
DOCUMENT RESUME

ED 377 819 IR 016 915

AUTHOR Frazier, Michael Duane
TITLE Matters Horn and Other Features in the Computational

Learning Theory Landscape: The Notion of
Membership.

INSTITUTION Illinois Univ., Urbana. Dept. of Computer Science.
REPORT NO UILU-ENG-94-1716; UIUCDCS-R-94-1858
PUB DATE Apr 94
NOTE 188p.; Ph.D. Dissertation, University of Illinois at

Urbana-Champaign.
PUB TYPE Dissertations/Theses Do;toral Dissertations (041)

Reports Evaluative/Feasibility (142)

EDRS PRICE MF01/PC08 Plus Postage.
DESCRIPTORS Algorithms; *Automation; *Coding; Computation; Data

Collection; *Grcup Membership; *Learning Theories;
Problem Solving

IDENTIFIERS *Computational Learning Theory; *Horn Sentences;
Knowledge Acquisition; Representation Language;
Uncertainty

ABSTRACT

Computer task automation is part of the natural
progression of encoding information. This thesis considers the
automation process to be a question of whether it is possible to
automatically learn the encoding based on the behavior of the system
to be described. A variety of representation languages are'
considered, as are means for the learner to acquire a variety of
types of data about the system in question. The learning process is
abstracted as a learning problem'in which the goal is to efficiently
collect sufficient information to identify some hidden concept using
a particular language. The source of information about the concept is
its relationship to some class of examples that is assumed to be
reasonably available even if the concept is not. The goal of inquiry
is to produce a learning algorithm that automates encoding of any
representation (or to show that none is possible). It is argued that
learning algorithms exist for two natural representation languages:
propositional Horn sentences and the CLASSIC description logic, a
natural first-order class used in the knowledge representation
community. A new method is introduced for modeling uncertainty in the
information being collected. Tools that have been developed in
computational learning theory can be used for automation in real
world tasks outside learning theory. Twenty-two figures are included.
(Contains 101 references.) (Author/SLD)

*********************;.;.
' 'c********.'"';**************AAit**

Reproductions supplied by EDRS are the best that can be made
from the original document.

"......**AA.***

Department of.
Computer Science

tniversits of Illinois
at Lrbana-Champaign

11E11
NMI
MI

Eon

U.S DEPARTMENT Of EDUCATION
Office ot Educaticeal Research end Improvement

EDUCATIONAL RF SOURCES INFORMATION
CENTER (ERIC)

0 This document has been reproduced as
raCeneed horn the Person Or Organization
originating it

0 Minor changes have been made to imptOve
reproduction Quality

Points of view or opinions slated m Ines docu-
ment do not necoSlarily remotion, official
OERI position or policy

a

REPORT NO. UIUCDCS-R-94-1858

Leading
the world
in computing

since 1948.

UILU-ENG-94-1716

Matters Horn and Other Features in the Computational Learning
Theory Landscape: The Notion of Membership

by

Michael Duane Frazier

April 1994

BEST COPY AVAILABLE

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

J.L. Pence

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER IERIC1.-

REPORT NO. UIUCDCS-R-94-1858

Matters Horn and Other Features in the Computational Learning
Theory Landscape: The Notion of Membership

by

Michael Duane Frazier

April 1994

DEPARTMENT OF COMPUTER SCIENCE
1304 W. SPRINGFIELD AVENUE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, IL 61801

©Copyright by

Michael Duane Frazier

1994

4

MATTERS HORN AND OTHER FEATURES IN
THE COMPUTATIONAL LEARNING THEORY LANDSCAPE:

THE NOTION OF MEMBERSHIP

BY

MICHAEL DUANE FRAZIER

B.S., University of Missouri Rolla, 1985
M.S., University of Missouri Rolla, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

Computer automation of tasks is part of the natural progression of encoding information.
When the task becomes well understood and repetitive, placing the task under computer control
becomes a possibility. Computers were once programmed by rewiring rather than with the use
of a modern program, management of a limited memory was once handled by the application
programmer rather than by the operating system, and efficient use of the computer's hardware
was once obtained by assembly language programmers rather than through a compiler. In
other areas, accounting moved from ledger books to spreadsheets, automobile fuel intake left
the carburetor for computer-controlled fuel injection, and diagnosis and scheduling left the
expert for the expert system.

Current knowledge representation research has sought to provide schemes for encoding
knowledge about how a given system behaves, with the goal being accuracy and utility. Can an.
accurate description be given with the representation language being used? Can the resulting
representation be manipulated easily to answer questions about the system being described? To
the extent that both questions can be answered affirmatively for some representation language
L, encoding information using L is well understood. Ideally, the goal of encoding knowledge is
not the task of encoding, but the product of the encoding task. If such encodings are required
for a variety of systems, then question of automating the process of encoding arises.

This thesis considers this automation process to be a question of whether it is possible to
automatically 'earn the encoding based on the behavior of the system to he described. .A variety
of representation languages £ are considered, as are a variety of means for the learner to acquire
a variety of types of data about the system in question. The learning process is abstracted as
a learning problem in which the goal is to collect efficiently sufficient information to identify
some hidden concept C represented using the language L. The source of information about C
is its relationship to some class of examples X that is assumed to be reasonably available even

ough C itself is not. In addition to conjecturing guesses as to the identity of C, the learner
is permitted ask h C relates to individuals x E X.

The goal of inqui .bout this automation process is either to produce a learning algorithm
that efficiently automates the encoding of any representation that uses some useful representa-
tion language £ or to show that no such learning algorithm is possible. The centerpiece of this
thesis is that there do exist learning algorithms for two natural representation languages: propo-
sitional Horn sentences and the CLASSIC description logic. In addition, this thesis introduces a
new method consistently ignorant teachers of modeling uncertainty in the information being
collected. The goal of this thesis is to demonstrate that, by careful consideration of the task at
hand, the tools that have been developed in the field of computational learning theory can he
used to automate the process of constructing the explanations required by real-world tasks in
fields outside computational learning theory.

iii

In all the arts & crafts classes I took as a child, I do not remember ever making a drink
coaster for my parents; my hope is that this pile of paper will suffice. Mention also goes to my
second grade teacher, Mrs. Farmer, who apparently was more confident of my completion of
this stage of education than I.

Most importantly, however, I dedicate this work to my loving wife, Mary, who has been a
great source of encouragement to complete this thesis so that we may truly begin our new life
together.

iv

ACKNOWLEDGEMENTS

I wish to express appreciation for the members of my committee Professors Alan Frisch,

Sally Goldman, Michael Loui, Lenny Pitt, and Ed Reingold all of whom in one way or another

lent me their time and encouragement.

Personally, I owe many thanks to my advisor, Lenny Pitt, who seemed always to have an

office full of toys and motivation to spare, to David Page who was equally open to discussions

of Christianity or inductive logic programming, and to Dana Angluin and Sally Goldman for

their clarity of prose. Thanks' also go to Nina Mishra and Howard Aizenstein for uncounted

discussions when my insight departed. I also wish to acknowledge the invaluable support of

NASA grant NAG 1-613, NSF grant IRI-9014840, the Department of Computer Science, and

the Beckman Institute.

Regarding specific contributions, I gratefully acknowledge the following. Thanks goes to

Dana Angluin, Alan Frisch, and Michael Kearns for valuable discussions concerning the work

in chapter 3 on entailed Horn learning. Thanks also goes to Dana Angluin for helpful conver-

sations regarding the work in chapter 5 on consistently ignorant teachers. Finally, thanks goes

to William Cohen and Haym Hirsh for invaluable discussions and clarifications in chapter 7

regarding the CLASSIC language.

v 0

PREFACE

True wisdom lies not in possessing knowledge but in sharing it.

vi

9

TABLE OF CONTENTS

Chapter

1 Introduction to Computational Learning Theory
1.1 State of the Art
1.2 Tools of the Trade

1.2.1 Hardness Results
1.2.2 Learnability Results and Prediction
1.2.3 Chernoff Bounds
1.2.4 Importance of Membership Queries

1.3 Content

1

5

8
8

8

11

12

12

2 Propositional Horn Sentences and Membership by Satisfaction 15
2.1 The Problem 16
2.2 Preliminaries 18
2.3 The Algorithm 20
2.4 Correctness and Running Time 27
2.5 Improvements to the Algorithm 30
2.6 Compression 35
2.7 Hardness Results 36
2.8 Discussion 38

3 Propositional Horn Sentences and Membership by Logical Entailment 40
3.1 Introduction 42

3.1.1 Approximate Entailment 43
3.2 Related Work 44
3.3 The Algorithm 46

3.3.1 Learning by Reduction 46
3.3.2 Learning Directly 49
3.3.3 Membership Queries are Necessary 56

3.4 Application to Approximate Entailment 58
3.5 Discussion 60

4 Membership by Subsumption 62
4.1 Definitions 63
4.2 The GENERIC Algorithm 65

4.2.1 A Note on Disposing of Equivalence Queries 66
4.3 A Newly Learnable Class 68

vii

4.4 Queries About Proof Length 69
4.5 Discussion 69

5 Consistently Ignorant Teachers: Membership by Consensus 71

5.1 Background and Related Work 73
5.2 The Model of a Consistently Ignorant Teacher 74
5.3 An Alternate Formulation of The Model 75
5.4 Positive Results for Learning Agreements 77

5.4.1 Learning Agreements of Nested Concepts 78
5.4.2 A General Technique for Learning Agreements 80
5.4.3 Learning Unions of Boxes in Euclidean Space 82

5.5 A Negative Result 93
5.6 Relating Agreements and Version Spaces 96
5.7 Discussion 99

6 Restricted First-Order Horn Sentences 101
6.1 The Model 102
6.2 The Class H2,1 103

6.2.1 f3<a and /3<7 105
6.2.2 a</3 and P<7 106
6.2.3 a<7 and y</3 107
6.2.4 a< I3 and 7<a 108
6.2.5 /3<a and 7<0 . 108

6.3 Increasing Predicate Arity 110
6.4 Increasing Function Arity 118
6.5 Increasing the Number of Clauses: The Class ?{,i 120
6.6 The Regular Languages Contain the Prefix Languages 122

6.6.1 Prefix Grammar to Right-Linear Grammar Transformation Algorithm 122
6.7 The Prefix Languages Contain the. Regular Languages 126
6.8 Applications to Learnability 128
6.9 Related Work 128

7 Description Logics 130
7.1 Introduction 130

7.1.1 CLASSIC 131
7.1.2 The Learning Problem 133
7.1.3 Comparison to Previous Results 135

7.2 The Algorithm 138
7.3 Equivalence Graphs 139
7.4 Labeled Equivalence Graphs 144
7.5 Application to CLASSIC 147
7.6 The Insufficiency of Membership Queries 153
7.7 Membership Query Response Errors 155
7.8 Summary 158

viii
11

8 Conclusion

Appendix

A Thesis Synopsis

Bibliography

Vita

ix

159

160

163

173

LIST OF FIGURES

1.1 DFA schema for testing example form 10

2.1 Algorithm for Learning Horn Sentences. 25

2.2 New Version of Algorithm for Learning Horn Sentences. 34

3.1 Membership oracle for HORN. 47

3.2 Equivalence oracle for HORN. 47

3.3 The algorithm entailHORN used to learn Horn sentences. 51

3.4 Find all consequents of entailed clauses having a given antecedent. 51

4.1 The GENERIC learning algorithm. 67

5.1 A method for learning the agreement of nested concepts. 79

5.2 Algorithm to learn a union of origin-incident boxes. 85
5.3 Decomposition of an axis-parallel box with respect to the intersection region. 88
5.4 Sub-region constraints imposed by the dimension of the boundary shared with

the intersection region 89
5.5 An example assigned to the wrong sub-region. . 90
5.6 Algorithm to expand an underestimate A of the the true intersection region A*

to an estimate A' such that for any point p in S, the sub-region generated by A'
in which p lies is the same as the sub-region generated by A* in which p lies. . . 91

5.7 The algorithm LearnBoxesAgreement for learning the agreement of a set of axis-
parallel boxes with samplable intersection region 92

7.1 A labeled equivalence graph. 136
7.2 The universally positive example for equivalence graphs. F indicates that every

possible edge :abel u E E appears on a directed edge from the root vertex back
to itself. 137

7.3 Equivalence graphs learning algorithm. 138
7.4 Algorithm using membership queries to remove excess graph elements from a

positive example 139
7.5 Updated Prune. 152
7.6 A target schema requiring exponentially many membership queries. 153
7.7 This schema requires exponentially many membership queries even though E is

known to be the set {cri, 02} 155

x
13

Chapter 1

Introduction to Computational

Learning Theory

Computational learning theory formalizes the notion of inferring a concept that correctly ex-

plains observed data. As such there must be a formalization of "concept," "correct," and

"data". These ideas are best formalized simultaneously.

Data exists in units called examples. A concept is a classifier; it divides the world of exam-

ples into (generally) two groups positive examples that exemplify the concept, and negative

examples that do not exemplify the concept. Thus, a concept can be thought of as a boolean

function to label examples as either positive or negative.

To illustrate, we might take "duck," "giraffe," "elephant," "table," and "hubcap" as exam-

ples. The concept name of an animal labels the first three as positive examples and the last

two as negative examples; on the other hand, the concept two syllable names labels the second,

fourth, and fifth as positive and the rest negative.

In a learning problem we assume that a concept has been chosen and fixed, and we must

deduce the concept based solely on the labels of the examples. Continuing the illustration,

given that "duck" and "table" are the only positive examples in the list, after a moment of

thought we might deduce that verb is the concept. Unfortunately, we might also deduce that

either "duck" or "table" is the concept.

This last observation brings us to the formalization of "correct." It is not enough for a

deduced concept to correctly label the list of known examples, it must also accurately predict.

1 14

the label of examples that are as yet unseen. Thus although verb and either "duck" or "table"

are identical in terms of the examples we know about, they are quite different faced with the

new example "run."

To summarize, the learning problem assumes that some hidden concept is chosen and the

labels for the examples are assigned according to that hidden concept. The learner is expected

to deduce from a srao.11 set of examples a concept that accurately predicts the label of every

example (both seen and unseen), and the learner is expected to accomplish this task efficiently.

In order to limit the possible explanations, we further assume that the hidden concept was

selected from a set of concepts, called the concept class, that is known to the learner. We begin

with the following- formal learnability definition due to Angluin [4].

Definition 1 (i Learnability) Let X be a set of examples, let C denote a concept class

consisting of concepts expressed in some representation language L that are total boolean valued

functions over the domain X. For any C E C let size(C) denote the number of symbols needed

to represent C using L. Let A be an algorithm designed with full knowledge of the preceding

items. Then A is an exact learning algorithm if there exists a polynon'fal p such that for any

choice of target C. E C (with C. unknown to A), A outputs in time p(size(C.)) a concept

E C that is functionally equivalent to C. and makes at most p(size(C.)) equivalence queries,

where an equivalence query is made by A by selecting some C E C and then being told that C

is functionally equivalent to C. or being provided with some counterexample x E X such that

C.(x) # C(x). If there exists such an A, the concept class C is said to be exactly learnable.

Another second learnz-bility definition, due to Littlestone [72], captures the notion of ongoing

learning that eventually produces a correct concept but has made few mistakes along the way.

Hence this is sometimes called mistake bounded learning or on-line learning.

Definition 2 (On-line Learnability) If there exists a polynomial p such that for any choice

of C. E C and any (perhaps infinite) sequence S of examples, A is called an on-line learning

algorithm if A, when presented the examples xi in S, predicts the label of each xi knowing only

x 1, ... ,xj_i and their correct labeling according to C., mispredicts at most p(size(C.)) of the

examples in the sequence, and takes time at most p(size(C.)) correcting for a rnisprediction. If

such an A exists, the concept class C is said to be on-line learnable.

2

1 5

When the evaluation problem (i.e. computing the value of C(x) for any C E C and any

x E X) is solvable in polynomial time, it is easy to see that an on-line learning algorithm that

keeps a current C E C to use in predicting the label of the next example in Littlestone's setting

exists if and only if an exact learning algorithm exists; the equivalence query essentially forces

the next prediction error to be presented immediately whereas the sequence S allows the C

used in the exact learning algorithm's equivalence query to be profitably used until the need

arises for correction [71].

A probabilistic variation on the definition of learnability is due to Valiant [98].

Definition 3 (PAC Learnability) If there exists a polynomial p such that for any choice of

E C, for any probability distribution D over X, and given any c > 0 and 6 > 0, A is called a

probably approximately correct (PAC) learning algorithm if A sees at most p(size(C.),11E,116)

examples selected according to D and outputs in time p(size(C.),11c,116) a concept C. such

that with probability at least 1 6, the probability that C.(x) (x) on a point x chosen

randomly according to D is at most e with respect to D. If such an A exists, the concept class

C is said to be PAC learnable.

Littlestone [72] shows that a PAC learning algorithm for a given concept class exists if

an on-line learning algorithm for that class exists. The idea used is that the on-line learning

algorithm tests its current hypothesis by taking a polynomial number of random examples. If

the hypothesis has significant error, one of the random examples chosen will demonstrate this

error and can be used by the on-line algorithm as a misprediction. The on-line algorithm is

guaranteed to make only a polynomial number of mistakes, so that the result is that throughout

the run, at most a polynomial number of random examples are witnessed before, with high

confidence, an accurate hypothesis is produced.

However, for concepts over examples from a continuous domain, PAC learnability does not

imply exact learnability; the concept class {[0, x): 0 < x < 1} is PAC learnable but not exactly

learnable. Even in a discrete domain Blum [19], assuming the existence of one-way functions,

gives a hardness result for on-line learnability (and thus exact learnability as well) for a PAC

learnable class of functions. Thus. assuming that one-way functions exist, a positive learning

result in the exact model is stronger than a positive learning result in the PAC model for

Boolean concept classes in which the evaluation problem is solvable in polynomial time.

16

These definitions implicitly assume the size of the representations of the examples is in-

significant compared to the size of the representation of the target concept. This is a valid

assumption for many problems in computational learning theory. The concept class is fre-

quently some set of boolean formulas, and the examples are frequently bit vectors representing

variable settings. For problems in which this assumption is not valid, such as when the concept

class is the set of deterministic finite automata and the examples are strings labeled according

to whether they are in the language accepted by the target DFA, the bound on the running time

of A is often allowed to depend at most polynomially in the length of the longest example seen.

Care must be exercised in these settings to prevent a clever A from forcing an exponentially

longer counterexample to be given in order to justify after the fact the amount of computation

time used in identifying the target [3].' In these settings, A is required at each step in its run to

have used no more than time polynomial in the other parameters and the length of the longest

counterexample seen to that point in the run.1

We will make a number of modifications to the above definitions to adapt them to a variety of

settings. Among these modifications will be adding queries of the sort suggested by Angluin [4];

most important among these queries for our purposes is the membership query in wi,ich A is

permitted to ask at most polynomially many questions of the form "What is Cs(x)?" for

any x E X. We will often speak of the randomly chosen examples or answers to queries as

being provided by a teacher, an expert, or nature. More pragmatically, these queries may be

considered experiments designed by the learner.

The overriding goal of computational learning theory is to devise efficient learners for natu-

ral concept classes or to show that no such learner exists. Natural concept classes are taken to

be those coming into existence outside the field of computational learning theory because hav-

ing arisen outside the field suggests that the concept class has interest apart from the question

of its learnability. For example, the field of knowledge representation has produced a number

of languages and systems [25, 28, 39, 77, 17], each developed to model phenomena from some

domain. To the extent that such knowledge representation languages can accurately encode

an explanation of the phenomena for which they were intended, the question naturally arises,

I In the statement of our results the phrase "time polynomial in the length of the longest counterexample"
should be taken to mean that at each step in the run of the algorithm, at most time polynomial in the length of
the longest counterexample seen to that point has been used.

