (Hoyles and Noss, 1992; Papert, 1980). In
all of these cases, the power of the computer became evident to the extent that it
allowed students to instantiate their actions in relation to their own understanding
of the problem. This work along with that of others (Kaput, 1986; Rubin, 1990)
has been part of the development of an 'epistemology of multiple representations'
based on the idea that 'mathematical concepts' are neither singular nor embedded
in individual representations, but are constructed as a process of interweaving
multiple representational forms with the actions we make within problematical
situations. Thus actions, representations and concepts are inseparable. Students
create their own problematics in relation to posed problems where the problem-
atic they construct is inseparable from their understanding of the actions which
were possible using the available tools (Confrey and Smith, 1991; 1992).

The strongest argument for the importance of the individual constructivist
approach may be that its goals are directly aimed at understanding the 'rest of
behaviour', that part of people which makes us human and which can never be
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part of a computer. From an individual constructivist perspective, the question of
whether a computer can do mathematics is as meaningless as the question of
whether computers could think was to Alfred Turing, for one has chosen a per-
spective that places the computer outside of the thinking individual. This is the
point from which one starts, from which one lOoks out, and from which one tries
to make sense `the world. Failing to pay attention to the individual constructivist
perspective may result, in Collin's terms, in the failure of our social immune
system to recognize the 'mechanical stranger' in our midst.

Conclusion

There has been a big push in recent years to increase the use of computers in
school mathematics. However, since computers do much of what has traditionally
been taught and valued (i.e., carry out computation), this push has been accom-
panied by some fairly hazy descriptions of what students are supposed to learn in
these environments, especially at the elementary level. The arguments for the
importance of an individual perspective underlie the importance of helping teach-
ers and students develop an understanding of what people do and what computers
do not do. Articulating these arguments should go'a long way towards breaking
down popular views of mathematics as a technical subject and support the move-
ment towards a more humane view of our subject.

However, I am not arguing for the ultimate value of one perspective over
ancber. rather to describe a legitimate tension between social and individual
constructivists approaches to learning, using computers as a vehicle for describing
that debate. The concerns that underlie the social constructivist programmes have
led to essential insights into teaching and the social organization of the classroom,
many of which have been neglected or even denied in many individual constructivist
research findings. For example there has sometimes been a tendency to assume
that results from individual studies of students working on disconnected problems
in isolated situations can be generalized to broad learning environments. In this
sense, bringing in the concepts of cultural tool, mediation, situated learning, etc.
have provided an essential framework in which to evaluate constructivist research
programmes. However, the concern expressed in this chapter is that these social
concerns should not prevent us from still trying to understand how individuals
make sense of their world. How do social constructivists allow individuals to
create the kinds of culturally rich knowledge that contributes to the continual
evolution of our culture if they do not, in some sense, allow those students to
stand separate from the cultural milieu?

The computer is a convenient medium to explore this issue because many
of our societal fears of 'technicizing' education fit well with many individual
constructivists' fears of 'culturalizing' education, making education nothing more
than a cultural (or linguistic) exercise. Looking back at the opening quote in this
chapter, I would not deny the historical/cultural basis for the music of D. Ford
Bailey, but would suggest that, had the Grand Old Opry restricted its member-
ship to those who could 'write down' their music, Mr Bailey may never have had
the opportunity to 'play the ideas in his head' on that stage. The question of how
we create educational settings which allow all students to 'play the ideas in their
heads' cannot be ignored in the process of educational reform.
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Notes

1. The two approaches to creating this function suggested by D and T have been
described as the covariational and correspondence approach respectively (Rizzuti,
1991; Confrey and Smith, 1991).

2. It should be noted that this is only the second week that these students have
been using FP. They later become adept at using the 'fill' command in a variety
of situations.

3. In this case I am specifically refering to Ernest's account of 'objective mathematics'.
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Chapter 8

The Context of Cognition:
The Challenge of Technology

Katherine Crawford

Do not all charms fly
At the touch of cold philosophy?
There was an aweful rainbow once in heaven:
We know her woof, her texture; she is given
In the dull catalogue of common things,
Philosophy will clip an Angel's wings,
Conquer all mysteries by rule and line,
Empty the haunted air, and gnomed mine-
Unweave a rainbow. .. . (Keats)'

Introduction

The context for learners has changed. Most obviously, the advent of information
technology has changed physical aspects of the learning environment through the
increasing presence of computers and the new possibilities that are offered by
educational software, multi-media and electronic communication. Less tangibly,
but possibly more powerfully and irrevocably, the new technologies appear to
occupy a different niche in the system of human activities and discourses and to
have changed the relationships between culture, science and technologies the
patterns of their respective evolutionary paths. They present a challenge to tradi-
tional conceptions of cognition, of epistemology and the very purpose of educa-
tion. Nowhere is this challenge more evident than in the field of mathematics.

The impact of modern science and technologies on cultures has been largely
mediated through military and industrial activities and the acquisition of scientific
and technological capability has become an intensely political process. Perhaps
because of this, in many countries, the state has assumed more direct responsibil-
ity for the development of science and technology. This responsibility and con-
cern is reflected in the priorities of state funding for schooling, technological
development and research in scientific fields. A lot has happened since the time of
Aristotle when learning about technology was excluded from educational activity,
a priori, as degrading.

The significance of technology and its relationship to human society has
changed in ways that present a real challenge to educational institutions. Formerly,
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technology was essentially an aggregate of practical know-how, devoid of any real
theoretical justification. Technical evolution was slow and scientific rationalization
typically followed technical developments. In general, technology was about in-
jecting energy into systems.

In many ways, current educational practice in schools and universities is
still widely viewed in terms of older forms of technology by politicians, admin-
istrators and the wider community. Their view may be justified. The educational
community has been slow to provide a strong theoretical justification for the
'techniques' of schooling. Much teacher education involves acculturation into 'good'
practices and 'techniques' for classroom management without a strong theoretical
rationale. In addition, educational institutions have been slow to review the cen-
tral role of paper and pencil as the appropriate technology for the development of
knowledge in all fields.

Because of the state of the 'technology' of traditional schooling, education
systems have been vulnerable, particularly in the United Kingdom, to new de-
mands for increased conscious control, systematic planning and evaluation. In part,
the demands reflect changed ideas in western cultures about the nature of knowl-
edge, its relationship to science and technology and the responsibilities nf educators.
However, the strategies used to control and plan in education also reflect older
views and measurement techniques associated with reproductive curricula and
transmission models of learning. They also provide a 'scientific' rationalization for
the new possibilities in social organization, record keeping, system analysis and
'quality control' of institutionalized educational processes that have become pos-
sible with the advent of computer technologies. Science, technology and math-
ematics are widely viewed as closely connected. According to Ladriere (1977)
science and technology are more closely intertwined but still distinguishable.

The object of scientific investigations is the acquisition of more knowledge
about the world. Mathematics is widely used as part of the process of investiga-
tion. In the process of scientific and mathematical activity information about existing
system organization is transformed into abstract mental representations. Tech-
niques may be used to further manipulate or investigate abstract representations
to develop further knowledge and a changed view of reality. Romanyshyn (1989)
describes the ways in which the distanced and objective scientific view changes
our experience. He suggests that 'not only does the self create its own vision, but
it creates the world in the image of that vision'.

He notes that our modern mathematized notions of reality have provided the
basis for powerful technological intervention because:

. . . it is only into a universe of purely mathematical relations that we
could launch ourselves as astronauts, because prior to this emptying of
the universe of all but mathematical quantities the heavens were either
filled with gods or the home of one God and his angels. Angels first had
to be erased from the heavens by mathematising the sky before we could
launch ourselves into space. (Romanyshyn, 1989, pp. 79-80)

In contrast, the object of modern technology is to intervene to change reality.
Information, as well as energy, is injected into systems in order to change events
or create new objects. The effect of modern technologies is to transform abstract
mental representations into information in the form of objective organization.
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This process places a strong emphasis on the self as a creator. No longer is man
merely an actor in the natural universe but a creator of his environment his
consciousness.

In modern information technologies knowledge and action appear fused. No
longer is the abstract mental representation of the knower separate from the tech-
nology and its objective impact on reality. No longer are new scientific or math-
ematical understandings something within the minds of the elite. Now they are
often derived from, and also embedded in, new technologies in the virtual
reality of urban life.

It is now widely believed that it is possible to plan for the future. In a planned
future, collaboration, utility and productivity are highly valued. There is also
value attached to detachment from a particular point of view. However, an in-
creased sense that reality can be manipulated knowledge can be used to con-
struct new processes and objects as well as to utilize nature has lead to a new
form of political contest. To the extent that mathematics and education are viewed
as sciences or technologies, the politics of the change is evident in educational man-
agement, planning and curriculum development. The political process is usually
evident in four stages. These are:

1. An awareness of the ethical responsibilities. In a planned future in which
man intervenes the responsibilities are considerable.

2. Political action in the form of competing lobbies for limited research and
development funding from the state. Information becomes increasingly
commodified and thus valued for its economic advantages. (e.g., statis-
tics and probability in mathematics)

3. Anti-science/technology movements. These call in question the very foun-
dations of modern rationalism. Contact, communication, communion,
intuition, affectivity etc. are highly valued.

4. Emerging awareness of the limits of science and technology the limits
of the value of their separateness from mankind and nature the limits
and dangers of their autonomous progress without reference to human
activities, human purposes and meanings.

There is mounting concern about the practical implications of the changes
for human development and survival. Carter (1991, p. 278) suggests that there is
a need to 'resituate' science and technology in a social context. He also notes that
the impacts of technological developments on humanity have often been 'written
out of discussion'. De Hunt Hurd (1991) advocates a future oriented curriculmr.
in science and technology. He suggests that:

The new curriculum is to be future oriented, not in the sense of predict-
ing the future, but rather in providing students with knowledge and
habits of thought for shaping and managing a favourable future for hu-
man survival and a desired quality of life. (De Hunt Hurd, 1991, p. 258)

Technology presents a challenge to society because it changes the environ-
ment in ways that may not always be beneficial for human survival and develop-
ment. There is a growing awareness of the limits of former beliefs about cognition

habits of thinking and ways of knowing. In the past these were seen as natural
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and unchangeable. Now, it is widely believed that human cognitive activity can
be changed and new ways of thinking and a new human reality can be created.

Changed Views of Cognition: What Is Cognition?

Information technologies are changing the conscious reality of humans in western
society. They are changing the context of human activity, including learning,
in increasingly rapid, more systematic and consciously controlled ways. Reality,
even the reality of human capability and development, has become something to
change to improve. It is hardly surprising that such a changeable context for
education, cognition and human development has received a closer scrutiny and
considerable critique.

In the not too distant past cognitive processes were considered as processes
carried out in the minds of individuals. Cognition was considered to be related
to sensory perception but separate from physical activity. Many researchers and
psychologists still measure cognitive 'abilities' as though they operate without
reference to the contexts in which they are used (e.g., WISC and Binet tests).
Further, in western psychology, notions of absolute consciousness have prevailed
until recently. Sensory perceptions were thought to be equally available or
evident to all. Cattell's (1971) 'culture fair' test of visual abilities exemplifies the
position. Because visual perception was assumed to be objective Cattell (1971)
was able to postulate that:

Probably in the normal human range, differences in sensory experience
opportunities are trivial and rare, so that the differences we measure in Pv
(visual abilities) will turn out to be largely those of neural endowment.
(Cattell, 1971, pp. 299-300)

Abilities were seen as (biologica;) characteristics of individuals and unrelated to
the context or experience. In mathematics education researchers (such as Fennema
and Sherman, 1977; Guay and McDaniel, 1977) explored the cognitive abilities
that were associated with various tasks without reference to the context of the
activities.

Piaget's (1977) epistemological theory was highly influential in mathematics
education. His important observation of the developmental changes in the ways
people process information has been a cornerstone of curriculum developme t in
mathematics. However, although Piaget recognized that cognitive development
and ';ensory information processing were influenced by experience, his theory
proposed logico-genetic laws that limit the extent and rate of intellectual growth.
More importantly, his theory has been largely interpreted in schools in terms of
an age stage developmental sequence in which individual differences in 'readiness'
for a particular stage were the result of inherent biological rather than experiential
variations.

Mort cently, two basic assumptions, underlying earlier cognitive resear-'
tit westert, .ountries, have been challenged. The notions of absolute consciousness
have been questioned by constructivists and the theories of Vygotsky (1978)
and his colleagues. The cartesian duality between mind and body, man and his
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environment have also been questioned. A more holistic and systemic view of
humans acting, intellectually or physically, in a context has emerged.

First, the absolute views of consciousness that have prevailed in western
psychology have been contested by the neo-piagetian constructivist theorists. The
work of von Glasersfeld (1984) and others has been highly influential in math-
ematics education. It is now generally accepted by researchers (Crawford, 1986,
1992a; Cobb, 1988; Resnick, 1987; Cobb, Yackel and Wood, 1992) that humans
learn through their experience'and that the nature of the experience influences the
nature of the resulting knowledge. Coming to know is an adaptive process that
organizes one's experiential world; one does not discover an independent, pre-
existing world outside the mind of the knower. Constructivism is an epistemolog-
ical position that stresses the relationships between the experience of the knower
and the quality of the resulting knowledge. It implies a relationship between the
context of learning and the learning process. However, it tells us little about the
cognitive processes involved in learning.

Non-absolute views of consciousness have lead to an interest in investigating
levels of awareness of the context individual and social interpretation of the
constraints and supports of a setting. There has also been an interest in the meta-
cognitive processes, self-awareness and self-regulation, associated with learning in
a social context mediated by cultural artefacts. For example, researchers at the
tertiary level (Marton, 1988), Volet and Lawrence, 1989), Crawford, Gordon,
Nicholas and Prosser, 1993)) have explored in detail the relationships between
students' personal conceptions of a task and its context, the nature of, and extent
of, awareness of their own learning strategies, and learning outcomes.

The context of cognition and the relationships between cognition and context
have received attention. The work of Rogoff and Lave (1984) and Lave (1988)
have explored this relationship in detail. Lave's exploration of a 'setting', which
she defines as the relationship between the actor and the arena in which he or she
acts, is a seminal example of the less bounded view of cognition that is evolving
among researchers.

There is a growing interest in the more holistic view, of Vygotsky (1978),
Davidov and Markova (1981) and other Russian psychologists, of thinking acting
and feeling in the world within a community consciousness that is constantly
evolving through social activity. This view perhaps represents the least bounded
view of human cognition and the strongest contest to the asbamptions of cartesian
duality that underlie other paradigms including the constructivist approach. A
fundamental tenet of Vygotsky's theory is the integration of the internal and the
external of the self and other, through activity in context.

The activity theorists (Leont'ev, 1981; Davidov and Markova, 1983) exem-
plify the fusion of knowledge, thinking, feeling and action as a basis for cognitive
development. In their interactive and systemic model of cognition, 'activity',
either physical, emotional or intellectual is stimulated by subjective perceptions of
needs in any context and subordinated to subjective `images' of the goal of any
action. In turn activity has objective results which form the context for later
actions. For the activity theorists, activity occurs first in a social context and is
later internalized to create new cognitive structures that will form the basis of
future consciousness and activity. Within any activity, Leont'ev et al. make a
distinction between 'actions' which occur in cases of conscious decision-making,
planning and problem-solving and the unconscious 'operations' that are the
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automated routine procedures that are tools that usually form part of any activity.
They note that operations require little intellectual effort, are not usually available
for change and review. Engestrom (1990) uses the term 'activity system' to de-
scribe the processes occurring when people act in a group in an institutional
setting such as a school.

The notion of Vygotsky and his colleagues that human cognitive capabilities
are formed through action in context is now accepted by a number of researchers.
Not only do we consider the responsibilities of a planned future in terms of the
environment, social organization or technological development but also in terms
of human cognition. The four stages of the politics of science and technology are
exemplified in the development of cognitive science.

Life was much simpler when talent was God given and the context for human
development was natural and unquestioned. The possibilities and responsibilities
associated with changing human consciousness, the cognitive processes and the
context in which learning occurs are all now open for discussion. For example
Ornstein (1991) suggests that biological evolution of human consciousness is too
slow and steps must be taken to speed things up. He suggests that knowledge of
cognitive science must be applied to the problem as:

This is a time when the need for conscious evolution is becoming a neces-
sity for all humanity, rot just a few individual isolates fasting and praying
in a hilltop monastery. (Ornstein, 1991, p. 273)

Newman, Griffin and Cole (1989, p. 147) describe their research in working
for cognitive change in school. They conclude that where they 'resonate most
strongly with current formulations of cognitive science is in the notion of creating
artificial systems . . . Research on education is also a science of the artificial: the
study of how educational interactions work can never be far removed from the
task of engineering them to work better.' Their approach exemplifies the respon,
ibility that comes with knowledge that can be used to create something new
knowledge that can be injected into a system to create objective results. For them
knowledge and action are integrated if not actually fused. The lobbies for edu-
cational research funding and the impact of politics on the scope and form of
research are well known. At present, 'scientific' research with a technological base
is still at a premium in most countries.

The task questioning of the dominant culture of research and interpretation
of reality has been taken up with vigour by the post-structuralists and post-
modernists. For example, Foucault (1977, p. 199) describes the 'discursive prac-
tises' through which all institutions, disciplines, practices and technologies have
been humanly, historically, socially constructed. Such writers have demanded a
radical reflection on interpretive frames and the motives and means of a humanly
constructed reality. In arguing forcibly that people create their own worlds they
have attempted to debunk the myths about the universality, progress and au-
tonomy of science and technology. Lather (1991) comments on the effects of this
process as follows:

Given the postmodern foregrounding of the ways we create our worlds
via language, perhaps for the first time the complex question of political
commitment and its relation to scholarly enquiry can be seriously
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addressed. While the concept of advocacy research remains as oxymoron
to many who take scholarly objectivity as both a. possible and desirable
goal in the human sciences, the mantle of objectivity which largely shielded
the sciences from such questions has been irreparably rent. (Lather, 1991,
p. 14)

She goes on to suggest that within the vast array of ways of knowing the
questions have changed about data or information from 'Is the data biased?' to 'In
whose interest is the bias?'. This somewhat cynical position in relation to the
information base of the information age is reminis Itnt of a much earlier comment
by Vygotsky (1939/62) about interpreting language. He said:

To understand another's speech, it is not sufficient to understand his
words we must understand his thought. But even that is not enough

we must know its motivation. (Vygotsky, 1962, p. 51)

In a systemic approach to human cognition which explores the thinking,
feeling and acting of humans in an increasingly man-made context, computers and
other programmable forms of technology add an extra dimension to the complex-
ity. They exemplify the objective results of technological knowledge. They also
add another explicitly interactive relationship to the existing interpersonal inter-
action choices in the socio-cultural environment.

Public perceptions of the line between computers and human cognition is
blurred in ways that are confusing. The confusion seems inevitable in view of the
function of computers to organize information (previously the sole domain of
conscious human intelligence) and the metaphors that have always been used to
describe them. We talk glibly of 'artificial intelligence' and 'memory' and 'ma-
chine learning'. The computer in my office goes into 'sleep' mode if I leave it
unattended. Computers are widely perceived as intimately connected to our iden-
tity and function as human beings (Winograd and Flores, 198t ).

Computers do function to carry out many of the routine cognitive tasks that
were once only a function of humans. As Leont'ev (1981, 64) states, it is usually
the function of cognitive operations to become 'technicalized' as the function of
machines. For example, when a person uses a computer to solve a mathematical
problem, the machine carries out the computation as part of the human action in
solving the problem. The human activity is not broken by the 'extra-cerebral
link'.

Mathematical techniques have dominated most curricula in schools and uni-
versities. The advent of computers, and their capacity to carry out routine -roce-
dures fast and to repeat them many times, has changed the nature of mathematical
knowledge and the ways in which people might think mathematically in at least
four ways.

First, computers have made mathematical ideas routinely accessible in ways
that were not possible before. For example the notions of chaos and fractal geom-
etry have captured the public imagination and rapidly revolutionized the ways in
which many people think about reality. Barnoly (1989) captures the essence of the
wonder of the new images and insights as follows:

98



The Context of Cognition: The Challenge of Technology

The beauty and freshness of fractal geometry suggests that once again we
are at the start of science and mathematics . . . women and men will look
back on this era much as we look back at the early Greeks. (Barnoly,
1989, p. 5)

Second, the use of computers to carry out routine tasks has the potential to
shift the focus of learners', and teachers', attention away from the memorization
of techniques towards other cognitive capabilities such as interpreting the math-
ematical information in contexts, posing problems, devising mathematical models
of systems, and interpreting and evaluating the results of computation. In other
words, if a computer carries out the routine techriques the human part of the math-
ematical activities in a mathematics course, (and the quality of the mathematical
knowledge of graduates) will change and might expand. Some universities are
already using software systems, such, as 'Maple' or 'Iced', as a computational
base for mathematics courses. Abelson and DiSessa (1981) have described in detail
the possibilities of 'turtle geometry' using Logo-style graphic representations
of geomety. Such changes to the context of learning mathematics involve a re-
evaluation of the cognitive demands of the mathematical tasks, the quality of
learning that might be expected or possible, and the forms of assessment that

light be appropriate.
Third, computers, and other complex technologies, have changed the context

of mathematical activity in society and the relationship between mathematics and
other spheres of human endeavour. Mathematical knowledge is now applied to
technological systems in most fields in order to create objective results. Math-
ematical knowledge is also embedded in the very structure and design of techno-
logical systems. In information technology, mathematical knowledge and action
are fused. Fujita (1993) suggests that with the extensive use of computers in modern
industry, the nature of mathematical literacy has qualitatively changed. In particu-
lar, he stresses the importance of skills in mathematical modelling and interpreta-
tion of non-routine problems as capabilities in applied mathematics that are now
needed by graduates in most professions where computers are used.

Finally, the new technologies present fundamentally new possibilities for the
design and adaptation of interactive learning environments. As Kaput (1992) points
out the impact of computers as a new feature of the learning environment for
school mathematics has been very recent. In addition the rapidly changing tech-
nical possibilities mean that there must be caution about extrapolating from even
the recent past. Once separate technologies are now merging. For example, as the
digitalization of video progresses, computers and television are merging. Super-
calculators now have the functions of computers. To date the impact of comput-
ers on educational practice has been marginal (Crawford, Groundwater-Smith and
Milan (1990). As might be expected, much computer use in education represents
alternative ways of following traditional practices. However, a number of soft-
ware development projects (e.g., Cabri Geometry) are designed to be used as
tools to facilitate the change in the nature of human mathematical activity that is
implied by the presence of machines to carry out routine procedures. Less struc-
tured computational media such as 'Logo' or 'Boxer' also offer the possibility of
more tailored `microworlds' for exploratory, active, independent learning in math-
ematics.

The introduction of the new technologies into an institutional learning
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environment is a complex process. They represent but the newest element in a
complex system of human activity which has an already well established set of
assumptions and practices. The three examples outlined below illustrate some
aspects of the change.

Drawing on Television

Children begin their experience of institutionalized education with a complex
knowledge base, expectations based on their experience, and well developed lan-
guage abilities. Thus, when a simplified form of 'Logo' was introduced in a pre-
school setting the 4-year-old children labelled the activity 'drawing on television'.
The turtle made lines, which seemed like drawing on paper, and the monitor
looked just like the familiar television set at home.

The naming of the activity immediately embedded it in, their previous ex-
perience and shaped the ways that the children chose to explore the possibilities
of the new activity. Their attention was riveted by the wrap-around effect. This
was not like paper and pencil! Chubby little hands pressed and repressed the
forward key and watched the emerging pattern of lines on the screen. With a
limited set single key commands (including F (FD 10); B (BK 10); L (LT
30); R (RT 30); U PU, D PD, H HT, and S ST) they cheerfully
set about exploring the possibilities of playing with the new 'toy'. Adult interfer-
ence in their exploration was kept to a minimum as earlier sessions indicated that
teachers tended to take over the decision-making and instruct them about what to
do. In particular, in the presence of an adult the girls exhibited dependent learning
behaviour. All children were encouraged to talk about what they were doing
to point to the left and right, to describe the patterns they were making to each
other and the teachers.

Exploration of the new environment generally followed the following pattern:

1. Random experimentation with the commands.
2. Attempts to predict where the turtle was after using the hide command.
3. Experimentation with the wrap around effect using the forward

command.
4. Attempts to control the direction of the turtle resulting in attempts to

create horizontal and vertical lines. The terms 'horizontal' pattern of
development' . 'horizontal vertical'.

5. Planned filling of available space with shapes.

By the end of a twelve-week period, most children were ab!e to competently
discuss the activity in terms of distance, direction, horizontalvertical, leftright,
and planned methods to produce different shapes. Many were exploring the pos-
sibility of repeating closed shapes in different positions. Some were expressing
frustration at the clumsiness of the L and R commands which were set to give a
turn of 30 degrees (For a more detailed account see Crawford, 1988).

Experience experimenting with the new learning environment focused chil-
dren's attention on concepts that are not usually developed until rather later than
4 years of age. However, in the emerging 'drawing on television' culture they
were familiar and empowering ideas and thus accessible. The project provided
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ample evidence of the powerful impact of experiences of the computer-based
environment on children's learning. Three aspects of the situation appear particu-
larly important. These were:

1. The children were not yet socialized into school learning. They expected
to make sense of the new activity and played independently.

2. The mathematical nature of the 'Logo' environment was evident to the
children and intrinsically interesting.

3. The activity allowed the children to start with their own conceptions
about 'drawing' and 'television' and through the use of commands con-
vert their ideas into objective results. In turn, the results provided the
basis for new concepts and ii gas.

Designing Something New

The following scenario describes a typical scene in a project investigating learning
in mathematics and science using Lego-logo materials at a girls primary school
(Crawford, 1992a). Three girls are sitting together trying to build a Lego model
in first session of the school computer club. Later they. will be expected to use the
Lego-logo software to programme their model. The girls attend an exclusive,
traditionally oriented school. They are neatly dressed and well organized. The
lego-logo activities are part of the computer club as it was feared that they might
interfere with the usual curriculum. In fact it soon becomes apparent that the usual
curriculum of the school has all but paralyzed the group. 'Is this correct?' one girl
asks the tentatively. The other two look perplexed. The engine is connected
directly to the steering wheel so that it spins furiously when the engine is switched
on. Another girl approaches the group to look at the model car she is holding.
The model is snatched away with cries of 'Don't copy!' Eventually order and
security is restored during the first session by providing the whole group with a
simple task of building a model by copying an illustration. The teacher was most
puzzled about the lack of confidence and creative initiative. She remarked that the
girls had 'done' three dimensional shapes in mathematics lessons.

The above description illustrates the tensions that emerge as part of the chal-
lenge of technologff to culture and in particular to the cultural practice of school-
ing. The girls'; :Ultural experience outside school was rich in activities such as
ballet lesson, piano lessons and excursions to the theatre. However, they were
very inexperienced in using materials such as the Lego blocks and they had paid
very little serious attention to how cars worked. As a result, despite their enthu-
siasm for the compu r-club activities, they were culturally impoverished in terms
of access to a conceptual basis for the building and modelling activities. They had
'covered' three dimensioml shapes in the mathematics curriculum but had diffi-
culty building three dimensional models with the Lego blocks. In addition, their
socialization in the traditional school context and knowledge of 'appropriate' be-
haviour as learners, altm.ough powerful in focusing their attention and motivation
with regard to teacher-centred activities involving imitation and memorization,
had left them intellectually dependent and with the notion that collaboration was
a form of cheating.

Educational institutions have been traditionally structured in ways that are
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appropriate for 'transmission' of knowledge from expert to novice and for sorting
students on the basis of the cognitive abilities that are demanded in such contexts.
From a student perspective, the curriculum is imposed, the ideas and knowledge
are acquired, memorized and demonstrated in assessments of one kind or another.
The challenge of information technology to most fields of human activity is that
the development of capabilities in representing knowledge as objective organiza-
tion appears to require a different `setting' (Lave, 1988) for learning and knowl-
edge of a different kind.

Information Technology and Teaching

The definitions of teaching are also challenged. A computer, potentially at least,
provides an alternative source of authority and information in an educational set-
ting. There is evidence of concern among teachers that Educational Intelligent
Systems (EISs) may supplant their role in schools and also evidence that comput-
ers have been largely marginalized in the mainstream curriculum (Crawford,
Groundwater-Smith and Milan, 1990). Many teachers are ambivalent about com-
puters and wary about using tutoring systems and teacher-support software to
carry out routine tasks.

However, the more profound challenge to teaching practice stems from the
epistemological changes that are implicit when new technologies now carry out
routine procedures and provide accessible declarative knowledge. That is, repro-
duction has now been largely mechanized and this presents a challenge for tradi-
tional teaching practice and assessment which has demanded reproduction of
knowledge and techniques from learners. Educating people to carry out the func-
tions of machines rather than to use them creatively appears anachronistic at the
very least.

The results of a study of computer-mediated teaching and learning, using
Boxer, exemplify the challenges presented by the new technology (Crawford and
Lambert, 1993). It was found that, for teachers, the process of designing and
constructing a computer-based environment required extensive relearning about
the task domain and theories of learning as well as learning about programming
in 'Boxer'. That is, knowledge about learning theories and mathematical tech-
niques was not sufficient basis for the design of a computer-based learning envir-
onment in mathematics. However, re-learning occurred through the process of
converting knowledge about learning and about the domain into objective organ-
ization as the task of designing, making and modifying a suitable computer-based
environment was carried out. In the `Boxer' environment this effect was tangible
and unavoidable. Many tacit beliefs and assumptions of a teacher must be com-
municated overtly in order to organize the computer context. The results of initial
research support claims about the educational benefits of 'bricolage', `construe-
tionism' and design (Turkic and Papert 1990; Harel, 1991; Pratt, 1991) for younger
children. The inadequacy of previously learned knowledge and routines was ap-
parent. Similar effects have been noted for teachers designing exploratory learning
environments in mathematics (Crawford, 1992b; Ball, 1987). That is, the traditional
modes of education that have produced the `expertise' of teachers in discipline-
based knowledge and educational theory do not necessarily equip them for tasks
involving the design and responsive modification of new settings for learning.
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However, the process of designing contexts for learning provides important op-
portunities for teachers to gain a deeper understanding of domain knowledge and
of educational theory. Working within the constraints and supports of the 'Boxer'
system also leads to a deeper understanding of the possibilities of the computational
medium.

The students, that later used the 'Boxer' learning environment, learned rela-
tively less than the teacher who constructed it about either the knowledge domain
or the 'Boxer' interface. They asked for constant support in carrying out tasks and
expected adults present to assist them at each point of difficulty. Their notion of
the expert teacher was someone who helps when difficulties arise. The results
support Pratt's (1992) claim, in relation to Logo microworlds, that the educational
power of new technologies lies in the opportunities to gain experience of convert-
ing ideas and knowledge into objective organization through the creation of
`microworlds' rather than in the interaction with microworlds that have been
developed by others.

Conclusion

The new technologies have evolved, in part at least, from a mathematized view
of the world. Certainly the application of mathematics in technological systems
has been a generative process in creating new artefacts and contexts for new
learning. The new context for human evolution and survival raises questions
about the processes involved in 'educating' humans to create new artefacts using
available technologies and the objective organization of knowledge. In particular,
it seems that there is a need for isomorphism between the conditions and pro-
cesses used in learning and the cognitive demands of later application of knowl-
edge. This isomorphism was generally present when public-education systems
were first set up with structures which facilitated the 'transmission' of knowledge.
Learning with the intent to reproduce knowledge and procedures was appropriate
for most of the population when the rates of cultural change were slower, book
keeping and other clerical tasks were done by hand, and the ability to allude to,
and quote from, literature was more highly valued by 'men of letters'.

The new role of machines in organizing information and carrying out com-
plex routine tasks, and the impact of the new technologies on human develop-
ment present a challenge for technologically based cultures. First, now that the
impact of technological artefacts on human activities and development is recog-
nized, there is a need for a review of the relationships between technological and
scientifiC activities and development, on the one hand, and other human values
and purposes, on the other. Second, with a higher priority given to creative and
idaptive human capabilities there is a need for a review of the social organization
of educational contexts. Implicit prerequisites to the creative use of knowledge as
a basis for objective organization are more independent and creative learning
experiences for students. Understanding the logic and purpose of new knowledge
is one thing, being able to apply it to transform a new context is another.

The most beneficial possibilities of a technologically based culture will only
be realized through a process whereby recent knowledge about learning and
human development, and new technology-based learning contexts, are applied, as
a means of objective organization, in educational institutions. The process seems

103



Katherine Crawford

likely to be slow and to involve the resolution of complex tensions. There are
substantial vested interests in the prevailing organization and the recent push for
competency based curricula, in some countries, seems likely to reinforce repro-
ductive, teacher-centred curriculum design and implementation. A change to-
wards more creative and self-directed learning experiences for students in
technological contexts will place considerable demand on teachers to relearn and
rethink their knowledge of mathematics and technology, and their knowledge of
the learning-teaching process. The challenge presented by technology is different
from the challenge of science. Science has changed the way we look at the natural
environment a process of unweaving rainbows. Technology in constructing a
new reality presents the challenge of deconstruction and reconstruction of the
environment, and also socially constructed institutional organizations, and the
responsibility of more planned human development in a humanly created context.

Note

1. Jack Stillinger (Ed) (1978) The Poems of John Keats, The Belknap Press, Cam-
bridge, pp. 472-3.
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Part 2

Psychology, Epistemology and Hermeneutics

Hermes is cunning, and occasionally violent: a trickster a robber. So it is
not surprising that he is also the patron saint of interpreters. (Kermode,
1979, p. 1)

One of the central themes of constructivism is that of individual interpretation.
This concerns the reading that persons make of their environment, experiences
and indeed of texts, in the course of learning and living. Interpretation is of course
not a concern exclusive to constructivism, and there are other traditions for which
interpretation is central. These include, for a start, psychoanalysis, hermeneutics,
phenomenology, ethno-methodology, anthropology, literary criticism, post-
structuralism and post-modernism. Thus, for example, in Derrida's `deconstructive'
approach to post-modernism, the issue of interpretation and reading is central.
His position is that there is no privileged interpretation of any text, irrespective
of the intentions of the author, as the following commentary makes clear.

In writing, the text is set free from the writer. It is released to the public
who find meaning in it as they read it. These readings are the product of
circumstance. The same holds true even for philosophy. There can be no
way of fixing readings . . . (Anderson et al., 1986, p. 124)

Hermeneutics does not go so far as to postulate a universe of free-floating texts
and interpretations. Instead it anchors itself in the persons making an interpreta-
tion, and their relationship with the text. Indeed, Ricoeur emphasizes the
transformative power of the text on the reader through his or her engagement
with it.

The theory of appropriation . . . follows from the displacement under-
gone by the whole problematic of interpretation . . . To understand is
not to project oneself into the text; it is to receive an enlarged self from
the apprehension of proposed worlds. (Ricoeur, 1981, p. 182)

Such a perspective locates hermeneutics closer to (but distinct from) constructivism.
It also raises some of the concerns of psychoanalysis, namely the transformation
of the person through their interpretations of events, dreams, etc. One of Freud's
key contributions is the recognition of the symbolic nature of mind (Henriques
et al., 1984). Flow in its productions and interpretations the unconscious mind
condenses meanings into certain symbols, which successful psychoanalysis can
interpret. Of course such meanings can also be displaced. This gives rise to
pathologies such as phobias and fetishes. But it may be that these very functions
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are essential to the formation of the human mind as we know and understand it
(to the extent that we do!). Indeed Lacan argues that by acquiring language we
submit to a symbolic order, one that structures our unconscious like a language.
In this homology, condensation and displacement mirror linguistic metaphor and
metonymy.

Thus a consideration of interpretation takes us from the individual making
sense of events and texts, via a free-floating realm of texts, to events and texts
structuring the individual. Perhaps the post-modernist claim that all is text is not
so far-fetched at all? The realm of interpretation, text and culture flows around
and within the individual, both structuring the individual in its multiplicity and
changing, following the,individual's actions. This dissolves the boundary between
the individual and the world and perhaps creates a realm of 'potential space' where
the mysterious objects of mathematics are to be found (Winnicott, 1971).

Looking at the architecture of the mind raises the issue of the impact of other
persons, which is of course central in Freud, Lacan and other post-Freudians, But
it is also central in the theories of Vygotsky, the Soviet activity theorists, and in
Mead and the social theories of mind to which his work gave rise. These theorists
also stress language and conversation as progenitors of mind.

Ultimately interpretation becomes a vast portmanteau concept, encompass-
ing all relations between knower and known, between subject and object, and
between speaker and spoken. It is the shared idea in theories of knowledge that
make room for the knower. It also requires an attitude of humility, once we
realize that what we say to learners and each other will be received in a different
spirit than the one in which it was intended. There is no essence of meaning we
can transfer to each other, to guarantee a fixed interpretation. There is no essence
of meaning in these words I am writing now. I am in an imagined meaning world
of my own, and I have my intentions as I write this, but I will doubtless look at
these words in a different light when they come of the press. What you the reader
will make of them, is yet another matter! But having 'popped up' my presence in
the text, let me pop it down again to relate these matters to education.

In mathematics education the issue of interpretation is especially important.
Teachers direct, structure and control mathematics learning conversation both to
present mathematical knowledge to learners directly or indirectly, and to partici-
pate in the dialectical process of criticism and warranting of mathematical knowl-
edge claims (i.e., assessment). The primary aim of such conversation is that of
ensuring that the learner is appropriating collective mathematical knowledge and
competencies, and not some partial or distorted version. Appropriated mathematical
knowledge is potentially unique and idiosyncratic, because of the inevitability of
human creativity in interpretation and sense-making. This possibility is exagger-
ated because school mathematical knowledge is not something that emerges out
of the shared meaning and purpose of a pre-given form of life. Instead it is a set
of artificially contrived symbolic practices whose meaning is not already given,
but a significant part of it is deferred until the future. Interpretation, and its
offspring understanding, are central and familiar issues in the context of schooling.

This section includes a number of forward looking and provocative chapters
on some of these themes. I believe that the kinds of explorations in this section
make up an important theoretical growth point for research in mathematics edu-
cation, and that we will be hearing more from these perspectives in the future. For
example, ten years ago the idea of a mathematics education journal publishing
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articles on psychoanalysis and mathematics education, let alone devoting the whole
issue to it, was unthinkable. Yet a recently we saw just that)

Note

1 For the Learning of Mathematics, February 1993, Volume 13, Number 1.
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Chapter 9

Another Psychology of Mathematics
Education

David Pimm

Psychoanalysis is part of psychology. It is not medical psychology in its
traditional sense, nor the psychology of pathological processes. It is psy-
chology proper; certainly not all of psychology, but its substratum, pos-
sibly its very foundation. (Freud, 1955)

Mathematical science . . . is the language of unseen relations between
things. But to use and apply that language, we must be able fully to
appreciate, to feel, to seize, the unseen, the unconscious. (Ada Lovelace)

Method, Method, what do you want from me? You know that I have
eaten of the fruit of the subconscious. ( Jules Laforgue)

Mathematics is a disembodied version of the human personality.
(Winnicott, 1990)

For much of this century (from at least the time of Piaget and Thorndike), the
development of mathematical concepts, particularly early mathematical concepts,
has apparently held a fascination for psychologists. Increasingly, this preoccupa-
tion has grown to the point where some psychologists seem to consider this to be
their natural domain. Moreover, it is on occasion rationality itself that is ostens-
ibly to be studied by means of an examination of thinking and the use of math-
ematical concepts (see, for example, Sutherland, 1992 also Paulos, 1993 and Pimm,
1993a). Walkerdine (1988, 1990), a psychologist herself by training, has in some
sense continued this tradition while at the same time sharply criticized its
presumptions.

Relatively recent developments in social aspects of cognition, in particular
following the rehabilitation in the West of the work of Vygotsky, have led out-
wards, into the social world, into the learning community (see, for instance, Lave,
1988). In philosophy of mathematics too, discussion of the isolated, supremely
rational, individual, idealized mathematician has given way to a consideration of
communities of mathematicians (see, for instance, Kitcher (1983), but also Rotman's
(1988) fascinating analysis of the language and multiple agency of proof, explained
in his 1993 book Ad Infinitum), as well as to wider, cultural embodiments of
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patterned thought (see, for example, D'Ambrosio, 1991), often unhelpfully termed
'ethno-mathematics'.'

My intention here is relatively straightforward. I choose to turn my attention
in the opposite direction inwards, not outwards not because I think the
social to be misplaced as a locus of exploration, but because I firmly believe it is
not the only one of interest. A mathematician, David Henderson, once com-
mented to me, 'I do mathematics to find out about myself.' And, in an enticing
passage, George Spencer Brown (1977) writes of his sense of congruence between
mathematical and psychoanalytical activity.

In arriving at proofs, I have often been struck by the apparent alignment
of mathematics with psycho-analytic theory. In each discipline we at-
tempt to find out, by a mixture of contemplation, symbolic representa-
tion, communion, and communication, what it is we already know. In
mathematics, as in other forms of self-analysis, we do not have to go
exploring the physical world to find what we are looking for. (Brown,
1977, p. xix)

So, for now, I turn away from both the social and rationality and towards a
brief exploration of individual 'irrationality' in the context of mathematics and
I use that term deliberately, with both its mathematical and illogical connotations
resonating. My focus for discussion will be language. Paul Ricoeur (1970, p. 4)
reminds us: '1 contend that the psychoanalyst is a leading participant in any gen-
eral discussion about language.' In particular, psychoanalysis may prove insightfully
relevant in that important subset of language, the interplay of symbols and mean-
ings. This is probably the richest arena we have for particular discussion about the
teaching and learning of mathematics.

One of the most often cited but seldom explored quotations in mathematics
education is the following from the mathematician Rene Thom (1973) offered in
a plenary lecture at ICME 2.

The real problem which confronts mathematics is not that of rigour, but the prob-
lem of the development of 'meaning', of the `existence' of mathematical objects.
(Thom, 1973, p. 202)

His belief that meaning and existence comprise mathematics education's central
problem is reflected in the fact that this is the only one of two italicized sentences
in the entire piece.' What is seldom pointed out is that the central part of his talk,
the one which culminates in the above summary sentence, concerns the role of
'unconscious activity' in mathematics, while the etymology of the word 'exist-
ence' invokes something standing (or being placed?) outside.'

Meaning is, on occasion, primarily about reference alone; but can also be
about much more. Meaning is often also about associations of all sorts (including
verbal similarities). Young children seem particularly open to the playful aspects
of the sound similarities of language, and the surprising connections that can some-
times be made through this version of 'moving along the metonymic chain'. In
particular, I believe meaning is partly about unaware associations, about subter-
ranean roots than are no longer visible even to oneself, but are nonetheless active
and functioning.'
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Michel Serres (1982) writing of the origins of mathematics, claims:5

The history of mathematical sciences, in its global continuity or its sud-
den fits and starts, slowly resolves the question of origin without ever
exhausting it. It is constantly providing an answer to and freeing itself
from this question. The tale of inauguration is that interminable dis-
course that we have untiringly repeated since our own dawn. What is, in
fact, an interminable discourse? That which speaks of an absent object, of
an object that absents itself, inaccessibly. (Serres, 1982, p. 97)

How are we implicated in making ourselves (and others) unaware of certain con-
nections? Are our referential meanings in mathematics absenting themselves, with
or without our express permission? What proCesses may be at work?

Forms of Words

At the bottom of each word
I'm a spectator at my birth.
(Alain Bosquet)

There is a terminological difficulty in referring to the potential area of study I have
been alluding to. Freud's term 'psychoanalysis', as a general theoretical term,
seems to require adherence to a Freudian interpretation of phenomena; 'analytical
psychology' to a Jungian one; 'psychotherapy', though more theory-neutral, to a
more pragmatic activity. Other possibilities include 'psychodynamics' or even
`psychosynthesis'.6 So while I sometimes employ and enjoy the coded term 'un-
conscious-raising' when asked what I am currently about, I am still looking for
a helpful term which signals 'attention to unconscious elements'.

Even the very word 'unconscious' has difficulties. First, it is negative: it tells
us what it is not, rather than what it is. (This is a phenomenon not unknown in
mathematics, with terms such as 'irrational' or 'infinity'.') The equivalent German
term Das Unbewusste, first coined in the psychoanalytic sense by Freud 100 years
ago, shares this first difficulty of being negative, but has greater resonance. Shat-
tering the word in different places provides:

un a negative prefix;
bewusst an adjective meaning 'aware':
witsste the first person singular, imperfect tense of the verb wissen, mean-

ing `to know'.

Putting these together produces a compilation meaning of:

[that which I am] not [now] aware [that] I used to know.

Thus, the sense of 'I' is much stronger in the German word than in the corre-
sponding English one.'

There is a second difficulty in pointing to that which is of interest to me:
invisibility. The image of an eclipse can perhaps help. One thing that eclipses can
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do is to blot out the blatant, the obvious, and allow things to be seen that nor-
mally are invisible to the naked eye. How to bring about classroom eclipses
deliberately is a deeply problematic undertaking, but occasionally fleeting glimpses
into the psychic lives of teachers and students of mathematics can be obtained
merely by being attuned to the possibility and being in the right place at the right
time.'

What is on the list of 'windows into the unconscious' that Freud came up
With? It includes: slips of the tongue, dreams (see Early, 1992 in relation to math-
ematics), things you know well but forget or are unable to recall (e.g., names of
people), and 'faulty achievements' (where I achieve something faultlessly, but it
wasn't 'really' what I intended to do). Are there any particularly mathematical
ones? Sherry Turkle at the end of her book on psychoanalyst Jacques Lacan (`The
French Freud'), writes:

For Lacan, mathematics is not disembodied knowledge. It is constantly
in touch with its roots in the unconscious. This contact has two conse-
quences: first, that mathematical creativity draws on the unconscious,
and second, that mathematics repays its debt by giving us a window back
to the unconscious. [. . so that doing mathematics, like.dreaming, can,
if properly understood, give us access to what is normally hidden from
us. (Turkle, 1992, p. 240)

One possibility for such direct access may be through working with geomet-
ric forms themselves, those strange self-referentialities for which the symbol and
the referent are one: 'the symbol for a circle is a circle.' In a book with the
evocative title The presence of the past, Rupert Sheldrake (1989) talks of `morphic
resonance', an expression which captures exactly what I am concerned with. The
power of forms to evoke has been long exploited by sculptors. For instance,
Barbara Hepworth has recalled: 'All my early memories are of forms and shapes
and textures' and her sometime fellow art-school student Henry Moore observed:
'There are universal shapes to which everyone is subconsciously conditioned and
to which they can respond.'

As a teenager at a single-sex school, I can recall on different occasions being
both excitedly part of, and embarrassedly outside of, groups of adolescent boys
giggling over the resemblance of certain quartic graphs to a pair of breasts, and
still remember the charge that being asked to mark in the turning points on many
curves generated in me. Thus geometric diagrams at certain times can become
`psycho diagrams' as well (see Davie, 1992, p. 2).

I also remember as an adult watching a geometric film intended for high-
school pupils (Schattschneider, 1990) about a stellated figure (a stellar octangula)
comprised of two interpenetrating tetrahedra. The lingering, almost balletic con-
struction of 'Stellar' (and despite associations with the female name) put me strongly
in mind of sexual union, and due to the fact that both 'participants' were the same
and pointed, of buggery.

More significantly and fundamentally, dynamic Nicola films can on occasion
put us in touch once again with our forming former selves that are still with us
(those that used to know how we should become), as well as recontacting those
forms from which we became.'"
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Mathematical Analysis

Occasionally in the writing of psychoanalysts, mention of mathematics arises.
Sometimes it is autobiographical material, such as the following account. Carl
Jung writes of his bewilderment and fear at school with mathematics in general,
and with algebra in particular.