4

1'7

Can the encoding of the explanation be automated, i.e. learned, simply through interaction

with phenomenon?" Generally this answer is "No;" the richness of expression within these

natural concept classes thwarts known learning attacks. Because of this, approximations are

made to the natural concept classes and the learnability of these approximations are considered.

Even so, this thesis does devise exact learners for two natural kinds of classifiers propositional

Horn sentences (a standard choice for encoding expert system knowledge) and the description

logic CLASSIC (one of a collection of description logics finding many knowledge-based appli-

cations [25]), the former using variable assignments as examples and the latter using other

CLASSIC descriptions as examples.

We begin by summarizing results relevant to the new work presented here and then discuss

some tools used to achieve these new results.

1.1 State of the Art

What natural classes of formulas are learnable? The most natural class of propositional boolean

formulas, namely, the class of all boolean formulas, was shown not to be learnable given crypto-

graphic evidence by Kearns and Valiant [6]. Carefully note that this negative result relies on

the fact that no restriction was placed on the boolean formula representing the target boolean

function. However, if we demand that the target boolean function be represented as, say, a

k-CNF formulas (conjunctions of at most k-literal disjuncts, for some constant k), then learning

algorithms exist [98, 4]. The discrepancy is that some boolean functions are represented only by

exponentially long k-CNF formulas so that the learning algorithm gets more time to learn the

same function. Thus, it is not necessarily the class of functions that is hard to learn, but it can

be simply that the class of formulas permitted to represent those functions are hard to learn. In

other words, the choice of representation automatically provides a complexity parameter which

may offer the learner more time than some other representation for the same function.

The learnability question for two other natural classes, namely, CNF and DNF, was left open

by Valiant [98] when he introduced the distribution-free or PAC criterion for concept learning.

The tearnability of these two classes remains open, and efforts to close these questions have led

researchers to investigate the learnability of a variety of restricted classes of boolean formulas.

r
.1_ C)

Algorithms exist2 for learning monomials (pure conjunctive concepts) [73, 98], internal disjunc-

tive concepts [54], read-once formulas [9], monotone DNF formulas [4, 98], k-CNF and k-DNF

formulas for constant k [23, 73, 99], and k-term functions also for constant k [22]. There are also

algorithms for linearly separable formulas [73], decision lists [88], rank k decision trees (k con-

stant) [42], and decision trees [29], among others. Thus, a number of results have been obtained

for approximations to a natural class of formulas. One key result in this thesis is a learning

algorithm for a natural class of formulas, propositional Horn sentences, whose learnability was

left open by Angluin [2] when she presented a learning algorithm for the approximating class

of acyclic Horn sentences.

A great deal of work in the artificial intelligence and knowledge representation communities

deals not with propositional but with first-order concepts; as such, there is a wealth of potential

in studying the learnability of first-order concepts. Relatively little work has been done within

this framework, though interest is rising sharply [70, 81, 82, 15]. Also, Dieroski et al. [41]

describe an algorithm that learns k-clause, determinate, function-free, first-order Horn clauses

with bounded depth variables by transforming the target into a propositional monotone k-term

DNF formula. This thesis gives a learning algorithm for another very restricted subclass of

recursive first-order Horn sentences. The primary distinction of this work from that of Dieroski

et al. [41] is that the class studied is not determinate because functions can be nested to arbitrary

depth.'

First order learning results have been hard to achieve; to date, the positive learning results

for first-order concepts have been for very restricted subclasses of first-order logic. For example,

Page and Frisch [82] looked at atoms labeled according to whether they are entailed by a

particular kind of hidden first order formula. Other related first-order results come from the

field of inductive logic programming where the target is a Prolog program. Cohen [35] gives a

PAC learning algorithm for function-free, two clause, linearly recursive, closed, ij-determinant

logic programs against a given background theory. Shapiro [95] describes a system for learning

Prolog programs in the limit (ie, exact learning, but time is an unbounded resource) using

The results use a number of different protocols; in particular some of these results use membership queries.
The protocol used to achieve a result stated here is explained in more detail when it becomes relevant later in
the thesis.

3More precisely, the classes that result from flattening (rewriting to contain no functions) the concepts are
not determinate.

6

atoms entailed by the program to be learned. Another key result of this thesis is a learning

algorithm for a natural first-order class, CLASSIC, which is used in the knowledge representation

community. This learning result is inspired by other work on CLASSIC [36, 33].

An interesting question arises when changing the setting of a learning problem from the

propositional domain to the first-order domain: How are examples represented? In the propo-

sitional case there is a natural choice for representing examples bit vectors specifying variable

settings. In the first order case, the models over which the semantics of first-order logic are

defined are frequently infinite, rendering the phrase "polynomial running time".for an algorithm

seeing such examples meaningless. Instead of models labeled according to whether the target

formula is satisfied, logical formulas labeled according to entailment by the target are often

used. This choice of examples used in learning some particular, unknown body of knowledge

suits the artificial intelligence and knowledge representation settings well in that the questions

normally asked within those communities involve what logical implications can be efficienti;

deduced from a particular knowledge base. A third contribution of this thesis arises from car-

rying the notion of entailment to the propositional domain to provide new results involving

examples that are not bit vectors but propositional formulas. Relevant work here comes from

the knowledge compilation literature [37, 52, 63, 92]. The results in this thesis include some

sufficient conditions for learnability under entailment.

Finally, for when the world does not operate in a well behaved way, such as when questions

are answered not by an omniscient source but by a fallible rational source, using a representation

closely related to Mitchell's version spaces [79], this thesis provides a model, called a consistently

ignorant teacher, for the resultant uncertainty and considers a number of learning problems in

such a setting.

Interspersed among the positive learning results are a number of non-learnability results,

many of which show that some learnable class cannot be extended in a particular way while

retaining learnability according to the same criteria. Other non-learnability results show that

the types of queries used by a learning algorithm form a minimal set of queries needed to achieve

learnability for the class. An itemized list of the contributions made by this thesis appears in

the appendix.

7

1.2 Tools of the Trade

1.2.1 Hardness Results

For relating the difficulty of predicting classes of formulas and thus for obtaining non-

learnability results assuming the hardness of learning some class of formulas Pitt and War-

muth [86] provide the powerful method known as prediction-preserving reductions. For example,

one of the reductions given by Kearns, Li, Pitt and Valiant [65] shows that PAC learning mono-

tone CNF and DNF formulas (without membership queries) is as hard, modulo a polynomial

time transformation, as PAC learning general CNF and DNF formulas (without membership

queries). Sow. of the negative results claimed in this thesis were obtained using this method, so

those negative results assume that learning CNF and DNF formulas is hard; in the event that

learning algorithms do exist for these presumably negative results, the reductions given provide

learning algorithms for CNF and DNF, something of great value indeed. At present, however,

the learnability of CNF and DNF formulas remains the central open problem in computational

learning theory.

Other negative results are based on more common hardness assumptions such as NP 71-. RP

or the existence of one-way functions. There are also absolute (information theoretic) hardness

results that arise from adversary arguments; these results are obtained by chosing a target and

constructing a set of examples that reveals so little about the target that the learner is forced

to request more than a polynomial number of these examples to accurately identify the class.

1.2.2 Learnability Results and Prediction

Reductions can also be used to provide positive learning results. Algorithms can be constructed

that provide examples to an existing learning algorithm using a blind transformation of the

examples. That is, the learning problem for concept class C is solved using a learning algorithm

for concept class C' and a polynomial time transformation on examples that does not require

knowledge of the chosen target from C. if we require only that the learning algorithm be

accurate and not that the algorithm produce a concept from the class C, we can use the concept

produced by the learning algorithm for C' together with the blind transformation on examples

as the classifier; the learning algorithm for C' is then known as a prediction algorithm for C.

8 9

To illt.trate the idea of a prediction algorithm, we present here our first new result. This

result extends the work of Blum, Chalasani, and Jackson [20], who describe a learning algo-

rithm for the propositional class of disjoint k-multi-symmetric functions using membership and

equivalence queries.

Definition 4 Let V = be a set of propositional variables. Then a disjoint k-multi-

symmetric function is a specification of a boolean valued k-ary function f on tuples of natural

numbers together with a specification of k disjoint subsets S 1,. .., k of V . The value of f is

obtained from a setting of the variables of V by evaluating f on the tuple (n1,....nk) where n,

is the number of variables in Si that are set true.

This definition requires that the k subsets be disjoint. By removing the requirement that an

algorithm construct a representation of this form, the class of functions in which these subsets

need not be disjoint can be predicted by Angluin's algorithm for learning deterministic finite

automata [3]. The construction of an on-line learning algorithm is as follows.

Blum, Chalasani, and Jackson consider f to be represented as a lookup table of (n + 1)k

entries, one entry for each possible tuple supplied to f . The value of the function f depends

only on the count of the variables of each Si that are assigned true. If we take a variable

assignment and write down the variable names in alphabetical order of those variables assigned

true, then for each i it is an easy task to construct an n +1-state DFA whose input symbols are

the n variable names and whose states represent the number of variables in Si assigned true.

It then follows easily that a DFA having the n variable names as input symbols and having at

most (n+ 1)k states can be constructed such that the states of the DFA represent the number of

variables assigned true in any particular k such subsets Si. By designating as accepting states

those states corresponding to those tuples that f labels positive examples, this DFA accepts

exactly the variable assignment that f labels positive and the DFA has essentially the same

size as the table representing f. We will use this DEA. representation of the (not necessarily

disjoint) k-multi-symmetric functions, and we will use Angluin's DFA learning algorithm to

learn the DFA representation.

We will construct a sequence of examples for the DFA learning algorithm to use from the

sequence of examples presented for f . Occasionally, we will insert some of our own examples

that serve to constrain the search facing the MA learning algorithm; it is important to note

9

that knowledge about f is used neither in the transformation of examples for f into examples

for the DFA learning algorithm, nor in the selection of the extra examples inserted into the

sequence for the DFA.

Because the examples given to the DFA algorithm are supposed to represent an alphabetized

list of variables set true, when the DFA learning algorithm wishes to test some DFA A for

accuracy, we check to see that the language L(A) it accepts contains only strings in which the

symbols appear in alphabetical order and no symbol appears twice. To accomplish this, we

make 0(n2) checks that

L(A) n {si}rxj(v {xi})"xiV*

is the empty language for every pair of symbols xi and xj in V with i < j. Clearly, given xi and

xj, each of these tests can be performed in polynomial time because each test can be performed

by intersecting the 3-state DFA M(i, j) shown in Figure 1.1 with A and checking the resulting

language for emptiness. Equally clearly, a string in any of the non-empty languages is efficiently

found.

Observe that M(i, i) accepts exactly those strings in which xi appears more than once, and

M(i, j) accepts exactly those stringsin which xj occurs before xi. If any language L(A)n m(i, j)
is non-empty, present any string in any of these languages as the next example in the sequence

being presented to the DFA learning algorithm.

V- (xi) V- (xi) V

Figure 1.1: DFA schema for testing example form.

If none of these languages is empty, then continue using A against the sequence of examples

being presented. For each example, alphabetize the list of variables set true, preserve the

example label, and hand the result as the next example in the sequence to be presented to the

DFA learning algorithm.

The matter is simpler for membership queries. When the DFA learning algorithm poses

a membership query, answer the query "no" if the string has any repeated symbols or if the

I0

2

string i:, not alphabetized. Otherwise, pose a membership query formed by setting exactly those

variables in the string to true and respond to the DFA query with the answer received from a

variable assignment membership query, which we have at our disposal.

Because Angluin's DFA learning algorithm makes at most a polynomial number of mistakes

regardless of the sequence it sees, we have the following result.

Theorem 5 The class of (not necessarily disjoint) k-multi-symmetric functions is predictable

by the on-line version of Angluin's DFA learning algorithm.

Proof: The above discussion shows that for any (not necessarily disjoint) k-multi-symmetric

function f , there is a DFA Af having size equivalent to the size of the table representation of

f . The discussion gives a polynomial time one -to -one mapping s between the set X of variable

assignment examples and the set X' of alphabetized strings over variable the names in which

no symbol occurs twice. It is then shown that T1 labels e E X a positive example if and only

if s(e) is accepted by Af. Since the number of prediction mistakes made by the DFA learning

algorithm is at most polynomial in the size of Af, the number of prediction mistakes is also at

most polynomial in the size of T 1. Thus the above construction produces an on-line learning

algorithm for the class of (not necessarily disjoint) k-multi-symmetric functions. 0

1.2.3 Chernoff Bounds

One standard tool used in estimating the likelihood of certain properties of a probability distri-

bution in the PAC setting is Chernoff bounds. One formulation of these bounds, stated belo%

can be found in [13].

Fact 6 Let LE(p,m,(1a)pm) denote the probability that in in independent trials an event hav-

ing probability of occurrence p is witnessed at most (1 a)pm times, and let GE(p,m,(1+a)pm

denote the probability that in in independent trials an event having probability of occurrence

is witnessed at least (1 + a)prn times. Then

LE(p, in, (1 a)p7n) < c-a2mP/2

G E(p, m,(L ct)prn) < c mP13

11

1.2.4 Importance of Membership Queries

Membership queries can make a difference for example, monotone DNF and CNF formulas

are PAC learnable if membership queries are available [98, 4], whereas their status is open

without membership queries. Another example is provided by read-once formulas. These are

PAC learnable in polynomial time if membership queries are available [9]. However, by another

reduction of Kearns, Li, Pitt, and Valiant [65], the PAC learnability of read-once formulas

is equivalent to that of general Boolean formulas in the absence of membership queries, and

therefore as hard as certain apparently hard cryptographic problems, by the results of Kearns

and Valiant [66]. In the exact model, read-once formulas are not learnable with equivalence

queries alone [9] bur are exactly learnable with membership queries.

How much are membership queries likely to help with learning general Boolean formulas, or

general CNF and DNF formulas? Angluin and Kharitonov [10] give cryptographic evidence that

the answer in both cases is "not much." For general boolean formulas there is cryptographic

evidence of the same sort as given by Kearns and Valiant that they are not PAC learnable in

polynomial time even if membership queries are available. For general CNF and DNF formulas

the situation is more complicated, but, in effect, there is cryptographic evidence that either

general CNF formulas will be PAC learnable in polynomial time without member. 'tip queries,

or they won't be PAC learnable in polynomial time even with membership queries that is,

the membership queries "won't help" in the case of general CNF and DNF formulas.

Because the availability of membership queries may change the answer to the learnability

question for some learning problems, the results claimed in this thesis include results about the

necessity (or lack thereof) of membership queries.

1.3 Content

Each of chapters 2 through 7 of this thesis (except for chapter 4) represents a published work.

Chapters 2 through 5 provide propositional results, beginning with the most intuitive model.

Chapters 6 and 7 provide first-order results, chapter 7 discussing the less familiar zoncept class.

The discussion of the significance of the results of a particular chapter appear at the end of

that chapter.

12

Chapter 2 represents joint work with Dana Angluin and Lenny Pitt and appears as [8].

This chapter gives the most detailed description of the relationship of variable assignments

to propositional formulas. This chapter also carefully defines the class of propositional Horn

formulas. This level of detail is omitted in subsequent chapters. The results presented in Chap-

ter 2 include two learning algorithms for the important class of propositional Horn formulas;

also presented are hardness results for the related class of 2-quasi Horn sentences. Sections 2.6

and 2.7 includes material left open in (8].

Chapter 3 represents joint work with Lenny Pitt, which appears as [46]. This chapter builds

directly on the work in Chapter 2, but trades the familiar variable assignment examples for

clauses labeled according to logical entailment by a propositional Horn target. This chapter

also presents two learning algorithms for the class of propositional Horn sentences one a direct

learning algorithm, and the other a reduction to either learning algorithm from Chapter 2. This

chapter also presents hardness results for attempting to disallow membership queries.

Chapter 4, also representing joint work with Lenny Pitt and also extending the work of

Chapter 2, presents a learning protocol motivated by the desire to learn an efficiently applicable

representation of the target. This desire contrasts with the common desire to learn a small

representation of the target. The protocol assumes the time taken by an expert to answer

a membership query is important, but does not assume that the expert is able to articulate

his representation of the target function. Sufficient conditions for learning under this protocol

are given and are applied to a class of formulas defined by Boros et al. [27], a class properly

containing Horn sentences and 2-CNF.

Chapter 5 represents joint work with Sally Goldman, Nina Mishra, and Lenny Pitt. and

appears as [44]. A new learr..;ng model is presented in this chapter. Here the teacher is assumed

to be rational but not necessarily omniscient. Viewed another the way, the teacher may have

several competing models of the world and presents categorical answers to the learner only in

those cases where the teacher's competing models agree. The learner is expect ed to acquire the

teacher's models of the world. This chapter presents learning algorithms for a variety of concept

classes, including a *concept class related to the union of boxes in d-dimensional Euclidean space.

A hardness result is given for the case in which the teacher has several competing horn models

of the world.

13 '-0t. 0

Chapter 6 represents joint work with C. David Page and appears as (431. This chapter

presents a learning algorithm that uses no membership queries, but learns a very restricted

first-order class of recursive Horn sentences. Here the learner sees first-order clauses labeled

according to entailment by the target. This chapter also presents some discussion on the effect

of relaxing some of the restrictions on the formulas in the class; a hardness result is presented

when the restriction to unary functions is removed. A secondary result in this chapter is a new

characterization of the regular languages.

Chapter 7 represents joint work with Lenny Pitt and appears as [45]. This chapter discusses

a surprising positive learnability result for the (first-order) description logic CLASSIC. Here the

learner collects examples labeled according to logical consequence of the target. It is shown in

this chapter that arbitrary CLASSIC descriptions can be learned, even when the rate of malicious

noise in the answer to membership queries is near 1/2.

14

Chapter 2

Propositional Horn Sentences and

Membership by Satisfaction

We (joint work with Angluin and Pitt) show that the class of Horn sentences is exactly learnable

using membership and equivalence queries from a standard teacher. This set of queries is

minimal in that Angluin [4, 6] has shown that propositional Horn sentences are not exactly

learnable from a standard teacher from membership or equivalence queries alone. Observe

that Horn sentences are "almost monotone" in the sense that each clause contains at most one

positive literal. As a negative result, we show via prediction preserving reduction that the class

of 2-quasi Horn sentences conjunctions of clauses, each clause containing at most two positive

literals is no easier to PAC learn using membership queries than CNF. We also show, using

an inciteful observation by Vijay Raghavan [87], that 2-quasi Horn sentences are no easier to

exactly learn with equivalence and membership queries from a standard teacher than CNF.

Thus in some sense, the amount of "non-monotonicity" permitted in Horn formulas appears

to be near the edge of learnability. Further, it is interesting to note the kind of questions

the learner is pern tted to ask when learning Horn sentences are quite reasonable because the

teacher can answer them in polynomal time.

Compared to learning algorithms using membership queries to learn other concept classes,

our Horn learning algorithm might be termed "lazy" in that membership queries are commonly

aggressively applied to a counterexample to construct a new counterexample that has some min

imality property (say, a minimal number of variables assigned true). In contrast, our algorithm

15 20

works by keeping a sequence S of negative examples, and focuses its attention on explaining

why those examples are negative. An example is negative only if it falsifies some clause of

the target, and a Horn clause is falsified only if each of the variables in the antecedent of the

clause are set to true and the variable in the consequent is set to false. Thus the algorithm

explains a negative example in S by assuming the target contains a clause whose antecedent

consists of exactly the varia.bies set true by the example and that the consequent (if any) of the

class is one the variables the example makes false. Clearly the antecedent might not contain

all the variables set true by the example, so, in effect, the algorithm waits for another negative

example that is explained by the same clause and throws out all the variables these two neg-

ative examples do not have in common; further this is the only explanation that is updated.