The teacher pretended that algebra was a perfectly natural affair, to be
taken for granted, whereas I didn't even know what numbers were. They
were not flowers, not animals, not fossils; they were nothing that could
be imagined, mere quantities that resulted from counting. [. . .] No one
could tell me what numbers were, and I was unable even to formulate the
question. To my horror, I found that no one understood my difficulty.
[. . .] Whenever it was a question of an equivalence, then it was said that
a = a, b = b. and so on. This I could accept, whereas a = b seemed to me
a downright lie or fraud. I was equally outraged when the teacher stated
in the teeth of his own definition of parallel lines that they meet at infin-
ity. [.. .1 My intellectual morality fought against these whimsical incon-
sistencies, which have fcrever debarred me from understanding
mathematics. [. . .] All my life it remained a puzzle to me why it was that
I never managed to get my bearings in mathematics when there was no
doubt whatever that I could calculate properly. Least of all did I under-
stand my own moral doubts concerning mathematics. ( Jung, 1965, pp.
27-8)

Sometimes, mathematics appears in accounts of material which emerged from
work with patients. The child psychoanalyst Melanie Klein (1923) provided a
number of brief accounts of mathematical interest, but the excerpts I offer below
illustrate some of the acute difficulties which lie in this area of 'pointing' at the
phenomena of interest by means of a written account and then offering an account
of what has been pointed to. She writes of connections between schooling and the
sexual interest of children: 'The extremely important role played by the school is
in general based upon the fact that school and learning are from the first libidinally
determined for everyone, since by its demands school compels a child to sub-
limate his libidinal instinctual energies' (p. 59). In particular, she details a number
of arithmetic/sexual links that she came across in working with young patients.
Klein's work here offers unchallengeably theory-laden reports ('unchallengeably'
in the sense that the only access we have is through her account), with the implicit
assumption being perhaps: 'Trust me. I know. I have analysed this child. She is
my patient.'

For instance, Klein (1923; 1975) writes of 17 -year -old Lisa:"

Lisa considered the number '3' insupportable because 'a third person is of
course always superfluous' and 'two can run races with one another'
the goal being a flag but the third has no business there. Lisa, who had
a taste for mathematics, but was very inhibited where it was concerned,
told me that actually she only thoroughly understood the idea of addition;
she could grasp 'that one joins with another when both are the same', but
how were they added up when they were different? This idea was con-
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ditioned by her castration complex, it concerned the difference between
male and female genitals. The idea of 'addition' proved to be determined
for her by parental coitus. She could well understand on the other hand, that
in multiplication different things were used, and that then, too, the result
was different. The 'result' is the child. (Klein, 1923; 1975, pp. 67-8)

And she also cites her work with 6-year-old Ernst:

He showed me too what he meant and wrote the sum '1 + 1 = 2' in the
little boxes. The first little box in which he wrote the '1' was larger than
the others. Thereupon he said: 'What is coming next has a smaller box'.
'It is mummy's popochen [penis],' he added, 'and (pointing to the first '1')
that is father's pop6pchen, and between them the 'and' (+) is me'. He
further explained that the horizontal stroke of the + (which he made very
small too) didn't concern him at all, he and his popOchen were the straight
stroke. Addition for him, too, is parental coitus. (ibid., p. 68)

It may not have escaped your notice that this description of human procrea-
tion also fits the mathematical idea of group. The early notion of group (Galois
actually wrote of groupetnents; that is, groupings; as Piaget was to in the next
century) is of two elements [of a collection of substitutions] combining to produce
a third: historically, that seems to have been the first explicit awareness. Fifty
years later, in 1880, there was still extensive discussion as to whether or not
identity elements or inverses need to be present. Sophus Lie explicitly added to
the specification of a transformation group (so it is no longer the same as a group
of transformations) that the transformations can be ordered into pairs of inverse
elements. In 1918, George Miller commented: 'These difficulties [with regard to
`the most desirable definitions of the technical term group'] cannot be regarded
as solved at the present time' (p. 383). I find faint echoes of the struggles of Lisa
and Ernst in these mathematical uncertainties and confusions over the desirable.
Some contemporary definitions of group completely 'subsume (sublimate?) the
primary notion of the union of elements in the notion of a binary operation: the
only explicit mention in the axiom list being of those (historically) subsequent
requirements (identity, associativity, inverses).

Fidelity

And how reliable can any truth be that is got
By observing oneself and then just inserting a Not?
(W.H. Auden)

One general difficulty I have encountered in writing this article is offering con-
vincing descriptions of (let alone accounts for) purportedly unconsciously-
influenced phenomena: another is the intensely personal nature of much of this
material. However, having acknowledged such reservations, here is an attempted
description and attendant discussion of an incident arising from a videotaped
classroom lesson which I witnessed.

A secondary teacher (T) started a lesson with a class of 13-year-olds on addition
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and subtraction of negative numbeti by invoking the assistance of an image of
`The Linesman'.

T: I want to remind you of a little cartoon character that we've been
looking at over the last few weeks the Linesman our little
stick man. And he's been helping us do some calculations using
positive numbers and the new ones we've been looking at the
negative numbers. Let me show you a picture of the Linesman

here he is.
[He puts up an overhead projector slide.]
There, right, remember him? And we've drawn various pictures
of him. I want to remind you of how he was able to help us do
some calculations about positive and negative numbers.
Can anyone remember where his number line came from? Where
did he get his number line?

P: His suitcase.
T: In his suitcase, yes. How long was it? How long was his suitcase?

Lorna?
L: Fidel [stumbles], fidelity.
T: Fidelity? Fidelity?

[He speaks with rising tones of surprise and disbelief.]
L: No.

[She laughs, very embarrassedly, completely hiding her face.]
T: How long was the Linesman's number line? David?
D: As long as you want it to be.
T: As long as you want it to be. OK. We do decide just to take a

piece of it, don't we. But if we wanted to take all of his number
line, how long would it be. Gary?

G: Infinity.
T: Infinity. [To Lorna] Is that the word you're looking for? What

does that mean, 'infinity'?
Pupil: It never ends.
T: It never ends, it never ends. Right, let's have a look . . .

For me, this brief classroom excerpt offers a plausible example of uncon-
scious processes interfering with conscious language. The sexual double entendres of
the whole dialogue are rampant, as is the wishful thinking: the 'going on forever',
the 'being as long as you wane.' Although the words 'infinity' and 'fidelity' both
have four syllables and the last two of both are the same, why did Lorna did not
say 'infidelity', surely a more direct metonymic association with 'infinity'?

Freud writes:

The subject matter of a repressed image or thought can make its way into
consciousness on condition that it is denied. Negation is a way of taking
account of what is repressed; indeed it is actually a removal of the repres-
sion, though not, of course, an acceptance of what is repressed. It is to
be seen how the intellectual function is here distinct from the affective
process. The result is a kind of intellectual acceptance of what is repressed,
though in all essentials the repression persists. (Freud, 1955, p. 235)
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Lemaire (1986, p. 75) glosses this as: 'The repressed signifier is always present in
the negation, but, in another sense, it retains the repression through the "nor."'

My account for this incident must obviously remain highly speculative, partly
because so little is above ground. I remain struck by the fact that she did not offer
'infidelity'. Assuming part of her attention (unawarely, I expect) was taken by the
sexual interpretation of the above dialogue, and also perhaps that the charged term
'infidelity' was playing a role in her home life (even suitcases, perhaps), then the
above described process of negation could have turned 'infidelity' into the more
acceptable 'fidelity' (two negatives making a positive here at least), even though
I doubt she has ever heard the parallel neologism 'finity'. Her stumbling over the
first uttering of 'fidelity' could indicate either the emotional force of what was at
work, or some half-aware realization that this was not quite right.

Dick Tahta has offered me an alternative account. It concerns the fact that
there are strong resonances and connections between a meaning invested in 'infin-
ity' and that of 'fidelity', through the notion of 'going on forever'. He offers the
thought that there is a strong adolescent investment in fidelity and a correspond-
ing unease about infidelity. Teenage magazines are filled with storied discussions
and explorations of this idea.

It is clearly impossible to ascertain what was the case here. But the two
accounts given illustrate two general routes for accounting for such occurrences.
The first posits a preoccupation that is being kept down, but a connection is made
between this concern and the mathematical topic at hand. The preoccupation finds
a way to return to consciousness, but is only allowed to do so in a negated form.
The links are primarily metonymic: from 'infinity' to 'infidelity' to 'fidelity',
which is what finally surfaces. In the second account, the links are primarily
semantic metaphoric. She cannot produce the word 'infinity' for some reason,
but the closest word with a strongly related meaning she can get is 'fidelity'. But
unlike with matheniatics' excluding, exclusive use of 'or', the one account need
not exclude the other. Metaphor and metonymy are offered as arcs rather than
categories by linguist Roman Jakobson, and hence elements of both can, indeed
must be present at the same time.

The Resonance of Words

There seems to be no mathematical idea of any importance or profundity
that is not mirrored, with an almost uncanny accuracy, in the common
use of words. (George Spencer Brown)

Mathematicians 'borrow' many everyday words to describe mathematical phe-
nomena of interest. They also use the same words over and over in order to reflect
perceived structural or functional similarities, resulting in condensations of experi-
ence around terms such as 'normal', 'similar', 'multiplication', 'number'. Curi-
ously, they seem to expect a conscious, overt denial of links to be sufficient to
render such connections no longer heard. (I recall asking in a graduate theoretical
course on tensor analysis what the curvature tensor has to do with curvature and
receivi,. `11,... answer 'Nothing'.)

But such words can and do evoke connections and links, particularly I believe
in cases where the mathematical content does not generate powerful images and
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feelings of its own. The looseness and gap between symbol and referent, regularly
exploited for mathematical ends, also permits such slippage to a r greater extent
than in other disciplines. 'Circumscribed' is very `close' to `circumcised' and the
connection is not arbitrary. Teenage girls working on the period of a function can
and on occasion do make overt connections with menstrual periods. Adolescents
can become preoccupied with freedom and constraints upon themselves, and
geometry can offer them the possibility of working with the same material as well
as the same terms.

Tahta (1993) comments:

Mathematics teachers do not normally expect to make connections be-
tween the relations of mathematics and the relationships of family life.
Indeed, many emphatically deny that there is any connection at all; for
them, equality of algebraic expressions would be something quite differ-
ent from, say, equality of esteem. (Tahta, 1993, p. 48)

What do these allusive stories have in common? The first is the resonant quality
of language, both in the forms of words and in the topology of those forms,
reflected in the belief that nearby symbolshave nearby meanings. Thus, metonymic
links or `slips' have semantic consequences by presumed association.

The second commonality raises for me the whole question of 'meaning' in
mathematics, in particular some of its unaware contributory components. One
reason for teaching mathematics may be so that our students can develop this
means of finding out about themselves, in addition to our offering them access to
a shared inheritance of mathematical images and ideas, language and symbolism,
and the uses for mathematics which humans have so far developed. To the extent
that students are enabled to think like mathematicians, this possibility is made
available for them. I would like to express this possibility in terms of mathematics
deriving from both inner and outer experiences, and meaning as being generated
in the overlapping, transitional space between these two powerful and sometimes
competing arenas.

Postscript: And Katie Makes Three?

. . . a mathematics in which persons are not added together nor separated
from one another; but in which there is an original whole, from which,
through all the transformations of experience, one is never estranged.
(M.G. Richards)

Katie is 3. She, her mother and I are having breakfast in the kitchen. I am telling
Barbara who the ten were at the table for dinner in the Chinese restaurant the
night before. I list nine names and struggle for a while to name the tenth. Then
it `comes' to me: 1 am the tenth. The number `ten' refers to the group as a whole
with no distinguished counter, a fact I have filed away. In retelling it here, I am
the counter, generating names from my point of view when visualizing the table.
It still takes a while for me to name myself. When I am counting people where
I am to be one of the counted as well as the counter, I seem to arrange things so
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the counting ends with me (where counter and counted are one), partly so I know
I am done.

A little while after, Katie counts, pointing to each of us turn: I am to be 'one',
her mother is `two', and she is `two' too. She does it again: 'One, two, two.' She
is insistent on how we are to be counted: `You are one', she declares firmly,
looking at me. She adds unprompted: 'I know it is "one, two, three", but I am
pretending.' I think only at the time that perhaps she is identifying with her
mother, with being female. Perhaps there are only two sorts to count: those like
herself, and others. We move on to talk of other things. I think about this later
in the day. Why is she 'two' and not 'three'? A few months earlier, Katie had her
third birthday, so there are at least two separate senses (the other being the con-
ventional arithmetic of the count) in which she could legitimately number hersPlf
'three'.

I then remember that, moments before this reckoning, Katie had remarked
to me `Daddy dead'. Her father was killed not long after she was 1. I also
remember too the night before this breakfast when she arrives home from childcare
and I am already in the house: she seems surprised into unaccustomed silence. And
after a very short while she says to me through the banisters: 'I thought you
were daddy.' (She has mentioned this to me before: sometimes it is 'I nearly called
you daddy.' I am only an occasional visitor to their now two-fold household, but
bear some physical resemblance to her father.) It comes to me that 'three' was also
what they were as a family before becoming two, and Katie was the third: `Three,
the simplest possible family number.' (Winnicott, 1990. p. 55) Was she avoiding
saying 'three' so as to avoid thinking about what she once had but no longer has?
Is she denying that the `three' before her, despite all the similarities, was 'the
three'? Or had she managed things so that her desired answer was reached?

Notes

1. See Chevallard (1990) .for a trenchant and penetrating analysis of some of the
difficulties inherent in the notion of 'culture' in mathematics education, and in
particular his distinction between 'ethno-mathematics' and 'proto-mathematics',
the latter offering fertile sources for mathematization without itself being
mathematics.

For an illuminating account of the reasons why Garfinkel coined the term
'ethno-methodology', see Garfinkel (1968). There he indicates that his initial
exploration in 1945 was of the function of being a juror, by means of the question
'What makes them jurors?'. He tells how he was going through files in the Yale
library looking for a term to describe the methodological concerns and preoccu-
pations of these people with 'being jurors'. He found many tags like 'ethno-
botany', 'ethno-physiology', and 'ethno-physics'.
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'Ethno' seemed to refer. somehow or other, to the availability to a
member of common-sense knowledge of his society as common-sense
knowledge of the 'whatever'. If it were 'ethnobotany', then it had to do
somehow or other with his knowledge of and his grasp of what were
for members adequate methods for dealing with botanical matters.
(Garfinkel, 1968, p. 7)
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Garfinkel goes on to detail the ways in which ethno-methodology has become a
shibboleth and comments: 'I think the term [ethno-methodology] may, in fact,
be a mistake.'

My concern with some uses of 'ethno-mathematics' is not the studies them-
selves of particular cultural practices, but the absence of any sense that the mem-
bers of the particular culture believe they are doing mathematics or are concerned
with mathematics when working on, for instance, sand drawings or making
baskets. The knowledge they have may just as well be said to be about the
activity itself (and hence is better seen as 'proto-mathematical').

2. In the other, Thom criticizes the assumption (of mathematical 'modernists') that:

By making the implicit mechanisms, or techniques, of thought conscious and
explicit, one makes these techniques easier. (Thom, 1973, p. 197)

This is the complete reverse of my belief that automation of functioning and the
libera ion that this can bring results from the making unconscious of conscious
co ol mechanisms. Thom adds:

Certainly, this detachment [of the thinker 'rom his thought] is a neces-
sary step in the process of mathematical dvancement: but the inverse
operation, which is the reabsorption of fae explicit into the implicit, is
no less important, no less necessary. (ibid., p. 199)

3. Hadamard (1954), too, devotes two chapters to general issues of the unconscious
in the context of mathematical creativity.

4. There is a difficulty relating to the word 'associations', as it can seem to suggest
a conscious, intellectual process, and so 'unaware associations' may seem an
oxymoron. Bettelheim (1989) writes of the problem of translating Freud's term
Das Einfall as 'free association'.

Also, using the technical term 'free association' to describe a procedure
entails the a priori assumption that two or more seemingly entirely dis-
connected events are indeed fairly closely connected. Webster's definition
of the verb 'associate' to join together, connect makes this amply clear.
In the translator's use of 'free association', what ought to be two sepa-
rate processes letting something come spontaneously to one's mind, and
examining how it may be connected to some immediately preceding
stimulus are merged into one, and it is predicted what the result of this
investigation will be. (Bettelheim, 1989, pp. 94-5)

5. For an insightful account of some of the mathematical writings of Serres, see
Wheeler, 1993.

6. Talita edited a special issue, 13, 1, of the journal For the learning of mathematics, on
the theme of the psychodynamics of mathematics education. The English pro-
nunciation of the word 'psychoanalysis' lays stress on 'analysis' and hence brings
out possible links with the powerful Greek mathematical distinction between the
methods of 'analysis' and 'synthesis'.

7. For Cantor, A is finite if it is equipollent to (1, 2, n }, otherwise it is infinite.
For Dedekind, A is infinite if it is equipollent to a proper subset of itself, other-
wise it is finite. Thus, what for Dedekind was a definition, for Cantor was a
property; a switch of field and ground. But the 'negation' is still attached to the
word 'infinity'.

8. Given my remarks in the opening paragraphs about the social in relation to
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mathematics education, Jung's notion of the 'collective unconscious', with math-
ematical forms as archetypes, might offer a possible synthesis of these two foci
of interest. Jung wrote:

The collective unconscious is part of the psyche which can be negatively
distinguished from a personal unconscious by the fact that it does not,
like the latter, own its existence to personal experience and consequently
is not a personal acquisition. While the personal unconscious is made up
eventually of contents which have at one time been conscious but have
disappeared from consciousness through having been forgotten or re-
pressed, the contents of the collective unconscious have never been in
consciousness and therefore have never been individually acquired, but
owe their existence exclusively to heredity. Whereas the personal un-
conscious consists for the most part of complexes, the content of the
collective unconscious is made up essentially of archetypes. ( Jung, 1959,
p. 42)

This certainly casts the Socratic view of 'learning as remembering' in quite a
different light. However, it also indicates that the term 'collective unconscious'
is another potential oxymoron, in German at least, due to the presence of the tacit
claim of 'ich wusste' in Das Unbewusste.

9. There is also the decision to be made between exploring events arising in everyday
settings versus interviews or even some form of mathematics-focused, individual
or group analysi:.:. (See, for example, the work of Claudine Blanchard-Laville,
1991, 1992.)

10. A schoolteacher working on such a geometric film with students in late adoles-
cence can be seen in Love, 1987.

11. The play Mrs Klein by Nicholas Wright identifies 'Lisa' as being Klein's own
daughter, whom she analysed as an adolescent.

12. I have no doubt this occurred completely unawarely on the teacher's part, and it
certainly was on mine, despite my being present at the filming. 1 had remembered
the 'fidelity' remark as a complete singularity and my memory was that she
had actually said 'infidelity'.

13. There is also a possible link between proof by contradiction and the psychologi-
cal process of negation (see Pimm, 1993b). Both produce negated statements
with the (tacit) intent of asserting the opposite. In proof by contradiction, the
assertion is made that not-P is true, but the underlying reading that is required
is that P is to be believed.
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Chapter 10

On Interpretation

Dick Tahta

Plato's dialogue, the Theatetus, contains a nested sequence of accounts interpre-
tations of interpretations that lead back to a purported discussion on the nature
of knowledge between Socrates and two mathematicians, Theodorus and his young
student Theatetus. This discussion is of interest to historians of mathematics be-
cause, in passing, it describes Theodorus as having established the irrationality of
square roots of non-square numbers up to 17 'where for some reason he got
stuck' and it indicates that Theatetus may have generalized the result. It is not
clear why Theodorus stopped at 17 and many plausible and implausible interpre-
tations have been proposed. But what is more important in the context of the
Platonic dialogue is that Theatetus invokes the binary classification of numbers in
terms of rationality as a possible metaphor for what he imagines are two sorts of
knowledge, namely the sciences on the one hand as opposed to something else on
the other, that he does not yet quite understand, but which is implicit in Socrates'
method of inquiry.

Further issues about the nature of knowledge may be found in the multiple
resonances that Plato establishes in his writing. Plato starts by presenting a con-
versation between two philosophers, Euclid of Megara (i.e., not the mathemati-
cian) and Terpsion. This is said to take place on the day in 369BC that Theatetus
is dying from dysentery and wounds incurred in the defence of Corinth. Euclid
recalls that many years previously Socrates had described a discussion that he had
had with the then young Theatetus and his teacher, Theodorus, Euclid recounts
that he himself had taken notes during Socrates' spoken account and had then
written up a version in direct speech, which he claims he had afterwards carefully
checked over with Socrates. Terpsion suggests this might be a good time to go
through the written version. The two philosophers then settle down to hear a
reading of the piece by a boy servant, and Plato provides the script for us. It is
not until the very end that Terpsion and the reader of Plato's book realizes
that the discussion about knowledge must be supposed to have taken place in
399BC on the same day that Socrates was charged with corrupting Athenian
youth. Thirty years later, the philosophers are reminded of the death of Socrates
at the very time that they are aware of thc dying Theatetus.

Plato presents some arguments about the nature tlf knowledge in the form of
an account (his) of an account (Euclid's) of an account (Socrates') of a conversation
between three people. And the present reader is now reminded that what is being
read is my account of someone's translation of this sequence of accounts. Which
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of these most truly reflects what is supposed to have happened? Can there be
knowledge without some sort of representation, without some sort of account?

Or, to put the problem in another context, suppose someone gives you an
account of a transcript of a film of some classroom dialogue: how confident are
you in your understanding of the original event? Consider, for example, the
account given by David Pimm (see Chapter 9 of this book) of a transcript of a
sequence from an edited videotape of a classroom episode: what do you feel you
know about the original event? Would you have felt more confident if you had
been there yourself when the episode was being filmed? Some knowledge may be
immediate; but much of what we know comes to us mediated through represen-
tation, through preconception, through theory. Socratic ignorance may be pref-
erable where the only other choice seems to lie in the words of Seth Bernadete,
a recent translator of the Theatetus 'between an immediacy that is not available
and a mediacy that is uneliminable.' (Bernadete, 1986a, p. 88).

But another alternative might be to embrace mediacy and make it serve one's
ends. Socrates seeks to persuade Theatetus to discard an understanding of knowl-
edge as 'true opinion'. He is critical of the view ascribed to the philosopher
Protagoras and advanced here by the two mathematicians that knowledge is
based on perception and that man is the measure of all things. For then knowledge
becomes relative, and this was unacceptable, at any rate for Plato. But it is more
commonly accepted nowadays that truth is a problematic notion and that what we
can demand of opinion is that it be fruitful. And according to Goethe, was fruchtbar
ist, allein ist ivahr (only that which is fruitful is true). This is certainly the approach
taken by psychoanalysts, who are of course very centrally concerned with inter-
pretation in their work. Analysts invoke a distinction between narrative truth and
historical truth: interpretation is understood to be a creative construction rather
than a supposedly accurate historical re-construction.

Interpretations are persuasive . . . not because of their evidential value but
because of their rhetorical appeal; conviction emerges because the fit is
good, not because we have necessarily made contact with the past. (Spence,
1982, p. 32)

So, in considering classroom accounts, it may be helpful to consider various
interpretations, judging them not for some supposed veracity but in terms of their
fruitfulness for the matter in hand, which may be supposed ultimately to be the
improvement of our understanding and practice of the teaching and learning of
mathematics. It may also be helpful to borrow some of the notions invoked by
psychoanalysts when considering our own interpretations of classroom events,
whether mediated or not. Thus, I hope to show that it could be fruitful to invoke
the unconscious processes of displacement and condensation. These have also been
characterized by linguists as associated respectively with the grammatical notions
of metonymy and metaphor, and I have described elsewhere how interpretations
of classroom practice, and of mathematical history, might be made in these terms
(see Tahta, 1991, p. 229). Here, I want to try to illustrate the working of displace-
ment and condensation in our understanding, or interpretation, of a mathematical
theorem, and then in some further comments on Plum's account of a classroom
episode.
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A Classical Theorem

It seems appropriate to take as an example the irrationality of the square root of
2, the classical result which Plato describes Theodorus and Theatetus as having
generalized. It is not known for certain how it might originally have been proved
that the diagonal of a square was not commensurable with its side: there are some
plausible, geometric reconstructions. The well-known, dramatically elegant, arith-
metic proof ascribed by later Greek writers to Pythagoras -- is a typical (and
often claimed to be the first) mathematical example of proof by so-called reductio
ad absurduin, a logical argument used over and over again by Socrates in Plato's
dialogues. The proof is by analysis (as opposed to synthesis) in the sense that it
starts with what is required, only in this case with its negative: you pretend (liar!)
that you know the square root of 2 to be rational. In modern algebraic terms, the
pretence is that 42 is a fraction a/b where a and b may be supposed to have no
common factor. A sequence of transformations yields in the first place the result
that a must be even in which case b, having no common factor with a, much
be odd; but further transformation then yields that b must be even. It seems that
b must be both odd and even. Not accepting this, you backtrack to find the
mistake in your argument, to find (surprise, surprise!) that it can only have been
with your initial pretence.

The sequence of steps from one algebraic equation to the next can be asso-
ciated with the psychoanalytic notion of displacement, a process in which links are
established through a chain of connections some of which may not always be
conscious. A typical example would be the slip of the tongue, in which a word
gets substituted by another word. An example from The Merchant of Venice
is Portia's hint to Bassanio that she is wholly his: 'One half of me is yours, the
other half is yours mine own, I would say.' A sequence of such shifts often
occurs in dreams or in the activity of free association of words. Algebraic trans-
formation of the equation J2 = a/b also involves a chain of substitutions. Seymour
Papert has suggested that many students faced with equations of this sort engage

'almost as if they have read Freud' in a process of mathematical free asso-
ciation (Papert, 1980, p. 198). And just as the psychoanalyst occasionally inter-
rupts the flow of associations, the algebraic transformations are punctuated by an
occasional conscious interpretation for instance, when a' = 2112 is understood to
mean that a2, and so also a, must be even.

In the course of the proof, the square root sign is got rid of, but the 2
reappears, not in its original form but as a sign of evenness. Papert describes this
feature as a sort of mathematical pun and associates this with the psychoanalytic
notion of condensation, a process in which a single idea or symbol is at an inter-
section of several associative chains and coagulates a cluster of meanings. Dreams,
for example, are shorter and more compressed than their verbal descriptions and
eventual interpretations; a play on words a pun operates in the same way.
Mathematics is itself a powerful condensation of experience; its 'abstractions' are
derived from a number of different 'concrete' examples.

Moreover, as mathematical theorems are transmitted across generations, they
condense the accumulated experience of past interpretations. This yields another
sequence of accounts of accounts; but, as in the game of 'Chinese whispers', the
final account may be quite unlike the initial one. Irrationality is not quite the same
notion as incommensurability: in my end is not my beginning. John Mason has
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suggested that many named theorems would not now be recognized by their
originators:

Cayley's theorem, a fundamental theorem in group theory, doesn't exist
in his writings. Unless you dig and dig and dig and recognise because
of your current awareness of what.is a significant result a sort of little
kernel, a little something or other which you want to hold on to and say,
'that is a theorem'. It seems to me that in mathematics :e transform
everytime we present a theorem. (Mason, 1991, p. 16)

There is a further sense in which the proof of irrationatity condenses a number
of very dramatic, external associations that do not illuminate the mathematics as
such, but have an expressive, mythical quality of their own. Such are the stories

and they may well be fictions about the supposed consternation of the
Pythagoreans at the discovery of irrationality. Some historians of mathematics
would now deny that these are historical truths, and they would not wish to
multiply narrative truths. Others and I declare my own sympathy with these

are prepared to weave as rich a tapestry of associations as possible. For exam-
ple, Michel Serres reads the supposed crisis at the dawn of Greek mathematics in
terms of three deaths: not only the legendary death of the shipwrecked Hippasus
who was held to have divulged the discovery of irrationality, and the historical
death of Theatetus who developed a classification of irrational numbers, but also
the turning away from some of the teachings of the revered Parmenides, which
Plato somewhat startlingly called a form of parricide (Serres. 1982, p. 130).

The third death the parricide arises in the following way. Parmenides
had formulated the law of contradiction invoked in proofs by reducno ad altsurdurn.
But he was emphatic that Being (that which is ) is One; its opposite, nor -Being
(that which is not) cannot be. Whatever exists can be thought of, and con versely,
everything that can be thought of exists. But, he claimed, you cannot think of
what is not, you could not know it, you could not even say it. However, in
another Platonic dialogue, the Sophist, Theodorus brings along a philosopher,
referred to as a Stranger, who tells Theatetus,

Don't take me to be, as it were, a kind of parricide . It will be neces-
sary .. . to put the speech of our father Parmenides to the torture and
force it to say that 'that which is not' is in some respects, and again, in
turn, 'that which is' is not. (Bernadete, 1986b, p. 33)

The Stranger is prepared despite Parmenides to take opposites into
account; the supposed parricide may be seen as a return to the dualism of the early
Pythagoreans. (Theatetus, the mathematician for whom everything is countable,
is certainly already prepared to take opposites into a count!) 'That which is not'
can be conceived: for 'thinking makes it so'. as Hamlet claimed, illustrating this
with a pair of opposites, namely good and bad. How would the early Pythagoreans
have conceive° of that which is not commensurable? John Fauvel has pointed out
that incommensurability is not in itself plausible without some sort of proof:
its first proof must have constituted its discovery (Fauvel, 1987, p. 18). Proving
irrationality made it so!

The proof establishes the contradiction that a number can be both even and
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odd. By a series of intriguing displacements, Serres suggests that because 'even

means equal, united, flat, same-, while odd means bizarre, unmatched, extra, left
over, unequal, in short, other', the contradictory result may be described as assert-
ing that 'Same is Other'. This cannot be so; but because that which is not rational
has been proved to exist as well as what is rational, then numbers may just as well
be irrational as rational. This dualism masterfully explored by Theatetus
means that irrationality, or what Parmenides would have called non-Being, is in
a sense on the same footing as rationality, or Being. So, according to Serres, Same
is indeed Other 'after a fashion'; and this is the parricide of Parmenides.

'Legend, myth, history, philosophy, and pure science have common borders
over which a unitary schema builds bridges', writes Serres, stretching the conden-
sations even further to include a play on the name, Metapontum, of the birthplace
of he who was shipwrecked. The 'unitary schema' reasserts the oneness of Being
with a vengeance; but the crossing of boundaries brings disparate and sometimes
contradictory things together. Following Parmenides, we usually assume that

contradictions cannot must not be simultaneously entertained: either some-
thing is or it is not. But condensations demand otherwise. David Pimm has

suggested that this is why metaphor can be so disquieting in mathematics:

for the very essence of metaphor . . . is to be able to claim at one and the

same time that 'it is and it is not'! I assert 'a function is a machine' (and yet
I also know it is not one) the strength of the metaphoric assertion
comes through the use of the verb to be yet it carries with it implicitly
its own negation. (Pimm, 1995, Chapter 10)

Narrative Truths

The ambivalence of simultaneous assertion and negation is familiar in psycho-
analysis. It is perhaps this accommodation of the contradiction inherent in meta-
phor that makes some psychoanalytic narratives seem, at first sight, implausible.
David Pimm quotes some startling examples from the work of Melanie Klen,
including that of a 17-year-old patient, known as Lisa, who had understood
addition when the things being added were the same, but not when they were
different. Klein suggests, in effect, that addition was a metaphor that condensed
various meanings for Lisa, including her difficulty in entertaining the idea of
parental coitus, where different genitals are brought together. These remarks occur
in a very comprehensive survey based on some of her cases of the role of
the school in the libidinal development of children. Lisa is mentioned quite often
in this survey; for example, it is reported that she recalled always finding it dif-
ficult to divide a large number by a smaller one. She associated this difficulty with
a dream involving mutilation of a horse, and her going shopping for an orange
and a candle. This and its inevitable (Kleinian) interpretation in terms of cas-
tration may seem far-fetched to some people, but it is precisely the way of the
unconscious to be far-fetched. Another analyst might have made a less severe
interpretation, but the issue must always be how fruitful this particular int,rpre-
tation had been in the course of Lisa's analysis, and this, of course, we .o not
know.
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For Klein, 'the tendency to overcome [the fear of castration] seems in general
to form one of the roots from which counting and arithmetic have evolved'
(Klein, 1950, p. 80). That arithmetical operations might symbolize such matters
is supported by evidence from many other analysts. Klein assembles a lot of
further detail about Lisa's and other children's unconscious thinking in her
account. For instance, Lisa disliked the number 3 'because a third person is of
course always superfluous'. Similar oedipal conflicts have been reported recently
by Lusiane Weyl-Keiley, a therapist and teacher, who has shown how some typi-
cal problems encountered in remedial work in mathematics may be interpreted
psychoanalytically. For example, 3 may be associated with the family triple
mother, father, child and Weyl-Keiley describes a depressed adolescent for
whom 5-2 was always 2. Asked to display this by folding fingers of one hand,
he was unable to sustain the display of three fingers and had to fold down another.
`You see it makes two', he announced, keeping himself, it is suggested, out of the
family conflict (Weyl-Keiley, 1985, p. 38).

Another example of the possible psychic significance for some individuals
of a mathematical topic may be found in Klein's report that Lisa recalled never

understanding an equation with more than one unknown. The exercise of inter-
preting that in psychoanalytic terms is, as they say, left to the reader. But another
sort of condensed meaning may be found in the reminder that in the early devel-
opment of algebra there must also have been something particularly difficult about
the notion of two unknowns. For Diophantos, who tackled various problems
with apparently two or more unknowns, seemed unable or unwilling to
symbolize more than one. A second unknown was always arbitrarily given a
particular numerical value, the problem then being expressed in terms of one
variable. When this caused some inconsistency or infelicity, the value of the sec-
ond unknown was modified in order to satisfy all the conditions of the problem.

For example, Diophantos sought a Pythagorean triple such that the hypot-
enuse less each side is a cube (see van der Waerden, 1988, p. 288). His method is
here more conveniently described in modern notation. Pythagorean triples can be
expressed in terms of two parameters; calling one of the associated parameters s,
Diophantos arbitrarily took the other to be 3. The base, height and hypoteneuse
are then s2 9, 6s and s2 + 9, respectively. Hypotenuse less base is 18, which is
not a cube. To make it one, you need to have assigned the second parameter a
number whose square, doubled, is a cube. So try 2! The sides are then s2 4, 4s,
52 + 4. Hypotenuse less height is now the square ofs 2, which has to be a cube.
So set s = 10! The sides are now as required. This was also the approach to such
problems taken later and independently by the Arab mathematician. Al-
Kh warizmi; it re-appears once again in the mediaeval 'rule of false position'.

We admire the crucial step that Diophantos made the awareness that he
could name the as-yet-unknown by a special symbol (it looked like an s and may
have been an abbreviation of the Greek word for number, arithmos). We have no
idea why he was unable, or unwilling, to invoke a second symbol at the same
time. But it was clearly a difficult issue. The point here is, of course, not to
interpret Diophantos as having some kind of unconscious block, but to establish
that entertaining two unknowns may be problematic in itself, and to suggest that
in Lisa's case, where other relevant evidence is also available, this might be seen
as having come also to symbolize unresolved issues about her oedipal conflicts. It
is not, of course, that two unknowns will always represent two parents for
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everyone, but rather that they may attract such unconscious condensations for
some individuals at some time of their lives.

Listening to, and trying to make sense of, other people's accounts of their
experience can be difficult. Interpretation is a fragile instrument which is often
made to bear too much ontological weight. Socrates explains to Theodorus that
he is afraid that they will never be able to understand the thought of Parmenides,
and that in their discussion of the nature of knowledge they can only multiply
interpretations which v,ii1 never allow them to reach a satisfactory conclusion. All
that Socrates, whet;:: mother was a midwife, can do is to use his `maieutic art'
or intellectual obstetrics to help Theatetus deliver his own understanding.

So I'm afraid that we'll fail as much to understand what he [Parmenides]
was saying as we'll fall far short of what he thought when he spoke, and

this is the greatest thing that for whose sake the speech has started
out, about knowledge, whatever it is, that that will prove to be
unexamined under the press of the speeches that are bursting in like
revellers, if anyone will obey them. And this is all the more the case now,
since the speech we now awaken makes it impossible to handle by its
immensity, regardless of what one will do. For if one will examine it
incidentally, it would undergo what it does not deserve, and if one will
do it adequately, it will by its lengthening wipe out the issue of knowl-
edge. We must do neither, but we must try by means of the maieutic art
to deliver Theaetetus from whatever he's pregnant with in regard to
knowledge. (Bernadete, 1986a, p. 51)

Finding the Truth in the Mistake

Introducing his own discussion of a transcript of a videotape of a classroom dia-
logue, Pimm emphasizes how difficult it is to present convincing descriptions of
supposed unconscious processes. His interpretations of the quoted extract in terms
of the linguistic dimensions of metonymy and metaphor seem to be both apt and
convincing. His account could also be seen more or less equivalently in
terms of the associated psychoanalytical processes of displacement and condensa-
tion. In the first place, when the teacher asks Lorna to recall the word 'infinity',
her answer 'fidelity' may be interpreted in 'terms of displacement: the associated,
but possibly disturbing, word 'infidelity' is swiftly disavowed and replaced by
`fidelity'. On the other hand, taking infinity to be a powerful condensation of
meanings, her answer may he interpreted as directly relating to an associated
meaning, that of 'lasting for ever'; unable to recall the actual word required she
responds with the word 'fidelity' that has a similar, and for adolescents a particu-
larly potent, meaning. Both interpretations can be taken into account at the same
time, for the unconscious accommodates contradictions and converses.

The example underlines how irrelevant the quest for historical truth may be
in such cases. But why, someone may ask, would anyone be interested in some
narrative truth, let alone a proliferation of such truths? One possible answer is
clear from a further reading of the transcript, which like so many classroom
reports, is a record of someone's public success (here, significantly, that of the
two boys, David and Gary) at the expense of someone's humiliating public failure.
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The teacher is described as repeating Lorna's word 'fidelity' with 'rising tones of
surprise and disbelief'. The rest of the class can be left in no doubt that Lorna has
got it wrong. This is common enough in the contemporary classroom. But, to
paraphrase an oft-quoted sentence of Jules Henry 's, `To a Zuni, Hopi or Dakota
Indian, David and Gary's performance would seem cruel beyond belief, for com-
petition, the wringing of success from somebody's failure, is a form of torture
foreign to these non-competitive cultures.'

The point about the possible interpretations of Lorna's mistake is that they
suggest ways in which she may, in fact, have got it right. They support a class-
room attitude which encourages everyone teacher and fellow students to find
the truth in the mistake. Whatever our view of what psychoanalysts say, we know,
at least, that they listen, and this is something that we should all do more of in our
classrooms. We can also strive to contain our premature interpretations and let our
students deliver their own.

Andrew, aged 5, is enormously energetic and egocentric. The world
revolves round him. He has an exuberant preoccupation with words
talks incessantly, rhyming when he can and following up word-associa-
tions with unconcealed glee and self-delight. He pushes people and things,
jumps up and down, shouts, tears and throws paper, stamps his feet. His
aggressive masculinity is at once charming and intolerable. Andrew and
friends are measurin,,. Ian solemnly records that he is '3 recorders and 1
pen tall'. Andrew kas been measuring the length of the table using a block
of wood. He asks me to write out an appropriate sentence for him. 'The
table is . . . pieces of wood long.' Gripping the pencil like a dagger, he
inserts a 7. He then stabs the paper a few times and produces what looks
like a row of 7's under the sentence. I say nothing, but I feel puzzled. Is
Andrew being exuberant and generous with his numerals in the way he
is with spoken words? After a brief, shared silence, Andrew explains to
me: 'you write it seven times because there were seven of them.' (Tahta,
1975. p. 10)

In a moving postscript to his chapter, David Pimm relates what he heard
when he listened to 3-year-old Katie. She counts, pointing a finger in turn at him,
her mother and herself: 'One, two, two'. She says she knows it should be one,
two, three, but adds, 'I am pretending'. The previous evening she had told him,
'I thought you were daddy' and earlier that morning she had announced, 'daddy
dead'. He offers some sensitive possible interpretations of her apparent avoidance
of 'three'. It seems overwhelmingly obvious that feelings about the missing father
are being processed in all this. This confirms the authenticity of Klein's account
of Lisa's version of the (not always homely!) maxim, `two's company, three's a
crowd', and of the other examples of number avoidance mentioned by Lusiane
Weyl-Keiley among others. I cannot resist adding a further possible interpretation
that links with Andrew's explanation of his seven sevens: in counting the two two
times because there were two of them in her family, perhaps Katie was also
unobtrusively telling David that she knew that he was not her father and that was
all right. The unconscious can be a creative as well as a destructive force, and
young children often tell it like it is. Moreover, alternative interpretations can be
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simultaneously entertained, even where they may seem to be contradictory. For
that is the of the unconscious: same is other, after a fashion.'

Note

1. I am particularly grateful to John Mason, David Pimm and David Wheeler for
their perceptive comments on earlier drafts of this chapter.
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Chapter 11

Potential Space and Mathematical
Reality

Philip Maher

The term space, as used within mathematics, has a wide variety of meanings: e.g.,
Hilbert space, metric space, topological space. Here, in writing about mathematics
the term 'potential space' has a psychological, indeed psychoanalytical, meaning.

Hardy, in his famous little book about mathematics. A Mathematician's Apol-
ogy posits the existence of what he calls mathematical reality. I quote:

For me, and I suppose for most mathematicians, there is another reality,
which I will call 'mathematical reality'; and there is no sort of agreement
about the nature of mathematical reality amongst either mathematicians
or philosophers. Some hold that it is 'mental' and that in some sense we
construct it, others that it is outside and independent of us . . . I will state
my own position dogmatically . . . I believe that mathematical reality lies
outside us, that our function is to discover or observe it, and that the
theorems which we prove, and which we describe grandiloquently as our
creations, are simply our notes of our observations. This view has been
held in one form or another by many philosophers . . . from Plato
onwards . . . (Hardy, 1941, pp. 63-4)

Although Hardy, in the above passage, is careful to allow the possibility that
mathematical reality is 'mental' in that we 'in some sense construct it' his very
usage of the term 'mathematical reality' implies a Platonic view; and when later
he says 'A mathematician . . . is working with his own mathematical reality' (ibid.,
pp. 69-70) he is careful to maintain what he calls a 'realistic' view of mathematical
reality: mathematical reality is independent of how our minds are made.

Now whilst many of Hardy's views have been questioned (his dichotomy of
the ugly and useful versus the beautiful and useless mathematics, for instance) and
whilst A Mathematician's Apology may seem to us now to resonate with the cul-
tural ideals of the Bloomsbury group, Hardy's notion of mathematical reality has
retained its spell over pure, and applied, mathematicians alike. Thus, for example,
Penrose (who began his career as a pure mathematician and is now a theoretical
physicist) in a contribution to the Mathematicians on the Philosophy of Math-
ematics Conference (1992) explicitly distinguished the Platonic world of math-
ematicians (Yes, that's what he called it) from, on the one hand, the real physical
world, and, on the other, the world of conscious perception. Indeed, I suspect
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that nearly all mathematicians are, insofar as they give the matter conscious thought,
unreconstructed Platonists.

All of which is fairly astonishing given the glaringly obvious philosophical
problems such a position entails. Thus: how can mathematical reality be outside
and objective and yet not be physical and, simultaneously, not be a creation of the
human mind? The problem of the ontology of mathematical reality is accentuated
if (like that militant atheist, Hardy) one eschews such theological explanations as
mathematical reality being the creation of an omniscient God.

My point here is not that there is no such thing as Platonic mathematical
reality but, rather, that this notion is highly problematic and, at the same time,
highly popular amongst professional mathematicians (more so than such recent
philosophical models as the quasi-empiricism of e.g., Tymoczko or the radical
constructivism of e.g., von Glasersfeld).

One attraction of Platonism (t1,e belief that there exists a mathematical reality
independent of us) is that it gives an account of how (as, interestingly, Tymoczko
has commented in POME Newsletter 6, p. 4) mathematical objects seem to exist.
But more than this, Platonism seems to possess a positively affective power over
the other philosophical models of mathematics. I will now anticipate my conclu-
sion by saying that the affective power of Platonism results from an unknowing
conflation of the philosophical with the psychoanalytical; or, to put it slightly
differently, the philosophical notion of Platonism has deep psychoanalytic roots
which are all the more powerful for being unarticulated.

Examining more closely the term mathematical reality we see that it suggests
a psychic, or, if you prefer, a psychological, space which, on the one hand, is not
purely private (like a dream) and, on the other, is felt to be a subject of exploration
by one's own mind; and in this psychological space there are objects mathemat-
ical objects which, on the one hand, are manipulated with in accordance with
the various, pre-existing results of mathematics, and, on the other, are imagined
by you, the mathematician (all of which is evidenced by the common difficulty
(mentioned by Zeeman in his contribution to the Mathematicians on the Philo-
sophy of Mathematics Conference (1992) that we mathematicians have in deciding
whether we discover or create mathematics). Mathematical reality and its objects
seem both outside and inside at the same time. Significantly, in this evocation of
mathematical reality and its objects no one specifically mathematical feature
appears: indeed the very lack of mathematical features suggests that the concept
I have been trying to evoke is really more gerieral than, and subsumes, mathemat-
ical reality.

The psychoanalytically informed reader will by now have realized that the
notion I have been trying to evoke is the so-called 'potential space' of D.W.
Winnicott. Winnicott, who originally trained as a paediatrician, was a psychoan-
alyst who was one of the most innovative of the English 'object-relations' school.
For the last twenty years of his life Winnicott became increasingly interested in the
location of cultural experience (the title of one of his papers, ,ee Winnicott, 1971,
pp. 95-104). Of course, 'cultural' here embraces mathematics.

Winnicott's concept of potential space (and the related concept of transitional
object) arose from his work ( he very early motherchild relationship. For
Winnicott, in the beginning 'the environment is holding the individual and at the
same time the individual knows of no other environment and is at one with it';
that is, the infant is enveloped within, and conditional upon, the holding
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environment, i.e., the mother, of whose support he gradually becomes aware, a
condition Winnicott said 'could be described at one and the same time as absolute
dependence and absolute independence.'

Winnicott's concept of transitional object (and hence of potential space) arose
from his attempting to explain how the infant made his first simple contact with
external reality. The infant did this through 'moments of illusion' which the
mother provided: these moments helped the infant to begin to create an external
world and, simultaneously, to acquire the concept of an inside for himself. Such
a moment of illusion might occur when the mother offered her breast at exactly
the moment when the child wanted it (so that the infant's wish and the world's
satisfying it coincided which, of course, they never, in fact, do): the infant
acquires the illusion that there is an external reality that corresponds to his capac-
ity to create. Of course, there had to be a later converse process of 'disillusion'
(not to be confused with the Kleinian Depressive Position) when the mother
would gradually withdraw her identification with the infant and wean the infant
away from her breast.

This led Winnicott to his concept of transitional object which belonged to an
'intermediate area of experiencing to which inner reality and external life both
contribute'. Winnicott drew attention to 'the first possessions' those rags, blan-
kets, clothes, teddy bears and other objects to which young children become so
powerfully attached: Winnicott called such objects transitional objects, so-called
because their use belonged to an intermediate area between the subjective and that
which is objectively perceived. The transitional object thus presents a paradox
which cannot be resolved but must be accepted: the point of the transitional object
is not its symbolic value but its actuality.

Winnicott came to posit what he called potential space. Potential space was
the hypothetical area existing between the baby and the object (the mother) at the
end of being merged with the object; that is, potential space arises at that moment
when, after a state of being merged with the mother, the baby arrives at the point
of separating out the mother from the self and the mother, simultaneously, lowers
the degree of her adaptation to the infant's needs. At this moment, Winnicott
says, the infant seeks to avoid separation 'by the filling in of the potential space
with creative playing, with the use of symbols and with all that eventually adds
up to a cultural life'.

For the inner and outer reality of the adult to be connected the continuance
of an unchallenged intermediate area is necessary: the potential space, originally
between baby and mother, is reproduced between individual and the outside world
as it becomes the location of cultural experience. 'This intermediate area' Winnicott
wrote 'is in direct continuity with the play area of the small child who is "lost in
play" and was retained in the intensive experiencing that belongs to the arts, . . . and
to creative scientific work.'

It follows from Winnicott's theory that for a mathematician mathematical
reality is subsumed in potential space, that is, mathematical reality is an instanti-
ation of potential space that occurs when one is doing mathematics; and that one's
mathematical objects are transitional objects. This last claim that 'mathematical
objects are transitional objects' may seem fairly preposterous in view of my earlier
description of them as 'those first possessions . . . rags, teddy bears . . . to which
young children become so powerfully attached'; yet this describes only the first
transitional objects a child has: the notion of transitional object like that of
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potential space carries over into adult life (as is implicit in Winnicott's tanta-
lizingly oblique paper on the location of cultural experience (Winnicott, 1971, pp.
95-104)). If we accept the view that one's mathematical reality is an instantiation
of one's potential space that occurs when one is doing mathematics then the
objects in this psychological space the mathematical objects one plays with
(tellingly, 'play' is a verb mathematicians often use to describe their activity)
are or, more accurately, function as transitional objects. From this perspective
there is little psychological difference between, say, a teddy bear and a self-adjoint
operator: for, whilst the former is a physical object and the latter isn't (although
mathematics is recorded by physical marks on paper) both function as transitional
objects at the appropriate stage of one's psychological development.

At this juncture a problem emerges. Why is it mathematicians are so con-
scious of what they call mathematical reality whereas, say, creative writers don't
talk of 'literary reality' or engineers of 'engineering reality'. Part of the answer
may be that mathematics is non-representational, that is, the meaning of a piece
of mathematics is independent of the outside world although in teaching a piece
of mathematics one may (and often does) link it to the outside world so that it
may more readily enter the pupil's potential space. Literature and engineering, on
the other hand, are not non-representational. Given that mathematics is non-
representational it is hardly surprising that mathematicians have a need to be able
to posit, to be consciously aware of mathematical reality.

To be able to posit, to be consciously aware of and to be able to visualize:
these are all nearby concepts and, in turn, tie up with an oft-noted characteristic
of mathematicians: namely, most visualize and regard mathematics (and not just
those parts, like geometry or topology having obvious visual connotations) as an
inherently visual subject. This last statement requires some discussion and
qualification, though. First, some mathematicians claim not to visualize: but the
fact that surveys have been carried out investigating whether or not mathemati-
cians think of themselves as visualizers would support the belief that mathematics
is, at least, thought of as a visual subject. Second, the existence of mathematicians
who went blind in later life Euler and Pontdriagin are famous examples does
not contradict the view of mathematics as a visual subject: Euler and Pontdriagin
may well have incessantly visualized. Third, thereare examples of mathematicians
blind from birth I know of one, Paul Holliman who was a student at Middle-
sex University (Grattan-Guiness and Holliman, 1983). The existence of mathema-
ticians blind from birth does not contradict the view of mathematics as being
characteristically visual since that viewpoint pertains to the vast majority of born
sighted mathematicians. In the case of Holliman it appears his 'imagery' (How the
visual saturates language!) was aural -- obviously; and tactile the lecturer would
'draw' the shape of a graph, say, on his back (Grattan-Guiness and Holliman,
1983). Whilst it is impossible for us sighted from birth to enter the psychological
world of the blind from birth it would seem that common to both is the concept
of communication (although its mode visual and aural in the one case; aural and
tactile in the other is necessarily different). And communication for the sighted
infant, before language has asserted itself, takes place by looking: communication
with the mother by looking into her eyes; communication with or more accur-
ately, construction of the self by looking into a mirror.

The reader may now realize that we have reached with a bit of a jolt,
perhaps the notions of mirror role and mirror stage. There are two notions
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here, not one: Winnicott's concept of the mirror role of the mother (see Winnicott,
1971, pp. 111-19) and Lacan's concept of the mirror stage (Lacan, 1977, pp. 1-7,
first published in 1939 although apparently originated in the mid-1930s, Benvenuto
and Kennedy, 1986, pp. 47-63).

Though Winnicott's notion, as he acknowledged, was influenced by Lacan's
somewhat different notion we deal with Winnicott's first. Winnicott's notion is
based on the mutuality of the relationship between the mother and infant as
manifested in their mutual gaze at each other. As has been confirmed by obser-
vational studies, the newborn infant is particularly attracted to, and fascinated by,
the sight of the human face especially the eyes and especially those of the
mother. Significantly, the mother's eyes are at the appropriate distance for the
baby to gaze into when being breast fed. As Winnicott pointed out when the
infant gazes into the mother's eyes, the infant is reflected in them and, mutu-
ally, the mother is reflected in the infant's eyes: it is as if the mother is acting the
role of a mirror to the infant (Winnicott, 1971, pp. 111-19). Winnicott's notion
of the mirror role of the mother thus provides an explanation for the mutual
communication between mother and infant which, taking place as it does before
the infant has acquired verbal language, is all the more powerful effectively.

Winnicott's concept of the mirror role of the mother thus gives an explana-
tion of the ontogenesis of the link between gazing and communication in general:
At the same time, it shows how characteristically visual a concept as that of gazing
ties up with or rather, includes the idea of how mathematics seems so
characteristically visual; for if we accept Winnicott's theory of transitional objects/
potential space (sketched earlier) and its link with mathematics it would
seem that doing mathematics involves the gaze of the mind on transitional objects
(here, mathematical objects) in potential space (here, mathematical reality).

But, it might be objected, Winnicott's notion of the mother's mirror role
linking, as it does,communication to gazing isn't specific to mathematics; it
could, that is to say, apply to any other cultural activity involving communication
which had connotations of the visual. Now, one aspect of mathematical activity
which whilst not specific to it alone is as characteristic of it as is the visual
is the notion of making whole: e.g., of completing a pattern or e.g., of accounting
for a special (or seemingly anomalous) case. And, as is elaborated below, it's
Lacan's notion of the mirror stage which gives an explanation of the ontogenesis
of this aspect of mathematical activity (Lacan, 1977, pp. 1-7).

Lacan's notion of the mirror stage describes a stage in the development of the
infant (roughly 6-18 months) when the infant begins to recognize his or her
image in a mirror (an event that has also been observed in studies of chimpanzees).
At first, Lacan noted, the infant confuses the image with reality (and may try to
grasp hold of the image behind the mirror); then comes the discovery of the
image; and then, finally, the realization that the image is his or her own. To
understand the developmental si,,,iificance of the mirror stage one must realize
that, at the same time, the infant relatively uncoordinated, helpless and depend-
ent on others. Now when the infant becomes aware of his or her image in the
mirror the infant sees a totality which he or she can control through his or her
own movement. The mirror image thus articulates a mastery of the body the
infant has not yet objectively attained; and this imaginary (as Lacan dubs it) mastery
anticipates the infant's later real biological mastery and intellectual mastery,
too, if e.g., a future mathematician. The mirror image, then, in representing to
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the infant a total and unified whole (caused and controlled by the infant) pre-
figures the mind's desire to make whole; and this latter desire whilst a character-
istic of many activities, is, as commented earlier, a crucial aspect of mathematical
activity.

The reader might, at this stage, be forgiven for thinking that the arguments
presented in this chapter are a bit wild or fanciful (quite apart from any doubts
the reader might have about the scientificity of psychoanalysis). This is entirely
understandable: the intellectual discipline of reflecting on the activity of math-
ematics is at a nascent, primitive stage of development in which any intellectual
moves must seem bold, unsupported as they are by any pre-existing theory of
mathematics (in marked contrast to the intellectual sophistication of, say, literary
theory which, interestingly, uses psychoanalytic concepts e.g., Belsey, 1980).

Part of the reason for the late development, as an intellectual discipline, of
reflecting on the activity of mathematics may be the reluctance of professional
mathematicians to write about mathematics as distinct from adding to mathematicS
by doing it (a view perfectly expressed by Hardy, with whom we began, who
writes 'The function of a mathematician is to do something, to prove new theo-
rems, to add to mathematics and not to talk about what he or other mathemati-
cians have done' (Hardy, 1941, p. 1). Yet the situation becomes circular if
professional mathematicians do not write about mathematics because it's not pro-
fessionally respectable to do so: it won't become professionally respectable unless
they do.

A further difficulty attends the use, as here, of psychoanalytic concepts in
writing about mathematics: the use of psychoanalytic concepts to explicate the
activity of mathematics has to be the work of psychoanalytically orientated math-
ematicians rather than psychoanalysts per se: for, apart from their lack of experi-
ence of mathematics, few psychoanalysts have written at all extensively on
mathematics. (I say 'few' advisedly: Bion mentions mathematics in Bion, 1962;
and Ferenczi has a late, unfinished and fragmentary essay in Ferenczi, 1955: both
of these references are given in Chapman, 1972, pp. 206-16. One should also
recall that Lacan often uses mathematics, and mathematical terminology, as a
communicative metaphor e.g., Lacan, 1977).

Admitted, psychoanalysis, throws up various epistemological problems (some
would claim to do with its scientificity). Yet despite these epistemological prob-
lems, psychoanalysis offers the most realistic insights into the workings of the
human mind and hence into the experience, and activity, of mathematics.
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Chapter 12

Towards a Hermeneutical
Understanding of Mathematics and
Mathematical Learning

Tony Brown

Introchiction

Pursuit of the notion of mathematical meaning has dominated much of the discus-
sion to do with the philosophy of mathematics education. The flavour of current
discussion generally seems opposed to notions of absolute meaning towards see-
ing meaning as a socially constructed phenomena. Such a move seems consistent
with theoretical shifts in other academic fields but it still retains a tendency to-
wards seeing meaning as in some ways independent of time and context, a notion
associated with concepts rather than with conceiving, a fixity to which the learner
converges. In particular, any attempt to assign a socially conventional meaning
remains problematic since any account of what this might be is mediated by some
symbolic system subject to the interpretation of any individual user.

Hermeneutics, the theory and practice of interpretation, attends to the pro-
cess through which we develop an understanding of the world. Unlike post -
structuralism which asserts 'a multiple play. of meaning held in language' (Urmson
and Ree, 1989), hermeneutic understanding is more governed by a belief that
whilst the world may exist independently of humans, it cannot present itself
directly to the human gaze. The hermeneutic task can then be seen as an uncov-
ering of meaning, but a meaning dependent on the media and experiences through
which it is observed.

The principal task of this chapter is to explore the consequences of asserting
that mathematics is an essentially interpretive activity, comprising a system of
symbols that is only activated within individual human acts. By seeing math-
ematical expressions as being used by humans in particular situations, rather than
as things with inherent meaning, emphasis is placed on seeing mathematical activ-
ity as a subset of social activity, and as such, is subject to the methodologies of
the social sciences. Firstly, I shall outline some issues arising through seeing
mathematical expressions as being necessarily contained in action, resulting in
meanings that transcend mathematical symbolism. This is followed by a discus-
sion of how the emergence of mathematical phenomena in human understanding
is a consequence of a linguistic process of classifying. After outlining certain ideas
within hermeneutics, the method is discussed as an approach to describing
mathematical learning and assessment of this.
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Speaking and Writing As Acting

In Philosophical Investigations, Wittgenstein (1958) suggested that the meaning of a
word might be seen as its usage in language. Here, the notion of meaning as a
phenomena subsides as a greater emphasis is placed on what an individual sees as
being held in a given symbolic form in a particular time-dependent context. Within
mathematics education this can facilitate a move away from seeing mathematics as
something with an independent existence but rather as something that arises in the
context of some particular social event; a style of activity rather than something
to be learnt. A necessary characteristic of any social event however, is a style of
symbolizing facilitating a system of exchange. In a situation concerned with math-
ematical learning this symbolizing will take many forms, using both inherited and
original symbols in ways that endeavour to enable communication between par-
ticipants. So viewed mathematical utterances, both spoken and written, can as-
sume many attributes associated with any linguistic utterance in a social space. For
mathematics, it is the symbols themselves that are the material reality since math-
ematical phenomena do not have a tangible existence outside of symbolization.
However, the symbols are human creations that arise in speech or writing and are
a subset of other human expressive acts and as such are subject to the methodol-
ogy of social scientific enquiry. In particular, any issuing of a mathematical utter-
ance into a social space needs to be seen as an action with a meaning that transcends
any purely literal,enquiry.

In his work on word usage Austin (1962) identifies three levels of effect
arising from any sentence being uttered in a social context. Firstly, the locutionary
effect is that of the literal meaning where the words are taken at `face value'.
Secondly, the illocutionary effect is that done in the utterance. For example, if 1
say 'I name this ship', the action is in the saying. Thirdly, the perlocutionary is
that done by the sentence, for example, the effect on the atmosphere in a class-
room as a consequence of the teacher saying something in a loud, disapproving
tone. Ricoeur (1981) has suggested that these three effects are in a hierarchy ac-
cording to the degree of interpretation required. The interlocutor can resolve the
meaning of the locutionary effect by consulting a dictionary. However, to under-
stand the perlocutionary effect one needs to have experience of being in the ap-
propriate language using community where sentences are used alongside physical
actions in a material environment.

In a social situation being directed towards mathematical learning, a variety
of linguistic forms will be used within a broad communicative environment.
Some of this language will be specifically associated with conventional mathemat-
ical ideas, but much will be less precise, supporting other aspects of the exchange.
The exactitude often associated with mathematical symbolism does not character-
ize the communication taking place in many educational situations. Rather, in
most learning situations we are concerned with activity taking place over periods
of time where learning requires making sense of engagement in this activity and
cannot be seen as the composite of getting to grips with a number of clearly
defined `mathematical' concepts. The placing of any written or verbal utterance
into this influences communication in the way furniture might influence move-
ment around a room. In this sense, Kaput (1991) who has explored the possibility
of reconciling the use of inherited notations within a radical constructivist

142

1 15 (,)



Towards a Hermeneutical Understanding

phi'osophy, has suggested that in this respect the placing of Cuisenaire rods in a
particular arrangement might be seen as a form of writing.

Indeed there are many forms of mathematical discourses each flavoured by
their particular social usage. For example, a university lecturer might speak as a
platonist, where utterances are made as if they were extracts from a transcendental
world of mathematics. Rather different would be the speech of a representative of
the National Curriculum Council seeing mathematics in terms of how it might be
partitioned for the purposes of testing. Different again would be someone who
regards mathematics as a subject whose prestige is consequential to its ability to
be applied in 'real life' situations. Richards (1991) offers other examples. Each of
these people would enter into a dialogue placing varying stresses on their math-
ematically inclined utterances according to some ideological tainting. A string of
symbols. no matter how neutral it may appear, cannot be seen independently of
the context into which it is being issued. The selection of this string pre-supposes
a selecting by someone with a particular purpose.

Mathematics As a Language

Can mathematics be seen as existing outside of the language that describes it? The
question is related to the more general concern of how the world can be seen
outside the language that describes it. In describing perception Peirce identifies
three ascending levels; quality (the initial sense), fact (the identification of objects),
law (the relations between objects). Perceiving the world requires categorization
of it wlf.ch involves differentiating and relating aspects of this world. It is towards
this end we use language. Mathematical phenomena, those aspects of the world
seen as pertaining to magnitude and number and the relations between them,
emerge in this process, consequential to the way in which the world is subdivided
into categories. However, this very categorization mediates and thus organizes
our way of seeing.

The symbols and classifications of mathematics are historically determined.
They are arbitrary in the sense that the symbols and classifications of any'language
are arbitrary. As such it can be viewed phenomenologically in that these symbols
and classifications have particular meanings for any individual derived from that
individual's experience of their usage. The field of mathematics only comes into
being in its classification in language. The sense of this field can only be perceived
retroactively and its existence presupposes a language. For someone learning
mathematics there is a similarity with learning a language in that there is a need
to grapple with an inherited mode of symbolization and classification, arbitrarily
associated with some pre-existing world.

The style of describing mathematics is necessarily interpretive according to
some mode of signification; a particular way of fitting words and symbols to
experience. Barthes talks of certain styles of signification becoming naturalized in
the sense that they become the culturally conventional way that seems to be
entirely neutral, in the way that a realist painting might be regarded as the most
straightforward representational mode. This is discussed by Coward and Ellis
(1977). However in learning mathematics, using alternatives might be seen as a
way of initiating productive tensions for forcing awareness towards re-evaluating
this supposed natural way. The linguistic overlay given to a situation can be seen
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as a way of introducing an interplay between the describing and that described.
By asserting mathematical activity as essentially interpretive in nature, the pro-
duction of meaning in this activity can be seen as deriving from a dialogue ina
continuous process of introducing linguistic and symbolic form into the socially
active space.

As an example, consider the flavours that can be given to a 4 x 3 rectangular
lattice in the context of a particular activity, described in Brown (1990).

a) 1111
INNEN

c)

drawn on squared paper

made out of plastic squares

drawn on the chalkboard

d) Captured in writing or in spoken words:
e.g.. 'A rectangular garden lawn surrounded by a path comprising ten
square paving stones.'
`Two green squares side by side surrounded by red squares.'
'Four squares in the. top row, four in the bottom and one at each end of
the lawn.'

e) Located on a table garden 1 2 3 4 5 6 n
lawn 1 2 3 4 5 6 n
path 8 10 12 14 16 18 2n + 6

f) Pictured in the imagination

Each of these metaphorical representations open up a form of describing such
lattices as they change dimensions. The play arising from making (metaphorical)
leaps between such forms and (metonymic) moves within such forms results in
successive acts of fitting and associating forms. By seeing equivalences between
forms we can choose the form most suitable for our current purposes. For exam-
ple, if we see a 153 x 3 rectangle as the 151st garden we do not need to build it
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with plastic squares and may prefer to deduce the information we need (e.g., how
many red squares are needed for the path?) algebraically.

Saussure's influential work in linguistics, carried out at the turn of the cen-
tury, was directed at the structure of the layer mediating experience. For him the
signifier is the mental image or sound of a word or symbol. The signified is the
mental concept with which the individual associates it. Together, the signifier and
signified form the sign, a wholly mental phenomena constructed by the indi-
vidual. Two forms of arbitrariness are implicit here. Firstly, if we take the signifier
`square', the word itself is quite arbitrary and is in fact different according to the
language you are speaking (e.g., it is kwadrat in Polish). Secondly, a square is a
special sort of rectangle, or a type of regular hexagon, or a type of rhombus. It
is an arbitrary category and does not need a name of its own. We only introduce
a name for convenience since in the way in which we operate in the world we use
it a lot. Such a category may not be so crucial for an aborigine.

Saussure did little in investigating how such signs are associated with the real
world, but rather saw meaning as being derived purely from the play of differ-
ences between signs. In this way, mathematics as a language, held in symbols, can
be seen as independent of the real world, a mediating layer rather than a quality
endemic in the physical world. So viewed categories of mathematics are cultural
rather than transcendental, arbitrary rather than implicit. The play of meaning is
consequential to sets of words being combined by humans in individual speech
acts. In seeing mathematics as a language, as educators, we are not so much
concerned with its qualities as a system (fatigue) but rather with its realization as
discourse in the social environment (parole), i.e., with the way in which it is being
used to signify, towards producing meaning.

The Phenomenology of Acting and Meaning

By seeing mathematics as something arising in social activity and the framing of
mathematical statements as social actions, we are permitted the possibility of
employing social scientific techniques towards establishing mathematical under-
standing. Much recent work in the human sciences has worked from the premise
that the individual human subject perceives the world phenomenologically, that
is, he or she sees the world comprising phenomena having particular meanings to
him or her in particular contexts. Here individual objects are not seen as having
meaning in themselves but only take on a meaning in the gaze of the individual
who sees them from his or her own partkular position and according to his or her
current interest.

Underlying this view are specialized uses of the terms objective and subjec-
tive. Whilst there may be an independent material reality it only comes into a
meaningful 'objective' reality when classified within the language of an individual
human subject. I might talk about the situation I sec myself in, as if it were
independent of me, but I can only do this only after experiencing myself as part
of it. In this way object and subject are in some sense part of each other. An object
can only present itself to the gaze of the individual subject with his or her own
particular phenomenology. The world of material objects only comes into being
retroactively through being captured in language. An individual's consciousness is
always a consciousness of . . . and is always intentional insofar as it seeks to make
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sense of that within its gaze according to some schema. A consciousness is always
of an object and an object only presents itself to a consciousness. The nature of
the objective is dependent on the way in which it is captured and accounted for
in language by the subject. The mediating layer through which language is de-
rived seems inescapable, brought into existence by consciousness itself and its
need to organize that which it perceives. These ideas, generally accredited to
Husserl, are discussed at length by Ricoeur (1966).

In making a mathematical statement I express certain intentions but am un-
able to guarantee that I communicate the meaning I myself attach to this state-
ment. Such an action and its meaning to me are consequential to my categorization
of the world in which I see myself as part. Whilst I may attempt to predict how
my action might be read by others, the meaning of my action cannot be seen only
in terms of my intention since it cannot be seen independently of the social en-
vironment into which it is issued. In addressing this Ricoeur (1966) differentiates
between the 'voluntary' and 'involuntary' components of any action. The indi-
vidual subject can assert himself or herself through the voluntary component of
an action, i.e., that which he or she intends. The meaning of this action, however,
only emerges as the resistances to this action take shape around it. These resistances,
the involuntary component of the action, have no meaning in themselves, but
rather are the contextual framing activated by the voluntary component. This
implies a hermeneutic process where the subject voluntarily acts in the world he
or she supposes it to be, but this in turn gives rise to (involuntary) resistances
which are always at some distance from those anticipated. In order to act, how-
ever, there is a need for the subject to suspend doubt and act as if his or her
reading is correct. This has been discussed in more depth by Brown (in press).

In later work, Ricoeur (1981) talks of the 'meaningful effect' of an action as /
being its 'objectification'; the mark it luves on time. Thompson (1981), Ricoeur's
translator, sees this as being related to the way in which the action might be
described in retrospect, as if in some historical account. Ricoeur explores this in
terms of an analogy with the objectification speech goes through in being com-
mitted in writing. By pursuing the paradigm of text interpretation he sees acting
as analogous with writing and interpretation of this action as reading. It is through
this sort of fixation that we can employ techniques of interpretation for both tasks
of understanding (learning through signs) and of explanation (learning through
facts), by seeing such tasks as necessarily intertwined. It is this relation between
understanding and explanation that hermeneutic enquiry seeks to unfold.

Hermeneutic Understanding

Hermeneutics was originally developed and employed in the analysis of biblical
texts but was extended, largely by Dilthey working at the turn of the century, to
cover the whole of human existence. Leading modern exponents are Ricoeur and
Uadamer who have developed it within phenomenology. Hermeneutics, whilst
acknowledging that some interpretations arc better than others recognizes that
none is ever final. Hertneneutical understanding never arrives at its object directly;
one's approach is always conditioned by the interpretations explored on the way.
While one's understanding may become 'fixed' in an explanation for the time
being such fixity is always contingent. In choosing to act as if my explanation is
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correct, the world may resist my actions in a slightly unexpected way, giving rise
to a new understanding, resulting in a revised explanation, providing a new con-
text for acting and so on. This circularity between explanation and understanding,
termed the hermeneutic circle, is central to hermeneutic method.

Hermeneutics resists distinctions frequently made between the explanations
of the natural sciences (knowing through facts) and the understanding of the
human sciences (knowing through signs), preferring to see them both as subject
to an interpretive framework. Within history, for example, whilst it may be
possible to continue offering ever more interpretations of 'what happened?' if we
are to act in the light of this knowledge we have to suspend doubt for the time
being and assume a certain positidn towards getting things done. Conversely, tak-
ing mathematics, as an example from the other end of this scale, while we may have
statements that 'on the surface' seem entirely incontrovertible, it is still necessary
for an individual human to decide how such statements will be used in the social
space or how they have been used. This is discussed in relation to mathematics
teaching in Brown (1991).

In speaking of mathematics I cannot simply quote, in a neutral way, expres-
sions as if from some platonic formulation. I am necessarily acting in time
whereas platonic mathematics is outside of time. Further, in doing this I refer, by
implication (through the perspective I reveal), to myself, to the world I see, and
to the person(s) to whom I am talking. Ricoeur (1981) emphasizes these discursive
qualities of language usage in distinguishing langue and parole. In doing this he
combines Saussure's linguistics with the speech acts described by Austin (1962)
and Searle (1969). Mathematics is only shareable in discourse and the act of real-
izing mathematics in discourse brings to it much beyond the bare symbols of a
platonic formulation of mathematics. The mathematics I intend to communicate
is always mediated by the explanatory procedures of such a social event. My
interlocutor is obliged to interpret my speech, reconciling parts with the whole,
stressing and ignoring as he or. she sees fit. The distinction between knowing
through facts and knowing through signs becomes blurred in this process since
the facts of mathematics are immersed in the usage of them. The expressions of
mathematics are only arising within actions in social events.

Notions of hermeneutic understanding as applied to mathematics then re-
quire a shift in emphasis from the learner focusing on mathematics as an externally
created body of knowledge to be learnt, to this learner engaging in mathematical
activity taking place over time. Such a shift locates the learner within any account
of learning that he or she offers, thus softening any notion of a human subject
confronting an independent object. In this way positivistic descriptions that draw
hard distinctions between process and content of learning mathematics are avoided
since there is no end point as such but rather successive gatherings-together of the
process so far, seen from the learner's perspective. In such an educative space,
characterized by the communication of mathematical thinking, the introduction
of different interpretations gives rise to the possibility of a productive tension
between mathematical activity and accounts of it, enabling the very hermeneutic
process of coming to know through juxtaposing varying perspectives as in the
example above.

The exact expressions conventionally associated with mathematics only ever
find expression in such activity, within the context of many other sorts of expres-
sion. Such statements are always, in a sense, offered as part of a distillation process;
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a 'looking back' concerned with pinning down key points of the event. The
reflective dimension inherent in this results in the active generation of mathemat-
ical expressions through time being part of the reality described. Similarly, the
intention to learn is always associated with some presupposition about that to be
learnt and learning is in a sense revisiting that already presupposed. This continual
projecting forwards and backwards affirms an essential time dimension to math-
ematical understanding that can never be brought to a close by an arrival at a
`concept', since the very framing of that concept modifies the space being described.

Where then lie conventional notions of mathematical understanding? This
issue seems problematic in that within hermeneutics understanding does not per-
tain to concepts with fixed meanings. Understanding is a process rather than a
state. This clearly runs in conflict with sublime notions of understanding that
suggest a state beyond that accountable in words. A more humble notion of
mathematical understanding may be that it is simply the ability to tell a package
of convincing stories generated by the learner himself or borrowed from the
teacher. Further, this understanding is only proven if the learner can make use of
certain aspects of the conventional, inherited system of exchange.

Describing and Assessing Mathematical Learning

As educators we are often not so much concerned with learning as with giving an
account of learning. This might be the reproduction of a famous result, the ap-
plication of a method in a particular real life situation or some verbal explanation
of some work completed. Such an account is necessarily in some symbolic order
associated with some over-arching system of exchange. For the student engaging
in a mathematical activity there is a variety of ways of reporting back on the
experience. The nature of any understanding demonstrated in this report, how-
ever, is always conditioned by the method of reporting chosen. But what can be
captured in such a report? Is it the mathematics, the understanding, the activity?
None of these can be desci-i:J. ed purely within the realm of mathematics, whatever
that is. Some perspective of the describer is required and this depends on his
position, his biographically defined background and his current motives. .

By seeing the assessment of mathematics being directed towards the student
making sense of his mathematical activity we overtly move in to the realm of
interpretations. Assessment by the teacher can be directed towards participation in
a dialogue involving the student in generating linguistic forms in respect of his
view of the activity. A two-tiered interpretation is implied here; the student cap-
turing his experience in symbolic form, and the teacher assessing this symbolic
product as evidence of understanding. What is not implied here is any notion of
a universal meaning to which both teacher and student converge, but rather `. . . ob-
jectivity is achieved through the coincidence of interpreting, that is, agreeing'
(Brookes, 1977).

One might legitimately protest that there is a certain power relation here that
creates a somewhat asymmetrical sort of agreeing, where the teacher, as repre-
sentative of the conventional way of talking about things, sees his or her task as
introducing this. Whilst the children may have the opportunity of offering some
account of their understanding, within their own mode of signifying, the teacher, in
entering any discussion, introduces a more conventional mode. The communication
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being sought in such an exchange brings into play some symbolic medium, com-
prising symbols, actions and words. But such is the power of the conventional
mode of discourse that th.- quest for the learner may be to believe that he or she
is joining the teacher in using the inherited language. This highlights a particular
aspect of the teacher's power, consequential to the linguistic overlay he or she
brings to the situation. The teacher's style of looking is accustomed to spotting
concepts which are, after all, merely culturally conventional labellings. In this way
the teacher's way of making sense of a student's work involves classifying this
work as if looking to tick off categories on a National Curriculum checklist. The
student's access to any notional transcendental mathematics is always mediated by
a social pressure to capture this in the categories arbitrarily assigned by our ances-
tors. I would argue that much investigational work, such as that described in
Brown (1990), permits the students to develop their styli of signification more
fully, prier to interception by the teacher introducing more conventional ways of
describing the product, than might be possible in more traditional approaches.

Conclusion

By accepting a hermeneutic view of mathematical understanding we give primacy
to the linguistic qualities of mathematical learning and so soften the distinction
between mathematics and other disciplines. Mathematics becomes something held
in the expressions of participants in mathematical activity, who are asserting their
view of, and their relation to, some supposed mathematics. The reality of any
transcendental mathematics relies on people acting as if it is there. 'The assertion
that mathematics has no existence outside the material symbols that describe it
echoes the 'lack' that Lacan describes as emerging after the layers of description
are peeled away (Brown, Hardy and Wilson, 1993). Whilst this may be too ex-
treme for many professional mathematicians, the.transcendental mathematical truth
that might be uncovered by hermeneutic enquiry cannot escape some flavouring
from the process through which it is reached by the individual.
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Chapter 13

The Myth of Mathematics

Falk Seeger and Heinz Steinbring

The present chapter tries to explore some of the specific epistemological features
of mathematical knowledge as it is constituted in communicative interactions be-
tween teacher and students) A basic and often implicit underlying philosophy of
mathematics in teaching is that of a 'sufficiently liberal platonism' which teachers
have acquired during their university studies and then taken with them to school
(Goodman, 1979). Introduced into mathematics teaching, this philosophy of
mathematical knowledge undergoes certain changes because of specific conditions
and requirements of interactive communication patterns and routines in the class-
room discourse.

Obviously, one of the basic assumptions of the prevailing didactical contract
is that in order to convey knowledge to the students it has to be based on intuitive
or 'natural' ways of knowing and doing. Following Edwards and Mercer (1987),
this forms the kernel of the didactical contract of 'progressive education'.'- In the
end this kind of 'naturalness' of mathematical knowledge together with the inten-
tions of teaching to provide students with direct mathematical understanding leads
students to a mythical view of mathematics.

Being theoretically interested when analysing communicative events in math-
ematics teaching, we try to better understand our role, that is the role of the observer
in theorypractice encounters. Basically, the task to understand what is being
observed is similar to that of an ethnographer who wants to understand an alien
culture. The task is made only more complicated through the fact that usually
researcher and teacher in mathematics education share the culture with the subject
they attempt to understand. Thus, we meet two difficulties: the first one is to
understand the strange being alien to the peculiar context, concepts and forms of
consciousness one tries to understand, the second is to make the familiar strange
being a member of the culture at large and being at the risk to take the familiar
for granted.

A fundamental problem of understanding what is alien to oneself is illustrated
in ethnological research: what could be the point of reference of an interpretation?
What is understood as rational while other things appear as irrational? How is it
possible to understand a different, and even alien, worldview without interpreting
it within one's own worldview? The history of ethnology can be understood as
the struggle to free itself from the idea that western society provides the criteria
of rationality that could be used to assess non-western cultures, to refute those
analyses that assess non-western cultural thinking as primitive, alogical and infe-
rior to the western mode of thinking (Bourdieu, 1977; Habermas, 1981; Sahlins,
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1976). The problem of the observer in ethnography and cultural anthropology
will serve us as an analogy to rephrase the problem of understanding `the other
one' and his or her world view, be it the perspective of the practitioner or the
perspective of the student. That is to say, we see some parallels in the relation
between educational research and teaching practice and the relation between the
teacher and the student. We started from an obvious parallel: that for both rela-
tions the view is anachronistic that knowledge is conveyed to practice/the student
by theory/the teacher (Seeger and Steinbring, 1992).

The plan for the remainder of the chapter is the following one. We start from
the empirical analysis of an episode in a mathematics classroom for learning dis-
abled students. In this episode, the clash between the 'natural' and the 'formal'
appears as the problem to pass in classroom discourse from intuitive ways of talk-
ing about and representing a mathematical task to the application of a math-
ematical rule. This problem is analysed in a first approximation as a problem of
transition from an 'open' to a 'closed' context. In the second section this problem
is rephrased in terms of the transition from everyday knowledge to scientific
knowledge. The third section introduces in a more systematic way a central idea
of the present chapter, namely that the closed context of mathematical knowledge
could be characterized as mythical at least from the perspective of the students.
This section draws heavily on the ideas of Ernst Cassirer's theory of the evolution
of relational versus substantial thinking. The fourth section applies some results
first to mathematics education in general and second to the specific episode ana-
lysed in the first two sections in terms of a re-mythologization. The fifth, and last,
section tries to give an outlook.

The examples we will refer to are drawn from the context of learning disabil-
ity (LD). Our hypothesis is that with LD-students problems of knowledge under-
standing and development can be identified that are equivalent to those occurring
in normal classes. In LD-classes these problems become even more obvious. One
could argue that in LD-classes the didactical contract is reduced to the essentials
of the broadcast metaphor. Thus, the study of the phenomena of teacherstudent
interaction in mathematics in LD-classes brings the basic problems of any kind of
mathematics education to the fore.

An Exemplary Teaching Episode: Measuring the Height of a Tree

In the context of a research project on the use of open-curriculum material for
students with learning deficits (LD), studentteacher interaction was observed and
students were interviewed. The teaching episode we are going to look at was
located within a unit on measurement in different applications. The main idea of
the introduction of measurement referred to the concept of comparison. The
material offered a number of worksheets with different open situations in the
form of short stories, illustrated by pictures and diagrams. Students investigated
the measurement of length, height, weight, time, volume, area, velocity, etc.

Generally, the aim of investigating a situation was to discuss how the meas-
urement could be done, i.e., what kind of comparison had to be chosen in order
to measure the given quantities. Some few situations referred also to the well-
known means of measuring units, meterstick and ruler. Other situations required
the use of indirect measurement. For instance, the ruler was used riot only to
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measure length, but to support the measurement of reaction time: one student
held the ruler above the open hand of another student who had to catch the ruler
as soon as it was released and fell down. Here the measured length provided an
indirect measure for measuring and comparing reaction time of students.

The main emphasis of the present material on measurement in different situ-
ations was on the conceptual relation between the quantity to be measured and the
unit of measurement, which is not naturally given but has to be constructed,
modified and changed. The exploration of this relationship was embedded in
different concrete activities of measurement and comparison. There was no com-
prehensive formal evaluation of the measurement situation. Thus, these open situ-
ations did not aim at motivating the introduction of the calculus of decimal
numbers, its addition and multiplication. The main object was to improve the
concept of measurement as an important example of the relational character of
knowledge not to perform too much formal calculations with the numbers
generated in the measurement process. In this curriculum unit on measurement,
estimating measures played a more important role than seemingly exact calculations.

In the following we shall describe, in more detail an exemplary classroom
episode, dealing with an interesting situation of measurement. This example will
be used to explain how the open situation relates to the intended mathematical
result. During the lesson preceding the one that is in focus now, the students had
estimated and measured the heights of their fellow students and of the teacher.
The lesson that we want to look at more closely began with a short repetition of
what had been done before. Then a number of new measurement activities had to
be performed: Estimating and later measuring the length, the width and the height
of the classroom. The estimated and the measured results were written down on
the blackboard.

During the discussion, a distinction was introduced between 'estimation',
'estimation by means of length of pace' and 'measurement by means of a meterstick'.
Some students argued in this discussion, that they had not done 'pure' estimation
of the length of the classroom, but they had used other objects of comparison, of
which the measure had been determined before or which seemed to have a stand-
ard measure easily to be estimated. Some students used the tiles on the floor as
units to determine the length and the width of the classroom. This is an example
of constructing a new intermediate unit of measurement, adequate for the actual
situation of measurement.

Subsequent to this situation of estimation and measurement, the teacher
showed the following new situation on a transparency (see Figure 13.1):

Irene says: 'The tree is 20 meters high.'
'No', says Karl, 'the tree is not 20 meters high.'
Who is right?
Look for a method to discover who is right!

The following excerpt from a lesson transcript gives an impression of how
engaged the students discussed different possibilities oc indirect measurement:

900 S.: Perhaps, if we know about the house, if we know how tall the
house is,

901 then we can multiply this by 2.
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Figure 13.1: Measuring the Height of a Tree
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902 S.: Eh, by 2.
903 Several S.: Yes, the double.
904 S.: Well, while this is double the size of the tree ...
905 T.: Well, there is much coming already, go on telling me, go on

thinking
906 about it, I find this quite fascinating.
907 S.: Well, I would say the tree is ...
908 T.: Murat, can you see well. I am obstructing your view, no?
909 S.: ... 15 meters.
910 S.: 5 kilometers. (Laughter)
911 S.: No, I would say ...
912 Milan (?): The tree is 4 meters.
913 S.: No-oh.
914 S. (outraged): 4 meters!
915 Murmuring.
916 T.: Milan has just made a guess.
917 S. (interrupting): 15 meters.

962 T.: Brahim, well, tell it aloud, I find your idea swell. Brahim, tell it
963 aloud to have everybody get it.
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964 Brahim: That is, this eh ... the yardstick is 2 meters bi . eh,
long. And if

965 you put that 2 times, then these are 4 meters. Thus I wouldn't say
the

966 house is 4 meters, but taller.
967 S.: Yes.
968 several S. at once: I would 5, 6 meters, 5, 6 meters ...
969 T.: Your guess is that house is not 4 meters, it is taller.
970 S.: Yes.
971 S.: 5, 6 meters.
972 T.: He has once again taken something known, the length of this
973 yardstick, Marcel!
974 Marcel: Or here, a door is also 2 meters high, and then I would take

it
975 more than 2 times, eh, the door fits in, the door drawn here.
976 T.: Which is the door?
977 .Several S.: The black one.
978 'F.: This one, no?
979 S. (interrupting): 2, 4, 6 meters.
980 T.: Exactly, the door is about, you say 2 meters high?
981 Marcel: Yes.
982 T.: We've seen just now, the rule hung here, you want to check, or

shall we
983 just assume that what Marcel says is right?

In the first discussion quoted above the student offered answers, as for example:

The tree is 4 metres high.
The tree is twice as high as the house.
We have to use the meterstick for solving this task.

During this discussion a student remembered that the door of the classroom
was two metres high; he was convinced that the door in this picture also was two
metres high. On the transparency the teacher marked the height of the door by
a red line, indicating 2 metres. Then the ruler was used to estimate and to measure
the height of the house. The question arose, how often the door fitted in the
house. First the height of the door on the transparency is measured by the ruler
and is dete- lined as 1 centimetre. The height of the house on the transparency
was determined as 4; centimetres, and consequently 4+, times as high as the door.
What is the height of the house, when the door is 2 meters high? In the discussion
the mathematical problem arose to calculate 2.4.

The students seemed to be surprised to be confronted with numbers, a frac-
tion and a calculation within the frame of an open situation, and they started to
guess. Some believed they had to calculate 4 times 4, some guessed that the house
is 16 metres high, others estimated 20 metres. There seemed to be no connection
between the open situation with the meaningful discussion on how to be able to
estimate and to measure the height of the tree on the one hand and the formal
calculation on the other.

The problem of a drastic rupture between a rather meaningful discussion of
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an open situation of measurement and an elementary formal calculation of some
numbers and simple formulae (using multiplication and division) appeared repeat-
edly during the course of the whole teaching unit on measurement. The students'
reaction indicated that they perceived a sharp rupture between a seemingly open
and natural situation and the attempt to use some 'simple' formulae with numbers
(fractions, decimal numbers), and the use of an elementary mathematical model
for calculating some numerical results. They didn't seem to see any connection
between these two domains, numbers with mathematical operations of a greater
complexity than addition and simple subtraction seemed to constitute a totally
different world, which had no relation to the open situation discussed before.

In the course of this actual teaching episode, the calculation of 2.41 was done
in the frame of a very strict 'funnel pattern' (Bauersfeld, 1978), with teacher
questions narrowing the scope of possible answers increasingly. Step by step, the
teacher questioned all elements which were necessary to do the calculation, when
necessary she rejected false proposals of students to reach the intended goal di-
rectly. At the end of this funnel pattern, the teacher herself almost directly gave
the answer to the problem of calculation, the students could only accept and
confirm the suggested and restricted way of solution. Knowing now that the
height of the house was 9 metres, and having estimated that the tree was twice as
high as the house, the tree was 18 metres high. This calculation too, could only
be performed with direct interventions of the teacher.

The described teaching episode on estimating and measuring the height of a
tree, explicitly shows two very different phases of interaction between students
and teacher. On the one hand, there was a meaningful and variable discussion on
the problem of how to estimate and to measure the height of the tree; how to find
a good unit of measurement in this situation; there were adequate estimations and
comparisons, such as the tree is twice as high as the house. Students did not seem
to have difficulties following the different scales of the picture with its objects on
the transparency, on the projection or even in reality. On the other hand, a sharp
rupture can be observed when 2.4; caine up in the discussion. The numbers
presented with the mathematical operation seemed to provoke a total disconnec-
tion between the preceding phase of meaningful discussion and the beginning
formal calculation. During the routine structure of the funnel pattern of interac-
tion, the teacher concentrated on the numbers and on the mathematical operation,
she implicitly reinforced the arithmetical frame of reasoning and of justification.
There were no attempts to relate the numbers, the operation or the arithmetical
relation inherent in this formula to the meaningful situation explored before. The
arithmetical formula 2.44 was 'solved' in an interactive process which concen-
trated more and more on the arithmetical elements alone without developing
possible references to the actual situation of measurement.

The Transition from Everyday Knowledge to Scientific Knowledge

The process of knowledge development and of acquiring understanding in the
above episode can be interpreted as an interplay between the open situation with
its activities of measuring and the definiteness of the arithmetical formula. This
relation between an open context of interpretation and the definiteness of the
mathematical rule causes no problems as long as very simple mathematical
operations and immediately conceivable mathematical concepts arc involved.' Thus
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for instance, addition with concrete numbers can be integrated into the open
situation very naturally and produces nearly no problem of understanding. As
soon as the complexity of the mathematical operations grows and the theoretical
nature of mathematical concepts increases, the problem of integrating the math-
ematical formal knowledge (some mathematical formula) into the open situation
becomes more severe.

The separation of the interpretative context of an open situation from the
formal rule begins with the operation of multiplication (especially when this
operation cannot easily be reduced to a kind of repeated addition) and becomes
even more difficult when fractions are involved. Now, for many students in this
class a technical complexity of mathematical operations arises, which is too great
to be balanced in a natural and direct way. This problem arises in principle in
`normal' mathematical classrooms too; here the rupture between open situation
and definiteness of the mathematical rule comes into being with the fraction cal-
culus and finally with elementary algebra and the concept of variable.

Teachers traditionally try to cope with this rupture through technical means;
they tend to provide students with clear procedures and unambiguous rules for
applying and using mathematical operations and concepts. The clear procedure is
a methodical help to provide students with a secure ground on which they are
supposed to construct their knowledge and try to integrate the formal knowledge
with the open situation. For example, the teachers in the project emphasized that
especially the weak students had to master elementary mathematical procedures as
routines. In the course of a lesson, students had to calculate 6.5.10, a task they
could not solve directly. Consequently the teacher asked them to make a written
calculation, which at the end produced the same problems of conceptual under-
standing as before. The formal procedure itself provided no conceptual help.

There are traditional forms of overcoming the rupture between open situa-
tions and the definiteness of the mathematical rule in classroom interaction. An
important pattern of interaction is the `funnel pattern'. In the course of under-
standing new knowledge by integrating this new knowledge into the domain of
existing natural knowledge, the questionanswer interplay between teacher and
students narrows down step by step until there is no other possibility left and the
students virtually have to understand and solve the problem. In the course of the
funnel pattern the new knowledge is totally reduced to the old knowledge, what
is unknown is integrated into what is already known. This reduction process of
new knowledge conceives mathematical knowledge first of all as a procedural or
as an algorithmic matter, which can be dissolved into small steps and could be
given to the student in this way (Chevallard, 1985).

The funnel pattern interaction in the mathematics classroom produces not
only an algorithmization of mathematical knowledge; at the same time the math-
ematical knowledge is deprived of its theoretical character in the course of the
interactive reduction process (Steinbring, 1988, 1989).

From Open to. Closed Context: Towards the Myth of Mathematical
Knowledge

In this section we will try to describe in very general terms from an `anthropological'
or `ethnographic' perspective what happens with the transition from an open to
a closed context.
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We start from the fact that there is a series of noteworthy parallels between
the situation of a cultural anthropologist or ethnographer where she or he tries to
understand an alien culture and the situation of a researcher in mathematics edu-
cation who tries to understand communicative processes in the classroom. It may
seem strange to adopt such a perspective vis-a-vis the reality of mathematics edu-
cation. To adopt such a decentred perspective in our view, however, seems to be
a necessary step in a process of understanding that can best be described as `mak-
ing the (all too) familiar strange'.' Obviously, the attempt to understand cannot
make a halt at a decentred perspective but needs the complements- ity of the
strange and the familiar. Here, however, we put an emphasis on the first step.

The analysis of the teaching episode above has shown that with the clash of
the 'natural', everyday and the `formal', mathematical context two world views
meet whose relation is problematic insofar the `formal' world view is not simply
a prolongation of the 'natural' one. While students move within the open context
of everyday problems safely and with considerable creativity, their behaviour
within the `closed' context of mathematics can be seen as `superstitious' or 'myth-
ical'. World views can be said to be more 'open' or 'closed', which suggested to
look at the problem of 'myth and knowledge' more closely.

The concept of a mythical world view has been used in cultural anthropology
in order to explain the obvious difference between the perspective of the (western)
observer and a culture that he or she tried to make sense of. An early attempt was
made by Levy-Bruhl, who tried to explain the difference between the 'primitive'
and the 'advanced' culture with the assumption that 'primitive' thinking rested on
a pre-logical level (Levy-Bruhl, 1925). In quite a similar way the concepts of
children have been interpreted in developmental and educational psychology: Even
in the work of Piaget and Vygotsky there are tendencies to view children's think-
ing as having deficits because it seems not to have certain elements of adult think-
ing at its disposal.

In the history of cultural anthropology it increasingly turned out to be inad-
equate to interpret alien cultures and world views within the frame of reference
of the occidental world view. Evans-Pritchard (1977), for instance, found that the
view of the prelogical nature had to be refuted, because 'primitive' thinking turned
out to be in no way inferior to western thinking in regard to the use of logic. With
that the issue of an adequate description of the mythical world view was put on
the agenda: any description had to come to an understanding of this world view
in its own terms and had to refrain from attributing a principled inferiority.

In his studies on changes in the historical development of thinking, the tran-
sition from the concept of substance to the concept of function, Ernst Cassirer had
drawn attention to the fact that the relation between speech/language and thinking
was of peculiar relevance to the description of the mythical world view. In his
view, mythical thinking rests on the identification of word and object.