This, relaxed, data driven nature of this algorithm seems crucial; a number of more aggressive

approaches that attempt to throw out as many variables as possible, or that attempt to update

several explanations in response to new information, were foiled when a clever adversary choose

the counterexamples.

Because of the nice computeional structure of Horn sentences, both the membership and

the equivalence queries can be answered in polynomial time given knowledge of the target.

Thus as a benefit, the learning algorithm can be used to reduce a given Horn sentence to

its logical equivalent having the minimum number of distinct antecedents in polynomial time.

To our knowledge, there did not exist an efficient procedure for finding a minimum sized Horn

sentence equivalent to a given sentence, nor were we aware of canonical forms for Horn sentences.

A pleasing property of our algorithm is that it produces guesses as to the identity of the target

having a monotonically increasing number of distinct antecedents; thus the algorithm is capable

of determining whether the function it is being asked to learn can be represented as a Horn

sentence of a given size. This property is useful in trying to approximate a (not necessarily

Horn) concept by a small Horn.

2.1 The Problem

Let V = v1 v be a set of Boolean variables. A literal is either a variable vi or its negation

--,vi. A clause over variable set V is a disjunction of literals. A florrz clause is a clause in which

at most one literal is unnegated. A Horn sentence is a conjunction of Horn clauses. The class

16

of Horn sentences over variable set V is a proper subclass of the class of Boolean formulas over

V.

Let H. denote the target Horn sentence to be learned. The main result of this chapter is

that propositional Horn sentences are exactly learnable using variable assignments as examples,

provided membership (and equivalence) queries are available. The algorithm runs in timer

O(Trt2 n2), making 0(rnn) equivalence queries and O(m2n) membership queries, where m is the

number of clauses, and Ti is the number of variables of H..

It is interesting to note that both types of queries are necessary for learning Horn sentences.

Angluin [4] shows that membership queries alone are insufficient for polynomial-time learning,

and, implicitly in [6], she proves that equivalence queries alone are also insufficient.

A similar result for learning monotone formulas in disjunctive normal form (DNF) has been

given [4, 98]. The dual of the class of Horn sentences is the class of "almost monotone" DNF

formulas a disjunct of terms, where each term is a conjunct of literals, at most one of which

is negated. Since our algorithm is easily modified to handle the dual class, it extends the results

in [4, 98] by allowing a small amount of nonmonotonicity. (Later, we indicate why allowing

more nonmonotonicity would yield a difficult problem.) Horn sentences are an interesting

nontrivial subclass of CNF (dual: DNF) formulas, the learnability of which remains a central

open problem for the distribution-independent ("PAC learning") model of Valiant [98]. The

research presented here also improves the results in [2], where the class of Horn sentences is

shown to be learnable by an algorithm that uses equivalence queries that return Horn clauses as

counterexamples and "derivation queries" a type of query that is significantly more powerful

than a membership query.

By modifying the algorithm presented here in a relatively straightforward way [4] we could

obtain an algorithm that learns the class of Horn sentences using randomly generated examples

as in the PAC learning model, provided that the algorithm is additionally allowed to make

membership queries. Similarly, the algorithm presented here could be used in an on-line setting

in which the learning algorithm is to classify each of a succession of examples, and the algorithm

is told whether its classification is correct or incorrect before receiving each next example. The

resulting on-line algorithm makes membership queries (excluding the examples to be classified)

the Oft or "soft-0", notation is similar to the usual 00 notation except that 00 ignores logarithmic
factors.

17

but not equivalence queries, and is guaranteed to make at most a polynomial number of errors

of classification regardless of the sequence of examples [4].

Note that because the problem of determining whether two Horn sentences are equivalent

(and producing a counterexample if they are not) is solvable in polynomial time, the oracle in

our learning protocol could be replaced by a teacher with polynomially bounded computational

resources.

The remainder of this chapter is organized as follows. Section 2.2 gives basic definitions,

notation, and lemmas that will be used throughout. In Section 2.3 we describe the algorithm

and give an example run. Section 2.4 provides a correctness proof and an analysis of the

time and query complexity of the algorithm. In Section 2.5 we present a modified version of

the algorithm which satisfies smaller time and query bounds. We conclude in Section 2.8 by

discussing some related and open problems.

2.2 Preliminaries

It is o. ;en easier to discuss the satisfaction or falsification of a Horn clause when that clause

is represented as an implication. To expedite the discussion we will implicitly assume that all

Horn clauses are represented as implications. This necessitates the introduction of two logical

constants.

Definition 7 The logical constant "true" is represented by T and the logical constant "false'

is represented by F.

Next, we introduce notation that will enable us to dissect Horn clauses and discuss the

relationships between them and examples. First, recall the identity zVW__.1 (/'\`t vi)
where "" is the logical connective for implication and "s" is a metasymbol indicating logical

equivalence. Now, taking vi E T (the empty conjunction evaluates to true) and adopting

the convention that we write (A_1 vi) =F when there are no unnegated variables in the Horn

clause, we have the following definitions.

Definition 8 Let II be an" Horn sentence over V . An example is any assignment .c V

{T, F }. A positive (respectzvely, negative) example for II is an assignment x such that II

evaluates to true (respectively, false) when each variable v in II is replaced by x(v).

18

31

Definition 9 Let x be an example; then true(x) is the set of variables assigned the value "true"

by x and false(x) is the set of variables assigned the value "false" by x.

By convention, T E true(x) and F E false(x).

Definition 10 Let C be a Horn clause. Then antecedent(C) is the set of variables that occur

negated in C. If C contains an unnegated variable z, then consequent(C) is just z. Otherwise,

C contains only negated variables and consequent(C) is F.

We now describe the relationships that may exist between an example and a Horn clause.

Definition 11 An example x is said to cover a Horn clause C if antecedent(C) C true(x). We

say that x does not cover C if antecedent(C) true(x). The example x is said to violate the

Horn clause C if x covers C and consequent(C) E false(x).

Notice that if x violates C then x must cover C, but that the converse does not necessarily

hold.

It will be more convenient throughout the rest of the paper to consider a Horn sentence as

a set of Horn clauses, representing the conjunction of the clauses.

Our first observation is trivial, but it is helpful to state it formally.

Proposition 1 If x is a negative example for the Horn sentence II, then x violates some clause

of H.

We next define the fl operation for examples.

Definition 12 Let x and s be two examples, then xfls is defined to be the example z such that

true(z) = true(x)fltrue(s).

Note that this implies that false(xfls) is false(x)u false(s).

Lemma 13 Let x and s be examples. If x violates C and s covers C, then xfls violates C.

Proof: If s covers C then anteccderzt(C) C true(s). Also, if s violates C, then antecedent(C) C

true(x) and consequent(C) E false(x). Thus antecedent(C) C truc(s)fl true(x) = truc(snx)

and consequent(C) E false(s) C false(s) U false(s) = falsc(sflx). Thus, sflx violates C'.

19

3°

Corollary 14 Let x and s be examples. If x violates C and s violates C, then xfls violates C.

Proof: Apply Lemma 14 after noting that if s violates C then it also covers C.

Lemma 15 If x does not cover C, then for any example s, xfls does not violate C.

Proof: If antecedent(C) g true(x) then antecedent(C) g true(x)fltrue(s) = true(xfls). Thus

xfls does not violate C.

Lemma 16 If xfls violates C, then at least one of x and s violates C.

Proof: Observe that xfls violates C, and thus consequent(C) E false(xfls) = false(x)Ufalse(s).

Therefore, consequent(C) is an element of at least one of false(x) and false(s). But since xfls

violates C, we also have antecedent(C) C true(x) and antecedent(C) C true(s). Thus at least

one of x and s must violate C.

2.3 The Algorithm

The ideas behind our algorithm may be understood by considering the problems that arise when

we attempt to employ more straightforward approaches. After our algorithm is motivated in

this manner, an example run is given. The correctness of the algorithm is demonstrated in the

next section; in Section 2.5 we present a more efficient version of the same algorithm.

Let II. be the target Horn sentence with respect to which equivalence and membership

queries are answered. The algorithm is based on the following ideas. Every negative ex-

ample x violates some clause C of II.. From x we would like to add the clause C to our

current hypothesis, but we cannot exactly determine C from x alone. We know however that

antecedent(C) C true(x), and consequent(C) E false(x). Thus one approach would be to add

to our current hypothesis II all elements of the set

clauses(.c) = {(A z E false(x)}
vE true(r)

whenever a new negative counterexample x is obtained. Each clause in this set is a possible

explanation as to why x is a negative example, and each clause guarantees that in the future x

will be classified as a negative example. Moreover, at least one of these clauses is subsumed (i.e.,

20

33

logically implied) by some clause of H.. However, in addition to adding a clause with the "cor-

ect" consequent, we may be adding several clauses with the "wrong" consequent. Fortunately,

this problem is not of concern because any such clause that is not logically implied by the target

formula H. will eventually be discovered when a positive counterexample is produced that does

not satisfy the clause. At this point, at least one extraneous clause will be eliminated.2

Unfortunately, a simple scenario shows that this straightforward approach is inadequate

because we can force it to add exponentially many insufficiently strong clauses. Suppose 114,

is defined over the variable set V = {a, b1, 62, bn} and in fact H. is just a single clause, C,

which is

Now any example in which a is set to T is a negative example. In particular, the example

with a set to T and the variables {bi }t even set to T is a negative example. Among the clauses

generated from this example is

(a A 62 A 64 A A 6,)}:'

Now we see a negative example which is identical to the previous negative example except that

bi is T instead of b2. This example does not violate the first clause that we generated so we are

obligated to exclude this negative example by generating clauses for it. Among these clauses is

(a A bi A 64 A 66 A A b)-F

which, like its predecessor, is logically entailed by II.. The difficulty is now clear: there are

exponentially many negative examples with a set to T and exactly half of the variables {b1} set

to T we are forced to exclude each one with its own clause. We have observed above that

by including clauses(x) in the current hypothesis II upon seeing a negative counterexample

x, some "good" clause is added to II, namely, the clause (A uE truc (x) v) consequent(C), wherev

C is some clause of H. that x violates. However, the scenario above demonstrates that the

problem with the straightforward approach is that the antecedents of the clauses of generated

2Step S of the learning algorithm of figure 2.1 incorporates this idea of discarding extraneous clauses when a
positive counterexample is produced.

21
0 4

by clauses(x) are too long, so this "good" clause is less restrictive than C because its antecedent

is more restrictive. Thus, the negative examples that fail to satisfy the (good) added clause

may be only a small fraction of those that fail to satisfy C, and the clause added to H is only

an "approximation" of C. Consequently, very many such approximations to the target clause

C are generated by the examples.

To counter this problem, a second approach might be to find smaller antecedents by using

membership queries to set more of the variables to F in the negative counterexamples that

we are given by any equivalence query. Thus, given a negative counterexample x we set some

variable which is currently T in x to F and ask whether the result satisfies H.. If it does not,

then the result still violates some clause of H. so we leave the variable set to F, otherwise we

set the variable back to T. We repeat this process until we can set no more variables to F.

This process can be done quickly and we are left with a minimal negative example. However,

a second scenario will disclose the problem with this approach.

Suppose H. is defined over variable set V = {a, b, c, d} and in fact H. is

(b A cad) A (b =a)

Further suppose that we minimize negative examples by trying to set the variables to F in

alphabetical order. Let TTTF (that is, the variables a, b, and c set to T and the variable d set

to F) be the first negative counterexample. We minimize this to FTFF and add clauses(FTFF)

to our hypothesis, so II becomes

(bra) A (bc) A (bid) A (b-F)

Next we see the positive counterexample TTFF which simply reduces II to

(b =a)

Thus we have indeed found a clause of 11,.. Next we see the negative counterexample TTTF.

But this is the same example that we saw at the beginning, and so our algorithm will never

terminate; it is forced to find the same clause repeatedly. '['he difficulty lies in the fact that even

though we were given an example that violated the first clause of 11., our minimization produced

22

an example that violated the second clause of II.; and this fact led to nontermination. (One

might object that it is foolhardy to decide a priori the order in which we will try to set the

variables of our negative examples to F; rather we should dynamically decide the order in which

to minimize a new negative counterexample. However, it appears to be a difficult problem to

design a polynomial-time algorithm that is guaranteed to minimize a negative example and

simultaneously avoid rediscovering any of the previously found "good" clauses even if is known

which clauses in the current hypothesis are genuinely "good".)

As demonstrated by the first scenario, we must reduce the number of variables set to T

in the negative counterexamples we are given, but as seen in the second scenario we cannot

do this in the obvious way. A datadriven approach solves the dilemma. A new negative

example is used to attempt to "refine" previously obtained negative examples by intersection

(bitwise conjunction) each such intersection, if it actually contains fewer true variables than

the previously obtained negative example, is then tested to see whether it is negative (using a

membership query.) If so, it is a candidate to refine the previously obtained negative example.

The algorithm maintains a sequence S of negative examples. Each new negative counterex-

ample is used to either refine one element of 5, or is added to the end of S. In order to learn

all of the clauses of II., we would like the clauses induced by the (negative) examples in S

to approximate distinct clauses of II.. This will happen if the examples in S violate distinct

clauses of II.. Overzealous refinement may result in several examples in S violating the same

clause of To avoid this, whenever a new negative counterexample could be used to refine

several examples in the sequence 5, only the leftmost among these is refined.

By collecting these ideas, the learning algorithm (Figure 2.1) can be described intuitively in

the following way. The sequence S of negative examples that the algorithm maintains is used

to generate new hypotheses. Each negative example in the sequence can be explained by 0(n)

different Horn clauses, and each of these possible explanations is placed in the hypothesis. Any

clause in the hypothesis which is not logically entailed by the target will be exposed eventually by

a positive counterexample. When this positive counterexample appears, the algorithm removes

any clause that this example violates from the hypothesis. On the other hand, the hypothesis

may also contain some clauses which are insufficiently strong. These clauses Will be exposed

eventually by a negative counterexample. When this negative counterexample occurs, the

algorithm refines the first element of S it can (using an intersection and a membership query)

23 3 6

or it appends the new negative example to the end of S. In either case, after modifying S

the algorithm generates a new hypothesis from S. In Section 2.4 it is proved that this process

produces in polynomial time a hypothesis which is logically equivalent to the target.

A simulated run of the learning algorithm will now be given. Suppose H. is defined over

the variable set V = {a, b, c, d} and in fact H. is

H.: (a A c =d) A (a A t;,.c)

Initially we set S to be the empty sequence and H to be the null hypothesis

S:[1

H :0

Suppose the first counterexample to our equivalence query for H is the negative example TTTF.

There are no elements of S that we can attempt to refine with this negative example, so we

simply append it to the end of the sequence, and since S changed we generate a new hypothesis

H by conjoining all of the clauses(s) for all s E S. Thus,

S : [TTTF]

II: (a A b A cd) A (a A b A c.F)

Now suppose the next counterexample to our equivalence query for II is the positive example

TTTT. This eliminates an extraneous clause from II but does not change S, so we do not

generate a new H from S. Thus we now have

5 : [TTTFJ

ft : (a A b A cd)

For clarity, we will assume for the remainder of this simulated run that we are able tm discard

immediately any extraneous clauses by positive counterexamples returned from equivalence

queries for 1/, and so we will only show the effect of receiving a (necessarily) negative coun-

24

HORN

1 Set S to be the empty sequence /* s2 denotes the i-th element of S. */

2 Set H to be the empty hypothesis

3 UNTIL equivalent(H) returns "yes" DO

4 /* main loop */

5 Let x be the counterexample returned by the equivalence query

6 IF x violates at least one clause of H

7 THEN /* x is a positive example */

8 remove from H every clause that x violates

9 ELSE /* x is a negative example */

10 BEGIN

11 FOR, each si in S such that true(sinx) is properly contained in true(si)

12 BEGIN

13 query member(sinx)

14 END

15 IF any of these queries is answered "no"

16 THEN let i be the least number such that member(s,nx) was answered "no"

17 refine si by replacing si with s,nx

18 ELSE add x as the last element in the sequence S

19 ENDIF

20 Set II to be ABES clauses(s), where clauses(s) = {(Avetrug.) : z E
false(s)}

21 END

22 ENDIF

23 END /* main loop */

24 Return II

Figure 2.1: Algorithm for Learning Horn Sentences.

25 3 8

terexample. Suppose the next negative counterexample is TTFT. We can intersect this with

the (first) element of S and get a negative example with strictly fewer variables set to T than

the (first) element of S had. We do so, replacing this element of S with the result of the inter-

section. Then, because S changed, we generate a new hypothesis H from S. (Again assuming

that all extraneous clauses were subsequently eliminated) we have

S : [TTFF]

H: (a A b-c)

Suppose our next negative counterexample is TTTF. We cannot intersect this with any element

of S and get a negative example with strictly fewer variables set to T that that element of S

currently has, so we add our new negative counterexample to the end of the sequence S. This

changes 5, so we regenerate H by conjoining all of the clauses(s) for all s E S. This eventually

leaves us with

S : [TTFF, TTTF]

H : (a A bc) A (a A b A c=4-d).

Now suppose our final negative counterexample is TFTF. We cannot refine the first element

of S with this negative example, but we can refine the second element of S, so we replace the

second element of S by the intersection of that element and our negative counterexample. This

in turn mandates that we regenerate H from S, which eventually leaves as with

S : [TTFF, TFTF]

H : (a A bc) A (a A cd)

Our final equivalence query for 11 tells us that we have learned H..

Note that the first and fourth negative counterexamples were the same, namely TTTF; thus

the current hypothesis held by the algorithm is not necessarily consistent with the examples

seen so far.

26 3.

1.4 Correctness and Running Time

We prove that the algorithm of Figure 2.1 correctly terminates in time 0(m3n4), making

0(m2n2) equivalence queries and O(m2n) membership qieries. In the next section, a more
m2n2),0 (Trin),efficient algorithm improves these bounds to a(and 0(m2n), respectively.

First observe that the algorithm terminates only if the hypothesis and the target Horn

.entente H. are equivalent. Therefore, if the algorithm terminates, it is correct. To show

termination in polynomial time we first prove a couple of technical lemmas.

Lemma 17 For each execution of the main loop of line 3, the following holds. Suppose that in

step 5 of the algorithm a negative example x is obtained such that for some clause C of H. and

for some si E S, x violates C and si covers C. Then there is some j < i such that in step 17

the algorithm will refine sj by replacing s2 with s3flx.

Proof: The proof is by induction on the number of iterations k of the main loop of line 3. If

k = 1, then the lemma is vacuously true, since the sequence S is empty upon execution of step

5. Assume inductively that the lemma holds for iterations 1,2, ..., k 1 of the main loop, and

assume that during the k-th execution of the loop, at step 5 a negative example x is obtained

such that for some clause C of H. and for some si E S, x violates C and si covers C. Clearly,

if in step 17 of the k-th iteration, the algorithm refines some si where j < i, then we are

done. Suppose that this does not happen. Now by Lemma 13, we know that sinx is a negative

example. It only remains to be shown that true(sinx) is properly contained in true(s,), for

then si will be refined in step 17. Observe that each time the sequence S is modified, step

20 of the algorithm discards the old hypothesis and constructs a new hypothesis II from the

elements currently in S. Further observe that during each execution of the main loop of line

3, either S is modified (lines 9-21), or else a clause is removed from II (line 8). Let j < k be

the last execution of the main loop of line 3 during which S was modified. Then, during the

j-th iteration, line 20 was executed and II was reconstructed from S. At this time a clause

= (A tJE true (3,) v) consequent(C) was included in II, where C is the clause that .e and si

both violate. Now C logically implies a, so could not have been removed in line 8 during

iterations j+1,...,k of the main loop. Since the equivalence query returns only examples in the

symmetric difference between the hypothesis 11 and the target //., a negative example obtained

in line 5 satisfies every clause of II. By assumption, violates C, thus conscqucnt((') E fa/sc.(x).

27
U

But now if trit«.,, true(x), then x would violate 0, a contradiction. Therefore, true(sinx)

is properly contained in true(si). Thus the algorithm will replace si by sins in line 17.

Lemma 18 het S be a sequence of elements constructed for the target H. by the algorithm.

Then

1. VkV(i < k)V(C E H.) if sk violates C then si does not cover C

2. VkV(i k)V(C E H.) if sk violates C, then si does not violate C.

Proof: The proof is by induction. We will show that properties 1 and 2 are preserved under

any modifications the algorithm makes to the sequence S.

Initially the sequence is empty, so both properties hold vacuously. Now suppose that the

properties hold for some sequence, and suppose that the algorithm modifies the sequence in

response to seeing the negative example x.

If the algorithm appends x to the sequence as, say, st, then suppose by way of contradiction

that property 1 fails to hold. Inductively, the only way that property 1 could now fail to hold is

if there is some i < t such that si covers some clause C of H. that st violates. But this means

sins violates C. This together with Lemma 17 contradicts the fact that the algorithm did not

replace sj by sjnx for some j < i. Thus property 1 is preserved.

Now suppose by way of contradiction that property 2 fails to hold. Inductively, the only way

property 2 could now fail to hold is if there is some i < t such that si and st both violate some

clause C of /1.. Since si violates C it also covers C. Then, by Lemma 17, some si with j < i

would have been refined instead of x = st being added to S, a contradiction. Thus property 2

is preserved.

Now suppose that instead of appending x to the sequence, the algorithm replaces some

sk with skflx. Suppose by way of contradiction that property 1 fails to hold. There are two

possibilities, either there is some i < k such that .5i covers and skflx violates some particular

clause of H. or there is some i > k such that skflx covers and si violates some particular

clause C of //.. If the former case holds, then by Lemma 16 either x violates C or sk violates

C. If x violates C then (since si covers C) by Lemma 17 there must be some j < i < k such

that sj was refined' instead of sk, a contradiction. On the other hand, if sk violates C, then the

fact that si and sk both violate C contradicts the inductive assumption that property 2 held

before the modification.

28
41

Now consider the latter possibility, namely that there is some i > k such that sknx covers

and .9, violates some clause C of Then by (the contrapositive of) Lemma 15, sk covers C.

Since si violates C and i > k, this contradicts the inductive assumption that property 1 held

before the modification. Thus, property 1 is preserved.

Finally, suppose that the algorithm replaces some sk with skflx and suppose by way of

contradiction that property 2 no longer holds. If this is the case, then there is some i k

such that si and sknx both violate some particular clause C of H.. By Lemma 15, sk covers

C. Further, by Lemma 16, at least one of sk and x must violate C. If sk violates C, then the

inductive assumption that property 2 held before the modification is contradicted by the fact

that si also violates C. On the other hand, suppose x violates C. If i > k, then the fact the sk

covers C contradicts the inductive assumption that property 1 held before the modification. If

i < k, then Lemma 17 and the fact that si violates (and hence covers) C contradicts the fact

that the algorithm did not replace .91 by sjnx for some j < is Thus, property 2 is preserved.

Corollary 19 At no time do two distinct elements in S violate the same clause of H..

Proof: This is property 2 of Lemma 18.

Lemma 20 Every element of S violates at least one clause of H..

Proof: Each of the elements in S is a negative example, thus by Proposition 1, each of the

elements violates some clause of H..

Lemma 21 If H. has m clauses, then at no time are there more than m elements in the

sequence S.

Proof: This follows immediately from the fact that each of the elements in .9 violates some

clause of H. but no two elements violate the same clause of H..

Finally, we have our theorem.

Theorem 22 A Horn sentence consisting of m clauses over n variables can be exactly learned

in time a(rn3n4) using 0(rn2n2) equivalence queries and 0(m2n) membership queries.

Proof: The only changes to the sequence S during any run of the algorithm involve either

appending a new element to 5, or refining an existing element. Thus ISI cannot decrease

29
4 2

during any execution of the main loop of the algorithm. But Lemma 21 shows that there are at

most m elements of S at any time. Thus line 18 is executed at most m times. Now observe that

whenever any element si of the sequence S is refined (line 17), the resulting new i-th element is

s; fl x, which, by line 11, must contain strictly fewer variables assigned the value "true" than si.

This can happen at most n times for each element of S. Thus line 17 is executed at most nm

times. Whenever the ELSE clause at line 9 is executed, either line 17 or 18 must be executed.

It follows that lines 9-21 are executed at most TM +7n = (n +1)m times. Note that this bounds

the total number of membership queries made by (n + 1)m2.

Next observe that for any element s of S, the cardinality of false(s) is at most n+1 (recalling

that F E false(s)). Thus the cardinality of clauses(s) is at most n + 1. Therefore, the number

of clauses in any hypothesis H constructed in line 15 is at most (n + 1)m. Now, since each

positive counterexample obtained in line 5 necessarily causes at least one clause to be removed

from H by line 8, the equivalence query can produce at most (n +1)m positive counterexamples

between modifications to S. Therefore, line 8 is executed at most (n + 1)2m2 times. Since each

execution of line 3 that does not result in termination causes execution of line 8 or lines 9-21,

the total number of executions of line 3 (and hence the total number of equivalence queries

made) is at most (71+ 1)2m2 + (n + 1)m + 1.

To complete the proof we need only show that the time needed for each execution of the

main loop is O(n2m). Using the facts (above) that at any time during the execution of the

algorithm ISI < m and II/1 < (n + 1)m, and that each element of H consists of at most n + 1

variables (antecedent + consequent), it is easily verified that the time needed to execute either

of steps 8 and 20 is O(n2m), and that these steps dominate the time to execute one iteration

of the main loop.

2.5 Improvements to the Algorithm

We describe a more efficient version of the learning algorithm for Horn sentences. There is

a natural shorthand notation for propositional Horn sentences obtained by gathering up all

the clauses 'with the same antecedent set and conjoining the consequents. The conjunction of

several clauses C1, Ck with the same antecedent will be represented as a meta-clause whose

antecedent is the common antecedent of the clauses and whose consequent is the conjunction

30

43

of consequent(Ci) for i = 1, , k. For example, the meta-clause

(a A b A d*c A e)

is logically equivalent to, and will be used to represent, the conjunction

(a A b A d-c) A (a A b A de).

The new version of the algorithm maintains the current hypothesis as a sequence of meta-

clauses, one meta-clause corresponding to each negative example in the sequence S in the

previous version. We assume that this representation is used both by the algorithm and for

the equivalence queries. (If the equivalence queries require that the representation be strictly a

conjunction of Horn clauses, further (straightforward) optimizations must be made to achieve

the time bounds below.)

In addition to this shorthand representation, we make use of the observation that once a

positive counterexample eliminates a clause, it eliminates any clause with a refined antecedent.

For example, the positive counterexample TTTF eliminates the clause (a A b A c =d), and also

refinements like (a Abed) and (b A cd). Thus, when we refine the antecedent of a meta-clause,

we do not need to re-introduce possible consequents that have been eliminated.

The effects of counterexamples on meta-clauses can be exemplified as follows, starting with

the meta-clause

(a A b A c#-.1 A e A f).

A positive counterexample causes items to be struck from the consequent, for example, a positive

counterexample TTTTFT would result in the meta-clause

(a A b A c#4 A f).

A subsequent negative counterexample that refines the corresponding negative example moves

variable(s) from the antecedent to the consequent. For example, the negative example TTFFFF

then results in

(a A b=>-c A (I A f).

31

44

Using suitable data structures, this means that the total processing time spent modifying the

hypothesis is O(mn), since each variable can appear in the antecedent, be moved to the conse-

quent, and be deleted, from each meta-clause. A more formal treatment follows.

We use the partial ordering < on assignments defined by x < y if and only xi < yi for

i = 1,...,n. If C is a meta-clause, let negex(C) denote the example that assigns T to all

the variables in the antecedent of C and F to all the other variables. Then negex(C) is the

minimum example in the ordering by < that violates C. In the new version of the algorithm,

H is the conjunction of a sequence of meta-clauses Ci such that negex(Ci) = si.

We define three meta-clause operations: generating a new meta-clause from a negative

example (new(x)), reducing a meta-clause with a positive counterexample (reduce(C, x)), and

strengthening a meta-clause with a negative example (refine(C , x).)

Given a negative example x., define new(x) to be the meta-clause whose antecedent is pre-

cisely the set of variables assigned T by x and whose consequent is F. Note that negex(new(x)) =

x. For example,

new(TFTFT) = (a A c A e =F).

This operation is used to construct an initial meta-clause from a new negative example. It re-

places the operation clauses(x). The consequent F is introduced first because the Horn clause

with antecedent set A and consequent F logically implies every other Horn clause with an-

tecedent set A. The other possible consequents are only introduced if and when the consequent

F is eliminated by some positive counterexample.

Given a meta-clause C and an example x > negex(C) for which C is false (intuitively, x is a

positive counterexample) we define reduce(C, x) to be a meta-clause with the same antecedent

as C and consequent defined as follows.

1. If the consequent of C is the logical constant F, then the consequent of reduce(C, x) is the

conjunction of those variables vi such that vi is assigned F in negex(C) and vi is assigned

T in x.

2. If the consequent of C is not the logical constant F, then the consequent of reduce(C , x)

is the conjunction of those variables in the consequent of C that are assigned 1 in x.

For example,

reducc((a A b.F),TTTFT) = (a A 1;,-(.7 A e).

32

4

Also,

reduce((a A b =c A d), TTTFT) = (a A b =c).

Given a meta-clause C and an example x < negex(C) (intuitively, x is a negative counterex-

ample) we define refine(C ,x) to be a meta-clause whose antecedent is all the variables assigned

T by x, and whose consequent is defined as follows.

1. If the consequent of C is the logical constant F, then the consequent of refine(C,x) is the

logical constant F.

2. If the consequent of C is not the logical constant F, then the consequent of refine(C ,x) is

the conjunction of all the variables in the consequent of C and all the variables assigned

F by x and Tby negex(C).

For example,

Also,

refine((a A b A c-F), TFTFF) = (a A c.F).

refine((a A 1).c A e), TFFFF) = (a =b A c A e).

Note that the possible consequent d is not re-introduced here, having been (presumably) elim-

inated by a previous positive example.

The new version of the algorithm, shown in Figure 2.2, has the same line numbers as the

previous version, for ease of comparison. As for the previous version, if the algorithm halts

then its output is correct, so we need only give bounds on its running time.

Since throughout the new version negex(Ci) is equal to si in the old version, the same

argument shows that if m is the number of clauses of the target II., then there are at most m

meta-clauses in H at any time. Note that no meta-clause is ever deleted from II.

Consider the career of a particular meta-clause Ci. Ci is initially created in response to a

negative counterexample. When Ci is first created, its antecedent consists of a conjunction of

variables, and its consequent is the logical constant F.

The antecedent of Ci then only changes in response to negative counterexamples, and the

change must be to delete one or more variables from the antecedent. Thus, there can be at most

n such changes. Since every negative counterexample must either cause the creation of a new

meta-clause or refine an existing one, there can be at most m(n + 1) negative counterexamples.

33

46

NewHORN

1 /* H is a conjunction of meta-clauses Ci */

2 Set H to be the empty hypothesis

3 UNTIL equivalent(H) returns "yes" DO

4 BEGIN /* main loop */

5 Let x be the counterexample returned by the equivalence query

6 IF x violates at least one meta-clause of H

7 THEN /* x is a positive example */

8 replace Ci by reduce(C1, x) for every Ci that x violates

9 ELSE /* x is a negative example */

10 BEGIN

11 FOR each Ci in II such that (negex(Ci)nx) < negex(Ci)

12 BEGIN

13 query member(neger(Ct)ns)

14 END

15 IF any of these queries is answered "no"

16 THEN let i be the least number such that member(negex(Ci)nx) is
answered "no"

17 replace C, by refine(Cnegex(Ci)nx)

18 ELSE add new(x) as the last meta-clause in H

19 ENDIF

20 /* H is already updated */

21 END

22 ENDIF

23 END /* main loop */

24 Return II

Figure 2.2: New Version of Algorithm for Learning Horn Sentences.

34

The consequent of C, may change in response to negative or positive counterexamples. The

first positive counterexample to Ci changes its consequent from the logical constant F to the

conjunction of a subset of the variables not in the antecedent of Ci. Negative counterexamples

before the first positive counterexample do not change the consequent of C, it remains F.

Subsequent negative counterexamples to Ci may move one or more variables from the antecedent

to the consequent of Ci. Positive counterexamples to Ci, after the first, can only remove

variables from the consequent of Ci. Every variable can be deleted at most once from the

consequent of Ci, and, if the consequent is not the logical constant F, at least one variable

must remain in. it. Thus, Ci can be changed by at most n positive counterexamples. Since

every positive counterexample must change one or more meta-clauses, there can be at most rni:

positive counterexamples.

Since each negative counterexample can cause at most m membership queries, no more

than m.2(n + 1) membership queries will be made. With a straightforward representation of

meta-clauses and assignments as lists of length n, this algorithm can be implemented to run in

time -6(m2n2).

Our analysis of the improved algorithm establishes the following theorem.

Theorem 23 A Horn sentence consisting of m clauses over n variables can be exactly !earned

in time 0(m2n.2) using 0(mn) equivalence queries and 0(m2n) membership queries.

2.6 Compression

It is interesting to note that because the membership and equivalence queries are answerable

by a polynomially time bounded teacher, it is possible to apply the Horn learning algorithms

to obtain a polynomial time algorithm that given an arbitrary Horn sentence produces an

equivalent Horn sentence whose size is at most linearly larger than the smallest equivalent

Horn sentence.

Corollary 24 There exists a polynomial time algorithm that given any Horn sentence 11 over

n variables produces an equivalent Horn sentence 11' whose size is 0(n) times the size of the

smallest equivalent Horn sentence.

Proof: The learning algorithms presented here find a representation with the fewest distinct

antecedents, because each negative example violates sonic clause of the target, there are no

35

more negative examples in S than there are clauses in the target, and a single antecedent is

constructed from each negative example in S. For each antecedent, every consequent supported

by the target is added; there are only 0(n) possible consequents for a given antecedent. Thus,

the size Horn sentence constructed by the learning algorithms is at most 0(n) times the size of

the smallest representation.

Now, since membership and equivalence queries are answerable in polynomial time, given

H as input, we can construct a polynomial time algorithm to answer queries about H posed

by the learning algorithms instead of requiring a teacher. The Horn sentence H' produced by

the learning algorithm against this substitute teacher is sufficiently small.

2.7 Hardness Results

If membership queries are not available, it is an open problem whether Horn sentences are PAC

learnable or polynomial-time predictable (from random examples alone.) By the reductions

of Kearns, Li, Pitt, and Valiant [65] PAC learnability of Horn sentences would imply PAC

learnability of general CNF and DNF sentences, and similarly for polynomial predictability.

It is also an open problem whether general CNF or DNF formulas are learnable or poly-

nomially predictable when equivalence and membership queries are available. For any k, let

k-quasi-Horn be the class of CNF formulas where each clause contains at most k unnegated

literals. Thus 1-quasi-Horn is just the class of Horn sentences, and is learnable using equiv-

alence and membership queries. Here, using a clever observation by Vijay Raghavan about

Pitt and Warmuth's requirements for prediction-preserving reductions [86], we show that if an

algorithm exists to learn the class of 2-quasi-Horn formulas using equivalence and membership

queries then the general class of CNI? formulas (and DNF formulas) would be learnable by an

algorithm that uses membership and equivalence queries.

Corollary 25 If the class of 2-quasi-Horn formulas is learnable using membership and equiv-

alence queries, then the class of CIV IP formulas is learnable using membership and equivalence

queries.

Proof: Let the class of CNF formulas be defined over the variable set {x Introduce

new variables {yi , yn) such that the negation of y, will behave like xi. Let C. be the

36

target CNF formula, and everywhere the variable xi appears replace it with the negation of

yi. Notice that this produces a CNF formula (over the variables {x1 }n 1U {yi}}1_1) that has no

unnegated literals, and is thus Horn. Obtain a CNF formula C.' by conjoining to this formula

the n clause pairs (xi V yi) A Hxi V which require that exactly one of xi and yi is set to T

in any example that satisfies C. Note that C.' is a a 2-quasi-Horn formula whose size is only

polynomially larger than C..

Now consider extending any example e of C. (over n variables) to an example e' of (over

2n variables) by setting the value of yi to be the negation of the setting of xi. The example

x satisfies C. if and only if x' satisfies C. The objective here is that because such a 2-quasi-

Horn C' exists for any C., we can employ a 2-quasi-Horn learning algorithm A to identify C.

by conditioning all examples as above and pretending that the extant C.' is the actual target.

Clearly, this conditioning can be accomplished without knowing C..

Now, when A poses a membership query, if every xi is set oppositely of its corresponding

yi, then make a membership query about C. using the settings of the xi and return that answer

to A. Clearly, the answer to these two membership queries must be the same. On the other

hand, if some xi and yi are set identically, answer the query "no" this setting violates one of

the clauses of the hypothetical C.' that demands that the xi and y2 be set oppositely. Thus,

answering membership queries correctly for does not require knowledge of C..

When A poses an. equivalence query on the hypothesis H', we know that, if correct, the

variables xi and yi must behave as negations of one another in the hypothetical C. Thus, obtain

H by replacing every variable y, by the literal and make an equivalence query against C.

about II. If the equivalence query is answered "yes" we are done because II is a CNF over

that bgically equivalent to C. If the equivalence query is answered "no" and an

example e (over n variables) is returned, then e satisfies C. if and only if e falsifies II. Extend

e to an example e' (over 2n variables) as described above. Because II was obtained from II'

by replacing yi ;;;ith e' satisfies II' if and only if e satisfies II, so that e satisfies C. if and

only if e' falsifies But e satisfies C. if and only if e' isfies the hypothetical C", so e'

satisfies C: if and only if e' falsifies II'. That is to say, c' is a counterexample to for the

hypothetical target Therefore, supplying A with the counterexample e properly answers

the equivalence query on II' "no ". Thus, answering equivalence queries correctly for C: does

not require knowledge of C..

37

It now follows that the above construction produces a learning algorithm for the class of

CNF formulas from membership and equivalence queries, provided that A exists.

The following PAC related corollary, whose proof borrows ideas from the previous corollary,

also holds.

Corollary 26 If the class of 2-quasi-Horn formulas is PAC learnable using membership queries,

then the class of CNF formulas is PAC learnable using membership queries.

Proof Sketch: As in the previous corollary, a 2-quasi-Horn target (over twice as many

variables) exists for a given CNF formula. The simulation now is less complicated than before.

The randomly generated examples received are transformed into examples of the 2-quasi-Horn

as before, the membership queries posed by the 2-quasi-Horn algorithm are answered as before,

and there are no equivalence queries to answer.

Finally, based on the Angluin and Kharitonov result [10], we immediately have the following

corollary.

Corollary 27 Assuming the existence of one-way functions, if the class of 2-quasi-Horn for-

mulas is PAC learnable using membership queries, then the class of CNF formulas is PAC

learnable from random examples alone (without membership queries).

Proof: The Angluin and Kharitonov result says that under the assumption of the existence

of one-way functions, membership queries do not help when trying to predict CNF in the PAC

setting.

2.8 Discussion

An exact learning algorithm for propositional Horn sentences using membership and equivalence

queries was presented. By the results of Angluin [6, neither type of query alone is sufficient

to allow exact learning in polynomial time. The algorithm may he used to obtain an algorithm

for PAC learning or polynomial prediction [59, 86] of horn sentences from randomly generated

examples, provided that membership queries are also available to the algorithm.