Mythical thinking, thus, withdraws in a surprising way from those explana-
tory models that implicitly or explicitly rest on the adult occidental word view.
The identification of word and object, as it were, does not utilize a basic structural
moment of occidental thinking: the division of subject and object, of the cartesian
worlds of res cogitans and res extensa. With that it is a wrong question to ask: 'What
does mythical knowledge represent?', because it presupposes the division be-
tween the world of objects and the world of symbols that is not made in the
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mythical world view. This kind of 'amalgamation' of the world of symbols with
the world of facts has impressively been described by Sahlins (1976, 1981) not
only for so-called 'primitive' societies but also for the present-day society of the
United States.

What kind of 'representational' quality does a world view incorporate in
general? If a world view expresses a certain quality of 'being-in-the-world'
(Heidegger, 1927) and with that articulates a totality of understanding, they are
akin to representation in the sense of a portrait that represents the person as a
whole plus a certain perspective on that person:

In a similar way worldviews lay down the basic conceptual frame within
which we interpret anything happening in the world as something in a
peculiar way. Worldviews like portraits cannot be true or false. (Habermas,
1981, p. 92; our translation, F.S./H.S.)

If the rationality of world views cannot be determined in regard to their
competing truth, how then could they be compared? Habermas' (1981) view is
that openness versus closedness is a dimension that allows for a comparison.

He starts from an application of the principle of cognitive development as it
has been elaborated by Piaget with the concept of decentration.5 Cognitive devel-
opment here generally means the 'decentration of an egocentric worldview'
(Habermas, 1981, p. 106). Correspondingly, cognitive development proceeds from
a closed world view as it is given in egocentrism to an open decentred world
view. Now, it was especially Lev Vygotsky who challenged this basic assumption
of Piaget's theory and proposed an alternative model on the basis of his own
studies on the role of language in cognitive development, followed by others,
e.g., J.S. Bruner. In Vygotksy's view the development of the child does nor start
with an egocentric individualism but with a socially distributed perspective, can
be shown in the transition from outer speech to inner speech (Vygotsky, 1987)."
Children's thinking is 'centred' indeed, but not on their own, yet undeveloped
Ego, but on the 'other one', as he or she is met in the persons of parents, siblings,
peers and teachers. As in the theory of G.H. Mead (1934) it is exactly the other one
who provides the possibility for the Ego to develop.

With that, some reasons are presented to view the process of socio-cognitive
development as one that starts from 'openness' and develops increasingly into
'closedness'.

Actually, it seems plausible to assume that he closedness of the 'mathemat-
ical world view' as students come to meet it in the shape of formal mathematical
knowledge has some features of a myth. In what follows, we would like to give
an account of mythical thinking especially as it is given in the version of Ernst
Cassirer.

Mythical thinking is characterized by Cassirer essentially on three levels:

Knowledge and concepts as a specific kind of object;
myth and causality; and
'right' or 'wrong'
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Knowledge and Object

An important feature of mythical thinking is that knowledge becomes a specific
kind of object.

. .. the mythical form of thought, which attaches all qualities and activ-
ities, all states and relations to a solid foundation, leads to the opposite
extreme: a kind of materialization of spiritual contents. (Cassirer, 1955,
p. 55)

There is no sharp distinction between 'image' and 'object' in mythical thinking.

Only observers who no longer live in it but reflect on it (the opposition
of 'image' and 'object') read such distinctions into myth. Where we see
mere 'representation', myth, insofar as it has not yet deviated from its
fundamental and original form, sees real identity. The 'image' does not
represent the 'thing'; it is the thing; it does not merely stand for the
object, but has the same actuality, so that it replaces the thing's immedi-
ate presence. Consequently, mythical thinking lacks the category of the
ideal, and in order to apprehend pure signification it must transpose it
into a material substance or being. (ibid., p. 38)

Mythical thinking transforms ideas and concepts into something 'real', into
an object. This type of materialization is not simply a form of concrete empiri-
cism, it does not transform mental ideas simply into particular concrete things.
These 'real' objects actually embody higher-order generalization. In the history of
the number concept, for example, there has up to modern times always been a
mixture of mythical and of relational or conceptual thinking.

But in all these cases such a historical mixture of forms would not have
been possible if the forms did not agree, in both content and systematic
significance, in at least one characteristic motif, one fundamental tend-
ency. Mythical number stands then at a spiritual turning point it too
strives to escape from the narrowness and confinement of the immediate
sensuous-material world view to a freer, more universal view. However,
the mind cannot apprehend and penetrate this new universality as its own
creation but sees it as a foreign, demonic power. (ibid., p. 144)

With regard to the object it is important to notice, that mythical thinking
performs a materialization of ideal contents and conceptual relations; this process
of materialization contains special aspects of generalizations and universalizations.

Myth and Causality

Further, the 'logical' connection of knowledge, the 'laws' and the forms of justi-
fication obtain a specific manner within mythical thinking.
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Mythical thinking is, in general, distinguished from a purely theoretical
world view as much by its concept of causality as by its concept of the object.
For the two concepts condition each other: the form of causal thinking
determines the form of objective thinking, and vice versa. Mythical think-
ing is by no means lacking in the universal category of cause and effect,
which is in a sense one of its very fundamentals. (ibid., p. 32)

This isolating abstraction, which singles out a specific factor in a total
complex as a 'condition', is alien to mythical thinking. Here every simul-
taneity, every spatial coexistence and contact, provide a real causal
'sequence'. It has even been called a principle of mythical causality and of
the 'physics' based on it that one take every contact in time and space as
an immediate relation of cause and effect. The principles of post hoc, ergo
propter hoc and juxta hoc, ergo propter hoc are charactristic of mythical
thinking. (ibid., p. 45)

Comparing theoretical thinking with mythical thinking, Cassirer explains the
difference of both conceptions of causality.

It is as though the conceptual consciousness and the mythical conscious-
ness applied the lever of explanation at entirely different points. Science
is content if it succeeds in apprehending the individual event in space and
time as a special instance of a general law but asks no further 'why'
regarding the individualization as such, regarding the here and now. The
mythical consciousness; on the other hand, applies its 'why' precisely to
the particular and unique. It 'explains' the individual event by postulating
individual acts of the will. (ibid., p. 48)

The mythical form of causality, which gives explanations and justifications
according to spatial or temporal proximity, represents a kind of argumentation
often to be found in classroom interaction. Students do not ask to: theoretical
connections, they don't pose the question of 'why' in cases when there is seem-
ingly a simultaneousness and a nearness on the level of real objects. A formula is
justified because of its formal functioning, there seems to be no need for theoreti-
cal justification.

'Right or Wrong'

The third fundamental aspect of mythical thinking refers to the antithetical judg-
ment of 'right and wrong'. In the frame of myth this is called the mana-tabu rule,
which expresses the contrast of the holy and the profane, of light and dark etc.
(Cassirer, 1955, Chapter 1) At first this aspect seems to be only partly applicable
to mathematical knowledge. But it is well-known how dominant in everyday
teaching the contrast of right and wrong is for an understanding of school math-
ematics. This rule seems to be close to the familiar appraisal of the value of
mathematical knowledge as it is expressed in the dialectics of symmetry, beauty,
ideal and distortion, fuzziness etc. For mathematics teaching the original contrast
of right and wrong plays an important role.
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The emergence of theoretical thinking and reasoning is dependent on myth-
ical thinking and at the same time has to overcome the simple forms of mythical
thinking.

But perhaps we can best appreciate the meaning and origin of this way
of thinking if we consider that even in scientific knowledge the sharp
distinction between thing on the one hand and attribute, state, and rela-
tion on the other results only gradually from unremitting intellectual
struggles. Here too the boundaries between the 'substantial' and the 'func-
tional' are ever and again blurred, so that a semimythical hypostasis of
purely functional and relational concepts arises. (Cassirer, 1955, pp. 58-
59)

Methodical Forms of a Re-mythologization of Mathematical
Knowledge in the Mathematics Classroom

Traditional teaching processes in the mathematics classroom tend to introduce
(implicitly) from the beginning a universal epistemological basis for the status of
mathematical knowledge. All mathematical knowledge, all concepts and opera-
tions are situated on the same level; there seems to be no requirement for changing
the status of knowledge during its development; to acquire new knowledge sim-
ply means to accumulate new subject matter of the same type. This conception of
the character of knosyledge transforms mathematics for the students to an exter-
nally given structure with materialized concepts and rules. There are objects,
arranged according to strange rules, objects to operate with according to myste-
rious regulations. This external structure is organized according to obscure prin-
ciples of cause and effect.

This a priori fixed linear and unique structure of knowledge materializes
mathematical concepts and operations for students, because this predetermined
structure denies the theoretical or self-referential nature of mathematical knowl-
edge and it prevents self-organized processes of learning and understanding. In
this s-ay learning is not understanding, learning reduces to collecting new things.

Teaching and learning is closely linked to 'demonstrating' and to 'seeing', for
which things and pictures are essential to point at and to look at. Thes- important
aspects of teaching and learning support methodical forms ofa re-mythologiza-
tion of mathematical knowledge. In the primary grades, methodical forms of a re-
mythologization of mathematical knowledge are very obvious; the natural numbers
(reduced set of numbers) and the natural arithmetical operations (reducible to
direct conceptions and to immediate concrete operations) are subjected to such
forms of mythologization. For instance, the introduction of the elementary natu-
ral numbers in the first grade often uses pictures of everyday situations to illustrate
the corresponding number, for example 5 times 'anything' (as for example S
birds). In the classroom interaction of these and similar pictures of everyday .itu-
ations arc used to exercise in a routine way how to decode the right number and
how to read off the only accepted arithmetical operation presented in this picture.
The picture of an everyday situation has to be formally interpreted by the corre-
sponding number sentence which codifies the meaning of the materialized numbers
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and the naturally given operation (for example addition as a kind of 'putting
things together', for more details see Voigt, 1990).

The elementary natural numbers and the natural operations are embedded in
forms of teaching and social interactions, which emphasize the direct meaning,
immediateness, naturalness etc. of mathematical knowledge. There seems to be no
problem for young pupils to understand directly what these elementary elements
of mathematical knowledge mean.

The growing complexity of technical and operational aspects of mathematical
concepts and operations (for instance in fractional calculus, or in elementary alge-
bra) aggravates the methodical possibilities of reducing this knowledge to natural
and immediate conceptions as they are dominant in mythical thinking. Teaching
processes, however, tend to maintain the forms of direct instruction, of providing
immediate meaning by transforming mathematical concepts and operations into
natural things. Finally, the concept of variable seems to be not transformable to
a natural thing; but classroom observation shows that students cope with the
variable concept in forms of universal concretizations: Variables are general things,
they are general but can only be understood when a concrete number is substituted.

Then, a technical complexity like this can no longer be treated by methodical
reduction to natural things and direct understandable operations. When faced with
serious problems of understanding and with misinterpretations, teachers conse-
quentially try to simplify even more and reduce knowledge to smaller pieces.
Simultaneously this methodical transformation of knowledge changes the social
role of the classroom interaction: The social context of teachinglearning pro-
cesses with its frames and patterns for constituting new knowledge replaces more
and more the constraints of theoretical mathematical knowledge (Bauersfeld, 1988).

Teaching processes tend to produce a two-fold methodical re-mythologization
of mathematical knowledge:

a re-mythologization related to knowledge:
reducing knowledge to natural things and suggesting a direct justification
of theoretical relations in knowledge (variable as a place holder for num-
bers, the reduction of new knowledge to old knowledge, the reduction of
mathematical operations and relations to concrete actions); and
a social re-mythologization:
in the course of social classroom interactions and in the social construction
of mathematical meaning the knowing teacher alone has the justification
and the appraisal of knowledge at his or her disposal; the epistemological
constraints of mathematical knowledge are more and more suppressed.

The specific nature of school mathematics and the social frame conditions
of teachinglearning processes with their interactive patterns of communication
constitute a basis for processes of re-mythologization of theoretical mathematical
knowledge. Such processes of re-mythologization are partly necessary in teaching
processes, they provide a link between the new and the old knowledge, they
partly transform 'strange' knowledge to 'natural' knowledge. At the same time,
re-mythologization tries to integrate the new knowledge into the familiar social
communication of the classroom discourse, in order to make the new knowledge
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understandable in terms of the implicitly constituted and socially accepted form of
'language' of communication.

On the one hand there are legitimate needs for naturalness of knowledge and
of communication about this knowledge, on the other hand the theoretical nature
of mathematical knowledge gets into conflict with methodical re-mythologization
as soon as the transformation process of theoretical knowledge to natural knowl-
edge is considered as a universal and absolute means to prepare knowledge for
teaching.

The emerging conflict between theoretical and natural aspects of mathemat-
ical knowledge can be obServed in the short teaching episode on 'Measuring the
height of a tree'. During classroom observation it was surprising, how effectively
the students could cope with the picture on the transparency, with the relations
between 'house', 'tree' and 'door'. From an external observation, this situation
and the classroom interaction offered a multitude of conceptual relationships. The
height to be estimated and to be measured requires the establishment of direct and
indirect relations and comparisons: tree with house or with an other mentally
represented tree; tree with some remarkable objects on the house; house with
door; etc. This frame of possible relations seemed to be even more complex with
regard to the means of visualizing the situation on the worksheets, on the trans-
parency, and even with the overhead-projection on the screen. In principle, it
seemed to be necessary to balance a great variety of relations between different
objects which themselves were differently represented by the change of scale.
How was it possible that the students could use this situation without any severe
problem? In which perspective did the students organize this complex of possible
relations?

The frame of the methodical re-mythologization of knowledge offers pos-
sible explanations for this situation. One could imagine that this complex of pos-
sible relations in the problem situation shows the theoretical character of knowledge,
this means especially for measurement problems the requirement of indirect
measurement by means of constructing adequate units and establishing suitable
comparisons. The students didn't take such a theoretical perspective on the prob-
lem. They looked at the problem from a 'mythical' perspective; the objects pre-
sented in this situation were taken as natural things; the students operated with
the thing more or less directly. There was no question, whether the door on
the picture was 2 centimetres high and at the same time was about 15 centimetres
high on the enlarged projection. For the students, there was only the door, the
natural object, and the other pictorial representations showed the same door, they
were the door. The students felt no need to distinguish between the door and its
different representations. They did not have to rethink this natural situation nor
to introduce theoretical relations into this picture.

The problematic rupture in the interaction arises, when the arithmetical cal-
culation 2.4; had to be done. It seemed to be impossible to integrate this arith-
metical formula into the natural context of the 'house and tree' picture. Essentially,
the arithmetical formula with the operations of multiplication and the fraction is
a symbolic representation of a theoretical relation. In certain situations it seems to
be possible to re-construct the 'natural meaning' of this formula, to integrate this
tbrinula into the natural context of communication and of the specific manner to
interpret knowledge. A major methodical goal of mathematics teaching is the
integration of new, theoretical knowledge into the natural context of
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communication. Sometimes students are successful in integrating this knowledge,
but often there are fundamental obstacles in the theoretical knowledge itself which
prevent this integration.

The conflict between the naturalness of everyday knowledge and the systemic
and self-referential character of theoretical mathematical knowledge constitutes a
basic problem for teachinglearning processes. On the one hand, the social con-
text of teaching requires a certain amount of naturalness to make communication
and understanding in the classroom possible. On the other hand, the theoretical
nature of new knowledge is in conflict with immediate naturalness of theoretical
relations. In which way does teaching cope with this conflict? Traditionally, class-
room observations of everyday mathematics teaching show that intentions of
integration prevail. The methodical aim is to re-mythologize theoretical knowl-
edge as far as possible. When there is no more integration possible, a fundamental
rupture arises: there seems to be a total disconnection between the natural situa-
tion and the formal mathematical relation, as it can be observed in many teaching
episodes with slow and handicapped learners.

To really establish a fruitful balance between the needs of social communica-
tion and the theoretical nature of knowledge requires to organize the social teach-
inglearning process itself as a self-referential process (Steinbring, 1991). Essentially
this means to question in the course of knowledge development the 'natural situ-
ation of communication and knowledge' itself, to initiate modifications and changes
and not to take these situations as unchangeable or as a fixed basis for the process
of acquisition of new knowledge.

Concluding remarks

We have started our paper with the relation between the nature of mathematical
knowledge and ways of communicating this knowledge in school. In learning
situations with handicapped students this relation lies at the heart of the didactical
contract in action. This describes a vicious circle, a paradox. We have argued that
all learning processes essentially are processes of sharing: Sharing a general struc-
ture be it characterized as mythical knowledge or as theoretical knowledge.
Language (or more generally a symbol system) plays a decisive role for the prob-
lem of sharing. For the concluding exposition of this problem, the relation be-
tween language and thinking provides important insights.

In his very interesting book `SeeinE, voices' (Sacks, 1989), Oliver Sacks has
collected many informative observations on the relation between language/sym-
bol systems and thinking of deaf persons. We cannot pursue all the productive
analogies between speechlessness (muteness) of deaf persons and speechlessness of
students in mathematics teaching which are possible. We shall only provide a few
general suggestions.

A number of autobiographical reports of deaf persons are especially interest-
ing because they give indirect hints about the time in which these persons could
neither write, speak (by gesture) nor could understand speech. With great agree-
ment these persons characterized themselves as 'animals', as 'dogs' etc. And with
the same agreement, they experienced the acquirement of speaking by gesture and
thereby in particular the (mostly sudden) comprehension of a more general and
abstract concept as a kind of a 'second human birth':
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In the reports as well as in the observations made by Sacks it is surprising that
for deaf persons posing questions belonged to the most difficult discursive prac-
tices to he learnt. To be able to pose a' question meant in a certain sense, to give
a voice to one's own person, to oneself. And the ability to ask seemed to be a
progress in coping with deafness as essential as the insight that general and abstract
concepts exist and that they can be named. It is very difficult to explain with a few
words how deeply these moments affected the life of a deaf person. This was
really the moment when a deaf person was able to share the human community
and to comprehend himself or herself as a human being. Sack's book offers a
multitude of exciting descriptions of such situations.

What could be the analogies for the situation of LD-students? And what
could be the applicability to 'normal' teaching? The key problem seems to be that
the didactical contract permits particular discursive practices and legitimates only
them positively. '1\ILtural. discursive practices as 'dialogue', 'conversation' and
'discussion' are suspicious from the perspective of the didactical contract. Espe-
cially the student-question seems to be seen as problematic. If this analogy is
accepted, the students in the mathematics classroom must be able to 'speak' with
a symbol system which allows the participation in the meaning of the mathemati-
cal discourse. If this participation does not succeed, it is experienced as a person-
ally caused subjective failure. Treating such unsuccesses in the school, in the first
place consists in using remedial strategies which reinforce the conception of failed
participation by presupposing it, this means not dare to expose students to com-
plex requirements, but to reduce them to aspects thought to be essential (for
instance the automatization of the basic arithmetical operations).

A fundamental mechanism increasing the effectiveness of these processes is
the broadcast metaphor according to which the teacher can hand over the new
knowledge to the student like an object. In the zone of proximal development
marking the transition from old and known knowledge to new knowledge yet to
be learnt, this metaphor only aims at the transport of knowledge from the 'already
knowing' teacher to the 'ignorant' student; only the student has to acquire the
knowledge provided by the teacher. Didactical principles striving for the partici-
pation of students in the mathematical discourse in contrast have to take care for
a reciprocal acquisition of knowledge: teachers have to understand the existing
especially the mythical students' conceptions of knowledge (not only to treat
them as misconceptions), while students acquire teachers' conceptions of knowl-
edge. The basic figure of this developmental process to a large extent corresponds
to the 'hermeneutic circle'. The determining and the determined are situated in a
circular relationship to each other and it is impossible to decide here with certainty
the cause and the effect. The figure of the hermeneutic circle is an adequate means
to e amine the importance of the theoretical nature of knowledge in mathematics
teaching.

In understanding mythical thinking, to understand the role of speech is a key
factor. If mathematical knowledge undergoes a re-mythologization the result is a
'transformation of history into nature' (Barthes, 1970): what in fact is a product
of human discourse is given all the qualities of a 'natural' object that resides
outside the spheres of social construction. In the rationalist tradition of Cassirer
the identification of word and object, of symbol and referent looks like a deficit.
If, however, the stance of the hermeneutic tradition is taken, as it is articulated by
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Gadamer in that all being that can be understood is given as language, a different
picture emerges. We could then argue that mathematics can only be understood
to the degree that it is spoken about. The myth of mathematics is the product of
a certain history of speaking (or being silent) about mathematics. In that it shares
the characteristics of other myths, as Levi-Strauss (1969) gave them: myths are
stories with a history, where the myth is a kind of tinkering with language ele-
ments (`bricolage').

It is important to note that the contribution of the cultural-historical school
of psychology, as it is given in the work of Lev Vygotsky, Alexander Luria and
Alexej N. Leont'ev is highly relevant to this issue. The characteristic features of
mythical thinking as identification of object and word or 'bricolage' with language
elements can also be found in the reports of Luria and Vygotsky about the think-
ing of adults in pre-industrial societies. In their work, the characteristic features of
mythical thinking were interpreted froth another vantage point. The cultural-
historical approach is based on the idea that psychological functions have to be
interpreted as developmental processes on three different levels: on the level of
phylogenesis, social-cultural history and ontogenesis. Accordingly, the transition
of thinking from elementary to its more `advanced' forms is a major topic.

In the 1930s A.R. Luria and L.S. Vygotksy conducted an expedition to
Central Asia with the aim to do research on the reasoning processes of `primitive'
people. They found characteristic differences between the reasoning processes of
people living in pre-industrial settings as compared to the standards of more
advanced western societies. One of the striking findings, for instance, showed up
with typical classification tasks: four objects, a hammer, a saw, a spade and a log
of wood were shown to the subjects and they were asked which three were similar
and which one did not belong to the group because it was different. The subjects
regularly responded that the hammer, the saw and the log belonged together or
that all four belonged together. Their responses showed that they primarily fo-
cused on practical situations or on properties of the objects, and fitly never used
abstract concepts like `tools' to group objects. Generally, their reasoning processes
focused on the objects and not on word meanings.

In a simiiar way,,these persons from a pre-industrial society could not make
sense of a syllogistic reasoning task like the following one: `Cotton can only grow
in a hot and dry climate. In England it is cold and humid. Can cotton grow there?'
The subjects usually responded that they had never been in England and thus
could not answer the question, or that a person who had been travelling a lot
possibly could give an answer.

In summary, the reasoning processes were highly situated which is also true
for the use of word meanings. No reasoning with decontextualized word meaning
could be found which is so typical for occidencal thinking. In a certain way, this
finding fits nicely to our above characteristic of mythical thinking, especially the
identification of object and word. In the light of these findings, the reasoning
processes that seem so typical for mythical thinking appear to be closely con-
nected to literacy. That is to say, the peculiar quality of mythical thinking is
largely a result of the fact that these persons have not been introduced into the use
of decontextualized symbol meaning as a result of learning to read and write.

The world of mathematics remains closed, a myth, to an understanding if
discourse in mathematical classrooms only identifies the world view of children
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as different and not compatible to the mathematical world view. To really under-
stand the world view of children as the voice of 'the other one' in a dialogue is
as necessary for the 'decolonization' of the child as it is for opening up mathematics.

Notes

1, We cordially thank Ute Waschescio for critical comments and editorial improve-
ments when preparing the final version of this chapter.

2. It seems, however, erroneous to assume that Piaget could be held responsible for
this development as he was seen to emphasize that 'operational thinking' needs
concrete operations and activities in order to develop. In fact, the view that any
thinking has to travel through the empire of the senses has a much longer philo-
sophical tradition.

3. Of course, what is 'simple' is very different in different settings. In the definition
of what is 'simple' the didactical contracts of an LD-school and a normal school
radically differ.

4. Margaret Mead is said to have noted: 'If a fish were to become an anthropologist,
the last things he would discover would be water' (quoted by Spindler and Spindler,
1982, p. 24).

5. Piaget referred to egocentrism for instance in the following way: 'Thought, spring-
ing from action, is indeed egocentric at first for exactly the same reasons as
sensorimotor intelligence is at first centred on the particular perceptions or move-
ments from which it arises. The construction of transitive, associative, and revers-
ible operations will thus involve a conversion of their initial egocentricity into a
system of relations and classes that are decentralized with respect to the self, and
intellectual decentralization (not to mention the social aspect) will in fact occupy
the whole of early childhood' (Piaget 1950, pp. 122-3).

6. Carl Ratner (1991) has shown that this idea is already present in the developmental
psychology of James Mark Baldwin.

7. This notion originates from Leont'ev (1981), characterizing the phase of the sec-
ond year of life, in which children start learning to speak.
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Part 3

Enquiry in Mathematics. Education

Thinking is more interesting than knowing, but less interesting than
looking. (Goethe, in Auden and Kronenberger, 1970, p. 350)

Enquiry, investigation and problem-solving have been at the heart of the human
search for knowledge and understanding since the Presocratic Philosophers or
earlier. The Ancient Greek speculations, wild as they were, gave rise to the foun-
dations of science, logic and most academic knowledge including that jewel in the
crown of knowledge, Euclidean geometry. Since those days, the history of
mathematics and science has also been a history of problem posing and solving.
Pappus, Bacon, Descartes, Whewell, Polya, Lakatos and many others have re-
flected deeply on the methodology of knowledge creation in these fields. For
example, Bacon (1960) in 1620 proposed a method of induction for arriving at
hypotheses, which were then subjected to testing. In order to facilitate the genesis
of inductive hypotheses, he proposes the construction of systematic tables of re-
sults or facts, organized to show similarities and differences. Descartes (1931)
published in 1628 a work embodying twenty-one 'Rules for the direction of the
mind' that included many explicit heuristics, such as `sequential enumeration of
examples to facilitate inductive generalisation' and `representation of relationships
by algebraic equations', which have a profoundly modern ring to them. Such
methodological concerns have reappeared in research in mathematics education as
part of a new awareness of the import of problem-solving in .mathematics
(Schoenfeld, 1992).

In the modern era, numbers of philosophers have identified enquiry and
problem-solving as lying at the heart of the philosophic and scientific enterprises.
Dewey (1920) and the Pragmatists viewed enquiry and the search for knowledge
to be the central function of epistemology. Collingwood (1939), like the
Hermeneutic philosophers, proposes a logic of enquiry as the centrepiece of a
philosophy of history and interpretation. In the philosophy of science, a glance at
some of Popper's book titles, such as The Logic of Scientific Discovery (1959).
Conjectures and Refutations (1963), and Upended Quest (1976) reveals the central
place of enquiry in his epistemology. Of course Popper distinguishes the `context
of discovery' carefully from the `context of justification', but both pertain to
scientific enquiry, encompassing the construction and validation of knowledge.
Laudan (1977) explicitly proposes a 'Problem Solving Model' of scientific progress.
He argues that provided it occurs in contexts permitting critical discussion, prob-
lem-solving is the essential characteristic of scientific rationality and methodol-
ogy. In mathematics too the whole maverick tradition in the philosophy of
mathematics including Davis, Hersh, Kitcher, Lakatos, Putnam, Tymoczko, Wang,
Wittgenstein and others is concerned with rehabilitating and accommodating the
practices of mathem itical enquiry within the philosophy of mathematics.
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This quick trot through 2500 years of mathematics, science and philosophy
reveals that enquiry is the basis all knowing. for enquiry is knowledge in the active
voice. In addition, an ever-present and growing body of opinion also locates it at
the heart or epistemology, the theory of knowledge. Many other schools of thought
and movements could be cited in support of this claim, as a glance through
Volume 3 and 4 quickly reveals. But it is time to look more specifically at enquiry
in educational research, and in mathematics education' in particular.

Enquiry is the process of finding out, that is knowledge making or getting,
and this process enters into mathematics education and mathematics at a variety
of levels. There is first, the object of enquiry. This is the problem or task that
engages the student in enquiry as a means of learning. Much has been written on
the import of this area (e.g., Bruner, 1960). The problem is often the starting
point for enquiry in research mathematics, too, as the above discussion indicates.
Second, there is the process of enquiry. Research itself is systematic and critical
enquiry carried out with the aim of producing knowledge. This describes the
process of enquiry both in mathematics and in mathematics education (not to
mention elsewhere). See e.g., Ernest (1993). In each of these fields, enquiry is part
of a collective human endeavour, with shared goals and criteria for success. Typ-
ically, the outcome of enquiry is expected to:

link with and build on existing knowledge;
engage in theory building;
use systematic methods of enquiry;
justify knowledge claims; and
result in a systematically organized text.

An enquiry needs to result in a public text so that others can access its results and
evaluate them. Indeed it can be argued that such outcomes do not become knowl-
edge until publicly scrutinized and accepted. Certainly this is the philosophers'
view.

Thus enquiry, whether in mathematics or mathematics education, raises the
issue of text. This is not a coincidental matter. Mathematics is a discipline that is
perhaps uniquely textual. It relies on a _formal symbolic apparatus that does not
describe or refer to the experienceable world (except at the level where it is part
of everyday language and practices). Consequently various problems arise for
learners in attempting to master this uniquely imaginary symbolic field. Many of
these problems are concerned with signification, since meaning is defined inter-
nally. Further problems arise from the strong objectivity of mathematical lan-
guage that excludes all reference to persons, places, events and time. Instead, the
reader of many mathematical texts meets a sequence of imperatives, and expects
to do little more than obey them, or not (Rotman, 1988).

Enquiry starts with a problem or question, perhaps implicit, and ends with
text. This description doubtless fits the process of writing all of the chapters in the
two volumes. But in this section, enquiry, problems and language are the explicit
subject matter explored in the contributions, each bringing its own emphasis,
style and perspective. In the modern trend towards reflexivity in research, it is
inevitable that more attention will be devoted to enquiry and methodology. So it
does not take a crystal ball gazer to predict that this will be a growth area in
research. But what the chapters here also indicate is a growing awareness of

172

1 &J



Enquiry in Mathematics Education

language, and its role in the genesis, framing and constitution of knowledge.
Many perspectives beginning to be noted in mathematics education share this
emphasis, including V ygotsky and Activity Theory, socio - linguistics and psycho-
linguistics, semiotics, social constructivism and constructionism, post-structuralism,
post-modernism and hermeneutics, as well as logic, philosophy and epistemology.
I have no doubt that this too will be an increasingly important area of research in
mathematics education.
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Chapter 14

The Problem of the Problem and
Curriculum Fallacies

Stephen I. Brown

Problem - 'solving and Curriculum

With the same gusto that ushered in the 'new mathematics' on a cushion of
'understanding', 'structure' and 'learning by discovery' four decades ago, 'problem-
solving' has emerged as the dominant theme in mathematics education for the
close of the twentieth century. Beginning in the 1980s the theme is closely aligned
with 'real world' applications. The twin concerns are expressed in the National
Council of Teachers of Mathematics (NCTM) brief document entitled An Agenda
for Action: Recommendations for School Mathematics for the 1980s (1980). There we
find:

Problem solving must be the focus of school mathematics for the 1980s
. . . Performance in problem solving will measure the effectiveness of our
personal and national possession of mathematical competence . . . Problem
solving involves applying mathematics to the real world, serving theory
and practice of current emerging sciences. (NCTM, 1980, p. 2)

The theme of problem-solving is reiterated in The Curriculum Evaluation Stand-
ards For School Mathematics (1989) and other related documents of the 1990s. We
are told that:

Problem solving should be the central focus of the mathematics curricu-
lum. As such it is a primary goal of all mathematics instruction and an
integral part of all mathematical activity . . . Ideally, students should share
their thinking and approaches with other students . . . In addition, they
should learn to value the process of solving problems as much as they
value the solution. (NCTM, 1980, p. 23)

Problem-solving thus begins to acquire a social context frequently referred to
as 'communication' in addition to a continued focus upon 'real world' applications.

The gusto is clear, not only in the above document, but in the recent cascade
of articles, year books, national and international conferences, special issues of
journals and the like. Granted that we need to exercise caution in advocating total
elimination of such activities as drill and forms of practice for the purpose of
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solidifying ideas, and granted that there is no well-spring to eliminate all forms of
explanation by teachers, what fault could we find in placing priority on an activity
that reflects the integrity of the subject itself? After all, mathematics as a discipline
has emerged through efforts at solving problems. Furthermore, the conception of
problem-solving being proposed in most quarters is broad enough to include not
only routine tasks and typical 'world problems' but problems that are non-routine
as well.

Consistent with advocating non-routine problems, there is an increased tend-
ency to be concerned with problem-solving in a way that connects that activ-
ity not only with the product but the process of thinking as well. Rooted in a
conception of thinking compatible with Dewey's (1933) 'reflective thought',
mathematicians and educators borrow from, and expand upon, a model of prob-
lem-solving that is associated with the work of Polya (1954, 1957, 1962). Essential
elements of the model are:

1. Gain an awareness or understanding of the problem.
2. Consider possible strategies for solving it.
3. Choose a strategy.
4. Carry out the strategy.
5. Verify the solution.

What is missing from such a perspective? In corning up with a partial answer
to that question, we focus on two fallacies: the fallacy of 'the problem as given'
and the fallacy of 'scientific context'.' We end this essay with two grandparent
fallacies that may in fact be responsible for the previous two.

The Fallacy of 'the Problem As Given'

Though instructional programmes, curriculum and research in the domain of
problem-solving differ considerably in terms of methodology, intent and focus,
and chough there is a considerable interest in use of the language of exploration,
they tend to share an assumption regarding the sequence of problem-solving events.
That is, they assume that a problem is to be given to a student and the associated
task is for the student to attempt a solution, granted that heuristic strategies may
be encouraged and honoured in such a scheme. It is depicted in Figure 14.1. At
first glance it may seen peculiar to question the sequence in Figure 14.1 for if one
is interested in improving problem-solving competence what would seem more
on-target than practising the activity?

There are difficulties embedded in the assumption that a goal is best achieved
by a kind of practice that exemplifies all the elements of that goal. Ka Laze pilots
(as an extreme case) would have very little opportunity for practice under such an
assumption. In the case of problem-solving, there are conceivably numerous as-
sociated competencies, feelings and skills that require attention that do not bear
directly on the act of problem-solving per se. Activities akin to those which incul-
cate patriotism for kamikaze pilots (such as training in perseverance) for example,
might be called for.

Though interesting for the pedagogical possibilities that come to mind in
actual 'training' of problem solvers an even greater number of options are suggested
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Figure 14.1: The Standard Problem-solving Paradigm

Given

Task

Problem Solution

if we focus on the intellectual activity of problem-solving that is overlooked in the
simple scheme above. As a start let us accept the concept of problem, as a depar-
ture point but challenge the view that it must be 'given'. We shall in this section
eventually reverse the order of acceptance and challenge.

Where does this view of the problem as 'given' come from? In a narrow sense
all mathematical proofs begin with 'the given'. Mathematical arguments per se are
reducible to the form `p implies q', and efforts to demonstrate that form then
begin with the assumption that p is the case, i.e., p is assumed as true or p is given.'

That the activity of proving (or disproving) conjectures in mathematics has
a particular form says a great deal about what is published in professional journals,
but it says very little about how a problem evolves in a discipline. Though a focus
upon the heuristics of problem-solving tells us something about the process of
trying to solve a problem once it is acknowledged as a problem, it says nothing
about the process involved in deciding what problems one ought to try to solve
in the first place.

It is perhaps a useful insight to observe that in any discipline there are poten-
tially an infinite number of problems from which one might make selections. Of
that number some are selected as worth pursuing and others are deemed as in-
appropriate for any number of reasons (e.g., perceived as too hard, too simple,
outside of the confines of the discipline, unenlightening). The centrality of the
prolems or the questions one asks in a particular discipline is well captured by
Toulmin (1977) who argues that it is .not content per se but rather the questions
asked that separate fields. He comments:

If we mark off sciences from one another . .. by their respective do-
mains, even these domains have to be identified not by the types of
objects with which they deal but rather by the questions which arise
about them . . . Any particular type of object will fall in the domain of
[say] biochemistry only insofar as it is a topic for correspondingly bio-
chemical questions. (Toulmin, 1977, p. 149)

What Toulmin says about disciplines can be said as well about subspecialties within
a discipline and even about a chunk of knowledge within a subspecialty.'
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Instead then, of only giving people problems to solve it would seem to be
appropriate (especially if one takes what Toulmin suggests about the nature of
disciplines seriously) to spend considerable time in trying to decide what is worth
solving and what the benefits might be of doing so. How might we re-concep-
tualize the relationship between 'the given' and 'the task' so as to suggest strategies
for including even the neophyte in something akin to a kind of aesthetic explo-
ration that is behind problem-solving?

Brown and Keren (1972) and Silver and Smith (1980) suggest ways of com-
paring problems in terms of their deep and surface similarities in order to gain
some clarity on the essential similarity of problems that may appear to be different
as well as those that are different although they may appear to be the same.

It would seem appropriate then for us to consider the possibility that students
not only be given the problem but that they choose to explore some problems and
not others. There is a great deal in the way of curriculum that could be devised
to enable the student not only to choose but to establish criteria for selection
among competing problems. Such criteria as the following might be considered
in a student's decision to pursue a small number of problems froni a larger poten-
tial population:

anticipated difficulty of solution;
relationship to problems already understood or solved;
potential for the problem to open new territory;
embeddedness within a particular branch of mathematics;
potential for the problem to clarify on what is not well understood; and
similarity of problem(s) to those already defined in the field (a la Toulmin).

Of course students would differ among themselves both in their selection of
problems and in their selection of relevant categories. The important educational
task would be not only to select categories but to discuss why particular categories
are invoked by particular students and how their choices related to those that have
been selected in the history of the discipline.

It is important to appreciate that the several 'choice' categories suggested
above do not have an implied directionality. For example some people in consid-
ering anticipated difficulty of solution might be prone to opt for problems that are
perceived to be harder rather than easier or similar to already solved problems.
Some people might select problems that muddily rather than clarify what is al-
ready understood. It is this implied freedom of choice which most dramatically
illuminates a kind of self-understanding that is denied by Polya-type problem-
solving strategies heuristics which would guide us to select what is re'a!ively
simple, alreddy known and in general, more comfortable.

Though it is perhaps possible to conceive of students choosing from an array
of already created problems and participating in a dialogue about their choice, it
is also possible for even relatively 'naive' students to participate in the reversal of
what is depicted in Figure 14.1 to in fact create problems. That is, the solution
to a problem (regardless of whether it is the student or the teacher who provides
such a solution) can become the inspiration for posing new problems. This phe-
nomenon, depicted in Figure 14.2, has more curriculum potential than is generally
ackno v, led ged
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Figure 14.2: A Reversal of the Standard Problem-solving Paradigm

Given

Task

Problem Solution

Consider the follor.ing problem described in detail in Brown and Walter
(1990):

Given two equilateral triangles of length a and b respectively. Find the
length c, of a third equilateral triangle whose area equals the sum of the
other two. (Brown and Walter, 1990, p. 105)

It turns out that a solution to this problem is very peculiar. We find out that
c must be such that c2 = a2+ b2. But armed with the realization that a form of the
Pythagorean theorem has emerged in an unexpected place, that solution (perhaps
even given to students) beckons the creation of new problems, An example of a
new problem might be:

I know that for a right triangle, the square on the hypotenuse equals in
area the sum of the squares on the other two sides, Why does the prob-
lem with equilateral triangles reduce itself to the same kind of result?
What's going on here?

This impulse to pose a new problem based upon a solution of a previous one
is not an impulse that is acquired automatically. It is one that must be nurtured.
What is particularly interesting, however, is that the sites from which such inspi-
ration might be developed are much less precious than one might imagine. They
abound as soon as one who is knowledgeable (e.g., a teacher) becomes aware of
the fact that everything we teach must have been surprising to those who uncov-
ered the ideas earlier in their evolution. To re-create the sense of surprise, those
who arrange for the unfolding of curriculum need to appreciate the near truism
that what is generalizable unites what was previously perceived to be disparate.
Teaching which is slow to point out commonalties among disparate experiences
that have a unification allows the students to be surprised by these commonalties
and to search for the unification through the posing of problems.

In the above example, a curriculum which explicitly attempted to teach that
the Pythagorean relation was not really a statement about squares on right trian-
gles, but one about the relationship among any three similar figures on the sides
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of such a triangle, would rob the student of the impulse to pose new problems
(many of which might be 'off base') that might lead to the generalization as
something quite special.

It should be clear that what I am discussing is not 'discovery learning', nor
trying to justify a curriculum which moves temporally to generalizations only
after establishing many examples. It may very well be the case that something
with a prematurely high degree of abstraction has the potential to, generate sur-
prise because of its misfit with what is expected. I am essentially addressing ques-
tions about the nature of mind rather than narrowly construed pedagogical ones.
In asking about the role of surprise, I am wondering what kind of view of inquiry
we wish to inculcate rather than how we might efficiently teach any sequence of
subject matter. See Brown (1971, 1973, 1991), Cooney et al. (1994) and Movshovits-
Hadar (1988) for further elaboration of the concept of surprise and its place in
mathematics education.

How else might we suppress 'problem' as a first step in inquiry e' en when
problem-solving is viewed as a worthwhile activity and goal? A signif,-,int site
can be found in 'situations'. Given a triangle or a billiard ball table, or a bicycle
wheel, or the layout of streets in some pattern, there is, strictly speaking, no
problem stated at all. That situations can yield problems and that students may be
taught to generate problems from situations is part of the story that relates prob-
lems to situations.

A particularly powerful 'situation' site is a definition. That is, a definition is
obviously not itself a problem (though in the history of ideas definitions are
frequently singled out only after an array of problems indicate the saliency of a
particular theme). Take for example the definition that a number is prime if it has
exactly two different factors.

That definition is a challenge (as are all definitions) to figure out why it is so
special. One reason is that, based upon years of research, one knows that there is
a lot to say about what flows from the concept of prime. Standard curriculum
defines the concept and then shows off all that is known and unknown (unsolved)
about prime numbers. As significant, however, for one who is beginning to
understand the power of the concept is how prime numbers relate not to what
flows from singling them out, but to 'near relatives'. So, a definition of 'prime'
inspires a number of challenges such as:

What if a number has only one factor? three? an odd number? an even
number of factors?
What if we focus not on 'factor' but 'addends' of a number? Arc there
some numbers that have exactly two 'addends'?
What if the number system is not the set of natural numbers, but the set
of integers or rational numbers? Are there prime numbers in that system?
(See Brown, 1978, for elaboration of these questions in the context of
'almost' even numbers.)

A careful development of inquiry based upon such 'challenges' has been deemed
the 'What If Not' Scheme. Brown and Walter (1969, 1970) developed this scheme
as a significant and essentially neglected aspect of problem-posing a quarter of a
century ago. There they suggest how a robust application of the scheme incorpor-
ates five or six levels of inquiry that are captured roughly by 'challenging the
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given' in a way described above. There of course are many other problem-posing
strategies that are more 'accepting' than 'challenging' what is given in a situation,
some of which are summarized and illustrated with many examples in Brown and
Walter (1990, 1993).4

The relationship between 'situation' and 'problem' moves in the other direc-
tion as well. That is, we might ask how a problem might be used not a directive
to 'solve' as in Figure 14.1, but might be 'neutralized' to create a situation. This
task is suggested by an interesting phenomenon in the history of mathematics.
Euclid's parallel postulate states, 'Through a given outside point, there is exactly
one line parallel to a given line.'

For hundreds of years, mathematicians believed that this postulate was so
much more complicated than the other incidence postulates about lines and points
in the plane that it ought to be capable of proof. The 'problem' that persisted for
hundreds of years was: How can one prove the parallel postulate from the others?

It took the genius of people such as Reimann, Lobachevsky and Bolyai to
reveal that the difficulty in solving the above problem was that it was not solvable
at all as stated. A major difficulty in solving it was that the 'how' at the beginning
of the sentence represented excess baggage. It was the creation of non-Euclidean
geometry which established that the parallel postulate was in fact independent of
the others thus a bona fide postulate.

One way of perceiving the historically interesting dialogue generated by
efforts to prove the postulate from others is that mathematicians saw a problem
so intimately embedded in a situation that they were incapable of 'neutralizing' it.
What we see as a problem in a situation, and what it takes for us to neutralize a
problem is something that has the potential to illuminate a great deal for us as
individuals as well as for us as a culture. Forty years ago, the fact that women and
non-white males were paid less than white males for comparable work was viewed
more as a situation than as a problem at least by white males. Our ability to
'see' problems in a situation is very much dependent upon the kinds of paradigms
we hold with regard to a situation (writ 'theory' or 'political/social philosophy').
It would seem to be a valuable educational goal for us to explore in all disciplines.
how it is that problem and situation reverberate to let us know something about
our commonalties and differences as individuals and about our assumptions as a
culture as well.

We schematically summarize in Figure 14.3 the several alternatives (and surely
there are many more) to the dominant scheme described in Figure 14.1. In doing
so, it is worth keeping in mind that what we have been exploring is more a
conceptualization of the educational breadth of problem and problem-solving than
its strictly pedagogical dimensions.

The Fallacy of Scientific Context

The models of problem-solving in mathematics education are ones that derive
primarily from the discipline of mathematics. The heuristics that we discussed
earlier that view problem-solving as essentially impersonal (despite a renewed
interest in social context) and scientific would have us understand the problem,
create a plan for solving it, carry out the plan and so forth. Now while this kind
of activity reflects a view of rationality, there are reasonable alternative views of

181



a

Stephen I. Brown

Figure 143: A Summary of Some Non-standard 'Problem' Paradigms

Given

Task

Situation Problem Solution

rationality which are left out. In particular such a model neglects to take into
consideration both problematic aspects of the nature of mathematical thought and
a realization that matters of education per se have a humanistic dimension that are
not captured by a concept of problem-solving as scientific. Thus in viewing prob-
lem-solving as a component of mathematics education, the field is unfortunately
driven by a limited view of the former (mathematics) rather than a robust view
of the latter (education).

The very conception of the relationship of a problem to its solution estab-
lishes what will count for acceptable exploration. Sarason (1978) describes the
relationship between a problem and its solution when viewed scientifically as
follows:

A problem has been solved (a) when it does not have to be solved again
because the operation that led to the solution can be demonstrated to be
independent of who performs them (b) when the solution is an answer
to a question or set of related questions and (c) when there is no longer
any doubt that the answer is the correct one. (Sarason, 1978, p. 374)

Indeed it is this conception of problem-solving that cuts through all the dif-
fering programmes for problem-solving in mathematics education. What is left
out by a programme of this sort? When one either produces or views a math-
ematical solution to a problem there are all kinds of questions one might ask that
would be considered irrelevant to the context of an essentially scientific paradigm.
Consider questions like the following:

1. Of the many different solutions that have been offered for this problem
which do you find the most attractive?

2. How does your view of what is attractive in problem-solving today
compare with what it was five years ago?

3. What do you find out about yourself as you listen to your response about
the concept of attractiveness?

The view of problem-solving as scientific not only controls the kinds of
pedagogical questions and tasks one is encouraged to engage in, but also directs
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the kinds of mathematical problems to be explored. Though problems may be
difficult and non-routine there is the expectation that with appropriate background
and motivation they will eventually (an hour, a week, a month or two) be solved.

This point of view is in sharp contrast with much of the humanities. It would
seem ludicrous for example to have students examine the nature of loneliness or
the meaning of life in the context of death with the intention of solving the prob-
lem tomorrow or perhaps next week. The concept of, solvability in the sciences
differs considerably from that in the humanities as Sarason's comment implies.

Ironically enough we can locate the roots of a more humanistic conception of
solution even within the domain of mathematics. Beginning with the philosoph-
ical work of Godel a half century ago, our view of the discipline as firm and
embodying our best hopes for the glory of the `work ethic' was shattered. Using
deduction Godel demonstrated some essential limitations of deductive thinking in
mathematics. (Popularized descriptions of Godel's work can be found in Nagel
and Newman, 1958 and in Hofstadter, 1979.) Up until 1940 there was embedded
in the psyche of practising mathematicians the belief that any well-stated problem
could be solved eventually if one were only intelligent and diligent enough. In
1940 Godel sounded a kind of death knell for such a view of mathematics. He
demonstrated that in any `interesting' mathematical system (meaning at least as
complicated as arithmetic) there had to exist truths that could not be demonstrated
as such.