An interesting open problem is whether the algorithm here can he extended so as to handle

restricted types of universally quantified Horn sentences (see the papers of Valiant [99] and

38

Haussler [57] for related classes of formulas). Although this answer appears to be "no-, this

class is of significant interest due to its similarity to the language Prolog, and its use in logic

programming and expert system design. The pessimism arises from the dramatic change in

semantics between propositional and first-order logics. Specifically, the obvious first-order ana-

log of a propositional example is a potentially infinite table specifying truth assignments to

every object in the Herbrand universe of the target formula. Infinite sized examples render

"polynomial time" meaningless. Even so, in chapters 6 and 7, after discussing alternative types

of examples, we will discuss polynomial time learning algorithms for two first-order classes.

39

Chapter 3

Propositional Horn Sentences and

Membership by Logical Entailment

To motivate the distinction between teachers providing standard variable assignment examples

and teachers providing formulas labeled according to logical entailment, consider the following

two learning tasks involving elephants. The unknown concept of an elephant might be expressed

as a boolean formula of a particular form defined over variables which denote real-world at-

tributes. For example, the formula large A grey A has-trunk A eats-peanuts might represent

exactly the set of all elephants, to the extent that an assignment to the above boolean variables

represents an elephant if and only if it satisfies the conjunction.

A related, but perhaps philosophically different problem, is obtained by viewing the target

as the description of the only world the learner has at his disposal to explore. Here, an un-

known formula may be viewed as a theory about the world, and positive examples a will

be statements which follow from the theory. For example, if the theory contained the impli-

cations that "large mobile things can crush you," "elephants are large things," and "elephants

are mobile," then a positive example would be the entailed sentence "elephants can crush you,"

a fact that one might wish to know if living near elephants. We seek to construct a theory

about the world containing assertions such as "elephants are mobile" and "elephants are lari'e

things" given entailed assertions such as "elephants can crush you". Such a problem is cen-

tral to a number of areas, including expert system design (construct a knowledge base from

40

J3

example real-world facts) and logic programming (synthesize a Prolog program from example

input/output behavior).

Philosophically, the distinction between these two learning tasks can be summarized as

follows. L: arning from a standard teacher can be thought of as learning to classify. In this

setting, tLe unknown formula is a description of the world and the settings of the variables are

worlds which either or do not satisfy the description; thus the learner is seeing a collection

of variable settings and is being asked to learn to classify those settings as "worlds" and "non-

worlds". In contrast, learning from an entailed example teacher can be thought of as having

just one world whose description is to be deduced from truths about the world.

Though there have been numerous' interesting results in learning from standard teachers,

there has been relatively little work that investigates learning from entailed example teachers.2

We present a polynomial time algorithm for learning propositional Horn sentences using mem-

bership and equivalence queries from an entailed example teacher using Horn clauses as ex-

amples. Our interest in the entailed example teacher was sparked by work in the area of

approximate entailment [37, 92, 63, 52]. We suggest that our algorithm might be useful in this

setting, and leave open the general question of how techniques found in learning algorithms

might be helpful in this area.

The current algorithm is in fact an application of the algorithm presented in the previous

chapter, but with a number of twists. We will present two different learning algorithms one

of which learns the class directly and one of which applies a prediction - reserving reduction to

the learning algorithm in the previous chapter. Although the main ideas in the direct algorithm

and proof are the same as in the previous chapter, some tricks are needed to overcome a few

difficulties. The result is, in fact, a learning algorithm for a different learning problem. As with

the standard teacher, the entailment teacher algorithm learns propositional Horn sentences in

time polynomial in the size of the sentence to be learned.

Motivating our results, Angluin describes an algorithm for learning propositional Horn sen-

tences, from equivalence, and "derivation" queries [5]. A derivation query allows the learning

algorithm to propose a clause C, and in response, is told whether C is "subsumed." "not sub-

'See proceedings from Workshop on Computational Learning Theory (61, 60. 48, 47, 100. 18J.
`There has been some work in the area of inductive logic programming that considers learning with entailed

first-order atoms (82J rather than clauses.

41 J4

surned, but entailed," or "not entailed" by the Horn theory to be learned. Thus, our algorithm

strengthens Angluin's result by limiting the types of answers given in response to a query ("en

tailed" or "riot-entailed"). Note that queries answered "subsumed", which we do not allow,

give information about the syntactic structure, and not just the logical structure, of the theory

to be learned. Eliminating subsumption queries has the appeal that no particular target rep-

resentation needs to be assumed, as well might be the case when examples are provided from

nature. Angluin leaves open the question that this chapter closes.

The recent results in the area of concept learning from examples were catalyzed by the

introduction of reasonable formal definitions of efficient concept learning [98, 3], and the devel-

opment of techniques for constructing efficient learning algorithms and proving their correctness.

In contrast, there has been relatively little work that applies these new definitions and tech-

niques to the problem of learning from entailment (but see Section 3.2). In this chapter we

describe a polynomial-time algorithm that can learn an unknown propositional Horn sentence

cp. by posing certain natural queries to a teacher.

3.1 Introduction

We consider the following learning protocol: Some propositional Horn sentence T. is chosen

and is unknown to the learner, the learning algorithm is permitted membership and equivalence

queries, and the learning algorithm sees Horn clauses labeled according to entailment by T. as

examples. We prove the following:

Theorem 28 Let T. be any propositional Horn sentence over n variables. The algorithm en-

taillIORN (figure 3.3), using equivalence queries and membership queries (of entailed clauses)

answered with respect to the unknown formula T., halts in time polynomial in 71 and the size3

of T., and outputs a Horn sentence II that is logically equivalent to T.

More briefly, we'll say that entaillEORN exactly learns the class of Horn sentences from

entailment, using equivalence and membership queries. This learning model is, with one impor-

tant exception, Angluin's standard, well-investigated model of exact learning from equivalence

queries and membership queries [3]. The difference is that here the examples queried by the

3The size of a Horn sentence is the number of symbols needed to write the Horn sentence.

42
5 5

learner and the counterexamples to the learner's hypotheses are not assignments to the vari-

ables which may or may not satisfy T., but rather are Horn clauses which may or may not be

entailed by L. We note that because Horn clause entailment by a Horn sentence is decidable,

entailHORN can be converted to a PAC or on-line learning algorithm provided that membership

queries remain available.

3.1.1 Approximate Entailment

Let L be a known theory. In general, we would like to answer questions of the sort "Is a

entailed by T.?" Depending on T. and a, the general question can be undecidable, or at least

computationally intractable. Consequently, several researchers have grappled recently with the

notion of approximate entailment. Rather than answering questions of entailment about the

actual theory L and query a, Dalai. and Etherington propose answering questions of entailment

about a variety of strengthenings and weakenings of L and a ([37]). They note that soundness

or completeness or both can be lost under this protocol. Still, certain combinations of their

strengthenings and weakenings do preserve either soundness or completeness and permit the

question of entailment for queries to be answered efficiently.

Kautz and Selman construct a protocol in which soundness and completeness are preserved

even at the expense of categoricity (i.e., some questions of entailment might be answered "I

don't know") ([92, 63]). Specifically, they consider the case where T. is a p"opositional CNF

theory and suggest approximating L by choosing as an upper bound the unique strongest Horn

sentence entailed by L and choosing as a lower bound a weakest Horn sentence which entails

L. Any Horn clause entailed by the upper bound is also entailed by T., and any Horn clause

not entailed by the lower bound is not entailed by L. Further, since these bounds are Horn

sentences, questions of entailment are efficiently answerable for a large class of formulas. They

note that the upper bound, while unique, in some cases is exponentially larger than the actual

CNF theory L. Similarly t hey note that the lower bound, while never much larger than T, is

not necessarily unique.

Greiner and Schuurmans also use the idea of upper bounding and lower bounding a known

CNF theory T. with Horn sentences ([52]). They, however, demand that the upper bound

be small. Rather than finding the unique Horn least upper bound (which may be large),

43

56

they attempt to find, via hill-climbing, a small Horn upper bound that performs optimally at

predicting questions about entailment among all Horn upper bounds that are "similar".

Current attempts to construct the Horn least upper bound have a "generate and test"

flavor to them Horn clauses are "generated", and are "tested" by determining (via resolution)

whether or not the CNF theory entails the clause. If so, they are included in the Horn least

upper bound.

One problem which arises is that even in cases where the Horn least upper bound is small,

there seems to be no guarantee that the number of clauses tested is sma11.4 Hence, the number

of applications of a possibly exponential time resolution procedure might be much larger than

the size of the smallest representation of the Horn least upper bound. ideally, we would like

to derive a Horn least upper bound from a CNF theory in time polynomial in the size of the

Horn least upper bound. Although we cannot do this, in Section 3.4 we show how algorithm

entailHORN can be used to "lazily" construct a Horn least upper bound of a known CNF

theory when queries about entailment are received in an on-line setting and periodically we

are informed of some error in our entailment prediction. Further, the number of appeals to a

potentially exponential-time resolution procedure is bounded by a polynomial in the size of the

smallest representation of the Horn least upper bound, and the particular expression for the

Horn least upper bound that is found is also at most polynomially larger than the best such

expression.

3.2 Related Work

This work builds on the work of the previous chapter that constructs an algorithm for learning

Horn sentences from satisfying assignments. The direct algorithm presented below is in fact an

application of either algorithm from the previous chapter, but with a number of twists. The

standard variable assignment examples of the previous chapter might be viewed as complete

conjuncts (or fundamental products) that are labeled as entailing or not entailing the target.

Here we do not care about such examples at all; our examples now are Horn clauses that are

labeled as being entailed or not being entailed by the target. As with the algorithm of the

4 It is an easy task to construct a small CN I' theory that has a small Horn least upper bound but has an
exponential number of entailed Horn clauses.

44 J

previous chapter, the current algorithm learns proposition' Horn sentences in time polynomial

in the size of sentence to be learned.

On the other hand, we also present an algorithm for learning from entailment constructed

using either algorithm from the previous chapter as a "black box" once a suitable transformation

between the entailed example environment and the standard example environment has been

constructed. The transformation involves constructing two polynomial time algorithms that use

membership queries and equivalence queries to act as oracles for an algorithm of the previous

chapter one to answer the membership queries of the type asked by that algorithm and one to

answer the equivalence queries of the type asked by that algorithm. The task accomplished by

each oracle is essentially converting between examples of the type available (which are clauses

entailed by exactly one of the target and the current hypothesis) and the type used by the

algorithms of the previous chapter.

As discussed above, Angluin's work with entailment and subsumption for propositional

Horn sentences [5] is closely related to the work presented in this chapter. Other authors have

looked at examples entailed by first-order formulas. For example, Page and Frisch look at atoms

labeled according to whether they are entailed by a hidden first order formula ([82]). Their

work examines more the effect of multiple occurrences of a variable in the hidden theory and

less the effect of connectives in the hidden theory. Our work also uses entailment as the means

of labeling examples. However, we use entailed examples to learn propositional formulas where

the connectives play a significant role within the hidden formula as well as within the examples

themselves.

There are some less closely related first-order results from the field of inductive logic pro-

gramming where the target is a Prolog program. Shapiro describes a system for learning Prolog

programs in the limit (i.e., time is an unbounded resource) using atoms entailed by the program

to be learned ([95]). Also, D'ieroski et al. describe an algorithm that learns k-clause, determi-

nate, function-free, first-order Horn clauses with bounded depth variables by transforming the

target into a propositional monotone k-term DNF formula ([41]).

45

3.3 The Algorithm

We now present two algorithms that learn Horn sentences using membership and equivalence

queries from an entailed example teacher using Horn clauses as examples.5

3.3.1 Learning by Reduction

First, we present an algorithm for exactly learning Horn sentences by entailed example using

membership and equivalence queries; the example class is Horn clauses. In order to demonstrate

a reduction technique, we present a slightly inefficient interface which is nothing more than

polynomial time transformations to and from the examples suitable for the Horn sentence

learning algorithm of figure 2.1 or figure 2.2. Here, HORN refers to either algorithm.

The interface is accomplished by constructing algorithms that simulate the oracles for mem-

bership and equivalence needed by the HORN algorithm. The constructed oracles are permit-

ted to use entailed example oracles for membership and equivalence, but otherwise must run in

polynomial time.

The constructed oracle simulator for the membership queries asked by HORN will be desig-

nated ESTD, and the constructed oracle simulator for equivalence queries asked by HORN will

be designated EsTD The entailed example oracle for membership and the entailed example

oracle for equivalence used by ESTD and ESTD are designated SENT and EENT, respectively.

The EsTD oracle simulator is given in Figure 3.1 and the ESTD oracle simulator is given in

Figure 3.2.

We now arg,ie that the answers and examples returned to HORN by these oracles are correct.

We note by convention that "3v 0 A" permits v to be the logical constant F. We also note that

we are tacitly assuming that we know the names of all the variables used in the hidden concept.

By assuming that the variable names are not allowed to change once our learning begins, the

oracles constructed can simply restart the HORN algorithm with an updated set of variable

names whenever the SENT or =ENT oracles mention a new variable name. Clearly, the HORN

algorithm will need to be restarted at most once for each variable name in the hidden concept.

5The teacner could be using Horn sentences as examples a Horn sentence is entailed if and only if every
Horn clause is entailed. Using membership queries about clauses (which can be viewed as degenerate sentences),
a Horn clause not entailed by the target can be efficiently extracted from a Horn sentence not entailed by the
target.

46 J

EsTD(x)

1 Let A be the variables set to true in x

2 if 3v 0 A such that EENT(A v)

3 then return "no"

4 else return "yes"

Figure 3.1: Membership oracle for HORN.

ESTD(H)

1 if EENT(H) = "yes" then return "yes"

2 Let C be the clause returned by = ENT(H)

3 Let A be the set of variables in the antecedent of C

4 if C is a positive example

5 then

6 until A stops changing

7 if 3v 0 A such that H k- A v then A= A U {v}

8

9

Let x be the example formed by setting all the variables in A to T and all
variables not in A to F

return x as a negative example

10 else

11 until A stops changing

12 if 3v 0 A such that EENT(A v) then A = A U {v}

13 Let x be the example formed by setting all the variables in A to T and all
variables not in A to F

14 return x as a positive example

Figure 3.2: Equivalence oracle for HORN.

47

bU

For purposes of exposition, we routinely treat a complete monomial and the unique variable

assignment which satisfies it interchangeably. Likewise, we treat a set of variables and the

conjunction of those variables interchangeably.

Lemma 29 The oracle EsTD` correctly answers, in time polynomial in the number of variable

names in the hidden concept, any membership query asked by HORN.

Proof: Clearly EsTD runs in polynomial time. We must now show that the answer it provides

is correct.

The example queried by HORN is a negative example if and only if it falsifies some clause

of the hidden concept. An example falsifies a clause, c, of the hidden concept if and only if the

example sets every variable in the antecedent of c to T and sets the consequent of c to F. But

in this case, the clause whose antecedent is the set of variables set to T by the example and

whose consequent is the consequent of c (which cannot be among the variables set T by the

example) is subsumed6 by c and is therefore entailed by the hidden target. Necessarily, among

the EENT queries asked by EsTD, is this particular clause.

Lemma 30 The oracle alsTD correctly answers, in time polynomial in the number of variable

names in the hidden concept and in time polynomial in the length of the presented concept, any

equivalence query asked by HORN.

Proof: Clearly, the first line of EsTD correctly determines whether the presented concept and

the hidden concept are logically equivalent. However, this is not enough. We must also show

that any example returned to HORN by is an example on which the presented concept

and the hidden concept disagree.

If the clause C returned by the EENT query is a positive example, then it is entailed by the

hidden concept and it is not entailed by the presented concept. Thus, step 7 cannot cause the

consequent of C to be added to A. However, A does contain the antecedent of C. Thus the

example x returned to HORN falsifies C and therefore falsifies the hidden concept. At the same

time the construction in step 7 guarantees that x satisfies the presented concept. This because

6The meaning of "is subsumed by" used here comes from automated theorem proving; the specific meaning
here in this propositional setting is "is formed from a set of literals that is a subset of the literals of". Chapter 7,
consistent with the terminology of description logics, uses the phrase differently.

48

step 7 finds the unique set of the variables that H demands be satisfied when the variables in

the antecedent of C are satisfied; if H is falsified when exactly this constructed set of variables

is satisfied, then H C, contradicting the fact that C was a positive counterexample for H.

Also note that step 7 runs in time polynomial in the size of presented concept because for any

Horn sentence H and any Horn clause A, H = A can be answered in time polynomial in the

sizes of H and A. At most 0(n2) such entailment questions are asked in this step, where n is

the number of variable names in the hidden concept.

Similarly, if the clause C returned by the -ENT query is a negative example, then it is

entailed by the presented concept and is not entailed by the target concept. Step 11 constructs

an example which satisfies the hidden concept and falsifies the presented concept. The only

difference between this step and step 6 is that we cannot answer the series of entailment question

ourselves, so we use the EENT oracle to obtain the answers to the required entailment queries.

0

3.3.2 Learning Directly

Next we present an algorithm that does not rely on the existence of an algorithm that learns from

a teacher who provides the standard variable assignment examples. Throughout, a (and any

variation of a) is a (possibly empty) conjunction of propositional variables. We will frequently

treat a as a set; in the case that a is empty, its conjunction represents the logical constant T.

Throughout the paper, 0 (and any variation of /3) represents a set of at most one propositional

variable; in the case the (3 is empty, it is understood to represent the logical constant F. We

represent propositional Horn clauses with the schema a 0; we refer to a as the antecedent

of the clause and to 0 as the consequent.

We use the boldface E to denote a membership query and the non-boldface E for normal

set membership. As is standard, we use = to denote logical entailment and use fl and C for set

intersection and proper subset, respectively. The algorithm entailHORN is shown in figure 3.3.

Two crucial properties of entaillIORN are (1) that entailHORN keeps a monotonically

growing sequence of antecedents approxAnts that provide clues about distinct clauses of the

target and (2) that entailliORN provides increasingly better approximations as to the identity

of these clauses. The current hypothesis hypoth is constructed from the antecedents comprising

approxAnts by asking for each of these antecedents which consequents are supported by the

49

target (line 8). Upon receiving an equivalence query counterexample C (line 3), entailHORN

computes the (unique) minimal model of hypoth satisfying the antecedent of C (line 4) and

tries to use this minimal model to chip away excess variables in some antecedent in approxAnts

(line 6). If this attempt fails, entailHORN appends this minimal model to approxAnts as the

initial approximation. to the antecedent of some clause of the target for which no information

(in the form of a counterexample) has yet been provided (line 7).

Before arguing that entailHORN is correct and runs efficiently, we need the following sup-

porting definitions and lemmas.

Definition 32 If ¢ is a satisfiable formula, 7,b is a falsifiable formula, and ¢ I= p, then ¢ is

said to entail 11, non-trivially.

Next we present a series of lemmas which will enable us to prove the correctness of entail-

HORN.

Lemma 32 If (a [3) (a' /3') non-trivially, then a C a' and 0 C 0'.

Proof: If a ig a', then set all variables in a' to T and all other variables to F. Since there is

some variable in a a' that is set F, this setting satisfies a -- 0. Since a')3' is falsifiable,

this assignment falsifies it. But then (a /3) (a' * /3'), a contradiction.

Similarly, if 13 g 0', then assign F to those variables in 0' and T to all other variables.

Because a' 0` is falsifiable, this assignment falsifies it. However, since /3 .g 0', there is some

variable in /3 that is assigned T so that a /3 is satisfied, a contradiction.

Lemma 33 Let 'I' be a Horn sentence. If T = (a 0) non-trivially, then a is a superset of

the antecedent of some clause of T.

Proof: If T contains some clause with an empty antecedent, then the.lemma holds vacuously.

For the case when T contains no clauses with empty antecedent, suppose by way of con-

tradiction that the lemma does not hold. Assign T to all variables in a and F to all other

variables. (Since a 0 is falsifiable, this assignment falsifies it.) Now notice that since by

supposition no antecedent in 7' is contained in a, at least one variable in each antecedent of '1'

is F, thus every antecedent in 7' is F, and so 7' must be satisfied. Therefore 7' a /3, a

contradiction.

Naming the hidden target Ilorn theory T., we will now argue correctness.

50

BEST COPY AVAILABLE

entailHorn

1 approxAnts = 0

2 hypoth =

3 while hypoth is not equivalent to the target, let C be the counterexample returned
by the equivalence oracle

4 a = {/3 : hypoth (ant(C) 0))

5 if 3a E approxAnts such that

ana c a
RHS(a n

6 then replace the first such a in approxAnts by a fl a

7 else append a to approxAnts

8 hypoth = {a : a E approxAnts,/3 E RHS(a)}

9 return hypoth

Figure 3.3: The algorithm entailHORN used to learn Horn sentences.

RHS(a)

1 return {v : v a,a E(a v)}

°It is permissible for v be the logical constant F.

Figure 3.4: Find all consequents of entailed clauses having a given antecedent.

51 6 4

Lemma 34 At all times during the run of entailHORN, hypoth.

Proof: The subroutine RHS is used to explicitly check that each clause of hypoth is entailed

by T.. A clause a /3 is placed in hypoth only if 0 E RHS(a) (line 8). This can only occur if

E(a /3), hence T* = (a 0). Since T. entails every clause of hypoth, T. = hypoth.

Corollary 35 Any counterexample to hypoth with respect to T. must be entailed by T. but not

by hypoth.

Notice that we can easily determine whether the target is unsatisfiable by first making an

equivalence query on an unsatisfiable Horn sentence, so for expository purposes we henceforth

assume that the target is satisfiable. Also, if the target is a tautology then the first equivalence

query made by entailHORN will be correct, so we henceforth also assume that the target is

falsifiable. Finally, under these assumptions, since the counterexamples obtained by equivalence

queries (line 3) are entailed by exactly one of two satisfiable Horn sentences, counterexample

clauses are neither unfalsifiable nor unsatisfiable.

Lemma 36 If a -+ /3 is any counterexample of hypoth with respect to T., then there is some

clause a. /3. of T. such that a. C a and 13,, 0 a.

Proof: By Corollary 35, T. (a /3) and hypoth (a /3). Because hypoth (a /3),

a /3 must be falsifiable. Consider the variable assignment that makes a T and makes all

other variables F; this assignment falsifies a /3. Since T. a /3 this assignment must

falsify T.. But T. is falsified if and only if some clause a. O. of Ts is falsified. But this

assignment falsifies a.. 0. if and only if a. C a and 0. a.

The following lemma shows that no matter what counterexample entailHORN receives from

the equivalence oracle, the antecedent that entailHORN actually uses to modify approxAnts is

the antecedent of a (possibly different) counterexample.

Lemma 37 If u is counterexample returned to entailHORN by the equivalence query

oracle in line 3, then the a computed in line 4 is such that it /3 is also a counterexample.

Proof: Ily Corollary 35, T. i= (a 13) and hypoth (a /.3). Clearly 1t contains a, thus

T.1= We now show that if hypoth (Cr /3), then hypoth 1= (a

52

Suppose that hypoth (a 4. 0). Let e be any variable assignment that satisfies hypoth.

If e does not satisfy a, then e satisfies a 0. On the other hand, if e does satisfy a then,

since e satisfies hypoth, by construction e also satisfies ee. Since hypoth (Ct (3) and since e

satisfies hypoth and Er, e must satisfy /3. But then e satisfies a /3. Thus hypoth (a 0).

But hypoth (a (3). Thus hypoth (6/ 4. 0). Therefore, Er /3 is a counterexample

to hypoth with respect to T.

We want to show that hypoth is becoming increasingly closer to T.; to do this we have the

following definition which will help describe how far hypoth is from T.

Definition 38 For a E approxAnts, we say that a properly covers a clause 0« if a. C a

and O. 0 a

We are now prepared to state and prove our main lemma.

Lemma 39 If al and a2 are antecedents in distinct positions of the sequence approxAnts,

then al and a2 each properly cover some clause of T., but al and a2 do not properly cover the

same clause of T.

Proof: First observe that for every a in approxAnts there is some /3 such that T. (a /3).

This is because line 6 replaces an element of approxAnts only if the replacement, a fl a, is

such that T. (a fl Et) /3 for some /3. On the other hand, line 7 simply appends the

antecedent of the (possibly implicit (Lemma 37)) counterexample constructed in line 3. But by

Corollary 35, this counterexample iE entailed by T.. Since every a, when placed in approxAnts,

was a counterexample to hypoth, every a is the antecedent of some clause tha is non-trivially

entailed by T.. Thus, by Lemma 33, every a in approxAnts properly covers some clause of T..

Hence at properly covers some clause of T. and a2 properly covers some clause of T..

We now show that the clauses properly covered by al and a2 are different. Suppose not

and consider the first iteration of the main loop in which this property fails to hold. Let al

and a2 be two elements of approxAnts that properly cover the same clause a. /3. of L.

Without loss of generality, assume that this iteration of the main loop caused a2 to appear in

approxAnts. There are two ways in which this iteration could place a2 in approxAnts either

a2 was appended to approxAnts or (r2 was the result of intersecting with some a12 that was

in approxAnts in the previous iteration of the loop.

53

66

In the former case, since al and a2 (which is actually a) both properly cover a. 13,

al n a properly covers a, i3, thus /34, E RHS(ai n a) and so RHS(ai n a) 0 0. Thus, for

entailHORN not to have used a to replace al in approxAnts, it must be that al n a = al.

But, since al properly covers a. . E RHS(ai), and since al was in approxAnts when

hypoth was constructed for this iteration hypoth contains al 3- 0.. Thus 0 E a, contradicting

the assumption that a properly covers a. 0.. Thus, Er could not have been appended to

approxAnt s.

In the latter case, where a was used to refine some antecedent already in approxAnts, we

have that a2 = a n a'2 where a'2 is some element of approxAnts in the preceding iteration of

the loop. Either al precedes a2 in approxAnts, or al follows a2 in approxAnts.

Consider the case in which al precedes a2 in approxAnts. If a2 n a properly covers a.,

then either a'2 properly covers a. 13. or a properly covers a. 0.. But if a12 properly

covered a. *O., then the inductive hypothesis is violated because al and a12 properly covered

the same clause in the previous iteration. Thus, it must be the case that a properly covers

a. 0. Since entailHORN did not use a to refine al, it must be the case that a n al = al.

But, in this case al C ei and since al properly covers a. . 3., then ,8 E RHS(at), and since

al was in S when hypoth was formed for this iteration, 0. E ex., contradicting the assumption

that Et properly covers a. * [3..

Last consider the case where al follows a2 in approxAnts, in which case entailHORN did

not try to refine al with a. If a12 n et properly covers a. b then either a2 properly covered

a,, Q. or a properly covered a. 0.. If a2 properly covered a. i3., then the inductive

hypothesis is violated because in the previous iteration al and a.12 properly covered the same

clauSe. Thus it must be the case that et properly covers a. /3., that a. C a2, and that

/3. E a2; otherwise, a2 n a could not properly cover a. /3. and yet have a2 not properly

cover a. (3.. Now by assumption al properly covers a. /3.. Consider all antecedents

used by entailHORN to create or refine (by intersection) the position in approxAnts currently

occupied by al. Since a. C a1, every antecedent used by entailHORN in the position currently

occupied by al must have contained a.. Further, since al does not contain one of these

antecedents must not have contained 0.. Call the first such antecedent Now observe that

since a2 contains both a. arid 13., we know that every antecedent that has occupied the position

currently occupied by a2 must have contained a. and 13.. But then for every such predecessor,

54

6 7

a2, of a2 we have that a2 fl a' is a proper subset of a2 because a2 contains 3 but ei` does

not. Further, because RHS(a' fl a') properly covers a. /3 we have that O. E RHS(a12 fl

and therefore RHS(a12 fl a') is non-empty. This contradicts the assumption that was used to

refine the position currently occupied by at.

Thus the antecedents in approxAnts properly cover distinct clauses of T..

We now state our main theorem.

Theorem 40 Let V be a finite set of propositional variables. The class of Horn formulas using

only variables from V is polynomial time learnable from entailed examples using equ..wilence

and membership queries.

Proof: It is easily verified that each step in the while loop of entailHORN takes time at most

polynomial in IVI and size of the unknown Horn formula. We need only argue that there are

only polynomially many iterations of the loop.

By Lemma 39, every antecedent in approxAnts properly covers some antecedent in T. and

no two antecedents in approxAnts properly cover the same antecedent of L. Thus approxAnts

never contains more elements than there are clauses in T.. Furthermore, entailHORN never

deletes any element of approxAnts, at worst it replaces some element of approxAnts by a

proper subset of that element. This can happen at most as many times as there are variables

m V .

We immediately have the following corollaries.

Corollary 41 Let V be a finite set of propositional variables. The class of Horn formulas using

only variables from V is polynomial time learnable using examples and membership queries using

Horn sentences as examples.

Proof: (Sketch) At least one horn clause of a counterexample Horn sentence must he suitable

as counterexample for entailHORN.

Corollary 42 Let V be a finite set of propositional variables. The class of Horn formulas

using only variables from V is polynomial time PAC, learnable using random examples and

membership queries using Horn clauses as examples.

55
6 S

Corollary 43 Let V be a finite set of propositional variables. The class of II orn formulas

using only variables from V is polynomial time PAC learnable using random examples and

membership queries using Horn sentences as examples.

3.3.3 Membership Queries are Necessary

In contrast to Corollary 41, we show that equivalence queries do not wield sufficient power alone

to allow exact learning of Horn sentences from entailment using Horn sentences as examples.

We also give evidence that PAC learning is similarly crippled without membership queries. This

shows that the membership queries used in the previous section are necessary.

Before presenting the result, we define a monotone negative CNF formula as a conjunction

of clauses containing only negated literals. To show the necessity of using membership queries,

we start with the following lemma. The theorem following the lemma is the result we seek in

this section.

Lemma 44 There exists an exact learning algorithm for Horn sentences that uses equivalence

queries to an entailed example teacher using Horn sentences as examples, only if there exists

an exact learning algorithm for monotone negative CNF formula that uses equivalence queries

to a standard teacher.

Proof: Any assignment to a set of propositional variables can be encoded as a conjunction

of lit, -als over the variables if the variable xi is to be set T then place xi in the conjunc-

tion, otherwise place -.xi in the conjunction. Clearly only the desired assignment satisfies this

conjunction. Now observe that every monotone negative CNF formula is a Horn sentence,

and assume that A is an algorithm that learns Horn sentences from entailment using only

equivalence queries. Let C. be the target monotone negative CNF formula.

When A makes an equivalence query for some hypothesis //', form // by deleting any

positive literals? in II' and make an equivalence query against C.. If the query is answered

"yes" then we are done because II is logically equivalent to C.. If a positive counterexample ep

is returned (which by definition falsifies II, and therefore satisfies all the negated variables of

one of its clauses), then the monotonicity of C. guarantees that changing any variable setting

in cp from T to F results in a positive example of C.. So, if e7, satisfies II', el, must make T

'If this produces a clause with no literals, then take H to be an unsatisliable formula.

56

6

any unnegated variables appearing in any clause in which the remaining (negated) variables

are made true; obtain e'p by setting any such variable to F. Then e'7, falsifies H' and H so that

like ep, ep is also (positive) counterexample to H against C,. On the other hand, if a negative

counterexample en is returned (which by definition satisfies H), since H was obtained by simply

deleting literals from (already satisfied) clauses of H', en satisfies H'.

It now follows, that by returning the counterexample (en, ep, or dp, as appropriate) encoded

as a conjunction of literals satisfied only by the counterexample produces a learning algorithm

for the class of negative monotone CNF formulas.

Angluin [61 has shown that monotone DNF formulas (DNF formulas that have only un-

negated variables) are not learnable from equivalence queries alone, even when the learner is

allowed to make queries about arbitrary DNF formulas. Our theorem now follows immediately.

Theorem 45 Horn sentences cannot be exactly learned (with equivalence queries, but without

membership queries) from an entailed example teacher using Horn sentences as examples.

Proof Sketch: The dual of monotone negative CNF is monotone DNF; simply negating the

label of an example provides the correct transformation.

We next comment on PAC learning (without membership queries) Horn sentences from an

entailed example teacher; we have the following lemma and corollary, which relate PAC entailed

Horn learnability to standard DNF PAC learnability. The standard PAC learnability of DINT

remains the central open problem in computational learning theory.

Corollary 46 Learning Horn sentences with equivalence queries from an entailed example

teacher using Horn sentences as examples is as hard a PAC learning arbitrary IMF formu-

las from a standard teacher.

Proof Sketch: Because Kearns et al. [651 have shown that PAC learning DNF without

membership queries is no easier than PAC learning monotone DNF without membership queries,

the construction reducing the exact monotone DNF standard learning problem to the exact horn

entailment learning problem leading up to Theorem 45 suffices to reduce the PAC (without

membership queries) monotone IMF standard learning problem to the PAC Horn entailment

learning problem. Thus a PAC Horn entailment learning algorithm would produce a standard

PAC DNF learning algorithm.

57

0

3.4 Application to Approximate Entailment

We now consider the application of these entailment results outside the field of computational

learning theory by considering the problem of finding the Horn least upper bound of a known

CNF theory, where the Horn least upper bound is defined to be the (unique) logically strongest

Horn sentence entailed by the CNF theory. Even when the Horn least upper bound for some

theory is small, current methods do not guarantee that a small least upper bound will be found

without post-processing the set of entailed Horn clauses found with an algorithm such as the

propositional Horn compression result of Corollary 24. Such an approach does not lessen the

number of resolution proofs needed in the first place to obtain the set of entailed clauses. In

contrast the entailment algorithm suggested below will never approximate the actual Horn least

upper bound by any Horn sentence having more distinct antecedents than the actual Horn least

upper bound. This implies that our algorithm will never approximate the actual Horn least

upper bound by a Horn sentence that has more than n times as many clauses and hence is

more than n2 times as large as the actual Horn least upper bound where it is the number of

variables in the theory. This suggests the approach of using entailHORN to find the Horn least

upper bound, using the known CNF theory to answer membership and equivalence queries.

However, although the final Horn sentence is guaranteed to be small, this approach too, could

result in far too many resolution applications. Instead, we consider a setting in which the

CNF theory is manipulated only when necessary (we consider running entailHO RN in a "lazy"

manner), and the environment is used to provide counterexamples to the correctness of the

currently hypothesized Horn least upper bound. We consider two settings in which such an

approach seems plausible.

Consider a setting in which an agent who happens to live near elephants is provided with

some theory 0 that describes the world. Our goal is to have the agent maneuver in the world

without getting crushed. Among the ways in which our goal can be achieved are (1) have

the agent cower in a corner predicting that everything will crush him, (2) in each situation

determine from 0 whether he will be crushed, or (3) tractably approximate by 01 and have

him update 0' only when he observes (unpredicted by 0') something being crushed.

Clearly solution (1) is uninteresting. Solution (2) potentially suffers from the uninteresting

features of solution (1) because in the cases where 0 is intractable, the agent will, in effect,'

58

spend most of his time in a corner predicting that he will be crushed searching for a proof

to the contrary. Solution (3) seems plausible in that the agent will spend much of his time

exploring the world and only retreat to a corner to spend time manipulating 0 when nature

deems it necessary. We refer to the agent operating under solution (3) as a lazy agent. A bit

more formally,

Definition 47 Let 0 be a (propositional) CNF theory, let E = {o-1, .} be a set of unlabeled

clauses whose entailment by 15 is to be predicted, and let T = {vi, v2, . .} be a set of urgent

clauses labeled according to entailment by 0. Let ei,s,... be a sequence defined over elements

of E U T. A lazy agent is an agent who uses a prediction strategy that

I. predicts the entailment of each s, "quickly",

2. updates the prediction strategy only upon incorrectly predicting an element of T, and

3. predicts that (i5 entails only if indeed

Intuitively, the longer lived lazy agent is the one who predicts that more things are entailed.

The scare quotes around the word "quickly" in. the definition are intended to bias the agent

toward using some 0' that is a tractable (yet small relative to 0) approximation to 0, if such a

0' exists. Updating 0' only upon seeing (labeled) elements of T is intended to capture the idea

that only those predictions whose outcomes are observable in the world are important enough

for the agent to spend time adjusting his prediction strategy to predict them correctly; it can

be argued that the agent is concentrating on the facts that are relevant to the environment he

is exploring.

Given this definition and discussion, an agent who uses entaiIIIORN to acquire the Horn

least upper bound to 0 and uses intermediate hypotheses hypoth to predict the entailment of

seems a satisfactory lazy agent. Any clause entailed by the Horn least upper bound of 0 must

be entailed by some Horn clause entailed by the Horn least upper bound. It is an easy matter

to test all of the (at most n) largest Horn clauses that entail the clause to see which ones are

not entailed by hypoth and from among those use resolution on 0 to find some new Horn clause

to use as a counterexample for entailHORN to update hypoth. Further because entailtIORN

is an exact learning algorithm, we can treat it as an on-line algorithm with bounded mistakes.

This means that on Horn clauses of T the agent will make at most a number of predictive

59

errors polynomial in the size of the Horn least upper bound of q). This is a quantitative means

of measuring the amount of time spent on resolution over 0.

As a second setting, consider the work by Greiner and Schuurmans, which assumes an

agent who receives a sequence of randomly generated clauses ([52]). For each clause, the agent

determines (via resolution on 0) whether the clause is entailed, and if necessary, adjusts his

approximation 0" to the Horn least upper bound .0', to correct his prediction. However, the

agent constrains p" to have size at most k, so that prediction remains efficient. To accomplish

their goal, they define a set of transformations between Horn sentences of size at most k. In

the end, they show that they find a 0" that is locally optimal with respect to the neighborhood

defined by the transformations. Hence, they may fail to find a global optimum, even if there is

one of size at most k.

In contrast, we consider an agent who is given a set of randomly generated clauses, labeled

by entailment according to 0. Since our algorithm produces a sequence of Horn sentences of

monotonically increasing size, we can easily determine whether there is any Horn sentence of

size k consistent with the sample. If the true Horn least upper bound has size at most k, or if

the best size k Horn least upper bound approximation is consistent with the sample, then our

algorithm will find a comparably performing Horn sentence having size at most km2. In this

setting too, we are able to quantitatively specify the resolution work we must do by noting that

resolution over 0 is required only to answer membership queries, and our algorithm will make

at most a number of membership queries that is polynomial in km2 and the size of the sample.

3.5 Discussion

Using techniques very similar to Chapter 2, our work closes a question in computational learning

theory left open by [2, 5]. The result is an algorithm that by asking natural questions is

guaranteed to produce a Horn sentence consistent with a set of clauses labeled as to whether

entailed by an unknown Horn sentence; furthermore, the algorithm is guaranteed to take time

at most polynomial in the size of the smallest among all such consistent Horn sentences.

This new algorithm is then applied to the problem of approximate entailment found in the

field of machine learning. Here, this work adds to the approaches found in the literature. Our

approach is to confine the appeals to resolution to o itly those places where our polynomial time

60 (

learning algorithm specifically asks about the entailment of a. specific Horn clause. Our goal

is to accelerate the construction of a tractable Horn upper bound of a known. CNF theory by

providing a sharp focus for the resolution machinery. A side effect of our learning algorithm

is that it implicitly maintains a monotonically increasing lower bound on the size of the Horn

least upper bound of the CNF theory.