So far so threatening, but things get worse. It might be frustrating to know
that the bounds of our inquiry are circumscribed but it might not be quite so
devastating if those bounds were knowable. How can we identify mathematical
statements that exhibit the property of being true but unprovable? The answer is
that we cannot. If one works a lifetime on a problem and reaches no solution,
there is no way of determining whether the difficulty is a consequence of our
human `frailty' or a result of the problem's essential unprovability (in the &Mel
sense).

If the implications of Godel's findings for the mathematics community have
yet to be fully appreciated, there are surely problems in drawing pedagogical
conclusions regarding problem-solving. Nevertheless there are directions one might
pursue that allow mathematics to be more closely aligned with the humanities
than has heretofore been the case. One educational fallout of GOdel's work might
be that we push the bounds of taking process seriously by honoring incomplete
or partial solutions, approximations, use of methods that combine mathematical
and scientific thinking, probabilistic solutions and the like, some of which have
been suggested by educators for reasons unrelated to Godel. There are other
possible directions, however, that !:ave yet to be worked through. One might not
only wish to implicitly apply possible consequences of Godel's meta-mathematics,
but one could also refer directly to his work in teaching mathematics, indicating
where it came from, some essential elements (teaching such powerful concepts as
that of self-referentiality) of his argument and exploring with students its possible
implications both personally and from the perspective of the discipline.

A middle ground between applying pedagogical consequences of Godel's
meta-mathematics and actually teaching some form of his work, might be to raise
in a hypothetical mode the essential philosophical issues that generated and sur-
rounded his findings. Questions like the following are suggested:
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Do you think all questions are answerable?
What do you think it means for a question to be answerable?
What does it mean for a question to be well (poorly) formulated?
What does it mean to say that something is proved?
What does it mean to say that something is provable?
Do you think all well-formulated statements should be provable?
How would you feel if you found out that not all well-formUlated state-
ments were provable?
If not all well-formulated statements in mathematics were provable, how
would the concept of proof in mathematics affect your belief in the
provability of proof in other areas of your life?

Such a programme would considerably expand not only what counts for
problem-solving but would also transform what is involved in 'applying math-
ematical thinking to the real world' so that such application would point a mirror
not only towards the discipline but towards the student in an effort to understand
self as an integral part of the real world. In taking such philosophical issues seri-
ously, students would be led to re-examine their most fundamental assumptions
regarding the values they attach to thinking and the sense in which certainty,
clarity and personal detachment function in thinking about any aspect of human
experience. Mathematical thinking and problem-solving then become not an iso-
lated self-contained vehicle (with occasional safe forays in applications to the sci-
ences) for conveying a distorted conception of knowledge, but rather beckon us
to entertain the senses in which all knowledge and exploration are both personal
and problematic.

Two Grandparents of Problem-solving Fallacies and Curriculum

There are two grandparent fallacies that seem to contribute to much of what we
have discussed above. One (let us call it a grandpa fallacy) relies upon a confusion
of conception of problem with educational implications; the other (a grandma)
depends upon a confusion of thinking and problem-solving. First to the grandpa
fallacy:

A Grandpa Fallacy

Though the literature in mathematics education tends not to confront directly
what it means for something to be a problem, there is a mischievous linkage
between problem and problem-solving that is consistent with much of what is
written about the concept of problem in philosophy of logic and philosophy of
science. Furthermore, though the most recent international documents suggest a
'softer' view of pedagogy in the teaching of problem-solving, they all fall prey to
this fallacy. Consider the following conceptions of problem and question (a near
cousin of problem in the philosophical literature) by Cohen (1929), Schlick (1935),
Nickles (1981) respectively:
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As a logical entity, the question is the clear embodiment of the characters
by which the [associated] propositional function has been defined. (Cohen,
1929, p. 354)

There are many questions which are empirically impossible to answer,
but not a single real question for which it would be logically impossible
to find a solution. (Schlick, 1935, p. 25)

What [is a . . . problem]? My short answer is that a problem consists of
all the conditions or constraints on the problem plus the demand that the
solution (an object satisfying the constraints) be found. (Nickles, 1981, p.
109)

Now these quotes are not all of the same eta. They span a half a century. But
it is important to appreciate that not all of these people were hard-nosed logical
positivists. It turns out, for example that Nickles, known as a 'friend of discovery'
(meaning that he is interested in preserving problem creation as an entity for
philosophical inquiry rather than as something to relegate to psychological inquiry
alone) was really trying to do something a bit extraordinary with his definition of
problem. That is, he is (among other things) challenging the view of Popper that
components of a problem such as its history are not part of the problem itself.
Popper wanted to consider the history of a problem to be part of the background
of the problem rather than the problem itself.

So, Nickles is expanding a conception of problem in some potentially inter-
esting ways for educators. But . . . and here is the rub: By so closely connecting
a problem with its constraints, Nickles is essentially defining a problem in terms of its
solution. That is, if the concept of solution did not exist, then the concept of
problem would have no meaning. In its most extreme form, what this requires
is that for something to be problem, it has to be posed in such a way that its
solution is buil.-in (exactly what that means differs from among philosophers).

Now what precisely is the grandpa educational fallacy? It is to observe that
even if we buy into this hard-nosed conception of problem in relation to solution,
we are not obligated to treat problems only (or even primarily) in terms of their
solution. That is. the conceptual connection between problem and solution does
not dictate how a problem may be used for educational purposes. That is, to use
INickles' conception of problem, even if it follows that a problem has a demand
built in that its solution be sought in order for it logically to be a problem, it does
not follow that one is obligated to seek a solution when one is presented with or
creates a problem.

Once we break this connection, we are in a position to think much more
imaginatively about the place of problems in educational contexts. Once we have
a problem, it takes on a life of its own. We can ask questions like:

Who created that problem and why?
What is assumed implicitly about the background of the field and of the
person when they pow- the problem that way?
In what form if any might this problem have been posed 100 years ago?
1000 years ago?

t) O.
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One can come up with better questions than these, but my point is that it is
by thinking seriously about the disassociation of problem from solution as an
educational phenomenon that we may be able to come up with alternatives for the
uses of problems that we have not yet imagined. Furthermore, there is some
interesting irony here. That is, if we read some of the writings of philosophers
who are most intent upon coming up with a definition of problem in relation to
solution, we may very well be able to adapt categories they introduce for our
educational purposes that do not draw those connections so tightly. The example
of Nickles and the concept of the history of a problem .is a case in point. Regard-
less of how tightly we want to build the history of a problem into the very
meaning of a problem from a philosophical point perspective, there is much we
can do from an educational point of view by making efforts to connect the two.

There are of course other places we can look in order to acquire a more
personal and robust notion of problem regardless of its connection with the con-
cept of solution, but it is consoling that the most hard-nosed of analysts can
provide us with machinery that has the potential to liberate us from their tight
grip as well.

Earlier we quoted the work of Sarason, a psychologist, in trying to under-
stand what is wrong with problem-solving models as they are used in social
action. A point of view that is consistent with his, but that is considerably more
moving and that raises interesting options is the following by someone in the
humanities, Richard Wertirne (1979):

A problem is . . . a project for the future we commit ourselves to by an
act of will. This means by implication that a problem entails risks, since
all future projects to use Hannah Arendt's term involve uncer-
tainty. There is . . . an essentially . . . promissory dimension to the act of
facing a problem. A problem is not an entity which has existence inde-
pendent of a person . .. They involve a significant act of self-surrender
which can seriously jeopardize the individual's sense of self. (Wertime,
1979, pp. 192 -3)

A Grandma Fallacy

Ironically enough, another fallacy that may in fact contribute to the first two
world views we criticized earlier (the fallacy of the 'problem as given' and the
fallacy of 'scientific context'), may in fact be attributable to Dewey and some of
the other pragmatists such as Peirce and William James. Dewey has modelled
most of his view of inquiry upon the scientific model and it is not surprising that
there is an essentially isomorphic relationship between Polya's and Dewey's models
of thinking. Driven by a desire for inquiry to be genuine and not a priori or pre-
determined as was the case with much a great deal of nineteenth-century philo-
sophy, Dewey was determined to debunk traditional dualities that had persisted
for generations before him. He saw no sharp divide between thinking and action,
mind and body, knowing and doing, moral and scientific ways of thinking.

Given such an orientation, it was a small step for Dewey to assimilate all think-
ing into a problem-solving model. In How We Think, Dewey (1910) comments,
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The two units of every unit of thinking are a perplexed, or confused
situation at the beginning and a cleared-up, unified, resolved situation at
the close. The first of these situations may be called pre-reflective. It sets
the problem to be solved ... In the final situation the doubt has been
dispelled; the situation is post reflective. (Dewey, 1910, p. 106)

But even if one uses scientific thinking as the model of thinking in all do-
mains, this does not reduce all thought to a problem-solving mode of operating,
as if one's primary concern is that of meeting and changing some 'real world'
problem. Even science is not in a constant state of problem-solving in that sense.
Scheffler (1973) makes the point well when he says,

[Dewey's] conception of the nature of empirical control is ... unduly
narrow, and fails to do justice to abstract, theoretical considerations in
the scientific assessment of evidence. Ideas in science are not all of one
kind and only certain simple types can be analyzed as instruments for
transforming the world. (Scheffler, 1973, p. 154)

His criticism of the problem-solving mode as the only mode within which
thinking takes place is that much more poignant when applied outside the realm
of science. In the same work, he asks:

But what reason do we have for assimilating all reflective thinking to the
problem-solving model in general? In ordinary speech, for example, the
poet is thinking in the process of composition, the artist in creation, the
translator in attempting a translation, and yet none is seeking the answer
to a question. Though subsidiary questions need to be answered in the
course of each activity, no answer or set of answers as such brings each
activity to a unified and resolved close.; only a satisfactory poem, paint-
ing, or translation will do. (ibid., p. 157)

As educators, we need to ask ourselves what some aspects of genuine think-
ing may be that we wish to encourage among our students that are not in and of
themselves problem-solving in either a narrow or a broad sense. To a large extent,
it is that question that this chi.:iter has attempted to address. The list is obviously
incomplete, and I look forward to further exploration by my colleagues.

Conclusion

The arena of problem-solving illustrates how much educational mischief can
result when one acts as if the logical analysis of a concept dictates its educational
application. Not only in solving problems, but in choosing, creating and neutralizing
problems one has the potential to find out a great deal about one's own world
view and even about the explicit and implicit assumptions of a smaller community
(of mathematicians or of students of mathematics) and of a society in general. In
what sense does one search for simplification? complexification? In what sense
does one reach for better understanding by attempts at clarifying, 'muddifying'?
In what ways should we re-frame these same kinds of questions if our interest is
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in understanding society at large? What kinds of situations am I incapable of see-
ing as problems? What does that tell me about myself, about my contemporaries?

There is nothing about the standard body of knowledge of mathematics nor
about the concept of 'problem' nor about the activity of problem-solving within
mathematics that particularly encourages the asking of these kinds of questions.
On the other hand, none of these questions are incompatible with such terrain.
They are, however, the kinds of questions which one is tempted to ask in con-
junction with inquiry about a discipline if one is inclined to take seriously issues
of mind and of personhood that outstrip the domain within which the discipline
is normally defined.

Notes

1. Some of the discussion of the fallacy of the problem as given and the fallacy of
scientific context in this piece elaborates upon an earlier essay of mine which
focused on the question of how the concept of a liberal education applies to
mathematics. See 'Liberal education and problem solving: sortie curriculum falla-
cies' in Brown, 1986.

2. That all statements are reducible to the form `p implies q', does not of course
suggest that all proofs per se must begin with p in the argument of the proof.

3. Such an observation of course needs to be tempered by the realization that there
are occasions upon which early proofs of elusive mathematical conjectures are
found in fields that appear not to have anything to do with the conjecture under
question. The production of two different proofs of the famous prime number
theorem (how many primes are there less than, or equal to, any natural number?)
in 1896 by Hadamard and Valee-Foussin that required the domain of complex
numbers for their analyses is a case in point. For further discussion of this particu-
lar problem, see Some 'Prime' Comparisons in Brown, 1978. For a discussion of the
more general phenomenon, see Gian-Carlo Rota's essay, 1993.

4. Questions related to the logic of problem-solving in relation to problem-solving
in p,.rticular can be found in Brown (1984) and Brown and Walter (1990). Issues
related to the social/political significance as well as philosophical implications are
discussed in Brown and Walter (1988), Ernest (1991) and Freire (1970).
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Chapter 15

Enquiry in Mathematics and in
Mathematics Education

John Mason

Introduction

Enquiry in mathematics appears at first to be unproblematic: the mathematician
explores ideas, develops notation, defines terms, and proves theorems. Of course,
when examined more ,losely, it becomes rather more difficult to describe what
mathematicians do in a way which they acknowledge and recognize (Polya, 1962;
Tall, 1980; Davis and Hersh, 1981; Kitc.'er, 1983; Mason et al., 1984). Mathema-
ticians build on each other's work, using ,Isults and techniques, and following up
variations and generalizations. Tracing references through mathematical reviews,
citation indices, and conferences, provides a skeletal picture of the development of
ideas and notation.

Enquiry in mathematics education also appears at first to be unproblematic:
the educator studies difficulties that pupils and teachers experience, proposes alter-
native approaches, and validates those approaches. Of course, when examined
more closely, it also becomes rather more difficult to describe what researchers do
in a way which they acknowledge and recognize. Educational researchers tend to
augment and vary the frameworks, instruments, and approaches of colleagues,
rather than building on their results. They are more likely to refer to others in
passing, to legitimate their assertions through reference to others with similar
thoughts, than they are to develop from, and extend, each other's work. Tracing
references through citation indices and conferences reveals more about what the
author has been reading recently than anything else.

The audience for mathematicians is other mathematicians, and scientists in
cognate disciplines. The audience for educational researchers is teachers, and other
researchers. Whereas mathematicians are unified by common technical terms,
educators are divided by the disparate use of loosely defined words which are
multiply interpretable. Mathematical conclusions include statements of the condi-
tions under which they are valid, whereas educational assertions are highly con-
text-dependent and the domain of applicability hard to state: changes in teacher
awareness and sensitivity changes the phenomenon itself. For example, as atti-
tudes and approaches vary, the nature of what is perceived as problematic alters.
Whereas mathematicians assert what is the case, and others can then employ these
to justify yet further assertions, educators assert what was the case or theorize
about what might be the case, leaving others to integrate the analysis, rather than
the content, into their own practice.
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Educational research is deeply self-referent, unlike mathematics. Remarks
made about educational writing apply also to that writing, whereas mathematics
is rarely (except in set-theoretical paradoxes and Godel's theorem), self-referent.
Mathematics education includes not only reflection upon and analysis of learning
and teaching, but also upon the conduct of researching itself, while mathematics
is concerned with mathematics, not with the conduct of mathematics.

So much is obvious. I shall argue that there is more in common, at least
potentially, than there is different, between enquiry in mathematics and enquiry
in mathematics education, and that it is to the advantage of mathematics education
to maintain and develop that link.

Finding a Place to Stand

In mathematics, it is possible to state or refer to the axioms one is accepting and
to build an edifice of deduction. It is this aspect of apparent certainty and lack of
freedom which has attracted philosophers to use mathematics as a paradigmatic
example for epistemology, and which continues to attract some adolescents. 'In
mathematics, you know when the answer is correct.' The same quality may also
repel other adolescents, because logical deduction is seen to conflict with the

development of free-flowing intuition.
In mathematics education, it is much harder to find any firm ground on

which to stand. As soon as you think about why certain students find a particular
topic difficult, you are led through a web of influences: how the topic is taught,
the attitudes of the text-authors and the teachers to learning and doing mathemat-
ics, relevance of the topic to the interests and concerns of students, political and
economic conditions in the community, and so on. Each of these is problematic,
and interconnected with the others.

Much has been written about philosophies of mathematics, and considerable
effort has been put into finding connections between the overtly expressed philo-
sophies of (arid attitudes to) mathematics among trainee and practising teachers
and the success, confidence and attitudes of their students. Contrasts have been
noted between what teachers say they do, and what they are observed to do
(Lerman, 1986; Ernest, 1989; Thompson, 1991); or rather, contrasts emerge be-
tween what researchers hear teachers say, and what researchers say they see teach-
ers do. In each case, the researcher's perspective, values, and interests, play an
important role in influencing 'what is observed'. The phenomena of education,
the 'objects of study', seem much less well-defined than in mathematics. This may
be one reason why those who feel secure in mathematics often look down on
those who inhabit more amorphous and ambiguous worlds such as the world of
education. Yet even in mathematics there are crises in what constitutes proof, and
in how firm the foundations really are.

Individuals search for a perspective that grounds their educational discussion
firmly, and enables progress, but rarely is there much commonality between
different schools of research, much less between individual researchers. What is
for one, definite and 'well-defined', is for another problematic. One effect is that
researchers constantly look to other fields for a fresh perspective on what seem to
be intractable problems. For example, constructivist perspectives in education
draw on psychology to emphasize the role of the individual in making sense and
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constructing the world in which they operate; the social constructivist movement
draws on sociology to emphasize the role of enculturation and peer influence in
how knowledge is constructed. How are these to be reconciled? Must one domi-
nate the other? (von Glasersfeld, 1984; Mellin- Olsen, 1987; Vygotsky, 1978;
Lerman, 1993; Ernest, 1991, 1993).

The psychological-sociological constructivist debate can be seen as a manifes-
tation of nature-nurture debates, of the desire to find somewhere stable to stand
and view the world. Varela et al. (1991) stress that separation of organism and
environment and attempts to apportion influence between them only makes sense
in a Cartesian frame, founded on a separation of knower and known. When the
gerund knowing is stressed rather different perspectives become available.

It is as if commentators are driven to find a single all-encompassing frame-
work, a single viewing platform from which to observe and comment on the
flora and fauna of the mathematics education pond. Fortunately, there is at the
same time a growing realization that single perspectives are neither possible nor
desirable.

In any discussion, it is necessary to find some place to stand. Certain words
have to be taken as having shared meaning; certain relationships have to be taken
as appreciated. And yet it is the fluidity of meaning, the shifting sands of inter-
pretation as perspectives are modified, which makes the whole enterprise of edu-
cational enquiry at once so frustrating and so exciting. To progress, mathematics
education needs a recognized means for negotiating shared meanings for technical
terms.

Multiple Perspectives

Multiple perspectives is no new idea. Galileo, drawing upon Copernicus, contrib-
uted substantially to a shift from single to multiple perspectives: what you see
depends on where you stand. Newtonian mechanics exploited this shift of base-
point, only to run into difficulty in explaining light. Physicists finally had to
accept that light sometimes acts as a particle, and sometimes as a wave, and the
task becomes trying to decide which perspective is most helpful in which con-
texts. The discovery of non-Euclidean geometries provided a mathematical step-
ping stone, showing that again there is more than one place to stand. Biologists
have debated nature-nurture at length, with no firm conclusion, and even the once
stable notion of evolution through survival of the fittest is in question as sole
explanatory mechanism. Current discussions stimulated by a psychoanalytic per-
spective reveal a debate between generative and post hoc sources for metonymic
connections. The inadvertent remark, the Freudian slip, may signal a deep-seated
connection or may trigger new directions of thought. Are individuals responsible
for their own constructions of their own reality, or are they (merely) the product
of the culture? Does language form and limit, even constitute, thought, or is
language but one form of externalizing thought? If all I can observe is behaviour,
and all I can assess is behaviour, is teaching simply a matter of training behaviour?

In all these cases, a reasonable alternative to polarized debates is to grasp both
poles, to argue that where you stand determines to some extent what you can see;
that there can never be a universal platform, a single all-embracing, all-explaining
perspective. Rather than deciding on one or another, it is usually most fruitful to
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grasp them both, to see both poles of a tension as releasing energy for deepening
appreciation of the situation (Mason, 1986) rather than directing it into discussions
about which pole is the more critical. An ancient Armenian proverb sums it
succinctly: every stick has two ends.

Poles of Enquiry

The desire to stand apart, to study from the outside, may perhaps be a product
of an Archimedean-Cartesian programme, which has reached its apotheosis in a
western scientific-engineering tradition. As long as enquiries are not pursued too
deeply (for example to the quantum level, or into personal equilibrium and har-
mony), western material science, based on tracing cause-and-effect chains em-
ploying logical deduction, is the source of much that is positive about present
society. Campbell and Dawson (in press) use the image of 'an Archimedean point'
as the lodestone for philosophers seeking firm, stable ground. They suggest that
the entire Cartesian programme depends on a separation of the knower and the
known, and that all other dualities which characterize western philosophies follow
from it. Keller (1983, p. 190) has argued that this separation is intimately bound
up with a Baconian metaphor of sexual relations in which males (mind) dominate
servile females (nature).

By contrast, eastern tradition has focused on merging, on studying from the
inside. It has provided access for many to personal fulfilment, harmony, and
centredness. Varela et al. (1991) offer a western view of an eastern perspective
based on mutual specification and codetermination (p. 198), in which the very
existence of a unique self, so essential to cognitive science, is challenged. Even in
drawing attention to a potential distinction, I betray western dichotomy-driven
roots, for in distinguishing, I blur a long tradition of attempts to transcend duality
(Husserl, Hegel, Peirce, Bateson, Gilligan, Varela among many others), and the
deep roots of mathematical science to be found in Arab, Indian, Chinese, and
Japanese cultures. To express is to overstress. To make a distinction is to stress
difference and appear to ignore similarity. Temptation to decide between, to choose
one perspective over another is falling into the single-perspective, simplicity, 'place-
to-stand' position. It is not a matter of deciding between, but rather of drawing
upon the strengths of both depending on the context.

To find out how pupils respond to certain stimuli, to chart progress and
development, it is sensible, even necessary, to make distinctions, to characterize,
to craft questionnaires and test items, to validate them on large populations, and
then to employ them in longitudinal studies. To become more sensitive to pupils'
needs, and to be able to respond in the moment, it is sensible, even necessary, to
examine one's own experience rigorously, and to use that as a stepping stone to
appreciating the experience of others. The former 1 call outer research, the latter,
inner research.

Legacies of the outer pervade educational discourse, and can be found in the
unchallenged 'primitive' terms that arise in most discussions of children learning
mathematics. For example, the word 'understanding' comes from the outer ap-
proach, separating knower from known literally by the one 'standing under' the
other. The fact that it is not easy to find a suitable replacement for `understanding'
is what characterizes it as an educational primitive. An alternative, such as
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'centre-merging' could be used to mean something similar but from an alternative
perspective, carrying (literally, in the metaphor) a sense of integration and oneness
with what is known.

Mechanisms of Reasoning

Underlying any form of enquiry there are assumptions about how one reasons. In
mathematics, the norm is deductive justification, following up intuitive insight
and direct perception of patterns and forms. I associate logical mathematical de-
duction with cause-and-effect chains, since these form the heart of scientific rea-
soning about the material world. They might be called 'macro-physical and chemical
reasoning', since at non-quantum levels these domains typically involve chains of
logical deduction to explain phenomena.

But I have already indicated that education may not be best served by con-
tinuing to employ a solely cause-and-effect perspective. Making a little change (or
a big one, as governments are now doing) may influence an educational situation,
but rarely in predictable ways. It is very hard to justify an agricultural-treatment
perspective in which a single change of treatment causes an observed effect, nor
is it plausible that if all other fact, rs could be held constant, that any observed
effect would remain robust, since the many impinging factors are constantly
adjusting to each other. In scientific enquiry, all factors are held as constant as is
possible; in education, no factor remains stable when another is perturbed.

I suspect that the robustness of cause-and-effect thinking in education is due
to the absence of a strong biological metaphor which supports and illustrates an
alternative perspective of, in the words of Varela et al. (1991), mutual specification
and codetermination. Our scientific metaphors all stem from small-scale phenom-
ena obtained by Cartesian simplification through breaking things down and as-
suming that they are easily and sensibly glued back together, rather than from
large-scale phenomena which permit us to retain complexity without feeling lost.
Mutual interaction and adjustment is large-scale phenomenon, so examples are
likely to be complex ones, like the Earth's atmosphere, or a social grouping of
animals or people, and although it can sometimes help to look at components,
simplification can also miss the essence of complex phenomena. Campbell and
Dawson (in press) offer the metaphor of a tree growing in which new layers are
added to the old; the old determine the new, but the new also alter the old.

If deductive reasoning accompanies simplification, what accompanies com-
plexity? In-dwelling in experience, allowing situations to speak, and working on
refining one's own sensitivities, produce a programme which is rather different
from dissecting phenomena which are assumed to be stable and repeated, but
which may turn out to be constituted by perspective and not independent of
observer. In-dwelling acknowledges mutual specification and codetermination.

Effective enquiry enables people to shift from 'talking-about' (using vocabu-
lary in discourse but not in-dwelling what they are saying), to 'seeing through'
(using the vocabulary as a means of describing what they experience). In math-
ematics, syn-' rils become windows (Griffin and Mason, 1990) to a mathematical
world of ex, ience (Davis and Hersh, 1981), effective notation being that which
enables the researcher to see through to essential patterns. In mathematics education,
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terms are more often walls than windows, blocking us from appreciating what
others are saying.

Similarities

Having stressed differences between mathematical enquiry and mathematics-
educational enquiry, I now want to stress potential and putative similarities, and
to indicate ways in which mathematics education would be improved if it main-
tained close Links with its parent discipline.

Processes of Enquiry

Mathematics makes great uses of the twin processes of specializing and general-
izing (Polya, 1962; Mason et al., 1984). Special and extreme cases are used to test
conjectures, and more importantly, to enable the researcher to become thoroughly
familiar with the phenomenon before being able to describe or express it gener-
ally, much less make any conjectures. Generalizations are sought, along with
different representations, to try to find the 'right language', the 'right context'
which will simplify the problem in hand. Mathematics abounds with examples of
this process: linear algebra and change of basis, and representation of a geometrical
configuration in different geometries are two of many examples. Lakatos (1976)
suggested that definitions of terms usually emerge as a means for simplifying the
statement of results and techniques, as opposed to being natural or God-given.
Conjectures are justified by chains of reasoning which enable the reader to see,
literally (theorem comes from the Greek meaning seeing), what the author saw, but
only in retrospect, when the pieces fit together.

Mathematics education also makes use of specialization, but often in a
rather more haphazard fashion. To study the general one must specialize, but re-
generalizing is much more problematic. Research programmes often begin with
very general aims, such as to study the effect of teacher attitudes on children's
learning, but by the time the questions have been refined and made practical, the
possibility of re-generalizing is severely reduced. Teachers and researchers love
quoting particular incidents to colleagues in order to exemplify a point either
from their formal research or from their own children, and this was mad, into a
discipline by Piaget and Freudenthal among others. By building up a collection of
brief-but-vivid descriptions of incidents that others can recognize, and using these
to sensitize themselves to further similar incidents, practitioners and researchers
alike can improve their awareness, can extend what they are attuned to notice
(Gattegno, 1970; Williams, 1989). By locating themselves in a constant, ongoing
process of specializing, illustrating the use of technical terms by brief-but-vivid
descriptions of incidents which speak to colleagues, teachers and researchers alike
could improve the quality of communication, could ground discussion and pro-
vide stability in a manner much closer to mathematics than is presently the case.

Generalization in mathematics education is a major issue. How can you gen-
eralize from observations of a handful of pupils, even a handful of classes in a
handful of schools? A generalization is useful only if it speaks to people's experi-
ence, providing a label around which numerous specific and abstracted experiences

-0
:17.)

195



John Mason

crystallize. The power of a generalization lies in the extent to which it helps
people make sense of the past, helps them prepare for the future, or helps them
act in freshly in the moment. If generalities are separated from the examples which
they label than they lose their ability to trigger metonymic associations and so
inform sensitivities in the moment by moment unfolding of teaching or research-
ing. Thus generalization which does not resonate with special instances remains
abstract; generalization arising from generic, immediately recognizable instances
can be as powerful as mathematical generalizations based on similarly generic
examples.

The distinction between naturalistic enquiry which values 'thick' descriptions
of particular cases, and scientific enquiry which values the articulation of general
laws and replicability (Ernest, 1991) appears to separate two independent research
paradigms. And yet, every stick has two ends. Each has elements of the other
embedded within its practices. The clear distinction between phenomenon studied
and theory, which dominates scientific enquiry, is mirrored in educational en-
quiry when distinguishing between accounts of incidents, and explanations or jus-
tifications which account for them (Davis and Mason, 1989). Attending to one's
own experience of participation in process, and looking out for potential analogies
with student experience, which constitutes much educational research, are mir-
rored in scientific enquiry when researchers attend to the conduct of their re-
search, and the changes that take place in their own thinking.

The scientific enquirer spends time reading other people's results, interpret-
ing, internalizing, assimilating and accommodating, making sense from their own
perspective. Although their practice is not an object of scientific research, their
experience as a researcher corresponds to the objects studied naturalistically in
education. Similarly, the naturalistic enquirer locates specific relevant distinctions,
and then uses these to categorize and explain observations in ways which some-
times conform metaphorically with conduct of scientific enquiry.

Using the root meaning of theorem as seeing, mathematics and mathematics
education can both be looked at as being about seeing:

Mathematicians try to see pattern and structure in the material world and
the mental world of forms and relationships, and try to convince others
that they too can (and in some sense, must) see the same thing.
Mathematics education researchers try to see pattern and structure in the
socio-psychological behaviour of students and teachers, test whether such
seeing informs future actions, and try to provide frameworks for enabling
others to see them too.

The differences lie in the necessity of seeing, the ways one seeks validity for
oneself, and the methods for convincing others.

Beyond Duality

In this section I propose ways of transcending Cartesian dualities and grasping the
stick of enquiry. It is a commonplace (St. Maurice, 1991) for mathematics educa-
tion to be conducted by reference to the triad of
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mathematical content;
student; and
teacher/author/tutor.

While acknowledging the socio-political-economic context of school, commun-
ity, and government. But in such acknowledgment, attention still focuses on one
or other aspect of the potential interactions. Content is analysed, and students and
teachers are observed, recorded, and analysed, as objects. Tensions are considered
between student and content (for example study of epistemological obstacles),
between student and teacher (for example by analysing power relations, disci-
pline, and control), and between teacher and content (What does he teacher know
about mathematics, and how does that influence their actions?). Rather less atten-
tion is devoted to the actions which take place as a result of the triad itself.

Triadic Action

The triad as a critical element in the structure of the psyche is described in the
Baghavad Gita (Mascara 1962) in terms of three gunas, variously interpreted as
materiality, energy, and spirit, or passivity, activity, and presence. The gunas pro-
vide one root for the modern triad of enactive, cognitive, and affective aspects of
the psyche. But there is more to structure than mere components. The gunas form
three interwoven strands, and the interweaving is critical. Plato expresses the
essence of the triad in the Timaeus:

But two things cannot be rightly put together without a third; there must
be some bond between them. And the fairest bond is that which makes
the most complete fusion of itself and the things it combines, and pro-
portion is best adapted to effect such a union. (Hamilton and Cairns,
1963, 31d, p. 1163)

Here mathematics is used as a paradigmatic experience for appreciating the
more general and philosophical role of reconciliation or mediation. Any action is
seen as requiring the presence of three interwoven impulses:

the acted upon;
the acting; and
the reconciling or mediating.

It is the third impulse which is so often ignored in research, and which thereby
impoverishes the exposition of findings. For example, exposition is commonly
thought of as a teacher standing up and telling students things, in some sort of
lecture format. Constructivist rhetoric superficially adopted enables researchers
and teachers to justify their dissatisfaction with normal practice of exposition,
despite the fact that a constructivist perspective has no judgments about exposi-
tion as a mode of interaction (Ernest, 1993). Many educators espousing
constructivism have been known to attend lectures on constructivism, and even
to have enjoyed them! The most that constructivism can say about lecturing is
that it is unwise to assume that students know what the lecturer told them.
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A triadic view of exposition observes that when preparing a lecture, it is the
fact of the imminent audience which enables the lecturer to contact the content in
fresh ways, in a state conducive to creativity and connection-finding. When the
event itself happens, it is the presence of the audience which enables the lecturer
to contact the ideas, as if drawing the audience into the world of experience of the
lecturer. The lecturer acts upon the content, mediated by the student. Not all
lectures have this quality of course. The action can be aborted by many different
factors, from lack of preparation, to loss of contact with the audience, to failure
to appreciate the nature of exposition.

Explanation is another form of studentteacher interaction in which the con-
tent is often ignored. Whereas in exposition the lecturer draws the audience into
the lecturer's experience of the world of mathematics, in the action of explanation,
the teacher enters the world of the student. The initiative lies with the student,
and the content mediates, brings the teacher and student into contact. As soon as
the teacher thinks `Ah, now I see what the difficulty is,' explanation switches into
exposition. The initiative moves from the student to the teacher. Further analysis
of the six different modes of interaction which are possible can be found in Mason
(1979), and the triad can be extended to larger structures (Mason, 1987; Bennett,
1956).

Action seen as the mutual operation of three forces is quite different from
deductive reasonini;, and prompts different methods of research, different types of
findings, and different forms of presentation of conclusions. It supports an influ-
encing rather than torcing perspective; it promotes supporting development rather
than causing change; it looks to mutual specification and codetermination rather
than cause-and-effect.

Learning from Mathematics

Mathematics is validated by acceptance by colleagues that the reasoning is correct,
though it is said that most papers have one or two repairable errors, and many
have at least one serious error which escapes both the author and the referees as
well as the editor. But mathematical results are not used by other researchers until
the arguments have been worked through, filling in details and re-integrating the
elements into a sense of the whole. In this respect, validation of mathematical
results are very similar to educational ones. It is not enough in either case simply
to announce results. One must seek the agreement of a wider community (Ernest,
1990) One must offer justification, in a form which permits others to re-experience,
to re-construct the reasoning for themselves. Only then do the proposals become
`results'. In either case, an assertion only becomes a result for an individual when
they have integrated the thinking behind the assertion into their own perspective,
made it 'their own' as the cliché goes.

Mathematics education is validated by a community response in which aware-
ness, perspectives, and techniques, are integrated into practice and discourse. This
only happens where the researcher or surrogate is able to devise activities which
enable colleagues and/or practitioners to experience directly or vicariously the
sensitivity which has enabled the researcher to notice. The researcher is not trying
to communicate what has been noticed, but drawing attention to the release of
energy contained in the potential for noticing in the future.
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The mathematics-education research community does not often take the time
to present reports in a form which enables others to re-construct the awarenesses
and sensitivities developed during the research. Without these awarenesses there
is little to be gained, apart from an interesting wrinkle in methodology, or a nice
quote from a student to be used in some other context. Since the content of
mathematics education is less precise, less definitive than the apparent content of
mathematics, it means we have to work harder in order to enable research and
teacher colleagues to appreciate our findings and integrate our approaches into
their own work.

In order to instil some order, some structure into mathematics education, it
might be worthwhile cleaving more closely to mathematical enquiry, by taking
the effort to negotiate meaning of terms being used. Gattegno, who tried to
develop a science of education (Gattegno, 1990), emphasized the necessity for a
disciplined approach to educational interchange (Gattegno, 1970), and the disci-
pline of noticing (Davis and Mason, 1989) proceeds along similar lines. By taking
specializing and generalizing more seriously, mathematics education could benefit
from reflecting the essence of its parent discipline.

Mathematical generalization, based on sensitivity to perceived patterns aris-
ing from selective stressing and ignoring (Gattegno, 1970) can be mirrored in
mathematics education by using special cases to resonate personal experiences to
develop an intricate web of interconnections and triggerable actions (meaning).
By distinguishing between brief-but-vivid accounts of incidents and explanatory,
justificatory accounts for actions, educational researchers could build an organic
network of sensitivities and sensitizing experiences, ever forming and reforming
in mutual specification and codetermination. By presenting research in forms which
promote personal construal, in which readers find themselves seeing their past
experiences in fresh light, and sensitizing them to potential. incidents to notice in
the future, researchers could invoke mathematical and educational experience to
communicate with teachers and researchers in ways which would foster a more
disciplined and productive approach. By maintaining contact with the mathemat-
ical roots of the educational topics being explored, and seeking analogous structures
in their own experience at their own level, teachers and researchers could build a
discipline combining the best of mathematical and educational methodology.
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Chapter 16

Demystifying Mathematics Education
Through Inquiry

Marjorie Siegel and Raffaella Borasi

Introduction

The mathematics instruction that most American students experience in today's
classrooms embodies pervasive cultural myths that misrepresent the nature of
mathematics as well as what it means to learn mathematics. Mathematics text-
books, pedagogicil practices, and patterns of classroom discourse, especially, work
in concert to perpetuate the idea that mathematics is the 'discipline of certainty'.
Together with a behaviourist view of learning, this myth has led students and
teachers alike to reduce mathematical learning to the acquisition of ready-made
Pigorithms and proofs through listening, memorizing, and practising. However
comfortable these myths may be, they have debilitating consequences for students
as they .invite students to develop beliefs like 'There is only one correct way to
solve any mathematical problem[;] . mathematics is a solitary activity done by
individuals in isolation[;] . . . formal proof is irrelevant to processes of discovery
or invention' (Schoenfeld, 1992, p. 359) as well as learning behaviours that are not
conducive to success in mathematics (Borasi, 1990). Many students, in short, have
come to perceive mathematics as a 'stainless steel wall' (Buerk, 1981) cold,
hard, and unapproachable, a mysterious activity quite distinct from their everyday
lives and reserved for people with special talents.

In recent years, the mathematics education community has proposed recom-
mendations for reconceptualizing school mathematics (i.e., HMSO, 1982; NCTM,
1989, 1991; NRC 1989) that challenge these myths. Fueled by psychological re-
search on the processes students actually use to approach mathematical tasks,
philosophical discussions on the nature and development of mathematical knowl-
edge, and debates about the economic needs of today's technological society,
many mathematics educators have called for the creation of learning environments
that position students as mathematicians who produce rather than consume math-
ematical knowledge. In this chapter, we wish to contribute to this conversation
about transforming mathematics education by looking more closely at what it
means to produce mathematical knowledge. To do so, we will focus on the
concept of inquiry and the implications it has for rethinking both the nature of
mathematical knowledge and the goals and practices of mathematics education.
Our analysis will focus, in particular, on the contributions that the American
pragmatist Charles Sanders Peirce and scholars working in an emerging field of
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sociology, known as the 'sociology of scientific knowledge' (SSK) have made to
the concept of inquiry. While these perspectives have not yet found a place in the
mathematics education literature, together they offer a rich and complex portrait
of inquiry that further dispels the myth of mathematics as the 'discipline of cer-
tainty'. At the same time, they offer new insights into the nature and practice of
inquiry that may support mathematics educators as they begin to imagine what
future mathematics classrooms could look like.'

Perspectives on Inquiry

The first perspective on inquiry we will examine was developed by Charles
Sanders Peirce (1839-1914) over 100 years ago, yet continues to shed light on
contemporary problems in the philosophy of science. Though Peirce is probably
best known as one of the modern founders of semiotics, the study of signs as
social forces (Eco, 1976), he spent thirty years as a research scientist with the US
Coast and Geodetic Survey, the chief scientific agency of the US government at
the time. His commitment to developing a theory of inquiry grew out of his
belief that the scientific method offered the best approach to the producing truth.
We will return to this point later to clarify Peirce's approach to truth, but for now
it is important to note that he regarded the scientific method as superior to other
methods of producing knowledge because of ics potential for self-correction.

Peirce's theory of inquiry begins with his rejection of the Cartesian approach
to the problem of knowledge, which proposed that knowledge depended on a
firm foundation of first premises which are direct or unmediated. Peirce argued
that absolute knowledge is unattainable on the grounds that all knowledge is
indirect since we know the world through signs. And, since signs must be inter-
preted by other signs, there is no guarantee that the knowledge we have is abso-
lute. Thus, Peirce rejected the idea that knowledge is stable and certain and
proposed, instead, that knowledge is processual, ever open to doubt. Thin does
not mean that Peirce was a skeptic; rather, he maintained that we could n:. live
with doubt on a daily basis and we should not, therefore, continuously doubt that
which we hold to be stable. At the same time, we should recognize the contin-
gency of that stability and be ready to revise or reject knowledge found to be false
(Skagestad, 1981). Peirce posited a view of knowledge that was radically different
from the foundational metaphor that had held sway in his time:

To Peirce, knowledge is no longer regarded statically as a body of pro-
positions resembling a more or less finished building, but dynamically as
a process of inquiry. (Skagestad, 1981, p. 18)

The metaphor he chose to encapsulate his sense of knowledge was that knowing
is walking on a bog.
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[Me never have firm rock beneath our feet; we are walking on a hog,
and we can be certain only that the bog is sufficiently firm to carry us for
the time being. Not only is this all the certainty that we can achieve, it is
also all the certainty that we can rationally wish for, since it is precisely
the tenuousness of the ground that constantly prods us forward, ever
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closer to our goal. Only doubt and uncertainty can provide a motive for
seeking new knowledge. (ibid.)

This metaphor captures well the central role doubt plays in Peirce's theory of
inquiry. In his well-known article, 'The Fixation of Belief', Peirce writes: The
irritation of e. Jubt causes a struggle to attain a state of belief. I shall term this
struggle inquiry, though it must be admitted that this is not a very apt designation'
(1877/1982, p. 67). In this quote we can see that it is doubt which sets the process
in motion. Most often this feeling of doubt arises when an anomaly snmething
that doesn't make sense in light of existing beliefs is encountered. The struggle
to replace doubt with belief is carried out through a cycle of reasoning that involves
three forms of inference: abduction, deduction, and induction. Peirce argued that
hypotheses are generated through abduction; the possible consequences of these
hypotheses are developed through deduction; and, finally, these consequences are
tested against experience through induction. This three-fold division may appear
unnecessary at first as we are accustomed to the more familiar idea that induction
involves a move from data to hypotheses or tentative conclusions and deduction
a move from conclusions to data. But Peirce argued that induction actually involves
two different processes: abduction, in which an hypothesis is put forward as a
tentative framework, and induction, in which this framework is tested by selecting
particular instances suggested by the framework (Deely, 1981). In abduction, then,
the hypothesis that is generated provides a tentative explanation of what is, at
first, unexpected and puzzling. On the basis of incomplete information, one offers
an explanation that, if true, would show that the surprising event is a matter of
course (Smith, 1988). Anomalies thus play a crucial role in inquiry inasmuch as
they motivate the search for new connections among prior knowledge in order to
generate an hypothesis that gives meaning to an unexpected event. This is not an
insignificant move; indeed, Peirce claimed that abduction was the only form of
reasoning capable of starting new ideas (Skagestad, 1981).

Up to this point it may appear as if Peirce were describing the activities of
individual scientists, but the scientific community figured prominently in his theory
of inquiry. Peirce regarded inquiry as a 'public process carried out by a commu-
nity of investigators' (Skagestad, 1981, p. 24) and depended on this community
to distinguish purely private thoughts from those which would hold up under
public scrutiny; knowledge that could pass the test of the community was taken
as real. From this perspective, truth is that upon which the community will con-
verge in the long run. Yet, both the notion of long-run' and 'community' are
ideals. The 'long run' is an infinitely long run and the 'community' is a hypotheti-
cal community; both constructs allowed Peirce to formulate a concept of truth as
absolute and objective but only hypothetically so. Over any finite long run, absolute
truth would never be attained. This notion of truth as attainable in the long run
(an ideal-limit theory of truth) seems to contradict Peirce's view of knowledge
as mediated unless his pragmatic realism is considered. Though he has often been
miscast as a logical positivist, Skagestad (1981) suggests that Peirce's realism is in
fact 'pragmatic realism'. In other words, realism functions as an empirical hypothesis
that explains why scientific inquiry is successful in dealing with the world (p. 5).
Thus, far from having a positivistic approach to truth, Peirce uses the ideal-limit
theory to remind the scientific community of the fallibility of knowledge and thus
keep the road of inquiry open.
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Anthropologists and sociologists working from the perspective of the sociol-
ogy of scientific knowledge have taken the notion of community a step further
and conducted ethnographies of laboratory life (Latour and Woolgar, 1979; Knorr-
Cetina, 1981, 1983) in order to move beyond post hoc accounts of inquiry to a
better understanding of what scientists actually do when working on such prob-
lems as plant proteins and the brain's endocrine system. From this perspective,
doing science is a thoroughly social practice in the sense that 'reality' is con-
structed through the discourse and rhetorical practices of the research community.
Hence, for SSK scholars the community is primarily a discourse community in
which 'truth' is established through a rhetorical contest. This is a somewhat dif-
ferent position than the one Peirce took, although when we later discuss the
notion of the symmetry break or inversion, we will see that both perspectives take
up the spirit of pragmatic realism. The difference may derive from the fact that
Peirce, working in the early days of modern science, sought to establish science
as a superior method for finding truth in the long run, whereas SSK scholars,
working at the apex of science, are interested in deconstructing and demystifiying
science, that is, they wish to shake the myth that science is a privileged and
especially credible method for producing knowledge (Woolgar, 1988).

Unlike earlier accounts of the sociology of science which suggested that social
factors affected factors external to the intellectual activities of the scientist, re-
searchers working within SSK argue that the technical findings of scientists work-
ing at places like the Salk Institute are constituted by the social context. In other
words, the: findings are understood as the product of a series of choices and
decisions occasioned by the circumstances in which they are situated, rather than
as something that exists inuependently of the inquirer waiting to be 'discovered'.
Scientific instruments, which are characterized in this literature as inscription devices
in the sense that the output is a written mark, can give us a good look at how
content and context become fused. Scientists acknowledge that such apparatus
represent the end result of debates in the field and do not provide direct readings
of the phenomenon being studied. And yet, once the inscription is read, the
mediating status of the instrument and its dependence on representation is forgot-
ten. As Latour and Woolgar (1979) note, there is a transformation of the inscrip-
tion into the terms of the 'mythology' of the culture of science so that a particular
curve on a readout from an instrument might constitute a breakthrough on a
particular problem. This move, which SSK researchers call a symmetry break
(Knorr-Cetina, 1981) or an inversion (Latour and Woolgar, 1979), is central to the
practice of science. In the context of the research lab, scientists understand the
constructed nature of their work, but when they write papers they proceed as if
their work involved mere description. The rhetorical practices scientists use are
what turn inscriptions into 'truth'; scientists work hard to convince the reader that
their findings are not representations at all but unmediated nature and, moreover,
that the reader has not been convinced by anything other than the elegant logic
of the inquiry. From this perspective, scientific knowledge is constituted by the
context, an artifact (Neilsen, 1989), yet it achieves its privileged status as fact from
a process in which dialogue and debate among colleagues in the lab is transformed
into a statement with quotation marks around it and, finally, into a flat factual
statement in a textbook (Latour, 1987).

As noted earlier, the notion of a symmetry break or inversion is related to
Peirce's pragmatic realism. 'The idea that scientists construct ways to mediate
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`nature' and then treat their constructions as real is a perfect description of what
Peirce meant by pragmatic realism. Recall that what makes Peirce's realism prag-
matic is illat he regarded it as an hypothesis that would explain why scientists had
found so much success using the scientific method. As a scientist himself, he
understood the role signs played in mediating the world but also understood that
scientists had to believe their findings were real in order to proceed with their
work. In other words, they could not function as skeptics and doubt that which
they took to be true, which in this case was the existence of reality (Skagestad,
1981). Indeed, this point is illustrated in Jonas Salk's forward to Latour and
Woolgar's ethnography of the Salk Institute, Laboratory Life (1979). Though sup-
portive of their enterprise, he is not quite convinced that they have captured doing
science as he experiences it, a point which suggests that scientists will not be the
ones to deconstruct their discipline!