We hope techniques from computational learning theory will continue to find fruitful appli-

cation in the field of machine learning. For example, can efficient learning algorithms further

limit the number of appeals to or further limit the focus of resolution in constructing a tractable,

useful approximation to a given CNF theory?

Chapter 4

Membership by Subsumption

What formal utility can be imparted to an expert's response time when presented with a

question? Computer Science is replete with examples of caching for speed improvement.

Computer memory hierarchies remember the most recently accessed data item. Operating

systems remember the most recently accessed fragment of code. Caching is founded on the

principle that what was useful recently will be useful shortly.

We might imagine that a domain expert operates in a similar fashion; faced with a problem,

the expert may start with those ideas that proved useful very recently, and in this way he can

be seen as caching recent results for use in the near future. Notice that this view assumes that

the expert does not reason from first principles right away indeed, at any given moment his

description of the world may be quite different than the shortest possible description. However,

because the expert uses knowledge that has proven useful recently, a problem that is very similar

to a recent problem can be solved quite quickly given the expert's current description of the

world, whereas that same new problem might require significant effort to solve given only the

smallest possible world description. Thus, the expert's current world description is related to

which problems he can solve quickly independent of his ability to articulate that description.

In the previous two chapters, we have considered two notions of example labeling. We have

seen variable assignment examples labeled according to whether the target is satisfied, and we

have seen clause examples labeled according to entailment by the target. In this chapter we

consider a third kind of example labeling that seeks to capture the efficiency of an expert in

answering questions. here we imagine that the expert has reached some fixed, cached repre-

sentation of the world and he answers question according to that representation. We explore

the interaction of a learner with such an expert. Our goal is to learn a fixed snapshot of the

expert's cache at some moment in time, believing that by doing so we are capturing not only

a description of the world, but also the proven efficiency of the expert in reasoning about the

world.

Angluin [5] provided an algorithm for learning a restricted class of propositional Horn sen-

tence which uses what she terms a request for hint query. The answer to this query tells the

learner whether his chosen clause is subsumed by some clause of the target. In terms of an

expert/apprentice interaction, we view this as the apprentice being told that his question is triv-

ially answered by comparing the clause to the set of clauses in a proven, useful representation

that is, the expert can answer the question quickly (as opposed to taking time to construct a

complicated proof).

We present a learning algorithm that uses subsumption queries and equivalence queries.

We then show that the algorithm is a polynomial time learning algorithm for any class of CNF

formulas that is closed under projection, closed under clause deletion, and has a polynomial

time solution to the satisfiability problem. To illustrate the utility of this generic algorithm,

we demonstrate that it learns a class of formulas constructed by Boros et al. [27] that properly

contains the class of Horn sentences and was nIt previously known to be learnable.

4.1 Definitions

In order to formally model this expert/apprentice relationship, we need to specify precisely

what is to be learned by the apprentice, what information is available to the apprentice, and

the types of questions the apprentice is permitted to ask. Here we assume that the expert's

description of the world belongs to some class ..T" of propositional CNF formulas. We assume that

the apprentice knows .F; however, we assume that the apprentice does not know the expert's

world description itself. The apprentice's goal is to learn the expert's target description.

If we expect the apprentice to correct an erroneous hypothesis of the world, we must show

him that his hypothesis is, in fact, in error. The means by which we allow the apprentice access

to errors in his hypothesis is once again an equivalence query.

63

76

To consult with the expert, we allow the apprentice subsumption queries. Recall that a CNF

formula is a conjunction of disjunctions of literals and that for propositional clauses C and C',

C' subsumes a clause C exactly when the set of literals in C' is a subset of the literals in C. A

subsumption query occurs when the apprentice chooses a clause and asks the expert whether

the clause is subsumed by some clause of th? target. The expert answers either "yes" or "no".

Thus, subsumption queries can actually be viewed as membership queries using as examples

clauses labeled according to subsumption by the expert's description of the world. Notice that

the expert can answer the subsumption query in time polynomial in the product of the the

lengths of the apprentice's clause and the target.

To obtain polynomial time learnability for a class .F of CNF formulas, we depend on F

possessing three properties the satisfiability problem for is decidable in polynomial time,

F is closed under variable projection, and .F is closed under clause deletion. We now define

these properties.

Definition 48 Let F be a class of formulas, and let E F. The satisfiability question for cb

is "Does there exist a truth assignment for the variables appearing in q!) that satisfies ck?" The

satisfiability problem for F is decidable in polynomial time if there exists an algorithm that

correctly answers the satisfiability question for any cb E .7* and runs in time polynomial in the

length of q5.

Definition 49 Let F be a class of formulas. We say that .F is closed under variable projection

if for any ¢ E .F and any variable v appearing in 0, fixing the truth value of v to be either T

or F produces a formula q5' E F such that the size of qY is no greater than the size 0.

Definition 50 Let F be a class of CHIT formulas. We say the F is closed under clause deletion

if deleting any clause from any E F produces a formula Of E

We close this section with a word on notation. We represent clauses C in an implicative

form denoted a where a is the conjunction of variables occurring negated in C and 3 is

the disjunction of variables occurring unnegated in C.

64

4.2 The GENERIC Algorithm

This section proves our main result of this chapter, but first we need a general property relating

entailed clauses to subsumption.

Lemma 51 Let .0 = Cl A C2 A A C, be any CNF formula, and let a . 13 be any clause C

entailed by 0. Then there exists some C, = ai f3i in ci5 such that Ci subsumes a Oi.

Proof: Let M be the variable assignment that sets every variable in a to T and all other

variables to F; clearly, M falsifies C. Since cb C, it must be the case that M also falsifies 0,

and therefore Al must falsify some clause Ci = ai 13i of O. This means that every variable in

ai is set T and every variable in fii is set F. But then a must contain every variable in ai and

none of the variables in f3i, so ai Oi is the clause whose existence is asserted by the statement

of the lemma.

Armed with the ability to ask subsumption queries, we now present a learning algorithm for

any class ,F of formulas that is closed under variable projection, closed under clause deletion,

and for which the satisfiability problem is polynomial time decidable. We have the following

theorem.

Theorem 52 Let be any class of CNF formulas such that

.F is closed under variable projection,

.F is closed under clause deletion, and

the satisfiability problem for .F is decidable in polynomial time

Then .F is polynomial time learnable given equivalence and subsumption queries.

Proof: Consider the algorithm GENERIC shown in figure 4.1. Initially h is the universally true

hypothesis, thus h. Every clause conjoined to h in line 17 is subsumed by some clause of

0, therefore 4, h after every update. Thus, every c iunterexample obtained in line 2 must be

a clause C that h improperly fails to entail. Thus, there must be a satisfying assignment for h

that falsifies C. This satisfying assignment is computed in the loop beginning in line 7.

Now, in line 13, after the satisfying assignment has been computed, T and F contain the

variables assigned T and F, respectively. Since this assignment falsifies C and y5 C, this

65

b

assignment falsifies 0. Therefore ¢ j= (ArET x) (VYEF y). Now by Lemma 51 there is some

/3' such that (/'\ET) /3' is subsumed by some clause of 0; certainly VyEF contains that j3',

and so some clause of 0. subsumes (AxT) (VyEF)

The loop beginning in line 13 removes variables from F one at a time while ensuring that

some clause of 0 still subsumes the resulting clause. Thus this loop finds a minimal set F, i.e.,

finds exactly some y6' that is actually the jai for some clause C, of 0.

Similarly, the loop beginning in line 15 produces a minimal set T such that (AXET x)

(V yF y) is subsumed by some clause of 0, i.e., T will contain exactly the variables of cei for

some clause C, of 0. whose j3 is exactly contained in F. In other words, the clause added to ft

in lip:: 17 is some actual clause of 0. To see that this is not the same as some clause already in

h, notice that the assignment computed in the loop at line .7 satisfies every clause already in h,

but this assignmeni, falsifies the clause added to h in line 17.

In regard to running time, since every iteration of the while loop in line 2 produces a new

clause of the target, there are no more iterations than there are clauses of the target. In the

body of the loop, constructing the satisfying assignment for h deserves consideration. Since h

contains a subset of the clauses of 0, it must be that h E .F because F is closed under clause

deletion. Similarly, provisionally setting a variable to T in line 8 produces a formula in F no

larger than h because .F is closed under variable projection. Last, the test as to whether the

variable can be set T in line 8 can be done in polynomial time because satisfiability for .F is

decidable in polynomial time. For the remainder of the while loop body, minimizing the sets

T and F requires examining each variable only once. 0

4.2.1 A Note on Disposing of Equivalence Queries

As Mentioned earlier, it is possible (and perhaps appealing) to replace the equivalence queries

with randomly generated examples. If our apprentice simply observes nature and verifies that

his hypothesis correctly predicts' each observation, then any misprediction can be treated as a

counterexample to what would have been an equivalence query. Assuming the expert's descrip-

tion of the world is accurate, the apprentice will make only a number of mistakes polynomial

in the size of the expert's description. Thus the apprentice can acquire the expert's efficient

I Because :F. is closed under variable projection and the satisfiability problem for :k" is decidable in polynomial
time, prediction of an observation ie, entailment by the hypothesis is efficiently decidable for the apprentice.

66

GEN ERIC

1 Set h to be the empty hypothesis

2 While EQ(h) returns a counterexample a

/* Falsify a */

3 Set T to be the set of variables in a

4 Set F to be the set of variables in. 0

5 Set all variables in a to T and all variables in 13 to F and let h' be the result of
projecting these variable setting out of h

6 Let V be the set of unassigned variables in h'

/* Find a satisfying assignment for h' */

7 For each v E V

8 If h' is satisfiable when v is T

9 Set v T, and project v out h'

10 Place v in T

else

11 Set v F, and project v out of h'

12 Place v in F

/* Remove extraneous variables from the consequent */

13 For each variable vin F

14 If SUBSUNIE((/\ET x) (1/yEF_{} y)), remove v from F

/* Remove extraneous variables from the antecedent */

15 For each variable v in T

16 If SUBSUME((ArET_(v) x) (VyF y)), remove v from T

/* Add the new target clause to the hypothesis */

17 h h\MArETx) (VyF Y))

Figure 4.1: The GENERIC learning algorithm.

67

description of the world without demanding that the expert answer any equivalence queries, or

indeed, without demanding that the expert even be able to articulate his description.

4.3 A Newly Learnable Class

Soros et al. [21 define a class of CNF formulas for which the satisfiability problem is decidable

in polynomial time. This class, which we call BCH, is defined next.

Definition 53 Let V a set of propositional variables. Partition V into two disjoint sets X and

Y. The class BCH is the set of arbitrary conjunctions of clauses over V such that

No clause contains more than two unnegated variables,

No clause contains more than two Y variables, and

No clause contains both a Y variable and an unnegated X variable.

This class contains functions that are representable neither as Horn sentences nor as 2-CNF

formulas'. For example, taking X = {a} and Y = {b, c} shows that the formula (-ia V b V c) is

in BCH, although it is representable neither as a Horn sentence nor as a 2-CNF formula.

Taking X = V shows that BCH contains Horn sentences. The first condition in the definition

is satisfied because Horn sentences permit at most one unnegated variable per clause; the last

two conditions are trivially satisfied because there are no Y at all.

Taking Y = V shows that BCH contains 2-CNF formulas. The first two conditions of the

definition are satisfied because no clause of a 2-CNF formula has more than two variable; the

last condition is satisfied because there are no X variables.

Thus, BCH properly contains the union of Horn sentences and 2-CNF formulas. Although

this class was not previously known to be learnable, we have the following result.

Corollary 54 The class BCH is exactly learnable (using time polynomial in the expert's de-

scription's size) from substunption and equivalence queries.

Proof: Boros et al. showed that the satisfiability problem for 13CH is decidable in polynomial

time. Next, observe that BCH is closed under variable projection and clause deletion. Thus by

Theorem 52, GENERIC is a polynomial time learning algorithm for 13(111.

The class 2 -CNF' consists of conjunctions of clauses, cacti clause containing at most two literals.

68

81

0

4.4 Queries About Proof Length

As a final note we consider the notion that an expert may be able to deduce that some fact

follows from his description of the world by constructing a simple proof quickly, but beyond some

point the complexity of constructing a proof that a particular fact follows from his description

exceeds his abilities. We model this provable/unprovable by the length of the proof; we assume

that the expert can construct a proof of length k almost instantaneously. In such a situation, the

expert's "yes" response actually means that the clause presented by the appretice is subsumed

by some clause whose proof is at most k resolutions long. We call this a proof-length k query.

By adding the property of being closed under resolution to the hypothesis of Theorem 52

we easily obtain the following corollary.

Corollary 55 Let k be fixed. Let F be any class of CNF formulas such that

F is closed under resolution,

.F is closed under variable projection,

.7. is closed under clause deletion, and

the satisfiability problem for is decidable in polynomial time

Then given equivalence and proof-length k queries, .7" is exactly learnable in time polynomial in

the expert's description's size and exponential in k.

Proof: (Sketch) Since F is closed under resolution, assume that all resolvents of proofs of

length at most k are added to the target and apply Theorem 52 to this padded target.

4.5 Discussion

This chapter provides a sufficient set of conditions under which a polynomial time learning

algorithm using equivalence and subsumption queries is- guaranteed to exist. Which, if any, of

these conditions is also necessary?

Theorem 52 can he viewed in different ways. Strictly speaking from the view of computa-

tional learning theory, the subsumption queries used by GEN Elm cheat they explicitly request

information about the representation of the target rather than merely information about the

69

function represented by the target. An entailment query "Is this clause entailed by the tar-

get?" is a non-cheating query related to subsumption. Is there a simple set of sufficient

conditions under which a theorem analogous to Theorem 52 holds where entailment rather

than subsumption queries are used?

On the other hand, questions of entailment may demand lengthy proofs from the expert,

whereas, operationally speaking, answers to questions of subsumption would manifest them-

selves as the amount of time it takes the expert to answer an entailment question. Thus from

a practical standpoint, any delay from the expert in answering "Is this clause true?" can be

interpreted as -,nswer of "no" to the question of "Is this clause subsumed?" Thus, by taking

advantage of an expert caching an efficient description (as opposed to a minimal description)

the apprentice acquires an accurate and efficient description from the expert even when the

expert is unable to articulate that description. Along this line of discussion, an obvious ques-

tion to investigate is psychological; do experts cache efficient descriptions in representation

languages amenable to acquisition by GENERIC?

70 8 3

Chapter 5

Consistently Ignorant Teachers:

Membership by Consensus

Most of the theoretical work models the interaction between the learner and the environment

by an omniscient oracle (or teacher) that classifies all objects as positive or negative examples

of the concept to be learned. Thus, it is assumed that there is a well-defined border separating

positive examples from negative ones. In practice, though, classification is often unclear. For

example, suppose a robot operating in an assembly plant must determine whether a part is

defective. While some parts will be clearly defective and some clearly not defective, there may

be some parts for which the teacher cannot decide. As another example, there are situations

in which the classification of some objects is not well defined: An algorithm designed to read

handwritten cheques will likely encounter many handwritten characters that look somewhat

like a "4", and somewhat like a "9". In such cases, where even an expert does not have the

knowledge to classify all objects, determining which objects are unclassifiable seems at least

as important as determining the classifications of objects which are classifiable. From the

learner's perspective, the regions of the example space that defy classification create a blurry

border between the positive and negative examples that the learner must determine.

In this chapter, we introduce a new formal learning model in which the teacher (or environ-

ment) with which the learner interacts has incomplete information about the target function

due to intrinsic uncertainty or due to gaps in the teacher's hiowled.ge. The key requirement

we place on the teacher is that all examples (or objects) labeled with "?" (indicating unknown

71

84

classification) are consistent with the teacher's background knowledge about the class to which

the unknown function belongs. In particular, the classification of any example labeled with

"?" should not be determinable from the positive and negative examples, and knowledge of

the concept class. (Thus the teacher is "consistently ignorant".) Observe that the examples

labeled with "?" can be arbitrarily far away from the original border they are just required

to be consistent with the other labels and the background knowledge of the class. The goal of

the learner will be to learn a good approximation to the knowledge of the teacher. Namely, the

learner must construct a ternary function (i.e. with values {0,1,?}) that, with high probability,

classifies most randomly drawn examples exactly as the teacher does.

Next we introduce the notion of an agreement of concepts from a concept class C, and

show that the problem of learning concepts f E C from a consistently ignorant teacher can be

modeled as the problem of learning agreements of concepts from C. As a third characterization,

we show that any blurry concept can be represented as the agreement of a finite union and

intersection of concepts from C. We then show that for any concept class C for which PAC

learning algorithms are known, these algorithms can be used to build an algorithm for learning

the agreement of nested concepts from C. For the problem of learning the agreement of concepts

from C that are not necessarily nested, we show that if the intersection and union of arbitrarily

many concepts from C is learnable, then C is learnable from a consistently ignorant teacher.

While, often, algorithms are not known for learning unions and intersections of concepts from

C, under certain conditions it is still possible to learn the agreements of concepts from C. For

example, consider a class C for which the intersection of concepts from C is learnable, yet there

is no known algorithm to learn the union of concepts from C. In some cases it may still be

possible to learn C from a consistently ignorant teacher by using information gained by learning

the intersection of concepts in the agreement to aid in learning the union of these concepts. The

learner's ability to use intersection (union) information to obtain positive results for learning

unions (intersections) of concepts from classes for which no algorithms are currently known

is intriguing. To illustrate the limits of this approach, we show that learning the agreement

of an arbitrary number of Horn sentences is as hard as learning DNF. Thus, assuming UNF

cannot be learned in the standard model (permitting membership queries), propositional Horn

sentences, while learnable in standard models from omniscient teachers, cannot be learned from

consistently ignorant teachers.

72

U 5

5.1 Background and Related Work

Most previous research on concept learning assumes for any f E C and x E X that either

f(x) = 1 or f(x) = 0. In these situations the border between the positive and negative

examples is well defined. There has been work addressing the issue of mislabeled training

examples [14, 69, 97, 64] and some addressing the issue of noise in the attributes [94, 51, 74]. In

these situations, the border between the positive and negative examples may appear blurry to

the learner, but this is just the result of the noise process that has been applied to the properly

labeled example. There has also been some work considering learning from noisy membership

queries [50, 91].

Angluin and Slonim [12] introduced a model of incomplete membership queries in which

each membership query is answered "don't know" with a given probability. Furthermore, this

information is persistentrepeatedly making a query that was answered with "don't know"

always results in a "don't know" answer. As in their work, one of our goals is to model the

situation in which the teacher responding to the learner's queries is not omniscient. Observe,

that in Angluin and Slonim's model since the teacher is randomly fallible, there is no guarantee

that all of the teacher's knowledge about the target concept is used in answering queries. For

example, it is possible that their teacher knows that poodles are mammals, but responds with

"don't know" when asked if a french poodle is a mammal.' Further, their result for learning

monotone DNF depends very heavily on this inconsistency of the teacher. In the context of

monotone DNF, our consistency requirement manifests itself as follows: The teacher should

know that adding positive attributes to an already positive example yields a positive example.

(Dually for negative examples.) Thus, in the standard boolean lattice defined over variable

assignments, all positive examples are above all unknown examples, which, in turn, are above

all negative examples. In Angluin and Slonim's algorithm for learning monotone DNF, if the

teacher replies that f(x) .? then the learner samples below x in the boolean lattice for some

(known) positive example y, implying that x is a positive example. If none are found, the learner

concludes with high probability that x is a negative example. Thus, the teacher's ignorance

is not consistent with the knowledge that the target function is monotone; the learner can

1ln our view, the notion of an incomplete membership oracle seems to better model noise than it models
incomplete knowledge. Indeed, they note that their algorithm for learning monotone DNF with an incomplete
membership oracle can be used to learn monotone DNF with random one-sided errors.