Demystifying the Nature of Mathematical Knowledge

Mathematics has long been held up as the 'queen' of the sciences, the paradigm
case of absolute knowledge inasmuch as it was thought to be derived deductively
from axioms, that is, first premises which served as an unshakable foundation.
However, surprising developments such as the realization that geometries based
on different sets of axioms than those chosen by Euclid could be legitimate, or
Godel's proof that any formal system of a certain complexity contains some un-
decidable propositions, have eroded the foundational status of mathematics as a
discipline. Indeed, historical accounts of the development of key mathematical
topics, such as those offered by Kline (1980) and Lakatos (1976), should dispel any
doubt that mathematics might not be affected by the epistemological considera-
tions developed in the previous section.

Once we consider it legitimate to apply the view of 'knowledge as inquiry'
developed by Peirce and SSK scholars to the field of mathematics, a number of
important implications about the nature of mathematical knowledge and activi-
ties, many of which resonate with contemporary movements in mathematics edu-
cation, can be derived. Specifically, an inquiry epistemology challenges popular
myths about the truth of mathematical results and the way in which they are
achieved, and suggests, instead, that: mathematical knowledge is fallible; math-
ematical knowledge is created through a non-linear process in which the genera-
tion of hypotheses plays a key role; the production of mathematical knowledge is
a social process that occurs within a community of practice: and the truth value
of mathematical knowledge is constructed through rhetorical practices. In what
follows, we will briefly expand on each of these points.

Mathematical Knowledge is Fallible

A first consequence of looking at mathematics in a spirit of inquiry requires that
we accept the idea that achieving absolute truth is an illusion. Rather, mathemati-
cal results can only be sanctioned by the mathematical community of the time on
the basis of existing knowledge and evidence as well as agreed upon criteria (in-
cluding adherence to specific rules of logic and coherence with the existing
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system). The history of mathematics has provided some notable examples of how
these criteria, as well as the knowledge and evidence upon which the decision is
based, may change with time and thus may cause mathematicians to revise some
of their assumptions, definitions, and/or results. Consider, for instance, Lakatos'
reconstruction of how Euler's original theorem on the 'characteristic' of polyhedra
was challenged by some counter-examples and revised more than once through an
iterative process of `proofs and refutations' involving several mathematicians over
a considerable period of time. This historical event cannot be easily reconciled
with the view that once `proved' a mathematical result can be considered abso-
lutely true and uncontestable. Another interesting example is pro iided by the
creation of the first non-Euclidean geometry, an event that made mathematicians
realize that their belief in Euclidean geometry as the only, and true, way to de-
scribe spacial relationships was mistaken (a belief they had held for about 2000
years!). Finally, we would like to mention that the notion of what constitutes an
acceptable mathematical proof is itself far from being stable and non-controver-
sial, as shown by Kline's historical analysis (Kline, 1980, Chapter 14).

However surprising these conclusions might seem to students and teachers
who idealize mathematics as the 'discipline of certainty', the notion that math-
ematical knowledge is fallible is an accepted position among mathematicians and
mathematics educators alike. Radical constructivists in mathematics education, for
example, take a similar position on knowledge, one that parallels the epistemo-
logical assumptions Peirce articulated:

[Radical] constructivism can be described as essentially a theory about the
limits of human knowledge, a belief that all knowledge is necessarily a
product of our own cognitive acts. We can have no direct or unmediated
knowledge of any external or objective reality. We construct our under-
standing through our experiences, and the character of our experience is
influenced profoundly by our cognitive lenses . . . Mathematicians act as
if a mathematical idea possesses an external, independent existence; how-
ever, the constructivist interprets this to mean that the mathematician and
his/her community have chosen, for the time being, not to call the con-
struct into question, but to use it as if it were real, while assessing its
worthiness over time. (Confrey, 1990, pp. 108-9)

As Confrey points out, the rejection of absolute knowledge does not mean
that `truth' is abandoned; it is understood, instead, as a product of social negotia-
tion within a community of inquirers. In fact, the role of the community in the
construction of knowledge is an important theme in radical constructivism that
points to the nature of a discipline as a collective body with a set of shared norms,
values, beliefs, and practices. At the same time, some mathematicians and
mathematics educators have objected to the `skepticism' that could be associated
with a radical constructivist position (see, for example, Wheeler, 1987). Peirce's
`pragmatic realism' offers some resolution to this problem in the sense that math-
ematicians, like other inquirers, use the concept of reality to explain why they arc
able to indeed use mathematics to make sense of the world. From this perspective,
reality has the status of an hypothesis, one which makes it possible to engage
in mathematical thinking. If radical constructivists were complete skeptics, it is
unlikely that they would see any value in rethinking the purpose and practices of
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mathematics education. Since this is not the case, it is possible to conclude that
radical constructivism, like the field of SSK, is not so much a skeptical position
as it is a rhetorical strategy for shaking up the school curriculum.

How Mathematical Knowledge Is Created

Mathematical knowledge is produced through a non-linear process in which the
generation of hypotheses plays a key role. Peirce's characterization of inquiry as a
struggle to settle doubt and fix belief through a cycle of abduction, deduction, and
induction challenges the common-sense notion that inquiry is a linear process.
This view has much in common with Lakatos' thesis that significant mathematical
knowledge is created through an iterative process of 'proofs and refutations', as
noted earlier. The `zig-zag' path that Lakatos describes is a result of the fact that
mathematicians must put forward a tentative explanatory framework -- a conjec-
ture before they have sufficient evidence that the framework or hypothesis they
are proposing will indeed be acceptable. Contrary to the belief that the production
of mathematical knowledge is a 'sure thing', the process begins with what Lakatos
called 'conscious guessing'. As Peirce noted, it is this guess, or abductive infer-
ence, that sets the process of knowledge production in motion; without it, math-
ematicians are left with only the knowledge that has been agreed on by the
community. In a sense, then, the non-linear nature of inquiry, with all the risk-
taking, doubt, and uncertainty it engenders, works against the conservative force
of the community's norms and as such serves a far more valuable function to
mathematicians than the more familiar belief that the evaluation of knowledge
claims is the key move in mathematics.

What the Production of Mathematical Knowledge Is

The production of mathematical knowledge is a social process that occurs within
a community practice. While many students believe that mathematics is an activ-
ity undertaken chiefly in isolation, as noted in the introduction, the perspectives
on inquiry explored thus far suggest that the creation of mathematical knowledge
is situated within a community of practice. This position is once again supported
by historical evidence. It is worth noting that the successive refinement and
elaborations of Euler's initial theorem on the 'characteristic' of polyhedra involved
the concerted effort of several mathematicians, who carefully examined each oth-
er's conclusions, looked for potential counter-examples, and suggested ways to
deal constructively with them. Kline's account of the debates generated by the
creation of the first non-Euclidean geometries in the mathematical community of
the time is even more revealing of the role played by the community of practice
in establishing the truth of a mathematical result, as it shows how judgments
regarding the 'new claim' may be affected by the reputation of those supporting
contrasting positions as well as the strength of existing beliefs. Kline writes:

That Euclidean geometry is the geometry of physical space, that it is the
truth about space, was so ingrained in people's minds that for many years

0
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any contrary thought such as Gauss's were rejected . . . For thirty years
after the publication of Lobatchevsky's and Bolyai's works all but a few
mathematicians ignored the non-Euclidean geometries. They were
regarded as a curiosity. Some mathematicians did not deny their logical
coherence. Others believed that they must contain contradictions and so
were worthless. Almost all mathematicians maintained that the geometry
of physical space, the geometry, must be Euclidean . . However, the
material in Gauss's notes became available after his death in 1855 when
his reputation was unexcelled and the publication in 1868 of Riemann's
1854 paper convinced many mathematicians that a non-Euclidean geom-
etry could be the geometry of physical space and that we could no longer
be sure what geometry was true. (Kline, 1980, p. 88)

Several mathematics educators (e.g., Lave, 1988; Resnick, 1988; Schoenfeld, 1988,
1992) have also recognized that mathematics is a social practice. Elaborating fur-
ther on the significance of this point for mathematics education, they have argued
that 'becoming a mathematician' does not mean simply acquiring a certain body
of established knowledge, skills, and abilities, but, more importantly, taking on
a set of beliefs, norms, world iews, and practices characteristic of the mathemat-
ics community.

The Truth Value of Mathematical Knowledge

The truth value of mathematical knowledge is constructed through rhetorical
practices. lithe production of scientific and mathematical knowledge involves the
negotiation of meanings within a community of practice (Lave, 1988), then com-
munication becomes integral, if not central, to the process of inquiry. SSK scholars
take the relation between language and community even further and argue that the
social negotiation of meaning and 'truth' is accomplished through rhetorical prac-
tices. In other words, agreement by the community that a particular statement is
'true' is the result of writing in such a way as to convince others that the statement
is not itself a construction but exists independently of the researcher. Lakatos' de-
scription of how proofs are constructed is a good example of the rhetorical nature
of 'true' mathematical knowledge. When the mathematician is engaged in the
actual process of constructing a proof, he or she is caught up in making conjec-
tures, testing them against counter-examples, and then going back to revise the
initial conjectures. But when he or she publishes the proof, the tentative, non-
linear, and constructed nature of the proof is edited out so that what remains is
an elegant series of seemingly deductive moves that denies its constructed status
through its rhetorical structure. If other members of the community accept this
argument, the mathematician can be said to have been successful in winning the
rhetorical contest and the proof will be taken as true. SSK scholars thus argue that
the key move in inquiry is transforming a post hoc account into a flat factual
statement.

Richards (1991) highlights this point in his examination of mathematical dis-
cussions. He suggests that there are four kinds of mathematical discourse: research
mathematics, inquiry mathematics, journal mathematics, and school mathematics.
The first two are characterized by the logic of discovery whereas the second two
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feature reconstructed logic. Notice that although there are distinctions (chiefly in
the professional mathematician's heavy reliance on proofs) between the discourse
of professional mathematicians (who speak research mathematics) and that of
mathematically literate adults (who speak inquiry mathematics), they have much
in common in the sense that both use discourse patterns associated with the logic
of discovery, that is, conjectures and arguments. Notice, too, the similarity be-
tween journal mathematics (the language of mathematical publications) and school
mathematics (traditional classroom discourse and the language of textbooks); both
feature reconstructed logic with the main difference being that students who en-
counter the discourse of school mathematics usually have no idea that the formal-
ized proofs in their textbooks were once as full of zigs and zags as their everyday
cognition (Rogoff and Lave, 1984). In short, the discourse of school mathematics
truncates the actual practice of mathematical communities and in so doing denies
students a meaningful entrée to mathematical learning.

Reconceiving Mathematics Instruction in the Spirit of Inquiry

The discussion of the nature of mathematical knowledge, developed in the previ-
ous section, has shown that the idea of mathematics as the 'discipline of certainty'
misrepresents the field. If mathematics instruction were conceptualized in such a
way as to highlight this fact, students might begin to recognize the limitations and
`human' elements present in the discipline and start to see mathematics as more
attractive and accessible, as shown by the results of a few instructional experiences
involving math avoidant wonien (see, for example, Borasi, 1992; and Buerk,
1991, 1985). More specifically, reconceiving mathematics instruction in the spirit
of inquiry suggests fundamental changes that may help demystify mathematics for
students. This means that students, like professional mathematicians, would con-
struct their own mathematical knowledge by actively engaging in mathematical
inquiries, an assumption supported by empirical studies on problem-solving con-
ducted from a constructivist perspective (Baroody and Ginsburg, 1990; Ginsburg,
1983, 1989; Steffe, von Glasersfeld, Richards and Cobb, 1983). Moreover, when
inquiry is understood as a social practice, `socializing' students into a mathematical
community becomes a major goal of school mathematics. Resnick (1988) notes
the radical nature of this change in the following statement:

If we want students to treat mathematics as an ill-structured discipline
making sense of it, arguing about it, and creating it, rather than merely
doing it according to prescribed rules we will have to socialize them
as much as to instruct them. This means that we cannot expect any brief
or encapsulated program on problem solving to do the job. Instead, we
must seek the kind of long-term engagement in mathematical thinking
that the concept of socialization implies. (Resnick, 1988, p. 58)

Taken together, these considerations suggest different activities, goals, val-
ues, and social norms than those characteristic of traditional classrooms, or even
classrooms informed by a `problem-solving' or 'discovery-learning' approach. In
what follows, we will point out some of these differences by discussing what
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mathematics classrooms might look like if the focus of mathematics instruction
were reinterpreted as stimulating and supporting students' engagement in math-
ematical inquiries within a community of practice (see Borasi, 1992; Borasi and
Siegel, in press, for some concrete images of instructional experiences informed
by the principles identified here).

First of all, inquiry classrooms emphasize the full complexity of knowledge
production and expect students to see the doubt arising from ambiguity, anoma-
lies, and contradiction as a motivating force leading to the formation of questions,
hunches, and further exploration. Teachers in inquiry classrooms, therefore, are
less inclined to take the role of the expert and clear things up for the students and
more interested in helping students use this confusion as a starting point for prob-
lem posing and data analysis. Furthermore, students, acting as inquirers, come to
see the way in which their knowledge is contingent upon the values and context
that frame the problem as well as the choices and decisions they make in the
course of their investigations. No longer are students outsiders who regard knowl-
edge as something handed down from high and preserved as flat factual statements
in textbooks. As members of a community of practice they understand that what
ends up in textbooks is often the endpoint of a long debate, which may have been
decided on the basis of the argument made and not the correspondence between
the phenomenon and the statement describing it. In this way, the authority of
textbooks is deconstructed and they simply become artifacts of a particular con-
versation. Second, unlike traditional classrooms where students learn in the pres-
ence of but not with others, learning in inquiry classrooms is collaborative. Value
is placed on the creation of a community of practice within which meanings are
negotiated. This does not mean that students need not construct personal under-
standings, but rather that collaboration and social interaction provide support for
that process. At the same time, the moral imperative of inquiry classrooms re-
spects diversity and individual voice so that the production of collective meanings
does not become a tool for silencing difference.

'Third, student generativity is a distinct feature of inquiry classrooms. The
understandings that students construct as a result of their mathematical inquiry
cannot be reduced to the duplication and display of ready-made knowledge so
common in traditional classrooms, but rather involves the generation of new
meanings and connections. This means that instead of always addressing math-
ematical problems and questions set by the teachers, students become involved in
setting directions for their own mathematical inquiries, posing new problems, and
reformulating and/or expanding upon existing ones. Several mathematics educa-
tors have proposed instructional strategies.that can support students in these 'unu-
sual' activities in the context of mathematics instruction (see, for example, Brown
and Walter, 1990, 1993; Borasi, in press).

Fourth, teachers in inquiry classrooms no longer transmit information through
the channels of talking or reading but take up the much more challenging job of
supporting student inquiry. This means establishing a radically different set of
social norms and values in the classroom as well as finding ways to invite students
into the inquiry process, and support them as they engage in the process. This
support comes in the form of demonstrations of how to approach various aspects
of the inquiry process, invitations to students to engage in the process, and ex-
plicit and implicit messages that help students value all that is involved in being
inquirers. Drawing on the work of whole-language educators, inquiry teachers
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understand the importance of demonstrations, engagement, and values in creating
a community of learners that supports student inquiry (Harste, Short and Burke,
1988). Perhaps one of the most important things inquiry teachers do is listen to
students .(Confrey, 1991; Harste, Woodward and Burke, 1984; Paley, 1986).-They
listen so as to understand their beliefs about learning and the background experi-
ences they bring to specific inquiries, to invite their involvement in the framing
and organization of the inquiry, to gain insight into the meanings and connections
students construct, and to hear their concerns and questions about the inquiry
process itself and the changes in classroom norms and values it engenders.

Finally, students take centre-stage in inquiry classrooms and become active
members of a community of practice who share the responsibility of planning,
conducting, and reflecting on their inquiries with other community members,
namely, their peers and the teacher. This role requires a much greater degree of
risk-taking on the part of the student as well as a willingness to listen and nego-
tiate with others (as noted, for example, by Lampert, 1990). Risk is woven into
all aspects of the inquiry process, from the initial formation of the problem through
to the final presentation and evaluation of end results. Given their prior school
experiences, many students may be hesitant to immediately trust that teachers are
really interested in hearing their ideas and not just waiting to catch them making
a mistake. Hence, the first days, weeks, and months of the class take on special
significance as students become socialized into practices that depend on their con-
tributions and learn that a range of responses, not just one, is valued.

Conclusion

Throughout this chapter, we have argued that school mathematics misrepresents
the nature of mathematical knowledge and, in so doing, teaches students that
mathematics is all about certainty, not inquiry. The result is that in many class-
rooms, mathematics is like an iceberg of which students can see only the tip; the
bulk of it, dynamic and complex, is hidden from view. The elegant solutions and
`logical' proofs they are taught seem to spring ready-made from their textbooks
without a hint of the struggle that charactefizes the actual process of knowledge
production. Schwartz (cited in Richards, 1991) comments on this limitation of
school mathematics in the following statement:

There is something odd about the way we teach mathematics in our
schools. We make little or no provision for students to play an active and
generative role in learning mathematics and we teach mathematics as if
we expected that students will never have occasion to invent new math-
ematics. (Schwartz, in Richards, 1991, p. 27)

We suggest that if we want students to have an opportunity to invent new math-
ematics, we must demystify mathematics by valuing what lies beneath the tip of
the iceberg. Conceptualizing mathematics instruction as inquiry offers one route
to take in order to accomplish this goal.
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Note

1. This study was partially supported by a grant from the National Science Founda-
tion (award #MDR-8850548). The opinions and conclusions reported in this chap-
ter, however, are solely the authors'.
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Chapter 17

Reading to Learn Mathematics in the
Primary Age Range

Charles W. Desforges and Stephen Bristow

Background

The research reported here arises from a project in which we are exploring the
role that 'old' knowledge plays in new learning in the age range 7-11 years. All
learners have a range of resources which may be brought to bear on new learning
including relevant subject knowledge, general knowledge, meta-cognitive strate-
gies, imitation, scaffolding and social supports. The objective of our research is to
develop a theoretical account of how an individual learner brings these resources
to bear in the construction of new knowledge in academic subjects. In this present
account we discuss the way young children use reading in their pursuit of math-
ematics learning.

The problem of knowledge use in learning has considerable significance. In
practice, the dangers of teaching 'inert knowledge' are well-known (NCC, 1992).
The problems of teaching knowledge utilization i.e., of teaching children to use
and apply mathematics are equally well-known and proving to be tractable
(Desforges et al., 1993). In theoretical terms the relationship between knowledge
use and knowledge application has attracted extensive attention (see Singley and
Anderson, 1989 for a review) yet there is little to show for this work. As Fodor
has observed, `. . we simply have no idea what it would be like to get from a
conceptually impoverished to a conceptually richer system by anything like a
process of learning' (in Bereiter, 1985, p. 202).

It has been characteristic of this research tradition to separate the processes
of knowledge acquisition (i.e., learning) and knowledge use (i.e., application) for
scrutiny. Yet they are inseparable both conceptually and in practice. Knowledge
cannot be acquired without the deployment of extant knowledge. And knowledge
cannot be deployed without creating at least the possibilities of learning.

Knowledge application has been fostered through strategy training (Pressley
et al., 1989), attribution training (de Charms, 1972) open-education movements
(Blyth, 1965) and most recently through appeals for a fundamental re-organization
of the social contexts for learning (Resnick, 1987). These attempts have not been
wildly successful (Bereiter, 1990; Desforges and Bristow, 1992).

The lack of impact is not surprising in retrospect. 'The striking feature of
most of the efforts to promote children's knowledge application is that they are
not based on an understanding of children's extant competencies (Desforges and
Bristow, 1992). There are almost no studies of how children in the age range
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7-11 apply knowledge to learn. Frequently, suggestions for practice are ad hoc
collections of good ideas culled from a voluminous literature (see Kameenui and
Griffin, 1989 for example). Other suggestions come from idiosyncratic views of
intellectual functioning (e.g., De Bono, 1976). Yet others are derived from gen-
eral information-processing theory or are based on the reflections of, mainly,
adult experts. All these rationales imply or assume that children's minds are empty
of competing or alternative strategies. Interventionist approaches assume that offered
strategies are implanted in a vacuum. No interactions with children's knowledge
are anticipated.

Our work is an attempt to appraise children's extant approaches to knowl-
edge application, to come to an understanding of the processes they have at their
disposal and the manner in which these processes interact with their knowledge
as facts, concepts and procedures. We have the longer-term aim of promoting
knowledge utilization at the point of knowledge acquisition but our immediate
purpose has been to expose and explore the link between knowledge use and
learning as a starting point. Our attention has been on children in the age range
7-11 years and on the subjects of mathematics, science and English. In this ac-
count we focus on mathematics but we will refer to some of the science work
where contrasts prove illuminating.

We have taken a broad view of knowledge to include, subject domain knowl-
edge (concepts, skills, procedures); strategic knowledge (general approaches to
learning and problem-solving); contextual knowledge (knowledge of social and
working practices) and self-knowledge (i.e., beliefs that children hold about them-
selves in regard to the curriculum).

As an aspect of knowledge use we were particularly interested in how chil-
dren interacted with the texts they typically meet in mathematics schemes. The
focus on reading in primary mathematics is important in a number of respects.
From the point of v:ew of curriculum experience reading opportunities are exten-
sive in mathematics because the professional schemes so extensively used are laden
with text-based examples, illustrations and explanations. Reading is, at least po-
tentially, an important way of learning mathematics. Reading has strong curricu-
lum validity in current approaches to teaching mathematics. Secondly, reading
is promoted in the primary curriculum as a transferable skill, a cross-curricular
activity: it is therefore important to consider the degree to which it does in fact
transfer and/or to expose the problems and opportunities in the application of
reading skills in the domain of mathematics. And thirdly, reading is a particularly
useful research vehicle for those interested in knowledge application. As a process
it necessarily recruits 'old' knowledge. As a context it is readily managed: text is
easy to design and control in scope and difficulty and there are tried and trusted
methods for collecting data on children's thought processes in interacting with print.

Our particular research questions then were, how did the children read the
text and in what ways did the textchild interactions provoke or recruit knowl-
edge in pursuit of learning.

The Research

We have worked with a sample of forty-eight children, twenty-four age 8-9 and
twenty-four aged 10-11 at the point of data collection reported here. The children
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were nominated by their teachers who were sympathetic to the aims of the project.
We asked for, and believe we got, articulate children who would enjoy our activ-
ities. The sample was spread across the attainment range with a slight skew to-
wards higher-attainment levels.

Important features of our research procedure were first that we shared the
research objectives with the children. We recruited the children after explaining
the objectives. More importantly we persistently reminded them of the objectives
throughout the interviews and activities. Secondly we used 'think aloud' tech-
niques in the interviews. Essentially we asked the children to spell out their think-
ing and decisions for us as they used our learning materials. To help the children
use this technique we had first modelled it for them and subsequently reminded
them and gave them feedback as they talked through their thoughts. The third,
critical feature of our research method, was that in our procedures we deliberately
took them to a point of difficulty with a topic in order to create the possibilities
for learning. We were not interested in how they ran off familiar procedures. As
we worked on the topics (to be described later) we moved the children on until
they reached a point at which they could not do the work before them. We then
presented them with a learning pack which, we told them, might help them make
progress. Our research question was, in what ways did the pupils recruit their
knowledge to engage with the proffered learning materials?

Four mathematics topics were explored in this way, namely, area, fractions,
ratio and averages. One quarter of the sample (i.e., twelve children) studied each
pack. Essentially our approach had a pre-task, learning phase, post-task structure.
An interviewer took children individually through the experiences.

The pre-task phase took the form of a set of up to six problems on the topic
which progressed in difficulty. Each child was asked to work through these as far
as possible. The interviewer's role was to prompt the articulation of thoughts,
choices and decisions. The child was forewarned that they would not be able to
succeed on all the problems and that when they could go no further they were to
turn to the learning pack.

All the materials used were facsimiles of materials to be found in popular
mathematics schemes. The children were entirely familiar with the style and lay-
outs with which they were presented. Figures 17.1 and 17.2 show examples of the
materials used.

During the children's introduction to the learning pack they were told that
they could approach the materials in any way they chose, in any order and in any
way they saw fit to help them to learn. They were reminded that we needed them
to think aloud whilst they engaged with the pack. They were asked to say why
they did certain things, what sense they were making of what they had read or
done. During their engagement with the pack they were prompted by the re-
searcher to articulate their thinking. This was achieved by the use of open-ended
questions related to the children's actions. For example, 'Tell me why you did
that' or, 'You look thoughtful. Can you tell me what you are thinking', or, 'what
did you make of what you just read?'

When the children had made use of the learning pack to their own satisfaction
they were asked to answer the post-task items. They were asked to comment on
the origins of any differences between their pre and post-task answers (for exam-
ple, why they had put a different answer or how they had come to know that a
new answer was necessary). Again, the children were asked whether they thought
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Figure 17.1: A Sheet from the Averages Pack

Jan timed herself from home to
school each day for a week.

These are the times :

Man. /7 00144

414444 .2.2 mist
Wed 19
%as .21 miss
494i .26 mat

Jan wants to work out her average time that week.
To find the average she adds up the 5 times.
Then she divides by 5.
So her average time is 105 ÷ 5 = 21 minutes.
When you work out an average like this, it is called
the mean.

there was anything for them still to learn. They were then offered the opportunity
to do so if they desired.

All the interviews were tape-recorded. Data consisted of tape recordings
of the conversations, long-hand notes made by the researcher of the children's
actions, and copies of the children's pre and post-task answers together with any
written work the children did when using the learning pack including associated
workings on rough paper.

Analysis

The particular analysis we focus on here is in regard to the children's interaction
with the text of the learning pack. By way of example, the full learning pack for
the topic of 'area' is shown in Figure 17.3.

It will be recalled that the children met the learning pack only after they had
reached a point of difficulty in problems in the pre-task phase of the study. How
did they use the pack to promote their learning? What knowledge, broadly con-
ceived was recruited and brought to bear on the pack? What processes of sense-
making were deployed?

Our response to these questions is essentially descriptive. We allowed partici-
pating children to articulate their authentic experience of learning and thereby
expose how they organized and used their previous experience and knowledge to
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Figure 17.2: A Sheet from the Fractions Pack

Peter wants to complete -14 s = .

Because. + and ieach have 5 as the denominator,
I can add them easily.

He writes .1-+ 3=
5 5

Complete.

1 2 1 1 2 +2 =+--= +
5 5 3 +3 5 5

1 3

7 7

Next, Peter and Gill talk about how to add and take
away the fractions + and +.

We could add and take away
the fractions if they both had
the same denominator.

They both write : is the family name for f I 2 1 4

2 t 2 4 I 6 8

3

1

0. 1

is the family name for r
3

3 4
9,

So 1+ 1 5 and l_ 1= 3 1

2 3 6 6 62 3 6 6 6

learn. We claim validity on the basis of a number of factors. We recruited articu-
late and highly motivated children to the sample and encouraged their motivation
and articulation. Interviews focused on observable actions and were initially non-
directive (greater direction only appearing after the children had exposed what
they considered to be appropriate learning behaviour). The interviews followed
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Figure 17.3a: Full Learning Pack for Area

What does area mean ? How to find the area of a rectangle

fleo leo 2 yr fnI Nu.. names

[The area is the amount of space inside a shape.

The area el thu recta*

tut been iboded

The se. el this arcle

ha be. OhYded

How to find the area of a triangle.

Ilse Iwo or. to fod 6. am of inams.le

-
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Figure 17.3b
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Here are 2 ways to find the area of a made :

1
Flare is the cucle you
want to find the area of.

If we lay a grid of centimetre
squares over Me circle lake this :

we can count bow may whole cenurnetre squares there me .

There are 6 whole ceatimore squares.

You will notice dim the circle also amen some squares which are as
who't centimetre squares.
We can estimete how may extra centimetre squares these bus would
make by colleting all those smarts Mat are more than half covned as
whole pure. and by sot coo ming all those due are km than half
coveted.

The is stout 6 extra squares.

So. altogether the srea of the circle 15 about

6 6 12 square cenUmetrea.

2 Aeother .ay le (1.1 me nn of met ig ro se the
form,.

Area=rtxrxr

.tar n u the Dumber 1.142 and
r the Maud be mete

1.f s say that the nick ya.i.netto fed the atea of bat
,.late of 3 as

Tbto the Sea 3 151

lets Woul 11 5 R.,* asitmests

the children's actions and verbalizations throughout. All claims that we make in
analysis are directly linked to children's actions.

We have taken several lines in analysis. First, we simply described children's
routes through the phases of the task together with their own commentaries and
the researcher's questions/prompts. This involved writing out the interviews with
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the notes of actions integrated into the text. It will be recalled that these routes
were self-chosen. Secondly, regardless of routes, we listed, across the sample,
children's responses and reactions at each phase of the experience. That is to say,
we listed all answers and comments relating to each of the pre-task items in the
mathematics task. Then we listed all responses to each section of each sheet in the
learning pack and, finally, we listed all answers and comments relating to each of
the post-task items in the mathematics task. This we did separately for each of the
four topic areas in mathematics.

Using the listings and the descriptions we then searched for themes in the
data which would reflect common experiences of, and approaches to, learning
with particular reference to the children's use of subject knowledge. Here we used
a form of recursive comparative analysis. This is a process in which unfolding
descriptions of pattern are constantly tested and refined to take account of all
relevant data. Cooper and McIntyre (in press) have described this as a 9-stage
process as follows:

1. reading a random sample of scripts;
2. identifying points of similarity and differences amongst these scripts in

relation to the research question;
3. generating emergent theories in relation to the research questions;
4. testing the theories against the first sample of scripts;
5. modifying the theories to account for exceptions;
6. testing the theories against a new set of scripts;
7. generating new theories against transcripts already dealt with;
8. carrying all existing theories forward to new scripts; and
9. repeating the above process until all data have been examined and all

theories tested against all data.

In this way we identified two main themes in the children's reading of the
text. These were: purposes for reading and the level of processing of the text. We
discuss these in the following sections.

Purposes for Reading

A common way for children to approach the learning materials on offer t, them
within the various tasks was to work through them simply because they were
there. Many of the children seemed quite content to read through text or answer
questions however, when asked why they were doing particular things or what
they were hoping to achieve either no answers were forthcoming or their answers
indicated an intent only to reach the end of the work. Nathanial (10-years-old)
was asked what he was hoping to achieve by working his way through the math-
ematics learning pack on fractions. He said, 'Nothing really . . . It's just the easiest
way of going through them.' This was not an isolated response. It was given by
many other children, from both age groups and of both sexes.

Among the sample there are examples of children engaging with the learning
packs in a distinctly different way from that identified above. Whereas the learn-
ing packs were on some occasions perceived as just more material to work through,
on others the learning pack materials were perceived by children as containing
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something which they needed to know in order for them to be able to complete
the learning task successfully, that is, for them to be able to answer the pre-task
mathematics items correctly. Such a perception was accompanied by children
identifying what we shall refer to as a 'learning need'. To expand on this, at some
point during their engagement with the learning materials children would recog-
nize that they needed to know something or find something out, specifically so
that they could complete the task to their better satisfaction. This identification
of a need to learn something would then, in turn, lead to a particular search for
information, or execution of a particular activity. Their engagement with the
learning materials would take on a more deliberate air; there would be an inten-
tion to learn, and the aim of that intent was, to their way of thinking, to complete
the learning activity appropriately. To exemplify this category of knowledge use
we shall describe an instance of one child engaged on the fractions learning task.

Cohn (10 years) came to this learning task with a rich knowledge base in
mathematics. With particular reference to his knowledge of fractions he was able
to add and subtract fractions with common denominators and applied this knowl-
edge successfully in answering associated verbal problems. He did not know how
to answer questions involving addition or subtraction with mixed denominators,
although his protocol for one such problem indicated that he may have had some
relevant experience to do with equivalence. For example, he tried to answer the
following question: 'Nick ran 4 2/5 km and then walked a further 2 1/4 km. How
much further did he run than walk?'

He said, . . I'm just trying to get the top one [the numerator] . . . I want the
bottom and the top to having something in common.' This procedure, however,
was not well established in his repertoire; he was also unable to answer the ques-
tion 5/8 + 1/3 = .

When he was given the learning pack Colin read through it in page order. In
the process he discarded several of the sheets without involving himself in answer-
ing the questions because he was confident that he already knew the sheet's con-
tent and so had no use for them. The following are indicative of his comments as
he did this:

I know all about this.
That's easy enough.

. . . it's just times tables.

When not discarding sheets, Colin's use of the learning pack was character-
ized by a search for something which might help him answer the mixed denomi-
nator problems on the pre-task. For example, on reading one of the sheets he
spent some time looking at the arrangement of vulgar fractions printed on some
discs (See Figure 17.4).

He articulated his thinking at this point by saying, . I was looking for
things in common.' However, he concluded that this sheet was . no use . .

because . all your top ones [numerators] are smaller than the ones at the bot-
tom [the denominators].' Ultimately Colin came to a sheet which explained equiva-
lence and addition of fractions with mixed denominators (see Figure 17.5). Here
he closely followed the written explanation and commented . That helped [he
points to '1/2 is the family name for . . I looked along the lines and found that
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Figure 17.4: An Extract from the Fractions Learning Pack

Each disc has
been cut in half

We can count
in halves :

1 2
7 2

or we can count in
mixed numbers :

3 4
2

5 6
2 2 7 8 9 10

2 2 2 2

1 14 2 24 3 34- 4 44- 5

Figure 17.5: An Extract from the Fractions Learning Pack

Next, Peter and Gill talk about how to add and take
away the fractions land +.

We could add and take away
the fractions if they both had
the same denominator.

They both write : is the family name for {
1

2 1 2

is the family name for
3

{ f
1 3

-9;
4

to.

So 1 + 1 = 3--÷ 2 5 and _ . 3 L 1

2 3 6 6 6 2 3 6 6 6

a sixth .. . the denominator is the same there [he points to the ringed 2/6] .. . so
I put it as them and I got the answer.' He then returned immediately to the
analogous question on the pre-task and transferred the procedure he had just
learnt.

Colin treated this task as problematic as being like a quest. He was in-
volved in doing more than just reacting to elements of the learning pack; he was
involved in specific searches and in explicit questioning of what he was experienc-
ing in relation to what he already knew. His activities in the name of learning
were aimed towards finding out specific information and his use of the learning
pack materials suggested that he perceived them more as a learning resource than
as a series of tasks to perform.

224



Reading to Learn Mathematics in the Primary Age Range

Knowledge use which occurred within this category tended to be accompan-
ied by a more explicit presence of executive processes, that is processes by which
children monitored and regulated their own thought processes. For example Clare
(8), identified a specific learning need when told by the researcher at the end of
the interview that one of her answers was still wrong (specifically that 3/10 4/
10 = 7/20 was wrong). Initially she tried to probe the researcher to help her out,
but when this proved fruitless she returned her attention to the learning pack,

. I could look in there.' She then instigated a search through the pack for an
analogue to the problem (I'm looking if there's some of these . . .'). Like Colin in
the previous example, Clare discarded sheets which did not, in her opinion, help
and then began to give voice to what can best be described as an 'inkling' she had.
She said, `I have a funny feeling that that [she points to the '20' in her answer] is
ten .. .' When asked to enlarge on this feeling she added, . . because you only
add the top numbers . .. We know that this is seven over ten because we don't
add these [the denominators].' The significance of this conclusion then struck
Clare, `If that one's wrong then all the others would be wrong.'

Clare's activity is significant because she used the learning pack. Rather than
merely regarding the pack as more work to get through Clare interrogated the
pack with the explicit intention of completing the task to solve particular prob-
lems or remedy specific deficits.

Some children dug deeper than this. In asking children to try and learn par-
ticular things from, the materials provided for the purpose we were alert to the
likelihood that children's perceptions about what one does in the name of learning
would be different. We have so far indicated two such perceptions: firstly where
the task of learning is indistinguishable from the task of getting through the
materials and, secondly, where the task of learning is perceived as one necessitat-
ing the more appropriate completion of the task through the pursuit of specific
procedures. In this section we shall explore a third perception in which children's
actions and thoughts in the name of learning seem to have been aimed at deeper
levels of understanding. This we refer to as the 'intention to get to the bottom of
something'.

In collecting examples in which children demonstrate deliberate attempts to
get to the bottom of something we discovered that there are different processes
through which these attempts are mediated. We are not yet in a position to be
exhaustive about the number of mediating processes through which children try
to get to the bottom of something. Two processes seemed salient, namely the use
of analogy and the use of hypotheses.

Holly (8-years-old), by way of example, accepted the task of trying to learn
about averages from one of our mathematics learning packs. She identified a
`learning need' the moment she read the first question on' the pre-task. She asked,

.. What does "mean number" mean?' She tried initially to interpret the term in
relation to her everyday understanding of 'mean', but found this approach both
unhelpful and, she thought, inappropriate. ('Well a mean person isn't going to
give the right number of things . . . Except that I bet you that isn't what it means.')

She seemed more at ease with the word 'average' which she encountered as
she was reading the first learning pack sheet, and illustrated her understanding
of the concept with an analogy: 'Average to me means that two things are the
same . . . Like you get a weight and you have to pour the salt out 'till it's average.'
Here the use of analogy is exemplified in Holly's use of the term 'it's like'. Later
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she equated the idea of 'average' explicitly with the idea of 'equal to' thus dearly
indicating her understanding of the concept. (`Average also means equal . . . Like
when you pour salt into a jar you say "this is average" or you could say "this is
equal" . . .')

In many ways Holly's activities in the name of learning resembled those
exemplified in previous sections. She approached each of the learning pack sheets
in turn and seemed to accept that doing the work component of the sheets would
help her to answer the pre-task questions. CI think I ought to go onto these
sheets . . It's better that you do the whole answer pack as once.' at- 1 . . The
[learning] pack is more for learning things. So I do everything here, I learn lots
of things and then I go onto the questions.') However, her approach belied some-
thing much more significant in what she did. Rather than coneent;ating solely on
trying to find out how to calculate an average, she seemed to be deliberately
addressing (evaluating and updating) her current understanding of the concept of
average.

To start with she quickly overcame her everyday confusion with the word
`mean' through her reading from the first card in the learning pack of the sentence
`This is called the "average" or the "mean" number of visitors.' She said, 'Ali!
. . . Now I now what "mean number" means . . . It means like average . . . "Mean"
is not "getting mean ".'

Having removed this anomaly Holly continued to read the sheet and discov-
ered that averages were to do with division. (`Oh! It says divide . . .') Holly,
however, was not content just to learn how to calculate an average and proceeded
to enlarge on what she thought averages were all about. To do this she chose a
real-world context to exemplify her understanding. (`It's like if you have people
and they all gave you five pounds . . . And then you suddenly got hold of another
twenty people and they all give you five pounds . . . And then you suddenly go%
hold of another twenty people, and it wouldn't be very fair to give them all one
pound when some of them hadn't contributed.') Again the phrase 'it's like' ap-
pears in her language illustrating the way in which she was trying to make sense
of to get to the bottom of the idea of average. Here it would seem that
Holly's understanding of `sharing' and 'fairness' were included in her analogy for
the concept of average.

Holly then read the next sheet in the pack:
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AVERAGES 2

Patrick is given a different amount of pocket money each week.
For the first week he was given £2. For the second he was given £4, and
for the third week he was given £3.
When he was asked how much pocket money he gets a week he found
the 'average' mean amount of money he receives.

To find the mean:
(1) Find the total of Patrick's money:

£2 + £4 + = £9

(2) Divide this total by the number of weeks:

£9 + 3 =
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So Patrick's mean amount of money (or the average) is £3.

Here she felt it necessary to provide for herself some reason as to why Patrick
(the boy in the text example) should need to give his answer to the question in
the form of an average. (`. .. And he would have to say three pounds because he
couldn't go "Oh I get two pound, then four pounds, then three pounds" because
everybody would be confused.')

A similar form of reasoning went into Holly's reading of the next sheet, only
this time she was prompted to provide another and this time a very powerful

analogy expressing her understanding of average. She explained, 'It's like [my
emphasis] if you had a pile of . . . different piles of bricks . . . [she points to some
wooden blocks stored on a shelf in the classroom,' . . . and you went like that with
you arm. [She sweeps her arm across the imaginary pile of blocks] So that they
all . . . ended up with the same number in each pile.'

It seems to us that Holly was engaged in a quite different learning activity
from those we have already exemplified. Holly seemed genuinely puzzled by the
terms 'average' and 'mean' and what the terms meant in the context of mathemat-
ics. She read the text on the sheets and interpreted their content with the intention
of understanding what the terms meant and what purpose the concepts served.
This she achieved by interpreting the conte,it of the materials provided for her in
relation to her mathematical understanding of addition and division (sharing) and
her everyday understanding of human communication (the reasons and purposes
for expressing information in particular ways). These interpretations she expressed
in terms of explanations and analogies. These, in turn, were then dropped or
amended to take account of new situations she encountered and new interpreta-
tions she made of those situations.

Different purposes give different directions to learning. Purpose therefore
serves as a significant 'knowledge recruiter'. By acting through the mechanisms
of selective attention, the goal c1r purpose brought to an activity works to high-
light or to cast into shade, aspects of the task environment. To what degree did
children bring different purposes to the text in the mathematics.

We can summarize the above purposes or intentions as follows:

1. an intention to complete a task where the emphasis is on the completion
of work;

2. an intention to complete a task where the emphasis is on the identifica-
tion of a specific learning need; and

3. an intention to get to the bottom of something where the emphasis is on
achieving a deeper understanding of the material at hand.

Using these categories as a framework for the analysis, children's responses
to each of the sheets on the mathematics tasks were coded. For this analysis the
listings of reconstructed data were used and each entry coded. Coding decisions
were made on the basis of a child's stated purpose or from an inference made on
the basis of a child's actions. The following statements exemplify children's pur-
poses within each category for the mathematics tasks:

Category 1: intention to complete a task where the emphasis is on the com-
pletion of work.
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Table 17.1: Incidences of Different Purposes Expressed as Pupils Engaged with the
Maths Packs

Intention Topic
fractions averages area ratio
(N = 13) (N = 10) (N = 14) (N = 6)

complete the task as work
learn a specific procedure
get to the bottom of something

44 22 29 4
6 3 13 1

1 5 7 10

Alex Tow ler (8) responded to a question in the fractions learning pack by saying
`instead of putting the add in, I took out the plus sign and pushed the number in
its place .. . I saw in the example that that's what they were doing, and so I did
the same.'

Category 2: intention to complete a task where the emphasis is on the iden-
tification of a specific learning need.
Holly Jury (8) approached the first of the sheets in the averages learning pack by
saying 'I need to know what to do with them [referring to a set of numbers in a
chart]. Like if it said add these together or said multiply these numbers or subtract
these numbers . . just some information to tell me what to do.'

Category 3: intention to get to the bottom of something where the emphasis
is on achieving a deeper understanding of the material at hand.
Holly Wiles (8) read a statement f :om the averages learning pack and said
`Aaah . Now I know what "mean number" means . . . It means like average
. . . Mean is not getting mean. It's like getting like average . . . I don't know who
called it mean . . . except that it probably fits in later on.'

Table 17.1 shows the frequencies of different intentions across the different
tasks. It clearly reveals that far and away the predominant purpose of the children
in approaching the learning materials was simply to get to the end of them as a
job of work.

It could be that those children who engaged with the ratio task were more
learning-oriented than those engaged on the other tasks. However, case studies
we have done elsewhere suggest that it is misleading to label individuals in this
way. That is, children often engaged in suite a different way with different subject
matter. A more likely explanation, we believe, is that the content and presentational
styles of the different leaning packs influenced the purposes which children adopted
when faced with trying to learn from them. We believe that the fractions learning
pack, for example, was more suggestive to the children of worksheets and work
books encountered in their school mathematics experiences and, therefore, their
normal working practices for completing such work were brought into play. The
ratio task, in comparison, with a greater emphasis cn explanation and worked
example gave those children who engaged with it little opportunity for exercising
their normal working practices and, instead, prompted them to try and make
sense of the sheets' content, that is, to get to the bottom of the concept of ratio.

Whatever the case, the predominant intention to 'work the package' i.e., to
go through from the beginning simply to get to the end, was, as our illustrations
vividly illustrate, a serious barrier to learning since it was associated with no
intention therefore no effort to learn.
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Figure 17.6: Examples of the Science Text Presented to the Pupils

I

Some facts about light ...

Light is a form of energy.

It is produced by hot objects
such as the sun, or a light bulb,
or the flame of a candle .

Light travels in all directions

Some facts about light ... I

Light bounces off some objects
this is called reflected light (or
"reflection").

You can see yourself in a mirror
because the shiny surface reflects
most of the light

_J

I Some facts about light ...
II Light can travel through air, glass

or water.

When light travels from air to glass or
to water, it changes direction
This is called "refraction".

Light is refracted because its speed
changes it travels more slowly in
water than in air.

Ilight travels
in all dorm

lank
tilled
with
water

bghl elwAses threat.
wheeittotrawv.eil,s,fturn sitt

Some facts about light ...

The penny reflects light.

The reflected light is refracted as it
leaves the water.

The person can see the penny at the
bottom of the tank because we
assume light travels in straight lines

11

light as reflected
by the penny

tank
filled
with
water

;I di
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We should note in passing an interesting comparison between the children's
intentions for mathematics and those for science. The science text materials are
shown in Figure 17.6.

It proved quite straightforward to discern the children's intentions in reading
the mathematics text perhaps because in the main they were so ostentatiously
completion-oriented. In contrast it proved impossible to identify children's pur-
poses in reading the science text. Despite determined prompting the very children
who were clear about their intentions in mathematics were entirely unforthcom-
ing in r,:spect of the science text. Whatever it says about science it highlights that
for stuflying mathematics, text is there in the main simply to be got to the end
of, a strong reflection perhaps, of their classroom working practices.

Levels of Processing

How did the children. interpret the text? In pursuing this question we used the
scale of 'constructive activity' developed by Chan et al. (1992). The scale is shown
in detail in Table 17.2.

Briefly the scale is an attempt to characterize think-aloud data in response to
text. It distinguishes between five levels of sophistication on three dimensions of
response: declarative, interrogative and evaluative. In developing the scale, Chan
et al. (1992) have taken the view shared here that comprehension is an active
process of construction involving the reader in interacting with the text rather
than merely receiving it. Their scale was developed from the analysis of students'
reports of their cognitive processes using a protocol analysis (Bereiter et al., 1988)
based on a general constructivist approach (Scardamalia and Bereiter, 1984).

As the texts on offer to the children in our sample in both the mathematics
and the science tasks were similar to those use by Chan et al. (in that they con-
sisted of discrete statements about the content in question) it seemed an appropri-
ate analytic tool for our purposes: the scale has face validity.

For illuminative purposes in this analysis we have chosen to compare the
children's responses to the science text with those to a mathematics text. We chose
the area text as the one most similar to the science text in layout. The decision to
make this comparison automatically reduces the sample size to twelve these being
the children who worked through the area tasks.

Using the listings of reconstructed data for both the area and the science
tasks, each child's response to each of the sheets was coded according to the
highest level of constructive activity exhibited during the reading of that sheet.
Thus for each of the four sheets in the science task and for each of the five sheets
in the area task a child was given a rating from 1 to 5 corresponding to the five
levels of constructive activity. There were twelve children who engaged with
both the science and the area tasks. Of these, five were aged 8-9 and seven were
aged 10-11. Across the sample there were seven boys and five girls.

Here are some examples of children's responses for each of the five levels: -
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Level 1: Will Tillett (8) read the first paragraph on the second area sheet
and said 'That looks quite easy . . It's kind of easy, kind of hard.'
Level 2: Lucy Marsh read the 'partial square' explanation at the bottom
of the second area sheet and said didn't know that . . . When you put the
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Table 17.2 Levels of Constructive Activity in Learning from Text

Declarative Interrogative Evaluative

Level 1: Prefactual confabulation

States the topic or repeats
fragmentary parts of the text;
or gives associations of
irrelevant personal knowledge
when cued by isolated words.

Asks questions about
isolated words.

Level 2: Knowledge/detail retelling

Makes near-verbatim repetition
of the text statement; or
elaborates knowledge which is
tangentially related to the text
when cued by a text
proposition; or makes
overextended inferences
based on personal knowledge
when cued by a text
proposition.

Paraphrases the text
statement to clarify what the
text says; or recalls personal
knowledge relevant to the
text; or paraphrases the text
statement and adds simple
elaborative inferences to the
text.

Refers to personal knowledge
or previous text statements to
explain or interpret new text
information.

Constructs inferences and
hypothesizes to extrapolate
knowledge not already known
or shown in the text.

Asks questions by
appending an interrogative
word to the text statement.

Level 3: Assimilation

Asks questions relevant to
the text using one's general
knowledge.

Level 4: Problem solving

Formulates text problems
by identifying the source of
confusion, and hypothesizes
to resolve the problems.

Level 5: Extrapolation

Formulates situationbased
problems that go beyond
the presenting text to
extrapolate world
knowledge.

Reacts to isolated words
or brief fragments of text
by giving nonanalytic
affective responses.

Acknowledges the text
to be true or rejects the
text, and makes
nearverbatim repetition
without giving any
reason.

Disagrees with the text
statement and recalls
personal knowledge to
contradict the text; or
agrees with the text
statement and recalls
personal knowledge
related to the text.

Evaluates the text or
examines personal
knowledge by identifying
and resolving the conflict
between personal
knowledge and text.

Evaluates conflicting
information to resolve
inconsistencies leading to
the synthesis of a new
idea.

Source: Chan et a/. 1992
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Table 17.3: Incidence of Levels of Constructive Activity in Response to Text in Science
and in Area

Level Science Area

prefactual confabulation 3 22
knowledge telling 26 29
Assimilation 9 6
problem-solving 4 1

extrapolation 1 0

grid estimate just to see what it is ... You could do the ones that are
under a half .. put those down, and ones that are half don't count ... It's
just a guess.'
Level 3: Daniel Webb (10) read the middle section of the second area sheet
and said, 'The area of this rectangle is 19.5 square centimetres .. . There's
no point . .. can't do point in area because the reason is there's either so
many square or there's so many square ... You're asking for the whole
squares.'
Level 4: Laura Stoodley (8) read the explanation for finding the area of a
triangle on the third area sheet and said, 'Oh, I get how to do that one
now .. . Well you have to pretend that it's an oblong, and then you have
to find the area of the oblong and then divide it by two.'
Level 5: Lucy Marsh (11) read the statements explaining refraction and
said 'It's new to me about the light changes direction because here [card
1] the light goes in all directions, but then it says the light changes direc-
tion. So it's a bit odd, because it goes in all directions and then it changes
direction.'

The number of times that each level was recorded for both the science and
the mathematics tasks was then totalled.

The total for each of the five levels of constructive activity for the science and
the area task are shown in Table 17.3.

Two points are worth noting in regard to Table 17.3. The first is the very
low levels of response to the mathematics text. Almost 50 per cent of engage-
ments or responses involved 'non-analytic responses' to isolated words or 'repeti-
tions of fragments' of text. The modal response to the area text is characterized
by 'ad hoc agreements with, or dissentions from, the text without reason' or by
'near verbatim repetition'.

We should emphasize that neither the structure of the texts nor the specific
contents were unfamiliar to the children. As we stressed earlier, the texts were
close facsimiles to popular and readily available curriculum inaterials. It seems that
the children in our sample were hardly reading for meaning where they could be
said to be reading at all.

The second point is that the children were more impressive with the science
text there being a greater proportion of incidences of level 3 and above. Combin-
ing incidences at level 3 and above make the data in Table 17.3 amenable to
analysis using X. For this distribution X' is 15.06 which for 2 d.f is significant
at p < 0.001. The children perform significantly better with science text than with
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mathematics text suggesting that the difference in academic subject rather than
limitations on the part of the children is strongly associated with the depressed
levels of performance on the mathematics text. Children can read with more effect
than they appear to deploy on the mathematics task.

Discussion

Before elaborating on the implications of our analysis some cautionary remarks
are perhaps in order. The settings in which we studied with our sample of chil-
dren were not normal classroom circumstances. Our interviews took place in a
one-to-one relationship in quiet surroundings. Our materials, whilst close fac-
similes of those to be found in commercial mathematics schemes were, none the
less not identical to scheme materials. Our data were gathered in closely support-
ive interviews which had the potential, at least to be intrusive.

We take the view that none of these factors worked to the detriment of the
performance of the children. Indeed the likelihood is that if they had an influence
it was to enhance performance. Our design of material cleaned up some of the
worst excesses of commercial representations. The quiet atmosphere and the in-
terview's personal attention were both supportive.

Two more problems are worth stating. First our samples were small. In
regard to the interactions with text, sample size was down to twelve children.
Generalization out of the sample would be unsafe and unwise. Secondly our data
took the form of think-aloud protocols. These descriptions of thoughts cannot,
of course, be equated with thought itself. Protocols are open to a wide range of
reservations and criticisms. Do they constitute 'on-line' descriptions or post hoc
rationalizations? Everything we know about the limitations of working memory
would lead us to conclude that 'talking aloud thoughts' is a contradiction in terms.
We take the view that 'talk aloud' records of thoughts are, at best, correlates of
thinking in action. This notwithstanding they constitute important data. The ability
to communicate thoughts is a significant learning process in itself and in our
analysis we need to take our data no more and no less seriously than that.

What do they tell us? They tell us that the overwhelming intention held by
the children in our sample (N = 48) when engaging with text in mathematics was
simply to get to the end of it. This was overtly claimed in 68 per cent of the cases
where an intention could be identified. Put another way, amongst a set of articu-
late children who were committee, to engaging in learning and for whom the
possibility of learning had been created by taking them to a point of difficulty
winch they themselves acknowledged, text was merely there to be got through.
We believe these children believed they were pursuing learning in mathematics.
In other words, they intended to get through the available text in the name of
learning. Their actions in this respect are entirely consistent with Bereiter's (1990)
description of a 'school-work module'. Bereiter argues that learners organize their
intellectual resources according to their interpretation of the context they are in:
their intellectual resources become 'modularized'. His research on reading and
writing suggest that many, if not most children adapt to school as a job forming
the above named 'school-work module'. S ': a module, focusing on activities
as work, on completion and production rates for example provides a coherent

O
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response to classroom events. It marginalizes learning which becomes no more
than coincidental with school work.

Children, in Bereiter's view, develop a school-work module very early in
their school careers and this module is extremely difficult to restructure.

This is an interesting perspective in that it is entirely consistent with classroom-
observation studies of children's response to activities in general and mathematics
work in particular (Bennett and Desforges, 1984; Desforges and Cockburn, 1987).
These studies show that it is the teachers who read the schemes, explain the
examples and analyse the illustrations: the children are left to do the work. When
given the opportunity, as in this present study, to take a learning approach to the
text it is perhaps not surprising that the children treat the print as something to
be completed in some way. Their completion activity in two-thirds of instances
was, in terms of deliberative learning, banal. It was not, however, entirely so.

In 16 per cent of cases there was a deliberate attempt to learn a specific routine
and in a further 16 per cent there were deliberate and sustained attempts to garner
understanding. It is important to emphasize that we are not here categorizing
children but their intentions. Particular children evinced a range of intentions.
What we are seeing, we feel, are the effects of general working practices in using
text materials in mathematics lessons.

Even given the children's expressed intentions in engaging with the text, the
levels of constructive activity were, in our view, surprisingly low. The modal,
level 2, response constitutes, at best, a direct readout of the text. It, at least, is
consistent with 'getting to the end'. But the prominent occurrence of level 1

engagements could hardly be said to constitute reading at.all. This is a particularly
interesting point when contrasted with the same children's response to the science
text where 'pre-factual confabulation' was rare. Clearly these children can 'read'.
Yet they appear not to see the skill as relevant to learning in mathematic',. Alter-
natively, there is something about the context which renders their genera; reading
skill inoperable.

Many if not most of the children in our sample evinced the capacity for
logical reasoning and sustained analysis so to find them rendered confabulists says
more about the contexts than the pupils.

As our illustrations have shown, and as the decriptors in Table 17.2 system-
atize, operation at level 1 is associated with the recruitment of fragments of knowl-
edge which do not cohere into a line of argument or of analysis. Operation at level
2 recruits knowledge cued by the text but mainly of a tangential and/or personal
nature. If learning is taken to be a constructivist activity there is little at these
levels of processing beyond contingent and passing associations on which to build.

Clearly there is provocative material here for teachers of reading on the one
hand and for teachers of mathematics on the other. For the former, reading is
clearly not, for our sample of children, a readily transferable skill. For the latter,
children's core capacities in reading are being wasted in some way. Reading as
a constructivist approach to learning is not being deployed here: it is therefore a
wasted asset.

Our main purpose however is not to jump to conclusions about the failures
and challenges of practitioners. Our main purpose is to understand the observa-
tions we have presented: to offer a theoretical account on which practice might be
evolved.

We have already made strong allusions to the main parameters of our
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explanation. The children in our sample, it appear to us, adopt the working
practices of the classroom in their approach to mathematics. They equate learning
mathematics with doing school work in mathematics. Doing this work does not,
it seems, involve reading for meaning or understanding. The text in their schemes,
it appears is merely and at best, the continuity material. It is not, for them, an
object of knowledge. Left to their own devices they cast their eye over it: pressed
by the interviewer and the text begins to afford contingent, unanalysed and un-
used associations.

Our research leaves open the question of the relationship between levels of
constructive active and prior knowledge in the learning process. As we haves
indicated, constructive activity recruits available knowledge. Low levels recruit
contingent associations, higher-level recruit multiple connections and create the
possibilities of making new connections. Prior knowledge possibly has its effects
on learning through constructive activity. But is the level of constructive activity
determined itself by a mass factor of available prior knowledge or can higher
levels of constructive activity be promoted on a narrow basis of prior knowledge?
Chan et al. (1992) attempted to explore the relationship between prior knowledge
and constructive activity using instructional techniques. That is to say, they taught
a group of children, through modelling, to engage in higher constructive levels in
text processing but this did not produce a significant increase in learning from text
over and above a control group not so taught. Chan et al., concluded in essence
that prior knowledge has its effect on learning only through constructive activity.

The data in Table 17.1 allow us to make an interesting, albeit tentative,
comment on this matter. Table 17.1 shows that levels of constructive activity
were greatly increased on the ratio task. A note of caution is essential because
different children worked on different tasks and this, of course, introduces sources
of unaccountable variance. But taken at face value the difference is interesting
because the children in our sample were least knowledgeable and least competent
with the concept of ratio. The high levels of constructive activity were thus as-
sociated with higher levels of relative ignorance. What we cannot say, because we
did not collect the appropriate data, is that the higher levels of constructive activ-
ity here were associated with higher levels of learning. As we said earlier, the
study leaves the question of the relationship between prior knowledge, conqruc-
nye activity and learning yet to be exposed.

Perhaps safe conclusions for practitioners would be that reading is a poten-
tially valuable process for learning mathematics, that ordinary reading instruction
does not appear to transfer well to mathematics text or mathematics working
practices and that further reading instruction is unlikely to be helpful unless it is
geared specifically to mathematics subject content. Until we know better or dif-
ferent, children need to be taught to read in mathematics.
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Part 4

History, Mathematics and Education

The creation of mathematics in Sumer was specifically a product of
. school. (Hoyrup, 1980, p. 45)'

In considering the relation between mathematics, history and education, the main
issue that springs to mind is to justify the importance of the history of mathemat-
ics to school and college mathematics.' Thus it is a nice irony to be able to turn
the assumed relationship on its head, and to assert with Hoyrup that school math-
ematics provides the origin of the discipline of mathematics, around 3000 BC.
Clearly mathematical concepts and inscriptions predate this time. But mathemat-
ics was not systematically organized as a discipline until there was a need to teach
it to professional scribes, following the invention of writing. Not only was dis-
ciplinary mathematics founded there, but Sumerian schooling has a remarkably
modern ring to it. In a written disputation between two young scribes (this was
a common learning device) one writes: 'When you do multiplication, it is full of
mistakes. In computing areas, you confuse length with width.' (Hamblin, 1974,
p. 105) Thus Sumeria and the history of mathematics also give us the first written
evidence of mathematical misconceptions, some 4000 years ago.

In the modern day, there are many reasons why the history of mathematics
is important for mathematics education, and why a historical approach should be
incorporated into mathematics teaching. First of all, in the psychology of math-
ematics education, the parallel between the cultural development of mathematics
and the individual's psychological development has been noted since the publica-
tion of Haeckel's biogenetic law `ontogenesis recapitulates phylogenesis'. Of course
as Freudenthal said 'We know for sure that this law is not true in a trivial way
. . . The young learner recapitulates the learning process of [hu]mankind, although
in a modified way.' (Steiner, 1989, pp. 27-8). Understood liberally, the parallel
is a central feature of Vygotsky's psychological theory. Similarly, the revolution-
ary theory of science of Kuhn (1970), also recently extended to mathematics (Gillies,
1992), finds a powerful analogy in Piaget's theory of assimilation and accommo-
dation in cognitive growth: Both are triggered by a contradiction or cognitive
conflict. Bachelard's historically inspired concept of an 'epistemological obstacle'
suggests that in mathematics unlearning is necessary to overcome epistemological
obstacles (e.g., multiplication always 'makes bigger') in psychology as in history.
Such parallels play an important part in the contributions to this section.

A second area of contact concerns problems and problem-solving. These are
central both to the history of mathematics and to mathematics education. In both
areas they stimulate knowledge growth. Historical problems, such as the
Konigsberg Bridge Problem, which stimulated Euler to create Topology (Wolff,
1963), also serve well to introduce students to network theory in today's class-
room. A deeper parallel is in the realm of mathematical processes and strategies.
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Pappus' specificaiton of analytic and synthetic problem-solving methods is used
by psychologists today to distinguish levels of cognitive processing (e.g., Bloom's,
1956). Similai!y, niethodologists of mathematics such as Descartes and Polya have
provided systems of heuristics that continue to drive research and teaching in
problem-solving in psychology and mathematics education (Groner et al., 1983;
Schoenfeld, 1992). Problem-solving research in mathematics still has much to
learn from the history of mathematics, and in the era of computers that 'history
continues to grow and evolve new methods.

Thirdly, the history of mathematics plays the important role of showing how
mathematics is socially constructed to meet the demands and needs of society.
This supports the contention that mathematics and mathematical knowledge are
not objective and neutral products, but that they serve certain historical and
sectorial interests. Lakatos has argued that the history, philosophy and practice of
mathematics and education are bound up together, and that the 'philosophy of
mathematics turning its back on the most intriguing phenomena in the history of
mathematics has become empty' Lakatos (1976, p. 2). Likewise, mathematics edu-
cation turning its back on the history or social uses of mathematics also risks
becoming empty. But in practice mathematics is widely presented as a decontex-
tualized and ahistorical subject. For example, a piece of evidence quoted in the
Cockcroft Report (1982, p. 141) states 'Mathematics lessons in secondary schools
are very often not about anything. You collect like terms, or learn the laws of
indices, with no perception why anyone needs to do such things.' Many school
mathematics texts still concentrate on developing students' skills and concepts
with little or no reference to either the social context or the history of mathemat-
ics. Such procedural and instrumental approaches to mathematics can make it
empty and dull. But it is widely remarked that student and teacher attitudes and
perceptions of mathematics are important factors in learning. Indeed, much of the
research on gender and mathematics talks of the problems caused by the stere-
otypical perceptions of mathematics as a male domain (e.g., Walkerdine, 1988).
Thus an important area of impact of the history of mathematics is on the forma-
tion of student (and teacher) attitudes to, and perceptions of, mathematics. At
best, this means seeing mathematics as a living, breathing subject with its histo-
ries, struggles, triumphs, controversies and panoply of cultural endeavours per-
meating all of human existence.

These are just some of the issues for the philosophy of mathematics education
that a focus on the history of mathematics raises. Not all are treated in the chapters
in this section, but some important parallels and reflections are in evidence. This
topic looks to be another growth point for research in the future.

Notes

1. The full sentence is: 'So, according to my hypothesis, the creation of mathematics
in Sumer was specifically a product of that school institution which was able to
create knowledge, to create the tools whereby to formulate and transmit knowl-
edge, and to systematize knowledge.'

2. An issue of For the Learning of Mathematics (Volume 11, No. 2, 1991) is devoted
to just this.
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Chapter 18

The Idea of 'Revolution' As an
Instrument for the Study of the
Development of Mathematics and
Its Application to Education

Francesco Speranza

Some Methodological Remarks

'Revolutions in mathematics' is a theme for frequent debates (Gil lies, 1992; Ernest,
1992; Speranza, 1992): there are 'revolutionarists' against 'continuists' (the latter
is a classical term). In Gil lies (1992) the first (and oldest) paper (Crowe, 1975), is
continuist; many other contributions, not only in this volume, are 'revolutionarist',
even if with some cautions.

In my opinion, a more flexible approach is suitable, for theoretical, a well as
practical, reasons. Science does no more claim to find rerurn naturam, but only to
give us some explanatory models; in a similar way, the philosophy of science, in
the study of the phenomenon 'science', can give us explanatory models, and,
strictly speaking, nothing else. The same event, the same idea can then be studied
(also by the same philosopher) from different viewpoints; indeed, a mixed method
is perhaps the most useful for a deeper understanding.

For instance, Enriques is considered a continuist:

Human reason is always the same, in all times [. . .], without this funda-
mental premise it would be useless to study the history of ideas. (Enriques,
1936, p. 16)

but he writes also, with regard to the science of the seventeenth century,

'To create anew the l)emocritean spirit and to think again to it, as a living
thing, was not possible at Galileo's times, except on condition to over-
come Democritus and to make out of his philosophy a richer science, as
much as the needs of modern problems overcome the ancient ones. (ibid.,
p. 340)

'Revolutionary' scientists, on the other end, frequently refer to some famous
precedents (Copernicus' recall to Aristharcus, Galileo's to Pythagoras and Plato);
the search for the reasons of continuity is useful also when we study the philoso-
phy and history of science by means of revolutionary paradigms.
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Both Kuhn (1962) and Crowe, so as other contributors (Gil lies, 1992), apply
a political metaphor, with the unavoidable consequence that they are led to seek
for the 'entity (be it a king, a constitution, or theory) [. .] overthrown and
irrevocably discarded' (Gillies, 1992, p. 3). In the common language, however,
we call 'revolution' also a radical change in beliefs and in behaviour of people, as
in western countries in the last decades. In science, sometimes there are deep
changes in the ways of thinking: Dunmore speaks of a 'meta-level' of mathemat-
ics:

[. . .] the metamathematical values of the community that define the telos
and methods of the subject, and encapsulate general beliefs about its
nature. (Dunmore, 1992, p. 211)

Incidentally, Dunmore claims that 'mathematics is conservative on the object-
level and revolutionary on the meta-level'. In any case, these changes are particu-
larly interesting (let us consider what consequences th !y can have on teaching).
Consequently, also if someone would prefer to use some other term, in my opinion
it is suitable to speak also in such cases of 'revolutions'.

Some Parallels Between the Philosophy of Mathematics and the
Philosophy of Science

First of all, if we speak of 'revolutions', we must consider also 'normal mathemat-
ics' (Mehrtens, 1976). In periods of normal science, scientists work on the grounds
of certain 'paradigms', above all on 'solutions of puzzles' (Kuhn, 1962, Chapter
4). Well, also a mathematician works on certain problems that the community
considers remarkable, with certain recognized methods, and he is particularly
satisfied if he succeeds in solving a 'puzzle' that other mathematicians are not able
to solve. On the contrary, if something doesn't work, this lays a blame on the
mathematician, not on the theory.

In experimental science revolutions were often the consequence of an anomaly,
which the preceding theory could not explain. In mathematics, only few cases are
of this kind: among the most noteworthy, the crisis of incommensurable quant-
ities (commonly 'the crisis of irrationals'), which overthrew the proto-pythagorean
paradigm 'all is number', and the crisis of foundations, which unmasked every
naïve application of a 'self-evident' logic. Perhaps also the non-Euclidean revolu-
tion can be connected with a crisis of the research programme for an improvement
of Euclid's axiom system.

Noteworthy changes in mathematics are often provoked by a programme of
systematization of foundational problems (let us remember that, according to
Kuhn, a new theory can simply be at a higher level, which allows it to connect
a group of theories at a lower level): obviously, meaningful changes in methods
or in concepts must follow. The Cantorian (Dunmore, 1992) and the Fregean
(Gillies, 1992) revolutions are of this sort; later on, we shall study Klein's Erlangen
programme and Bourbaki's structuralism, both introduced in consideration of an
unification of geometry and of mathematics respectively (both had a great impact
on mathematical research qnd on mathematical `meta-level').

In mathematics, it often happened that the old instruments were no more
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suitable for solving new problems, and so new ones were introduced. In such
cases, many do not speak of a revolution: but (also because of the property of
mathematics to change a 'method' or a 'form' into 'mathematical contents') a
methodological change often provoked a 'real' and meaningful change. In the next
section we shall see two instances.

From 'Methodological' Changes to 'Revolutions'

The case of algebraic symbolism is important (it suffices to compare two texts,
of the late sixteenth and of the seventeenth century). Nevertheless it is atypical:
the change was prepared nearly 2000 years before, with the use of letters as vari-
ables: Aristotle uses letters to denote terms, Euclid (but perhaps other mathema
ticians before him) points. Certainly, in both cases there is not a calculus, not even
in an embryonal form, with a proper syntaxis, independent from natural lan-
guage.

But there is another interesting point, concerning the 'slowness' of symbolistic
development. A symbolism isn't really accepted, also in a context of natural lan-
guage, if the fundamental rules of substitution of variables are not applied (Marchini,
1990). In the case of terministic variables, the first that used (in a demonstration
about a syllogistic form), a substitution of the kind

A > A, B --> B, C -4 A,

was Alexander of Aphrodisia (Bochenski, 1956), in the second century AD,
approximatively five centuries after Aristotle.

The proposition 1.5 in Euclid's Elements is the well-known pons asinorutn
isosceles triangles the angles at the base equal one to another') which is proven by
means of a complicated construction; on the contrary, if A is the common vertex
of the equal sides, it would suffice to apply the substitution

A -4 A, B > C, C > B,

and then the proposition 1.4; but this simple demonstration occurs only in Pappus
(Heath, 1908, p. 254), approximately six centuries after Euclid!

A true 'symbolic system' was developed at the end of the sixteenth century:
the consequent development of mathematics is unthinkable without it; the schools
that refused to adopt it were soon excluded from the mainstream of science. It was
also a (not very bad ) epistemological obstacle when Boole conceived his 'logical
calculus', which firstly was clearly influenced by the arithmetical calculus. In any
case, the way for another chapter of mathematics was open: the study of formal
languages.

Now, let us consider the introduction of analytic geometry. Among the
authors which studied this case, Cohen (1985) considers it a revolution, whereas
Mancosu (1992) advances some objections. Many authors are interested mainly in
the 'technical' development introduced by the Geometric. For Dunmore (1992):
'radical as this advance was, it was not accompanied by a revolution at the meta-
level.'

2 5
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I do not agree with this statement, and I try to show here how the method
of coordinates influenced 'the concepts of space', upsetting some previous ideas.

The conceptions of space can often be polarized in pairs of opposite points of
view: finiteinfinite, atomicinfinitely divisible, absolute relative, and so on. They
are normally 'implicit philosophies', to which scientists, teachers, common per-
sons agree, often unconsciously. Typical is the contraposition between those who
have in mind figures (or bodies), whilst the space is only their 'container' (Aris-
totle), and those (as Plato) who firstly have in mind the space (that we call 'inde-
pendent'), and subsequently plunge in it geometrical or physical objects (Einstein,
1954; Capek, 1976). According to Erwin Panofsky, Greek-Roman painting is
oriented towards the representation of objects; only from the fourteenth century,
and especially with the theory of perspective, painters' conception shifted towards
the representation of the whole (we can say, independent) space.

Someone observed that Euclid in the Elements doesn't speak of 'space':
effectively, every figure is considered per se. Also the Geornetrie begins with a
determined configuration: Descartes doesn't say 'in the plane we take a system
of coordinates'. This approach, which is connected to the idea of 'independent
space', can be found only later. Analytic geometry, which rose in a conception of
'space as container', has quickly oriented the mathematicians towards the oppo-
site, now clearly predominant, conception of 'independent space'.

Another meaningful opposition is between the space as a set of points, or as
an irreductible continuum. The first idea can be traced back to early Pythagorean-
ism, the second one to Aristotle, who probably wished to overcome some of
Zeno's paradoxes, and to avoid the infinity in geometry (after the crisis of incom-
mensurable quantities, if a line is composed of points, they are necessarily infinite
in number). In the Elements, this idea is not contrasted: we can say that a line is
in potentia composed of points. But geometrical entities can be studied by means
of coordinates only if we accept the idea that they are composed of points in actu.

Again, the infinity of numbers drove mathematicians and physicists to accept
the idea of an unlimited space: we can also remark that, with the introduction of
perspective, painters had already accepted the idea of a space unlimited in actu,
because in a painting the points at infinity can be represented.

As the revolution that followed the crisis of incommensurable quantities was
the matrix of the Greek rationalism (Pythagoreans, Eleates, Plato), the Cartesian
revolution (and the following development of analysis) were at the origin of the
'metaphysical' rationalism of the seventeenth and eighteenth centuries (Descartes,
the Cartesians, Leibniz).

Examples of 'Higher-level' Revolutions

As exampleS of higher-level theories connecting lower-level ones, we shall exam-
ine Klein's Erlangen programme and Bourhaki's structuralism. Both have deeply
influenced mathematical thought and scientific practice. .

Klein presents his programme as a recovery of the essential unitariety of
geometry, threatened by its great development during the nineteenth century:
after Klein, geometry is the study of spatial properties preserved by the transfor-
mations of a given group G. But, as many initiators of revolutions, he tries `to
save the king', in this case the Euclidean elementary geometry: for him, geometrical
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properties are the properties preserved by the group of similarities (even if 'for-
mally' we could depart from this principle): let us remark that the classical
geometries could be considered as it were 'plunged' in elementary geometry.
However, there is not even a practical reason why we limit a priori G: for instance,
the meaning of graphical signs is not invariant under isometries. The mythical
`equality' is replaced by a `G-equivalence'; geometrical concepts, that an ancient
tradition considered the most typical 'platonic ideas', are relative to G.

Moreover, with Klein begins a great, highly 'progressive', research -pro-
gramme: for instance, it allowed to construct new meaningful geometries. In
differential geometry, it has been continued by Elie Cartan, with an euristic (the
repere mobile method) based on the idea of group. Today also, groups are funda-
mental for geometry (let us think of fibred bundles).

Bourbaki's programme is firstly aimed at founding mathematics on a com-
mon basis: the axiomatic method, and above all the ideas of set and of structure
(it is noteworthy that many of the founders of the original group came from Elie
Cartan's school). It can be considered also as a return (in a modern way) to
Descartes's and Leibniz's ideal of a reduction of our knowledge to some 'simple
ideas' (in this case, the 'mother structures'). Today, it is impossible to treat at a
research level (but often also at an elementary level) a great part of mathematics
without 'seeing' the underlying structures: we are accustomed `to think by means
of structures' (as well as non-Euclidean revolution and abstract algebra have taught
us to separate the 'syntactic' and the 'semantic' level).

iiloreover, Bourbaki's structuralism has radically changed the paradigms of a
great part of mathematical research: what problems are meaningful, what methods
are accepted by the mathematicians' community, and on. It is enough to com-
pare a paper of some decades ago with a recent one.

Consequences of Revolutions for Mathematics Education

In traditional mathematics teaching are implicit many ancient traditions: quantita-
tive problems from Egyptian and Babylonian mathematics, pure geometry from
Euclid, and so on. As we have seen, many 'implicit philosophies' (whose origin can
be traced back to scholastic and extra-scholastic learning) accumulate and super-
pose in one's mind; an important task is to clarify them, and if necessary to explain
their historical place.

The structuralist revolution has a strong influence over the mathematics teach-
ing in western countries; in France, it inspired in the 1970s a famous reform also
in secondary schools, but in the 1980s a violent reaction followed.

In my opinion, the role of a revolution (or more generally of a development)
in our knowledge over teaching is not a simple problem. To consider a change
in teaching as a pure 'technical' fact (e.g., aiming at a modernization of contents)
is an error: we are in any case influenced by (implicit or explicit) philosophies.
Moreover, when a teacher has accepted a theory, he is accustomed to present it
as it was the sole way to treat the subject: pupils have not even an idea of possible
alternatives ('it would be a loss of time!').

On the contrary, it is above all necessary to understand the reasons and the
meanings of revolutions: they often correspond to 'epistemological obstacles' for

245



Francesco Speranza

the progress of mathematics (and science), and so they can enlighten us about the
'didactical obstacles' that a pupil can find.

For instance, today it is easy to criticize Euclid's geometry ('A bas Euclide! A
bas le triangle!' was a slogan of the Bourbakist reform of mathematical teaching
in France): it can be rebuked for its lack of rigour, or, from an opposite point of
view, for its detachment from experience; on the contrary, someone could main-
tain acritically its superiority (maybe as a reaction to the aforesaid attacks). The
correct way is to insert it in a historical-epistemological perspective: so we can
appreciate its role in the development of mathematics (possibly connecting it with
Plato's theory of knowledge and with Aristotle's scientific methodology).

In Italian high schools will be soon introduced the study of non-Euclidean
geometry. If it will be treated with the implicit philosophy and in the traditional
style of Euclidean geometry (axioms, statements, proofs), in pupils' minds can
enter a great confusion: if Euclidean geometry has been presented as 'proved
truth', how can be proposed a theory which says the contrary? Also in this case
it is necessary to give an epistemological-historical frame: the acceptance of nOn-
Euclidean geometry destroyed the old rationalist ideal for a sure foundation of
knowledge on 'evidently true' principles: in geometry (or more generally in math-
ematics) there is a 'concrete' level, whose aim is to establish spatial 'true' statements,
on the grounds of experience, and then it is fallible; and an 'abstract' level, whose
terms have no meaning, and whose axioms are arbitrary.

Usually, 'pure' mathematicians restrict the consequences of non-Euclidean
geometry to the trend towards abstraction (likely under the influence of Poincare's
conventionalism, and of the outcomes of the crisis of foundations). But those who
must confront mathematics with others fields of experience (didacticians, physicists,
engineers, and so on) cannot be satisfied with such a restriction. They need an
approach to mathematics which is interested also to more concrete levels, a poss-
ibility of an interaction between concreteness and abstraction. Unfortunately, our
educational system is constructed on the principle 'from general to particular', or
in a modern version, 'firstly the more abstract, and afterwards the more concrete'.
An analysis of the development of mathematics could help us to construct a
different, more realistic, approach.
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Chapter 19

Mathematical Practices, Anomalies
and Classroom Communication
Problems

Anna Sfard

Introduction

A few years ago, in a conversation with a mathematician, I complained about
my students' resistance to the seemingly simple idea of a complex number. The
mathematician would not accept the claim that the subject might be inherently
difficult. He hinted that it could be a problem of an incompetent teacher rather
than of incapable students or a difficult subject matter. I insisted that there is a
stumbling block, the nature of which was not yet clear to me. I brought lots of
evidence. Eventually, the mathematician seemed to be giving up. 'Yes, the prob-
lem might be somewhat more complex than I thought', he said. But then, after
a thoughtful pause, he exclaimed: `Ok, it's difficult, but I assure you that I would
make the students understand the idea in no time: I'd just write the axioms of a
complex field and show that the concept is well-defined.'

I knew then, as I know now, that the mathematician I talked to was not
an exception. Teachers are sometimes equally insensitive to profound difficulties
students have with seemingly simple concepts. Several years and many hours of
reading, researching, and thinking later, I began to realize the reasons of this
insensitivity. It may be stated in many different ways, depending on the school of
thought to which one belongs: one can say that the students and the teacher don't
share one paradigm, or that, without realizing, they are engaged in different math-
ematical practices, or that they don't participate in the same mathematical discourse.
In whatever words one puts the explanation, the message is always the same: the
student and the teacher cannot communicate because, although they may be using
identical expressions, they live in incompatible mathematical worlds, they are
playing according to different rules, and their thoughts go in parallel rather than
clash or coincide.

There is no better way to analyse this problem than by scrutinizing the his-
torical development of mathematical knowledge. History is the best instrument
for detecting invisible conceptual pitfalls. History makes it clear that the way
toward mathematical ideas may be marked with more discontinuities and danger-
ous jumps than the teachers are likely to realize. If the mathematician I talked to
were aware of the turbulent biography of negative and complex numbers, he
would probably be mor attentive to my classroom horror stories. Similarly, if
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the mathematics teacher of the French writer Stendhal bothered to look into some
original mathematical texts, the latter would have been less likely to complain for
the sake of posterity that his difficulties with negative numbers 'simply.didn't
enter [the teacher's] head' (see Hefendehl-Hebeker, 1991). Indeed, it would be
enough to have a brief glimpse at the emotion-laden statements of eighteenth and
nineteenth-century mathematicians to realize that there must have been some major
disparity between the emergent and established knowledge. Here is a representa-
tive sample of relevant utterances, spanning the crucial fifty years in the history
of negative and complex numbers: 'A oblem leading to a negative solution
means that some parts of the hypothesis was false but assumed to be true'
(d'Alembert in eighteenth-century Encyclopedie), 'It were to be wished . . . that
negative roots had never been admitted into algebra or were again discarded from
it' (Maseres, in 1759); '. . . it is clear that the square roots of negative numbers
cannot be included among possible numbers. Consequently we must say that
these are impossible numbers' (Euler, in 1770); The talks about 'impossible num-
bers, which, being multiplied together, produce unity . . . [are] all jargon, at which
common sense recoils; but, from its having been once adopted, like many other
figments, it finds the most strenuous supporters among those who love to take
things upon trust and hate the colour of a serious thought' (Frend, in 1796).

The point I wish to make here is that such discussions, however fierce, tend
to be completely forgotten once mathematicians manage to reconcile themselves
with the problematic notions. As follows from the conversation I quoted above,
for a modern mathematician nothing could appear simpler than complex num-
bers. Stewart and Tall (1983) comment, tongue in cheek: 'Looking at the early
history of complex numbers, the overall impression is of countless generations of
mathematicians beating out their brains against a brick wall in search of what? A
triviality' (p. 5). In the classroom, problems are likely to appear at any of the
junctions at which mathematicians themselves faltered and asked questions. In-
deed, there is no reason to assume that what was difficult to accept for generations
of experts will be readily admissible for today's students. To be sure, inventing
a new concept is much more demanding a task than trying to learn what may be
presented as a ready-made product. Otherwise, how could we hope that the
student will be able to acquire the knowledge the development of which lasted for
millennia? Even so, there is more than one reason because of which at least some
of the difficulties that once troubled mathematicians are likely to reappear in the
individual learning.

The last statement will be substantiated in this chapter in the course of an
analysis of a change in mathematics. As I shall try to show, mathematics is subject
to a permanent tension and conceptual imbalance. The source of the tension lies
not so much in a clash between contradictory mathematical theories as in some
subtle disparities between the statements of mathematics and the meta-mathematical
framework within which these statements are made. The latter usually proves
more inert, more resistant to change, than the former. At certain points in the
development of mathematical knowledge apparent contradictions would arise which
will not be resolved unless the whole system of basic ontological and epistemo-
logical assumptions undergoes a substantial change. The major shifts' which must
occur at such junctions in the thinking of today's students are much the same like
those that had to be made by yesterday's mathematicians. Once the shift occurs,
the communication between the adherents of the old and the new paradigm becomes
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seriously impaired, if not impossible. Sometimes, however, inhabitants of differ-
ent mathematical words are doomed to talk to each other. If these are students and
their teachers, such encounters may have unhappy endings.

The task I set to myself will be performed in three steps. Since my analysis
of change in mathematics will be inspired by the recent advances in the philoso-
phy of science, it is my duty to begin with an explanation of what might be not
entirely obvious: that in the view of current understanding of human knowledge,
mathematics and science have much in common both in the way they develop and
in the nature of their endeavour. The next step will be to. actually use modern
philosophy of science the one which begins with Kuhn (1962) and continues
with such writers as Feyeraband, Putnam, and Rorty, as a basis for analysis of the
growt1 and change in mathematics. It will be interesting to see how the concep-
tual frameworks used by those who investigate mathematical thinking and learn-
ing fit into this new vision of science. Finally, I will return to the questions raised
in the introduction and will try to show how the suggested analysis of mathemati-
cal change accounts for the difficulties in mathematical communication.

The Changing Face of Mathematics: The Loss of Objectivity

In the present section I will draft a background against which my further analysis
of a change in mathematics will be cast. Let me begin with a brief account of
recent changes in the philosophy of science which evidently had quite a profound
effect on the philosophy of mathematics.

Until recently, mathematics was regarded as a province of pure reason, and
as such as something quite different from any other domain of human knowl-
edge and in particular from its nearest neighbours the natural sciences. The
latter had to combine logic with empirical tools in their pursuit of 'the truth about
the world'. Even so, natural sciences appeared as a paragon of systematicity,
objectivity and methodological purity in comparison to social studies or humani-
ties. The inferiority complex of the latter steadily deepened in nineteenth and
twentieth centuries as logical positivism and empiricism advanced the idea of
rigorousness in science and tried to formulate strict cannons of the scientific method.
As the methodological fence between the 'true' scientific endeavour and what only
pretended as such grew higher, it seemed quite natural to try to mould all the
domains of human knowledge in the image of the most successful exemplar. The
critical comparisons and the attempts at bridging the gap brought, however, a
surprising result: rather than transfer the scientific method from physics and chem-
istry into the social studies and humanities, these efforts ended in second thoughts
on the rationality and objectivity of natural sciences. The doubt about the very
possibility of ever arriving at a 'God's eye' view of reality the doubts about the
validity of the notion of 'God's eye view' itself contaminated those regions of
human knowledge which, till now, seemed immune to such far-fetched epistemo-
logical skepticism. The message of relativity, sometimes interpreted as an eulogy
of irrationality was brought by such writers like Toulmin, Kuhn, Fayerabend,
Foucault, and Rorty

It all began with the disillusionment as to the possibility to ever find an
`objective', 'correct' understanding of historical texts. In the second half of twen-
tieth century nobody would deny anymore that `that social explanation involves
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an interpretative or hermeneutical component' (Bernstein, 1986, p. 14). As far as
social sciences and humanities were concerned, hermeneutics once an art of
interpretation of sacred and literary texts which broadened gradually into a philo-
sophy of understanding put an end to the further search after a prescription
for 'scientific method' in social studies and discontinued the pursuit of the criteria
of objective, ultimate truth. According to the basic tenet of hermeneutical ap-
proach, 'understanding means going in circles: rather than a unilinear progress
towards better and less vulnerable knowledge, it consists of an endless recapitu-
lation and reassessment of the collective memories.' (Bauman, 1978). Or, to put
it in a different language, the thesis of 'hermeneutical circle' presents understand-
ing as a neverending interplay between predictions and their amendments, as an
infinite chain of confrontations between the things we try to understand and our
own prejudgments. One inevitable conclusion from this dialectical vision of un-
derstanding was that `to understand is always to understand differently' (Bernstein,
1986, pp. 98-9). Since meaning does not exist as such and it only realizes itself
through the process of understanding, and since the understanding is in a constant
flux, visiting the same meaning more than once is just as impossible as stepping
twice into the same river. Accordingly, nobody should expect that a theory
any theory would be any more than one of the many possible interpretations
of whatever is to be understood and explained, and as such that it would ever
become a stable, fully defined system of the kind logical empiricism dreamt about.

These claims, if taken seriously, were bound to change all the conceptions
about human knowledge. It is hardly surprising, therefore, that what began as a
doubt about the possibility of 'scientific method' and 'correct interpretation' in
social studies and humanities soon spilled over to natural sciences. Kuhn, one of
the precursors of a new philosophy of science, speaks about his own conversion
to hermeneutics:

What I as a physicist had to discover for myself, most historians learn by
example in the course of professional training. Consciously or not, they
are all practitioners of hermeneutical method. In my case, however, the
discovery of hermeneutics did more than make history seem consequential.
Its most immediate and decisive effect was instead on my view of sci-
ence. (Kuhn, in Bernstein, p. 12).

Kuhnian new view of science went beyond Popper's claims about the relativ-
ism of scientific theories it led to a far-reaching revision of practically all
the basic beliefs about science. First and foremost, it challenged, in a longer run,
the assumption that science aims at a discovery of mind-independent reality.
Consequently, the notion of objectivity had to be replaced with the idea of
intersubjectivity. Rorty (1991), who calls his philosophy a left-wing Kuhnianism,'
makes the following exhortation:

I urge that whatever good the ideas of 'objectivity' and 'transcendence'
have done for our culture can be attained equally well by the idea of a
community which strives after both intersubjective agreement and novelty

a democratic, progressive, pluralistic community of the sort of which
Dewey dreamt. If one reinterprets objectivity as intersubjectivity, or as
solidarity . . . then one will drop the question of how to get in touch
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with 'mind-independent and language-independent reality'. (Rorty, 1991,
p. 13)

With the emergence of a (neo-)pragmatism of which Rorty is the most out-
spoken protagonist, the criterion of truth and validity was replaced by the ideas
of solidarity and of usefulness. People should no longer ask whether anything is
objectively true; rather, they are expected to judge knowledge according to whether
it can bring them together and whether it can do anything for them.

It is time now to get back to mathematics and'to ask what the musing about
the nature of natural science has to do with the discipline always considered as an
exclusive (or almost exclusive) domain of the analytic thought. Mathematics was
able to keep for millennia its superior status of a stronghold of objective truth.
Even this well-guarded bastion of certainty could not, however, remain unaf-
fected by the upheavals that changed social and natural sciences beyond recogni-
tion. When the distinction between analytic and synthetic became blurred, when
the idea of 'given reality' was denounced as untenable, when scientists were saying
their 'farewell to reason' (Fayerabend, 1987) and to objectivity, the epistemologi-
cal foundations of mathematics were bound to become subject to scrutiny and
revision. To be precise, mathematics had its own 'public image' problems even
before Popper, Kuhn, Fayerabend, and Foucault revolutionized the vision of sci-
ence. The face of mathematics did not remain the same after the famous crises
in foundation at the turn of the century. The antinomies and paradoxes which
infested logic and set theory discredited the view of mathematics as a domain of
ultimate truth and ended in 'the loss of certainty' (Kline, 1980), namely in the
renouncement of the absolutist view for the sake of thllibilism (see a comprehen-
sive account of the relevant developments in Ernest, 1991). From the denial of
certainty, however, mathematics had still a long way to go until it arrived at
doubts about objectivity similar to those that can be found in natural sciences.
After all, questioning the possibility to reach an objective truth is not the same as
challenging the very idea of objective truth.

The already blurred difference between sciences and mathematics became
even more fuzzy in the hands of Lakatos (1976). Not only did Lakatos ultimately
deny mathematics the right to the title of infallible, he also indicated that math-
ematical and scientific methods bear a family semblance. In fact, Lakatos did to
mathematics what Popper did to science: has shown its relativity, its constant need
for revision and rebuilding. With the help of ingenuous examples he has made it
clear that the purely deductive nature of mathematics is but an illusion, and above
all that mathematics is quasi-empirical in that like Popperian science, it end-
lessly proceeds from hypothesis to its denial and to the reformulation of the
hypothesis. Following Polya (1945) who once stated that 'mathematics in making
is an experimental inductive science' (p. 117), Lakatos stressed the importance of
informal mathematics this mathematics which bears the closest semblance to
empirical science.

Lakatos remained, however, relatively silent on the question of objectivity,
so readily tackled by the philosophers of science. For some reason, philosophers
of mathematics seem more reluctant than their scientific colleagues in renouncing
the dream of objectivity. As Ernest (1991) put it, even though 'we accepted the
fallibility of mathematical knowledge . the fact remains that the objectivity of
both mathematical knowledge and the objects of mathematics is a widely accepted
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feature of mathematics, and must be accounted for by any philosophy of math-
ematics' (p. 49). It seems that for all the concessions which have already been
made for the sake of less mind-independent, more human-oriented approach,
mathematics unrivalled ability to create consensus evokes more wondering than
the visibly controversial science. Thus, while some thinkers opt for the banish-
ment of the term 'objective' from any account of human- knowledge (see e.g.,
Johnson, 1987), the philosophers of mathematics tend to reinterpret the notion
rather than abandon it altogether. Referring to Popper's definition, according to
which objective knowledge is `the world of the logical contents of books, libraries,
computer memories, and suchlike' (Popper, 1979, p. 74), Ernest redefines objective
as intersubjective or publicly shared:

I shall use the term 'objective knowledge', in the way that differs from
Popper, to refer to all knowledge that is intersubjective and social. 1 wish
to count all that Popper does as objective knowledge, including math-
ematical theories, axioms, conjectures, proofs, both formal and informal.
One difference is that I also want to include additional 'products of the
human mind' as objective knowledge, notably the shared (but possibly
implicit) conventions and rules of language usage. Thus I am referring to
publicly shared, intersubjective knowledge as objective, even if it is im-
plicit knowledge, which has not been fully articulated. This extension is
very likely unacceptable to Popper. (Ernest, 1991, p. 46)

This approach to the question of objectivity of mathematical knowledge is a
cornerstone of social constructivism Ernest's special synthesis of current trends
in the philosophy of mathematics. Radical constructivists, who stress with even
greater force that there is no other site for knowledge than human mind and at the
same time are very much concerned with the social dimension of knowledge
construction, admit the existence of 'consensual domains' but prefer to bypass the
notion of objectivity by talking about `institutionalized knowledge' and about
meanings that are 'taken as shared' (Cobb, 1989). To sum up, whether the notion
of objective knowledge is banned or reinterpreted, one may certainly say that in
mathematics, exactly like in science, the loss of certainty is now being followed
by the loss of objectivity, or at least the loss of objectivity as we knew it.

The comparisons between mathematics and natural science did not go much
beyond those made by Lakatos they barely transcended the adaptation of Pop-
per's ideas to the domain of mathematics. Only very recently some attempts have
been made at using Kuhn's theory of scientific revolutions (Kuhn, 1962) as a point
of departure for reflections on the deep structure of change in mathematics (notably
Kitcher, 1984; see also Griffiths, 1987; Cobb, 1989; Otte, 1990; Ernest, 1992). In
what follows I will try to take this project a little farther. Certain modifications
made by post-Kuhnian writers, as well as those introduced by Kitcher (1984) in
an attempt to fit Kuhn's ideas into the context of mathematics will serve as a basis
for further elaborations. At this point, a word of caution seems necessary: for all
that has been said about the similarities between mathematics and natural sciences,
one must remain aware of substantial differences between the two. Many distinc-
tive features still keep mathematics and science quite apart. Even so, I find Kuhn's
ideas potentially useful in the analysis of discontinuities in the growth of math-
ematical knowledge.
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The Change in Mathematical Practice

Fitting Kuhnian Theory to Mathematics

Any attempt to summarize Kuhn's theory is doomed to turn out highly personal.
Kuhn's seminal book The Structure of Scientific Revolution (1962) has spurred a
great deal of discussion, the echoes of which can still be heard. In the course of
the dispute, many interpretations have been given to Kuhn's theory and to its
basic notions. The terms 'paradigm', 'natural science', 'anomaly', 'crisis', and
'scientific revolution' were scrutinized, construed, and reconstrued so many times
that it is hardly possible to suggest a definition without evoking somebody's
protests (which shows that reading text is a hermeneutical task even when the text
in question is itself a product of a hermeneutical effort!). In the following brief
summary of the basic tenets of Kuhnian framework I will try to remain closer to
the original Kuhnian text than to the works of interpreters.

The claim about the relativity of knowledge leads Kuhn to concentrate on
discontinuities in the development of science. According to his theory, periods of
relative calmness and more or less cumulative growth of scientific knowledge are
disrupted, time and again, by certain special events which, rather than add new
bulk of data, bring a far-fetched reinterpretation of the previously accumulated
findings. The former were called 'periods of normal science', the lancer got the
title of 'scientific revolutions'. According to Kuhn's own definition, normal sci-
ence 'means research firmly based upon one or more past scientific achievements,
achievements that some particular scientific community acknowledges for a time
as supplying the foundation for its further practice' (p. 10). The body of this
accepted knowledge is expounded and perpetuated through textbooks. As well
established as it may be, the scientific practice is bound to undergo a far-reaching
change, sooner or later. Scientific revolution is the name given by Kuhn to these
conceptual upheavals which de-legitimize approaches hitherto widely accepted
and turn the contents of even the most revered of textbooks into obsolete.

Kuhn puts much effort into an explanation of the mechanism of scientific
revolutions. His insightful interpretation of such events like the victory of
Copernician astronomy over that of Ptolemy or transition from Aristotelian to
Newtonean mechanics brings a totally new outlook at the reasons and the results
of change, and makes it clear that periodical conceptual transformations are both
inevitable and beneficial (some time later, Fayerabend (1975, p. 24) will take this
claim to the extreme by saying that freedom from restrictions, such as those
imposed by an established scientific 'rules of game', is a precondition of progress
and that 'uniforr ..y impairs [the] critical power' of science). To give a thorough
account of scientific revolutions Kuhn asks three basic questions: What is it that
changes in the course of revolution? Why and how does it change? What are the
final outcomes of such change?

To tackle the first of these queries Kuhn invokes the concept of paradigm.
This is probably the most widely known but also the most abused component of
Kuhn's theory. Kuhn himself defined paradigm as a specific instance of a particu-
larly successful, comprehensive, and convincing scientific achievement, such as
Copernician or Newtonean theories; or, to put it in Kuhn's own words, it is an
'accepted example of actual scientific practice example which include law, theory,
application, and instrumentation together' and thus 'provides models from which
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spring particular coherent traditions of scientific research' (p. 10). Kuhn's followers,
however, silently agreed on a much broader interpretation of the term, according
to which paradigm encompasses practically all the components of scientific en-
deavour, namely all the beliefs, both implicit and explicit, about the object and
method of scientific inquiry shared by a given scientific community. HoweVer the
word is construed, it remains closely related to the idea of normal science: para-
digm is what shapes, guides, and restricts the scientific endeavour in the periods
of calmness and steady growth. Paradigms is what divides all the human knowl-
edge and actions into scientific and. non-scientific.

To answer the question concerning the reasons and the course of revolution,
Kuhn introduces the concept of anomaly. Revolution begins with a discovery, namely
a 'novelty of fact' or with an invention a 'novelty of theory'. Discovery, says
Kuhn, 'commences with the awareness of anomaly, i.e., with the recognition that
nature has somehow violated the paradigm-induced expectations that govern normal
science'. In other words, anomaly arises when the accepted theories cannot ac-
count for a certain observation, or, to put it even stronger, it is an appearance of
data which do not fit into the space delineated by the existing paradigm. The
awareness of anomaly is equally instrumental in inducing scientific inventions. To
be sure, since no theory is-sufficiently equipped to give clear-cut answers to all the
possible questions, and since the acceptance of a certain paradigm must therefore
be to some extent an act of faith (as opposed to a deliberate rational choice), the
appearance of anomaly does not necessitate revolution it only creates favorable
condjtions for such event.

Finally, in Kuhn's account revolutions are only those major changes which
have far-reaching, penetrating effects on all the aspects of scientific endeavour,
changes that alter the conceptions, perceptions, and methods so deeply that they
lead to an emergence of a paradigm incommensurable with the one which is to
be replaced. The historical examples surveyed in his book show that scientific
revolutions

necessitated the community rejection of the time-honored scientific theory
in favor of another incompatible with it. Each produced a consequent
shift in the problems available for scientific scrutiny and in the standards
by which the profession determined what should count as admissible
problem or as a legitimate problem-solution. And each transformed the
scientific image in ways that we shall ultimately need to describe as a
transformation of the world within which scientific work was done.
(Kuhn. 1962, p. 6)

Kuhn's conception of the growth of scientific knowledge was not less revo-
lutionary than the events he baptized as revolutions in science. It would be in
point now to ask whether this radical change in the vision of science can have any
implications for the philosophy of mathematics. The most serious attempt to look
at the latter through the Kuhnian lens, made by Kitcher (1984), will be reviewed
in the next section. Here, I will briefly mention some recent, less comprehensive,
studies.

As was already noted, profound changes have occurred in the philosopher's
vision of mathematics in the last several decades. As a result of these changes
mathematics is more and inure often compared to science. Even so, until recently,
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one of the basic beliefs about mathematics was that unlike physics, biology or
chemistry, it is a cumulative science. Saying this is tantamount to an assertion that
growth of mathematical knowledge is free of discontinuities, and such conviction
rules out the possibility of mathematical revolution. After Lakatos, this view is no
longer uncritically accepted. Lakatos (1978) conveyed his disagreement through
ironic account of the popular view: "'[history of mathematics] is still regarded by
many as an accumulation of eternal truths; false theorems are banished to the
dark limbo of pre-history or recorded as regrettable mistakes, of interest only to
curiosity collectors.' More recently, Crowe (1988) presented a similar position by
listing the claim about the cumulative nature of mathematics among his 'ten mis-
conceptions about mathematics and its history'.

That the development of mathematics was not as smooth and undisturbed as
generally believed was, in fact, noted already by Bourbaki:

Since the earliest times, all critical revisions of the principles of math-
ematics as a whole, or of any branch of it, have almost ntvariably fol-
lowed periods of uncertainty, where contradictions did appear and had to
be resolved. (Bourbaki, 1950)

The recognition of the existence of the singular points on the curve of math-
ematical growth leads in an obvious way to the conjecture that the development
of mathematical knowledge might in fact be marked with far-reaching conceptual
changes, much like those observed in the history of science. In the light of all that
is known about historical controversies and about the debates led by the finest of
mathematical minds, it would be only natural to check whether mathematics
could be subject to revolutionary changes like those known from the history of
science. The few writers who already made some attempts at answering this
question came up with similar verdicts (the semblance may be easily overlooked
because of the differing ways in which the authors express their opinions). All of
them seem to sustain that the notion of revolution can only be applied to math-
ematics if given an interpretation that differs significantly from the one offered by
Kuhn in the context of sciences. A representative example would be that ofGriffith
(1987), who doubts 'whether Kuhn's notion of a paradigm applies to mathematics
in the way it does to other sciences'. Pointing to the fact that the acceptance of
non-Euclidean geometry did not lead to rejection of the Euclidean theory he
concludes that 'Mathematical paradigms seem to be coherent tracks of thinking
that yield fruitful results, and they can live side by side with other paradigms,
even within the mind of the same mathematician.' With a conception of paradigm
so dramatically different from the one proposed by Kuhn (Kuhnian paradigms do
exclude each other by definition), Griffith must compromise on a very 'mild'
version of mathematical revolution: 'the growth of an important paradigm in
mathematics induces a "revolution" in the sense that the thought habits, language,
and ways of questioning of later mathematicians will differ from those before
paradigm.'

Ernest (1992), in his discussion of Griffith's positions, suggests to focus on
'shifts in background scientific and epistemological context' rather than on 'the
replacement of one mathematical theory by other'. This makes him more sympa-
thetic toward the idea of a stronger version of revolution in mathematics:
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some radical changes or global restructuring of the background episte-
mological and scientific context of mathematics can be described as Kuhn-
type revolution. Such changes result in a profound re-orientation of
mathematics, which can lead to as much 'incommensurability' as is found
in science. (Ernest, 1992)

It becomes obvious that a question what changes must be answered betbre we
'define the nature of change and start analysing the significance of its results. In
other words, the preliminary task is to decide what aspects of mathematics, if any,
are liable to revolutionary changes. As revolutionary I will regard only such shifts
that produce an.. incompatibility, shifts as a result of which the pre- and post-
revolutionary communities are no longer able to communicate with each other.
There is little doubt that history of mathematics witnessed many such events.
Pythagoreans, for whom the idea of incommensurability was unacceptable since
it meant the end of the world structured by or maybe even built of integers,
would not arrive at mutual understanding with those who admitted the existence
of irrational numbers; Cardan's followers, even though they knew what would be
lost if they refrained from the use of square roots of negative numbers, would
nevertheless have no common language with nineteenth-century mathematicians
who decided that the outcome of this 'impossible' operation was a legitimate
number; Sacceri, who was just one step distant from the discovery of the inde-
pendence of Euclid's Fifth Axiom but recoiled at the last moment unable to face
the consequences, would not be able to communicate with Gauss, Bolyai, and
Lobachevsky.

It seems that when bringing the example of Euclidean and non-Euclidean
geometries in order to pinpoint the difference between mathematics and science,
Griffith somehow missed the point. When introducing the concept of paradigm,
Kuhn tried to answer the question what aspects of science are liable to revolution-
ary changes to the changes which produce incommensurability. Such approach,
whatever the actual definition, entails the impossibility of 'peaceful coexistence' of
different paradigms. It also implies that the move from one paradigm to another
is one-way and irreversible. With such understanding 'of the term, C;riftith's
statement that 'mathematical paradigms ... can live side by side with other
paradigms' sounds like a contradiction in terms. No one theory, however com-
prehensive and successful, can be regarded as a paradigm (when Kuhn gave the
name paradigm to Newtonean and Einsteinean frameworks, he did not mean the
theories themselves but rather all the aspects of mathematical practice associated
with these theories). Incidentally, if this principle was not observed, then what
Griffith said about mathematics would also be true about science: at a closer look
it becomes obvious that science does allow a plurality of outlooks similar to that
attained in mathematics by the acceptance of different axiomatic systems. In a
sense, science seems even inure tolerant than mathematics toward incompatible
theories; its history knows more than one case of dual theoretical approaches to
the same phenomena. Einsteinean framework, in spite of its being apparently
in«nnpatible with Newtonean theory, did not overthrow the later but rather
incorporated it as being a useful approximation; the corpuscular and wave theories
of subatomic phenomena live side by side in physics, and this coexistence is
sanctioned by liohr's principle of complementarity. Indeed, many more examples
could be brought to show that the question of what is the object of revolutionary
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changes of those changes that lead to incommensurability of the old and the
new scientific or mathematical worlds deserves a deeper thought. This is ex-
actly what will be done in the next section.

The Object of Change: Mathematical Practice

The question of the object of change in mathematics was tackled by Kitchet (1984)
in a detailed way. According to Kitcher, Kuhn's notion of paradigm grew from
the latter's intention to divide history into large, clearly defined segments on the
one hand, and from his wish to emphasize that science does not advance by mere
modifications of its statements, on the other hand. While Kitcher tends to endorse
Kuhn's second claim, he casts doubt on the first. In other words, while he agrees
that there is much more to the development of science than local amendments of
theories, he rejects the idea that history of either science or mathematics can be
viewed as a chain of quiet periods of accumulation interrupted with acts of radical
reorganizations. It seems obvious, says Kitcher, that tensions and anomalies are
ubiquitous and they are part and parcel of any scientific and mathematical endeav-
our. From here it follows as an immediate conclusion that our knowledge is in a
constant flux rather than in a smooth process of growth marked with clear-cut
discontinuities.

When it comes to mathematics, Kitcher's dissatisfaction with Kuhnian
concept of scientific paradigm leads him to suggest a replacement: what changes,
often quite dramatically, in the course of mathematical progress is the entire
mathematical practice. This last concept is defined with an almost mathematical
precision as a quintuple composed of a language (I.), a set of accepted statements
(S), a set of reasonings (R), a set of.questions selected as important (Q), and a set
of meta-mathematical views (M). As mathematics develops, each of the five com-
ponents may undergo more or less radical changes, changes that stem from inter-
nal discrepancies within any subset of' the quintuple. The peacefid coexistence of
incompatible theories, such as Euclidean and non-Euclidean geometries, is made
possible by an appropriate adjustment of the language and the set of admissible
questions. This is where, according to Kitcher, the illusion of the purely cumu-
lative nature of mathematics takes its roots: thanks to the reorganization of the
whole framework, 'one-time rivals' turn into equally legitimate alternatives.

In the remainder of this chapter I will use Kitcher's concept of mathematical
practice as a point of departure for further reflections on mathematical change. I

shall begin with a new attack at the question of the relative resilience of mathemat-
ics and its apparent immunity to restructuring and to sharp discontinuities. Kitcher's
reinterpretation of' the cuniulativity of mathematics is descriptive rather than ex-
planatory. What lacks in Kitcher's theory is an epistemological background de-
tailed enough to account fir the unique way in which mathematics guards itself
against too radical, too abrupt a change. The required background inlorination
relates to the nature and sources of tensions which eventually bring the change.

The Setting of the Tension: Between Alathernatio and A/eta-mathematies

Mathematical change would not take place without a good reason. The reason,
acc,srding to Kitcher, is a lack of equilibrium between different components of
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mathematical practice. The lack of equilibrium creates tension which, sooner or
later, has to bring a shift and to change the whole system, often beyond recognition.

Let us have a closer look at the setting of the tension, on which Kitcher does
not give a detailed account. The emergence of the new geometries is a useful
example. The main point that must be made here is that the tension which pre-
ceded the reconciliation of the Euclidean and non-Euclidean geometries did not
reside between the concurring theories but between S and M component of math-
ematical practice between the dramatically enlarged yet still consistent system
of mathematical statements on the one hand, and the meta-mathematical frame-
work that rejected the possibility of incompatible axiomatic systems on the other
hand. To put it differently, Sacceri would not be able to communicate with
Lobachevsky not because of their disagreement on the logical argument that led
to the crucial discovery, but because of the kind of conclusions which each one
of theM was prepared to accept. Indeed, in order to bring the Euclidean and non-
Euclidean geometries into a 'peaceful coexistence' mathematicians had to revolu-
tionize their most fundamental episterhological premises. No longer could they
sustain that mathematics in general, and geometry in particular, deal with a reality
in which existence and properties of objects are subjected to laws similar to, and
as restrictive as, those governing the physical world. The most basic of these laws,
the law of contradiction and of excluded middle, seemed to be violated. In the
abstract universe of mathematics, claims about existence and non-existence of
objects would no longer be mutually exclusive and the truth of such statements
would stop being a matter of either 'yes' or 'no'. From now on. a mathematician
could claim that since the existence of certain entities proved inherently non-
decidable, it would be equally admissible to regard these entities as existent and
as non-existent. If applied to physical objects, these utterances would be declared
'meaningless' or 'impossible' and those who made them would likely be suspected
of being out of their minds. Paradoxically, the acceptance of such statements in
mathematics was made in the name of sanity: the tension between the evidence of
logic and the confining epistemological premises could only be alleviated through
modifying the latter.

To sum up, the most vulnerable, most problematic point of mathematical
practice seems to be the junction between the meta-mathematical component and
all the other ingredients. At this point it is necessary to make explicit the meaning
of the term 'meta-mathematics'. as used in the present context. After foundational
movement made an attempt to give a mathematically rigorous treatment to the
philosophy of mathematics, the word 'meta-mathematics' is often understood as
tantamount to mathematical logic. This is not the meaning in which it will he
used in this chapter. Here, meta-mathematics should be interpreted as a broad
philosophical framework which includes all the epistemological and ontological
assumptions. whether explicit or tacit, of those who engage in the given math-
ematical practice. To put it in a more detailed way, meta-mathematics encom-
passes beliefs about the object and methods of mathematical inquiry, about the
nature, sources and conditions of existence of mathematical objects, and about the
admissible forms of knowledge representation.

The meta-mathematical framework clearly reveals much more inertia than
mathematical theories themselves and this is probably the main reason of the
tension ever present in mathematical practice. While the M component remains
relatively stagnant, the set S of mathematical statements grows quickly thanks to

259



Anna Sfard

the efficient mechanism of mathematical reasoning (R). The latter never remains
idle and hence it often acts as a forerunner. The history of mathematics is replete
with examples showing that logic and mathematical deduction have often covered
new area before the existing epistemological restrictions were able to justify the
conquest. Much has been told on the centuries-long debates about acceptability of
negative and complex numbers, the nature of functions, the foundations of analy-
sis and the meaning of new findings on Euclid's Fifth Axiom. All these disputes
seemed to result from the lack of congruency between the ideas in question and
the existing system of fundamental beliefs about mathematics. Very often, gener-
ally held convictions about what counts as mathematically legitimate initially barred
the way of new concepts and theories. 'Logic sometimes makes monsters', com-
plains Poincare (1899; quoted in Kline, 1972, p. 973), meaning that under a sole
guidance of rigorous mathematicalreasoning one can arrive at ideas in the face of
which 'common sense recoils'. The fact that basic epistemological and ontological
beliefs is much more inert than the other components of mathematical practice
accounts for a tension which eventually would lead to a change of the entire
system.

The Source of Tension: An Anomaly

What has been said in the last section about the setting of the tension does not yet
explain the particular resistance to change typical of mathematical practice in
general and of meta-mathematical beliefs in particular. In order to find what is
missing I shall turn now to a more basic question of the origins of abstract math-
ematical ideas.

The main point I wish to make here is that all our thinking has perceptual
sources and mathematics, for all its abstractness, is no exception. The claim about
bodily origins of human thinking was thoroughly expounded by Lakoff and
Johnson in their three books ( Lakoff and Johnson, 1980; Lakoff, 1987; Johnson,
1987). According to Lakoff and Johnson's non objectivist theory of meaning and
understanding. the bodily experience constitutes our imagination and even the
most abstract of our ideas are shaped by our senses. The mechanism which trans-
fers 'the bodily' into 'conceptual' is that of a metaphor: our basic perceptual sen-
sations produce mental schemes which, when detached from their origins and
metaphorically transformed, give rise to abstract concepts.

This last claim may seem surprising when made in the context of mathemat-
ics. Mathematical concepts seem so abstract, so distant from anything perceptual,
that at the first glance it is difficult to see any bodily connections. In a series of
interviews with mathematicians and through a careful reading of mathematical
texts I tried to examine this issue as thoroughly as possible (Sfard, 1994). My
search brought much evidence that, indeed, be a mathematical concept as abstract
AS it nay be. it still remains in a close relationship with our sensory-motor expe-
rience. Mathematical language is perhaps the most immediate and most revealing
source of such evidence. Mathematicians refer to abstract concepts, such as num-
bers, sets or functions. as it they were talking about physical objects that can be
manipulated and transformed; they describe these objects in such physical terms
like 'open' and 'close', 'increasing' or 'decreasing'. 'compact' and 'smooth'. All
this leaves little doubt as to the metaphorical nature of the mathematical universe.
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At a closer glance, our meta-mathematical beliefs will also show clear signs of
being a direct product of the way we conceive the physical reality.

An important point to make here is that the metaphorical nature of our
abstract thinking is a doubly-edged sword: the metaphors, and our perceptual
experience through them, both create and restrict our imagination. It is the re-
strictive power of metaphorical thinking which is of relevance to the present
discussion. Since our meta-mathematical beliefs are usually implicit, and often
outright transparent, they may be more affected by such restrictions than any
other component of mathematical practice. What seems absurd in the light of our
perceptual wisdom can hardly be accepted by our imagination. Thus, using Kuhn's
terminology, one may say that the tensions in mathematical practice result from
anomalies which appear at these junctions in the development of mathematical
knowledge where the statements of mathematics violate the expectations pro-
duced by our perceptual experience. History knows many examples of such anoma-
lous situations, situations in which the judgment of logic seemed to contradict the
evidence of senses. The resistance to non-Euclidean geometry, for instance, is
easily understood in the light of perceptual implausibility of the existence of more
than one parallel to the given straight line through the given point. Another, more
subtle point here is that of our freedom to decide about the number of parallels. In
the physical world, the question about existence of objects can only be given one
answer: either yes or no. In the post-Lobachevskyan mathematics the existence
of mathematical objects was to become a matter of choice. A testimony of a
mathematician whom I recently interviewed brought another example of the same
type of anomaly. The mathematician said that he 'could not put up with the
independence of the continuum hypothesis', since this implied that the question
of existence of a certain transfinite number could not be answered. 'It was my
deep conviction that this set either exists or not', he explained. Another example
of anomalous situation has already been mentioned in this chapter: Pythagoreans
could not meet the challenge of incommensurability because they perceived the
world as built of countable pieces and thus describable in terms of whole numbers
and their ratios. The evidence of logic implication of the theorem on right-
angled triangle clearly contradicted this conviction.

In all the above examples, the source of an anomaly was an incongruity
between Platonist framework and the logical consequences of certain mathemati-
cal assumptions. The hist( rical debates dissolved in gradual loosening of realist
constraints and in the emergence of alternative philosophies of mathematics, such
as intuitionism and formalism. Even so, deep in their hearts most mathematicians
still seem to be Platonist (or, to say it in the way Davis and Hersh (1983) put it,
'mathematicians are Platonists on weekdays, and formalists on Sundays' (p. 321) ).
At a closer glance, the claim about experiential roots of mathematical abstraction
implies that Platonism is more than one of the possible philosophies of mathemat-
ics; in a sense, Platonism is a default state of mind of a person engaged in math-
ematical activity. Indeed, all the mathematicians I talked to testified to their deep
sense of the 'reality' of abstract objects, even though some of them emphasized
that this was only a matter of feeling and not of a sound philosophical belief. The
following statement by Rene Thom (1971) forcefully summarizes this points:

Everything considered, mathematicians should have the courage of their
most profound convictions and thus affirm that mathematical forms indeed
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have an existence that is independent of the mind considering them. (Thom,
1971)

The persuasive power of Platonism is not surprising in the light of the claim
on experiential roots of mathematical thinking. The Platonist realm of ideas speaks
to the mathematician's heart and reason thanks to its being in so many respects
like a physical reality: mind-independent and ruled by laws which are clearly
dictated by perceptually-based intuition. In the light of this, we may certainly
expect our students to behave like naïve Platonists and be exposed to the same
kind of difficulties which were described in the above examples. The next section
will be devoted to a detailed analysis of one particular kind of anomaly which
arises when evidence of logic violates Platonist expectations.

The particular inertia of meta-mathematical framework and its frequent bias
toward Platonism may now be easily accounted for in the light of what has been
said about the origins and the nature of our beliefs about mathematics. First, these
beliefs are directly tied to the most robust of our mental structures, to the struc-
tures that originate in perceptual experiences; and second, they are implicit and
deeply hidden, and thus are not readily amenable to rational revision.

The Resolution of Tension: A Change in Meta-mathematical Framework

The claim about perceptual roots of mathematical abstraction implies that chang-
ing meta-mathematical assumptions requires overcoming primary intuitions. These
intuitions are so fundamental, so tightly connected to the perceptually based cog-
nitive structures, that they are almost never a subject to reflection, and their role
in the creation of an anomaly is often completely overlooked. Some events in
the history of complex numbers aptly illustrate this point. Evidently, the math-
ematicians who objected to the notion of a square root of negative number were
not aware of the primary sources of their doubts. They justified their resistance
by pointing to certain contradictions which, in their opinion, were internal to
mathematics while, in fact, the argument that has been used involved extra-
mathematical assumption about the nature on numbers. Euler, for instance, stated
in his 1770 Algebra that 'The square roots of negative numbers are neither zero,
nor less than zero, nor greater than zero.' In his opinion, this was a sufficient
reason to call these new numbers 'impossible' and to exclude them from math-
ematics. After all, incomparability with other numbers was in a direct contradic-
tion with the basic conception of a number as a God-given object that represents
a quantity. Euler, unable to make revision of this meta-mathematical assumption,
concluded that the only way to save mathematics from the apparent contradiction
was to ban square roots of negative numbers from the realm of 'possible num-
bers'.

In order to accept complex numbers as legitimate mathematical objects or to
put up with the logical implications of independence of Euclid's Fifth Axiom
mathematicians had to revolutionize the deepest and most elusive of their belief'.
Since it was practically impossible to bring such hidden convictions into the open,
the only way to arrive at the necessary change was to say 'Go on; faith will come
to you' ( Jourdain, 1956). In other words, recognition of the square root of
1 as a fully-fledged number was not a matter of finding a fault in the deductive
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reasoning, nor did it require a better logical argument. Such recognition, being
dependent on a change of meta-mathematical assumptions, might only be an act
of faith. As such, it could not be expected to happen overnight, not even in a few
years. Switching allegiances and changing the awareness requires much time.

One can hardly be surprised, therefore, that Sacceri, although at the face of
it endowed with almost all the necessary information, was unable to do what
Gauss, Bolyai, Lobachevsky, and Riemann did more than a century later. The
change caused by :he work of the nineteenth-century mathematicians was revo-
lutionary in Kuhp;an sense: the mathematical world of Lobachevsky was incom-
mensurable with that of Sacceri. The idea of a unique God-given geometrical
universe was overthrown and from now on mathematicians would be able to
choose at whim one of several mutually exclusive systems. It was definitely not
easy to get used to such a dramatic increase in the degree of freedom the
acceptance of which was, in a sense, a declaration of independence of mathematics
from the physical world. To become true citizens of this new free world, the
mathematicians had to relinquish what seemed till now one of the basic laws of
rationality. This law, with its roots in human perceptual experience, was so obvi-
ous and 'natural' that it was practically impossible to get hold of it and to submit
it to a rational scrutiny. Therefore, saying that mathematicians just replaced one
epistemological premise by another, although technically correct, would not make
justice to the inherent difficulty of the enterprise. Emancipation from conceptual
constrains that shape the awareness can only be attained through a painfully gradual
process.

One question should be addressed before this section is closed: To what
extent does the mathematical change fit the Kuhnian description of revolution?
The existence of mathematical change cannot be doubted anymore and, as was
explained above, such change would often be as radical as a Kuhnian revolution-
ary change is supposed to be. However, the course of mathematical change defies
Kuhn's description. The transformation of mathematical practice is not an abrupt,
clearly delineated series of events and it does not consist in a simultaneous shift
in all the components. There are no sudden upheavals the permanent lack of
balance has a gradual, continuous effect. At any given moment, many different
kinds of tension are present in the system. Since the different components are
interrelated and mutually dependent, the regulation of these tensions cannot happen
in a linear order. Rather, it will be carried out over time through the combination
of little shifts which would give an overall effect of a steady flow. In this way, the
continuous transformations will remain almost imperceptible and mathematical
practice will preserve its unity through the change. Usually, one would need a
historical perspective to realize the magnitude, if not the very existence, of the
shift that has taken place over time.

Anomaly of a Missing Object: A Case Study

In a search for an illustration of the claims made in the former sections, I aimed
at anomalies which once :,rough: major innovations in the philosophical infra-
structure of mathematics and which are likely to reappear in today's classroom.
These considerations led me to look at the development of numerical systems.

The turbulent story of number concept is well documented in literature (see,
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e.g., Novy, 1973; Kline, 1972, 1980; Cajori, 1985; Fauvel and Gray, 1987; Kleiner,
1988; Boyer and Mertzbach, 1991) and it seems indeed to have a great potential
as a source of insights about anomalies. What appears to be the most striking
common characteristic of the many ways in which new kinds of numbers entered
the historical scene is the great deal of distrust with which they were invariably
greeted. Let me make a quick survey of objections raised by different writers at
different times.

The difficulties with the idea of an irrational number were already mentioned
before. Greeks, who discovered incommensurability as early as the sixth century
BC, never put up with the notion and in order to solve the problem of length
which could not be expressed as a pair (ratio) of integers kept the concept of
number and that of (continuous) quantity separate. Even as late as the sixteenth
century `the problem of whether irrationals were really numbers troubled some of
the very same people who worked with them' (Kline, 1980, p. 113). The idea of
negative number was brought to Europe by Arabs and became truly indispensable
when subtractions of bigger from smaller quantities started to pop out from
Cardan's algorithms for the solution of cubic and quadric equations (Ars Magna,
1545). For almost three centuries this useful notion was a source of doubts and
disagreements. The list of individuals who expressed their concern about the
legitimacy of the notion, is long and impressive. It includes such names as Vieta,
Descartes, and Pascal. The difficult history of the complex numbers has already be
mentioned many times in this chapter. Kleiner (1988) calls it `tortuous'. Kline
(1980, p. 119) says that " `the debate about the meaning and use' of the 'imaginary'
numbers was truly `strident' ". All this started in the middle of the sixteenth cen-
tury, when Cardan, in his Ars Magna, showed that extracting square roots from
negative quantities may be useful for solving cubic equations. Among those who
doubted the meaning and legitimacy of complex numbers were such leading
mathematicians of the sixteenth, seventeenth and eighteenth centuries as Cardan
himself, Bombelli, Descartes, Newton, Bernoulli, Leibniz, and Euler.

The story of numbers is particularly appropriate for my purpose as it abounds
in examples of an important kind of anomaly the one which appears when a
well-known process, applied to a certain kind of mathematical object, does not
produce any known object. On the face of it, there is nothing simpler than to
bring the missing entity into existence by stipulation a procedure fairly com-
mon in today's mathematics. In fact, the idea of teaching complex numbers in an
axiomatic way, suggested by the matheinajcian whom I quoted in the introduc-
tion to this chapter, was meant to be a classroom version of this procedure.
Judging from history, however, such simple solution often proves too simple.
According to Kuhn,

The commitments that govern normal science specify not only what sort
of entities the universe does contain, but also, by implication, those that
it does not. (Kuhn, 1962, p. 7)

This statement will remain in force if we substitute an expression 'meta-
mathematical beliefs' instead of Kuhn's `commitments that govern normal sci-
ence': even if a new mathematical construct seems logically sound, its acceptance
would often be obstructed by tacit epistemological and ontological assumptions.
This chapter will be devoted to the analysis of the special type of anomaly which
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arises when new mathematical objects seem to be necessary to give meaning to a
certain useful procedure, but the current system of meta-mathematical beliefs bars
their way into mathematics. As we have seen, such anomaly, which will be called
here an 'anomaly of a missing object', can be observed time and again throughout
the successive generalizations of the notion of number. Let me count the ways in
which the concepts of negative and complex number violate Platonic framework
firmly grounded in the perceptual experience.
. Expectation 1: Processes are performed on objects and produce objects
It happened more than once in the history that mathematicians felt obliged to
manipulate non-existing outcomes of one operation to perform another useful
operation. Such was the plight of Cardan's followers who tried to use the effective
algorithms for solving cubic and quadric equations. In order to do that, they often
had to put up with the necessity to add, multiply, and even take square roots from
the products of such subtractions as 2-5 or 5-15 that, in fact, did not seem to have
any product (when the algorithms to solve an equations produced 'sensible' (real)
solutions but led to computations involving square roots of negative numbers,
Cardan insisted that one should go on with the calculations 'putting aside the
mental tortures involved'). This situation certainly violated one of the most basic
expectations rooted in our perceptual experience belief that process is per-
formed on objects and produce objects. We cannot perform mathematical process
on nothing, just as we cannot perform physical manipulation on non-existent
bodies. On the other hand, if a process proves.useful even though it seems to have
no sensible product, we have good reasons to persist in using it. We become
entangled in a quandary that was called elsewhere 'the vicious circle of reification'
(Sfard, 1989, 1991, 1992): we must anticipate a certain object as a condition for the
later acceptance of the existence of this object.

Expectation 2: processes and objects are ontologically different entities
The aforementioned term 'reification' refers to the mechanism through which
mathematical objects come into being. At a closer look, what really counts in
mathematics are the processes that are performed first on material objects (e.g.,
counting) and then on other, lower-level processes. Mathematical objects are but
metaphors which allow us, when necessary, to refer to the mathematical processes
as if they were permanent, self-sustained, object-like entities. Talking about the
negative number 3 or about the complex number i is but an alternative way of
referring to the operations 1-4, 2-5, etc., and to extraction of the square root
from 1. As can be seen from these two examples, 'process-object duality' is
inherent in the notion of number as well as in its representations. Our perceptually
constrained imagination can hardly cope with this 'split personality' of math-
ematical concepts. Whereas in the physical reality process and product seem to be
two ontologically distinct entities, in mathematics they both have the same incar-
nation. When one says to a pupil 'There is a number 1, or, better still. 'There
is a number i Such that i = 1', one clearly uses metaphors coming from the
physical world. An expression `i is a square root of 1' relies on a tacit assump-
tion, rooted in our bodily experience, about the separateness of processes (in this
case extracting of the square root) and their products (the number i). Thus, our
expectations are violated when we are compelled to talk about an output of a
certain process but are not able to point to any free-standing entity, the existence
of which can be asserted independently of this process.

The fact that our perceptually rooted intuition revolts against processobject
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duality of abstract concepts found its expression in the historical attempts to sepa-
rate the operational and the structural ingredients of mathematical constructs by
designing different representations for the processes and for their products. In the
case of complex numbers, this representational solution indeed seemed to have
been of some help: Euler's symbol i for a product of the operation 'I 1, Ham-
ilton's ordered pairs (a, b) instead of the operational a + bi, and Argand-Gaussian
plane in which a complex number is represented by a point, evidently had a
considerable impact on mathematicians' attitude toward complex numbers and
helped in the eventual acceptance of the concept.

Expectation 3: a given type of objects must have a given set of properties
New abstract objects may be openly at odds with the beliefs about the nature of
the concept of which it purports to be a new instance. Being a product of numeri-
cal computations, the square root of a negative quantity must be a number. His-
torically, the concept of number grew from the processes of counting and
measuring, and as such was supposed to express quantity. Complex numbers
clearly violate this expectation: they could not be ordered in a way which would
preserve the order of real numbers they could not measure magnitude. For
three centuries, the idea of number without magnitude never occurred to those
who struggled with the notion of complex number. Unaware of their being pris-
oners of a certain bodily-based metaphor metaphor of a material quantity
mathematicians projected the properties of real numbers onto square roots of
negative numbers and were led into such paradoxes as 'a square root of 1 is both
greater than infinity and smaller than minus infinity'. What was a result of an
incongruity between the statements of mathematics and the meta-mathematical
framework seemed to them as happening within the boundaries of mathematics
itself and was interpreted as a threat to its inner consistency.

To make this point clearer, let me illustrate it with another example. As a
mathematical metaphor for material quantities, numbers were expected to comply
with all the laws the quantities seemed subjected to. A belief that a part is always
smaller than the whole is rooted in our perceptual knowledge of material quan-
tities. No wonder then, that the concept of transfinite number, introduced by
Cantor, brought his creator into despair when it became clear that the cardinality
of infinite sets may be equal to the cardinality of some of their subsets.

Expectation 4: mathematical objects are mind-independent
The very act of introducing new objects may violate the deeply rooted intuitive
convictions about the human (as opposed to divine) rights to bring new math-
ematical entities into existence. Leibniz's imaginative description of the square
root of a negative quantity as 'amphibian between being and not-being' bespeaks
the ontological nature of his doubts. Euler operated on complex numbers freely
and introduced the symbol i which helped mathematicians in getting used to
them; however, he did all this not without qualms a fact which found its
expression in the statement that square roots of negative numbers 'are called
imaginary or fancied numbers, because they exist only in imagination'. These
words reveal that for Euler, the new numbers had different ontological status than
all the others: his insistence that the former were just figments of the human mind
indicates that the latter were conceived by him as something 'real', and were
believed to have an objective existence of a sort.

This doubt about the human right to bring new abstract objects into exist-
ence is but another manifestation of the fact that our mathematical imagination is
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rooted in the bodily experience and that perceptual metaphors force mathemati-
cians into a 'Platonic frame of mind'. The unfulfilled expectations effectively blocked
the way of compl::x numbers into the world of legitimate mathematical entities
for a long time. The name 'imaginary numbers' persisted even after a geometric
model of the complex field was constructed and the theory of complex numbers
was recast into a consistent axiomatic structure.

The example of complex numbers makes it clear that frequently observed
anomaly of a missing object could not be resolved without a major modification
of a meta-mathematical framework. Paraphrasing Kuhn we may say that

Assimilating a new sort of mathematical object demands more than additive
adjustment of theory, and until the adjustment is completed until the
mathematician has learned to see mathematics in a different way the
new object is not a mathematical object at all. (Kuhn, 1962, p. 53, my
emphasis)

Kuhn's referred to 'scientific facts', 'scientists', and 'nature', and these terms were
replaced here, respectively, with 'mathematical objects', 'mathematicians', and
'mathematics'.

What had to change in the vision of mathematics if complex numbers were
to become legitimate mathematical objects? To begin with, mathematicians had to
give up the basic metaphor which originally brought the concept of number into
existence. This was the only way in which they could reconcile themselves with
the idea of a number which is not a measure of a magnitude. Also, they had to
admit themselves the right to introduce new objects on the sole basis of logical
consistency. Hamilton's work on complex numbers was an important step toward
both these ends. In presenting complex numbers as mere ordered pairs of real
numbers governed by a set of arbitrary rules, Hamilton detached the concept of
number from the metaphor of material quantity. By doing so he also brought a
more general meta-mathematical message: a message of freedom from commit-
ments external to mathematics itself. Hamilton immediately exercised the newly
acquired right for free creation in his work on quaternions. Gradually, introduc-
ing new objects by fiat turned into a common practice. At the ace of it, consist-
ency of a definition, along with such non-measurable considerations like the beauty
and richness of the idea, became the only criteria for its acceptance or rejection.
In fact however, mathematical creation will always be mitigated, at least to some
extent, by our perceptual experience which both creates and limits human
imagination.

Masters and Apprentices in Mathematics: Can They Communicate?

I began this chapter with the issue of communication between the teacher and the
student. In the example I brought I tried to show that the 'masters' and the
'apprentice' may live in separate mathematical worlds, worlds so dramatically
different that there is no possibility of real exchange.

In an attempt to account for the existence of different mathematical worlds
the fact that is often overlooked by those who tend to view mathematics as
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monolithic and unique I went so far as to the general philosophy of human
knowledge. I analysed the mechanisms which brought about the realization that
creation of knowledge any kind of knowledge is a hermeneutical task and
as such cannot be expected to produce either certainty or the kind of knowledge
which could be called 'objective' in the traditional sense. All this is true even in
mathematics, which, like any other discipline, seems to be in a constant flux. A
permanent tension between the body of mathematical statements and the system
of tacitly accepted epistemological and ontological assumptions keeps the system
in a constant motion. This tension stems from the fact that the meta-mathematical
framework, being rooted in our primary perceptual intuition, is much more inert
than all the other components of mathematical practice and does not change at the
pace which would ensure a full equilibrium. Since ontological and epistemological
discrepancies are the most difficult to detect, the teacher and the student may be
unaware of the fact that they participate in different mathematical practices and
that their mathematical imagination is shaped by different metaphors. Their in-
ability to communicate with each other will then be interpreted as the student's
failure to learn or the teacher's failure to teach, or both.

The pupil's fundamental problems with such ideas as negative or complex
numbers tend to be overlooked by the teacher mainly because the latter's own
implicit beliefs make him or her oblivious to the possibility of somebody having
a different ontological stance. Indeed, those who stand at the ton of a mountain
might have forgotten the changing landscape they could observe themselves while
climbing the hill for the first time. Another circumstance that helps in concealing
ontological difficulties is the fact that a student may become quite skilful in mani-
pulating concepts even without reifying them. This seems a plausible explanation
for the phenomenon observed with a particular clarity by Kuchemann in the large-
scale CSMS investigation carried out among 13-15-years-old pupils. The study
has shown that when operations involving negative numbers were concerned,
older children tended to do significantly worse than the younger. Kuchenmann
conjectures that 'this fall-off in performance . . . may . . . be due to the older children
having forgotten the meanings that were given to the integers when they were
first introduced.' I shall venture an even more far-fetched explanation. It is possible
that these students never really overcame the anomaly which they faced when
exposed to the idea of negative number for the first time, and thus they never
reified the concept. In other words, the negative number was never a fully-fledged
mathematical object for them, and therefore their ability to manipulate the integers
was purely mechanical. As such, it was fragile and quick to disappear.

By the same token, it requires more than just observing a student manipu-
lating complex numbers to realize the existence of difficulties rooted in his or her
meta-mathematical beliefs and in the metaphor he or she developed for the con-
cept of number. One of the few works which have shown that such problems
do exist is the study by Tirosh and Alrnog (1989). The authors' attempt to probe
learners' hidden conceptions led them to the conclusion that 'the students are
reluctant to accept complex numbers as numbers, and [they] incorrectly attribute
to complex numbers the ordering relation which holds for real numbers.'

The natural question to ask now is what can be done to overcome the deeply
rooted problems that obstruct the communication between students and their
teachers. In the foregoing discussion I have pointed out to more than one reason
why the task may be extremely difficult. Our success seems to depend on our
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ability to change the most hidden, most elusive, and most robust of student's
beliefs.

Rather than suggesting any solution, let me begin with an easier task: with
a critique of certain existing, commonly employed, methods of teaching. I have
already suggested that introducing complex numbers as abstract pairs of real
numbers is bound to be as ineffective as it was for generations of mathematicians.
Some empirical support for this can be found in Vinner (1988). Why the axi-
omatic method cannot be pedagogically effective should now be quite clear. In-
deed, no mutual understanding can be expected between pre-Hamiltonian students,
unable to relieve themselves from the grip of number-as-quantity metaphor, and
post-Hamiltonian teacher who is no longer fettered by anything except the ab-
stract structure of field and who feels free to introduce new numbers by stipula-
tion.

Teachers and textbooks are often paying a lip service to the idea of 'meaning-
ful learning' when they motivate the introduction of complex numbers with a
need to find a solution for the equation x2 + 1 = 0. This kind of argument will not
help the student who, being a captive of the metaphor of quantity, feels neither
the need nor the right to talk about numbers the square of which is negative. The
idea of an existence of such number violates all the meta-mathematical expecta-
tions I listed in the last section. Those who suggest this solution seem to be
unaware of the subtle difference between equation x2 + 1 = 0 used to introduce
complex numbers, and the equation x2 2 = 0, with which irrational numbers are
usually ushered into mathematics. The idea of a solution to x2 2 = 0 is in tune
with the metaphor of a number as a quantity: after all, if a diagonal of a unit
square is to have length, this length must be a root of x2 2 (this does not mean
that the introduction of irrational numbers is easy; also in this case there might be
a metaphor which would obstruct the learning: the metaphor of a number as a
discrete quantity or as a pair ratio of such quantities).

After the critical survey of the existing methods, I cannot escape the central
question any longer: If all this cannot help, what can? Like before, when we were
dealing with the nature of difficulty, let us turn to the history. It seems that the
way ideas developed over time is not only a perfect lens for detecting invisible
conceptual pitfalls, but also a valuable source of ideas about how these pitfalls
may be overcome.

Inspired by historical example, Kleiner (1988) suggests to use as a motivation
for complex numbers the special instance of a quatric equation which has real
solutions but, if solved with the help of Cardan's algorithm, produces roots of
negative numbers as intermediary results. Thus, Kleiner proposes replacing the
argument of a need with the argument of usefulness: the candidacy of the square
roots of negative numbers for citizenship in the world of numbers is worth con-
sidering not because of a necessity to solve a hitherto unsolvable equation (why
should such thing be necessary?), but because the new numbers might be useful
for purposes that transcend the borders of mathematics. Judging from the history,
this suggestion may be helpful. While the direct claim about an arbitrary need to
solve the unsolvable does not seem to convince anybody, the argument of useful-
ness (and consistency!) proved effective over time. As de Morgan put it in 1831,

We have shown the symbol Ni a to be void of meaning, or rather self-
contradictory and absurd. Nevertheless, by means of such symbols, a
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part of algebra is established which is of great utility. It depends upon the
fact, which must be verified by experience that the common rules of
algebra may be applied to these expressions without leading to any false
results. (de Morgan, 1831, in Kline, 1980, p. 155)

Whatever the advantages of the idea of usefulness, giving an explicit argu-
ment in favour of the existence of the new kind of number cannot make the
concept instantly accessible. After all, coping with anomaly involves replacement
of one metaphor by another and requires a deep conceptual change. As can be
learned from history, transformations of this kind always take time and require
persistence and belief in the necessity of change. It was mathematicians' stubborn
refusal to abandon the problematic square roots from negative numbers which,
after centuries of struggle, brought the reconciliation with the idea of a complex
number. As Jourdain (1956) put it,

Mathematicians thought, then, that imaginaries, thought apparently un-
interpretable and even self-contradictory, must have a logic. So they were
used with a faith that was almost firm and was only justified much later.
( Jourdain, 1956)

The `technique' of persistence was deliberately adopted by many mathema-
ticians. For example, Kitcher (1988) tells us about 'Leibnitz's exhortations to his
followers to extend the scope of his methods without worrying too much about
what the more mysterious algebraic maneuvers [those involving square roots of
negative quantities among them] might mean.' And he concludes,

the Leibnitzians seem to have thought that the proper way to clarify their
concepts and reasonings would emerge from the vigorous pursuit of the
new techniques. In retrospect, we can say that their confidence was jus-
tified. (Kitcher, 1988, p. 307)

There are reasons to expect that what worked for generations of mathema-
ticians has a chance of success in today's classroom. Thus, rather than require an
immediate grasp of a new concept, we should encourage the students to use it in
as many contexts as po:.sible in spite of the initial doubts about its meaning in
spite of the inadequate meta-mathematical framework and notwithstanding the
violated expectations. de Morgan formulated this pedagogical advice explicitly:

We are not advocates for stopping the progress of the student by entering
fully into the arguments for and against such questions as the use of
negative numbers, etc., which are inconclusive on both sides; but he
might be made aware that the difficulty does exist, the nature of which
might be pointed out to him, and he might then, by the consideration of
a sufficient number of examples, treated separately, acquire confidence
in the results to which the rules lead. (De Morgan, 1831, in Kline, 1980,
p. 155)

The most important part of this recommendation is de Morgan's insistence
on using the new concept before all the concep.ual difficulties arc resolved. Whether and
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when the student should deal explicitly with the epistemological and ontological
quandaries is another question. One thing, however, seems unquestionable: the
teacher himself or herself cannot effectively cope with the student's difficulties if
he or she is not able to predict the existence and understand the nature of the
student's doubts. Thus, in the light of the example I brought in the introduction
to this chapter, de Morgan's request that people are 'made aware that a difficulty
does exist' should probably be applied to teachers before it is directed toward the

students.
Teachers' awareness of the differences between their own meta-mathematical

beliefs and students' tacit epistemological and ontological assumptions are the first
step toward better classroom communication. Should the differences be dealt with
explicitly? Not necessarily. The incommensurability of teachers' and students'
words may impede any direct attempt to bring about a mutual understanding.
Fortunately, there is another lesson to be learned from history: the fact that gen-
erations of mathematicians were able to persist in using ideas which were not
entirely clear to them shows that there is a possibility of an effective learning even
when the things that are done cannot be fully justified. The 'master-apprentice'
mode of learning, based on participation in doing rather than on explicit dialogue
between the teacher and the student, seems to be a promising pedagogical option:

Learning . .. can take place even when coparticipants fail to share a com-
mon code. The apprentices' ability to understand the masters' perform-
ance depends not on their possessing the same representation of it, or of
the objects it entails, but rather on their engaging in the performance in
congruent ways. Similarly, the master's effectiveness at producing learn-
ing is not dependent on her ability to inculcate the student with her own
conceptual representations. Rather, it depends on the ability to manage
effectively a division of participation that provides for growth on the part
of the student. Again, it would be this common ability to coparticipate
that would provide the matrix for learning, not the commonality of
symbolic or referential structures. (Hanks, 1991, p. 21).

Rather than try to make his or her meta-mathematical principles explicit,
the teacher should aim at providing a student with an appropriate experience. The
student is more likely to be converted to a new mathematical practice by living
in a new mathematical world than just by talking about it.
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