73 86

determine the underlying boolean function by deducing what the teacher does not (but should)

know. In our model, this would not be possible, as the teacher's lack of knowledge is consistent;

the best that the learner can do (and what we demand that the learner do) is to learn which

examples are positive, which negative, and which are unknown.

In other related work, Kearns and Schapire [67] generalized the PAC setting to non-binary

values using Haussler's framework [56]. They define a p-concept in which each example x E X

has some probability p(x) of being classified as positive. An observation consists of an example

x drawn randomly according to D and then. independently classified as positive with probability

p(x) and negative with probability 1 p(x). In their model, the goal of the learner is to make

optimal predictions, or more commonly, to accurately predict p(x) for all x E X. The goal of

the learner in our proposed model has similarities with the p-concepts model. However, here we

are interested in learning problems for which the learner need just determine whether p(x) = 0,

p(x) = 1, or 0 < p(x) < 1. (If a written numeral is sometimes identified as "4" and sometimes as

"9", the learner just wants to know thisit does not need to determine what percentage of the

population would call the numeral each value.) Similarly, our work differs from the literature

on fuzzy sets in that we do not quantify degrees of membership. (It differs perhaps even more

in our application of the learning models from computational learning theory.)

5.2 The Model of a Consistently Ignorant Teacher

We now formally define our model of learning from a consistently ignorant teacher. A blurry

ternary concept f? is created by taking any f from the base class C and changing a set of

examples Q C X from their current value to "?" indicating that the teacher does not know

their classifications. Furthermore, we require that this be done consistent with the knowledge

that f was chosen from C: If every concept f E C consistent with the labels of examples from

X Q, labels q as positive (respectively, negative), then h cannot label q as "?". More formally:

Definition 56 Let f? : X . {0, 1, ? }, and let P = {x h(x) = 1} , N = {x Mx) = 0}, and

Q = {x I h(x)=?}. Then f? is a blurry concept for C if for every q E Q, there exists functions

fo and fi in C such that: (1) for all x E P, fo(x) = fi(x) = 1, (2) for all x E N, fo(x) =

Mx) = 0, and (3) fo(q) = 0 # 1 = fi(q). We define the blurry concept class C? = {f? f' is a
blurry concept for C}.

74

87
BEST COPY AVAILABLE

Thus for any concept class C, the class C? contains exactly those blurry concepts the can

be generated from some f E C. For a target function f , we say that an example x E X is a

positive example if f(x) = 1, is an unknown example if f(x) = ?, and is a negative example if

f(x) = 0. We assume that random examples are chosen (by nature) from an unknown, arbitrary,

distribution D, and are then given a label from {0, 1, ?} by the teacher, and presented to the

learner. Using the obvious extension of the PAC and PAC with membership query models we

say that the learner has successfully learned f? E C? if with probability at least 1 6, the

(ternary) hypothesis output by the learner has probability at most of disagreeing with f? on

a randomly drawn example from D. If such a polynomial-time learning algorithm exists, we

say that the blurry class C? is learnable, or equivalently, that the class C is learnable from a

consistently ignorant teacher, in the PAC or PAC with membership query models. Finally, note

that one way a hypothesis h might err, is if h(x) =? and h(x) 0?. Thus, "?" does not mean

"don't care".

5.3 An Alternate Formulation of The Model

To understand some complexity issues involved in learning from consistently ignorant teachers,

we consider when C is the class of pure conjunctive concepts (monomials)each concept is

a simple conjunction of variables or their negations. Let P, Q, and N be the set of positive,

unknown, and negative examples, respectively, for some blurry monomial. In this case, it is

straightforward to show that P must be representable as a (nonblurry) monomial m. Further,

it is not difficult to show that P U Q can be represented by a unate2 DNF that contains only

those literals appearing in m (provided P is not empty). These observations are sufficient to

construct a PAC with membership query algorithm to learn the class of blurry monomials (for

which P is nonempty): run a known algorithm for learning (non-blurry) monomials [98] to

learn the set P of positive examples, and at the same time run a known learning algorithm for

unate DNF [9] to learn the set P U Q of nonnegative examples. Then Q and N can be easily

determined from knowledge of P and P U Q.

Is this a polynomial time algorithm? It depends on our choice of complexity parameters.

By definition, there is some "underlying" boolean monomial in (of size Intl < n, the number

2, ?mate formula is one in which no variable appears both negated and unnegated.

75

of variables) that has been turned into a blurry concept. So perhaps iml is a reasonable size

measure for this blurry concept, and the above algorithm needs to run in time polynomial

in Iml to be considered efficient. However, as we observed, the learning problem is not that

of determining some underlying boolean concept, but that of determining the ternary blurry

concept, which requires learning N, and thus indirectly, P U Q = X N. A particularly

nasty choice of "?" examples can result in a unate DNF describing the set P U Q that has

a number of terms exponential in TZ (hence, exponential in the size of any monomial from C).

Instead of relying then, on the size of some urkderlying concept, we capture the complexity of

a blurry concept by reformulating the notion as that of an agreement of base concepts, and let

the complexity rely on the complexity of the individual base concepts forming the agreement.

Let F be a finite set of boolean functions. The function AgreeF is a ternary function whose

classification on example x E X is given by

{

1 if f(x) = 1 for each f E F,

AgreeF(x) = 0 if f(x) = 0 for each f E F,

? otherwise.

We now argue that the problem of learning agreements of concepts from C is equivalent to

learning C from a consistently ignorant teacher, or equivalently, learning the blurry class C?.

The notion of an agreement of base concepts has independent interest, as it models a type of

unanimous vote of independent agents. The following lemma shows that being consistently

ignorant is no different than being indecisive in the face of competing hypotheses.

Lemma 57 For any class C of boolean concepts, the blurry class C? = {AgreeF I F C C}.

Proof: We first show that any f? E C7 can be expressed as an agreement of concepts from C.

Let P = {x f?(x) = 1}, Q = {x I f(x) =?} , and N = {x f?(x) = 0 }. We construct a set

of concepts F from f such that for all x E X, f?(x) = AgreeF(x). Initially, let F = 0. Now

for each x E X for which f?(x) =?, we add to F the pai- of functions fo and ft described in

Definition 56. By definition, fo and ft exist for each x E Q. Since all concepts placed in F

correctly classify all examples in P, it follows that for any x such that f (x) = 1, AgreeF (x) = 1.

Likewise, for all :c such that f(x) = 0, AgreeF(x) = 0. Finally, observe that for any .c such that

76 89

f(x).? we have placed in F two concepts (fo and f1) that disagree on the classification of x

and thus Agrees(x) =?.

We now show that for any FCC there is a blurry concept f? E C? that is logically equivalent

to Agrees. Select any f E F as the target function from which f? will be created. Observe

that by the definition of Agrees, for all examples x that are classified by Agrees as positive

or negative, Agrees(x) = f(x). Let Q C X be the examples classified as "?" by Agrees.

Since for any x E Q there must be two concepts in F that classify all examples in X Q

correctly but classify x differently, it follows that for each q E Q, f(q) cannot be computed

from {(x, f(x) I x E X Q}. Thus the blurry concept f? obtained from f by changing the

examples in Q to "?" is logically equivalent to Agrees.

Hence, the problem of learning blurry concepts C? generated from a base class C is equivalent

to the problem of learning the agreements of sets of concepts from the base class C, (and

equivalently, learning C from a consistently ignorant teacher). Using this correspondence, we

obtain a complexity measure for the size of f?: First, define the representation size of a subset of

concepts F to be EfEs I fl. Now define the size of f? E C? (denoted by If?1) to be the minimum,

over all subsets F C C for which Agrees = f?, of the representation size of F.

5.4 Positive Results for Learning Agreements

We show that PAC and PAC with membership query learning algorithms can be designed

to learn from consistently ignorant teachers. We first consider the problem of learning the

agreement of a pair of nested concepts. We show that if both concepts are chosen from classes

for which learning algorithms exist, then we can use these algorithms to obtain an algorithm

for learning the agreement of the functions. We then present a general result addressing how

known algorithms for learning from omniscient teachers can be applied to learn from consistently

ignorant teachers even when the base functions are not nested. We apply this technique to

obtain positive results for learning (under certain. conditions) the agreement of monomials,

monotone DNF formulas, and DNF formulas with a constant number of terms.

77

5.4.1 Learning Agreements of Nested Concepts

Observe that a concept f E C can be viewed as a characteristic function denoting the subset

of examples from X that f classifies as positive. Thus for two concepts ft and 12, we write

fr C 12 if the set of positive examples of h is a subset of the positive examples 12. Given a set of

concepts F = fk} we say that these concepts are nested if ft C f2 C - C fk. Observe

that in such cases Agree{h,.,A} = Agreech,f0 and thus, without loss of generality, we consider

learning the agreement, Agree{h,m, of two nested functions f, and fg (s and g for "specific"

and "general"). Suppose these are chosen, respectively, from known polynomial-time PAC with

membership query learnable concept classes Cs and CG. Then the learning algorithms for Cs

and CG can be used to learn. the following blurry concept class:

Nested?(Cs,CG) = {Agreeffs,fo. h E CS, fg E CG, and h C fg }.

Theorem 58 If Cs and CG are PAC with membership query (respectively PAC) learnable con-

cept classes, then Nested?(Cs,CG) is PAC with membership query (respectively PAC) learnable.

Proof: Let As (respectively AG) be the PAC with membership query algorithm for learning

Cs (respectively CG). We obtain an algorithm A (figure 5.1) to learn Nested?!,Cs,CG) by

simultaneously running As treating "?" as "" to obtain hs, and running AG treating "?" as

"+" to obtain hG, demanding error at most E/2 with confidence at least 1 6/2 from each.

Then output h = Agreeos,ho as the final hypothesis.

We now argue that the hypothesis h output by A has error at most e with probability at

least 1 5. By the correctness of As, the probability that the error of hs is greater than c/2 is

less than 6/2. Likewise, the probability that the error of hG is greater than e/2 is less than 6/2.

Clearly the error of h is at most the error of hs plus the error of hG, and thus the probability

that the error of h is at most E is at least 1 S. Since As and AG run in polynomial time,

it immediately follow<t, that .A runs in polynomial time. Finally, note that A only makes a

membership query when either As or AG does.

We note that, under the assumption that the evaluation problems for Cs and CG are

decidable in polynomial time, the stronger exact learning version of Theorem 58 can be obtained

a "?" example returned from an equivalence query are given to As when it would serve as a

78

Learn-Agreement-Nested-Concepts(F,E,5)

1 Let F {f,,fg} such that h c fg.
2 Let As be the PAC with membership query learning algorithm for Cs.

3 Let AG be the PAC with membership query learning algorithm for CG.

4 Simulate As (with parameters e/2 and J/2) as follows:

5 If As requests an example, then draw a random labeled example (x, f(x)) from
D.

6 If As performs a membership query member(x) then perform a membership
query on x to obtain f(x).

7 If f(x) =- 1 then give (x, 1) to As,

8 Else give (x, 0) to As.

9 Let hs be the hypothesis output by As.

10 Simulate AG (with parameters e/2 and 5/2) as follows:

11 If AG requests an example, then draw a random labeled example (x, f(x)) from
D.

12 If AG performs a membership query member(x) then perform a membership
query on x to obtain f(x).

13 If f(x) =1 or f(x) "?" then give (s, 1) to AG,

14 Else give (x, 0) to AG.

15 Let hG be the hypothesis output by AG.

16 Return the hypothesis AgreefhsAG}

Figure 5.1: A method for learning the agreement of nested concepts.

79 92

negative counterexample to hs, otherwise it must be a positive counterexample for hG. Positive

and negative examples returned from an equivalence quer are handled similarly.

Another modification of the above algorithm produces an on-line learning form of Theo-

rem 58. More specifically, the modified algorithm receives an arbitrary sequence of examples

x, and is asked to predict f?(x). The algorithm may ask membership queries (about examples

x). Then it predicts the value of f?(x). The modified algorithm spends only polyno-

mial time to output each next prediction, and the number of times it will predict incorrectly,

regardless of the sequence of trials, is bounded by a polynomial in n, 11,1 and 11g1.

5.4.2 A General Technique for Learning Agreements

We now give a general technique that allows Theorem 58 to be applied to arbitrary blurry

concepts. We show how an arbitrary agreement of concepts from a class C (and hence, an

arbitrary blurry concept f? from C?), can be represented, without significant increase in size, as

the agreement of two nested concepts, one of which is an intersection of concepts from C, and

the other is a union of concepts from C.3 Thus when unions and intersections of concepts from

C are learnable, then the blurry class C? will be learnable. We then apply this technique to

show that, with some restrictions, the class of monomials, monotone DNF formulas, and DNF

formulas with a constant number of terms are learnable from a consistently ignorant teacher.

Definition 59 Let F be a finite set of boolean functions. The function UnionF is a boolean

function which classifies example x as "1" if f(x) = 1 for some f E F and as "0" otherwise.

Likewise, IntersectF classifies x as "1" if f(x) = 1 for each f E F and as "0" otherwise.

To discuss algorithms for learning unions or intersections of concepts from a given class,

we must provide a size measure for each concept in the class. As we defined I AgreeFI, we

define I UnionFl (respectively, lIntersectF1) to be the minimum, taken over all F' C C for which

Unionp = UnionF (respectively, IntersectF = IntersectF), of the representation size of F'.

Each concept AgreeF in the class C? is equivalent to the agreement of two concepts UnionF

and IntersectF, and the size of this alternate representation is at most twice the size of the

original representation.

'There is an interesting relationship, discussed in Section 5.6, between this observation and Mitchell's version
space algorithm [801

80

3

Lemma 60 If F is a finite subset of concept class C, then Agreep = AgreeantersectF,UnionFP

and the size of Agree{ / n t erseetp,Unionp} is at most twice the size of Agreep.

Proof: The assertion about size holds by definition, as for both functions the determining

value is the size of the set F, that appears once for one function, and twice for the other.

The functions are equivalent: note that for any example x, Agree{IntersectF,UnionF}(z) = 1

if and only if IntersectF(x) = 1 since IntersectF(x) < UnionF(x). It therefore follows that

Agree {IntersectF ,UnionF}(x) 1 if and only if for all f E F, f(x) = 1. But, by definition,

this is exactly when AgreeF(x) = 1. An analogous argument shows that the two functions

are identical when x is a negative example. Finally, since they agree as to which examples are

classified as positive and negative, they must also agree as to which examples are to be classified

0

We now use this characterization to obtain an algorithm for learning from a consistently ig-

norant teacher when finite sets of unions and intersections from the given class are known

to be learnable. To aid the exposition, we introduce Cn to denote the set {IntersectF :

F a finite subset of C }, and Cu to denote {UnionF : F a finite subset of C}.

Theorem 61 Let C be a concept class for which Cn and Cu are PAC with membership query

(respectively PAC) learnable. Then C? is PAC with membership query (respectively PAC) learn-

able.

Proof: For any collection F of concepts, IntersectF C UnionF, and thus by Theorem 58, if

Cn and Cu are PAC with membership query learnable then so is {Agree{Intersectp.UnionF}

F C C} . Combined with Lemma 60 we get the desired result. As in Theorem 58 this result

also applies when no membership queries are provided to the learner.

The following corollary shows that the agreement of monomials with nonempty intersection

is learnable.

Corollary 62 Let C be the class of monomials, and let Ct = {c : c E C ?, 3x c(x) = 1}. Then

C is PAC with membership query learnable.

Proof: The class Cn is learnable since C is closed under intersection and known to be learn-

able [981. If F C C is a subset for which there is some example x such that Intersect(x) =

81 94

then x satisfies every monomial in F and so it cannot be the case that some variable appears

both negated and unnegated in F. Thus UnionF is a unate DNF formula, that is PAC with

membership query learnable [9]. It is also easily verified that for any finite F C C, the size of

the representation of IntersectF as a monomial and the size of the representation of UnionF as

a unate DNF formula are each 0(EfeF ifl). Thus by Theorem 61, C,1" is learnable.

Note that in the above corollary, had we not thrown out those blurry concepts of C? for

which there were no positive examples, our proof would fail because it may not be the case that

UnionF is unate. Thus, we would face the task of learning the class of arbitrary DNF formulas.

Also note that the corollary applies to the dual of monomials (i.e. 1-DNF) when we discard

blurry concepts that have no negative examples.

We next consider agreements, unions, and intersections, of at most a constant number k of

concepts from a class C. Let C?(k) = {AgreeF : F C C,IFI < k }, Cn(k) = {IntersectF : F C

C,IFI < k}, and Cu(k) = {UnionF : F C C,IF! < k}. Applying the known learning results for

monotone DNF [98] and DNF formulas with a constant number of terms [1, 18, 21] and the

known learning results for decision trees [29] and DFAs [3], we obtain the following corollary.

(The corollary follows because the intersection and union of a constant number of concepts

from each of the preceding classes can be represented by a single concept in the corresponding

class that is at most polynomially larger.)

Corollary 63 Let C be the class of monotone DNF (e-term DNF, decision trees, DFAs) formu-

las. Then for each constant k, C?(k) is PAC with membership query learnable. The dual results

for monotone CNF formulas and e-clause CNF formulas also hold. In the case of decision trees,

the hypothesis space is conjunctions of unate DNF.

5.4.3 Learning Unions of Boxes in Euclidean SIN-,

We now turn our attention to geometric concepts. In this section we give an algorithm to learn

the agreement of a set of s axis-parallel boxes in d-dimensional Euclidean' space (Ed) when the

set of boxes have a samplable intersection. Throughout the remainder of this section, unless

otherwise specified, by a box we mean an axis-parallel box in Ed. It is easy to show that this

class is a generalization of unate disjunctive normal form formulas, and a specialization of the

class of unions of boxes in Ed.

82

Previous algorithms that PAC learn an s-fold union of boxes in Ed include: Long and

Warmuth [75] that runs in time polynomial in d only and Blumer et al. [23] that runs in time

polynomial in s only. There has also been work on learning unions of s boxes in the discretized

space {1, ..., n}d. Most of this work has focused on the special case in which d = 2. Chen

and and Maass [32] gave an algorithm to learn the union of two axis-parallel rectangles in

the discretized space {1, ..., n} x {1, ..., m} in time polynomial in log n. and log m, where one

rectangle has a corner in the top left corner and the other has a corner in the bottom right

corner. While learning the union of these two rectangles within these time bounds was difficult,

learning the agreement of the rectangles is quite simple since the learner needs only learn the

intersection of the two rectangles which is easily achieved.

Chen [30] gave an algorithm that uses O(log2 n) equivalence queries to learn the union

of two rectangles in the discretized plane (i.e. {1, ...,n}2). Also, Chen and Homer [31] have

given an algorithm to learn the union of s rectangles in the discretized plane using 0(s3 log n)

membership and equivalence queries and 0(s5 log n) time. More recently, Goldberg, Goldman

and Mathias [49] have given an algorithm to learn the union of s discretized boxes in {1, ..., n}d

that makes at most sd +1 equivalence queries and uses 0((8s)d sdlg n) time and membership

queries. Note that their algorithm, like the PAC algorithm of Long and Warmuth [75], only

runs in polynomial time for d constant.

The algorithm we present here is a PAC with membership query learning algorithm for the

agreement of s boxes in Ed that runs in time polynomial in 1/E, 1/6, s, and 9d. Thus, the

algorithm runs in polynomial time without demanding that one of s and d be constant (e.g.

d can be 0(log s)).A key algorithm we use in learning the agreement of boxes is a PAC with

membership query learning algorithm for the union of a set of boxes that all lie in the same

quadrant of Ed, and for which the intersection region contains the origin. We call each box in

such a set an origin-incident box because each such box touches the coordinate axes in such

a way that the box contains the origin as a corner. Our algorithm to learn the union of s

origin-incident boxes runs in time polynomial in both d and s.

To aid in learning the agreement of boxes, we also use the known algorithm for computing

the intersection of boxes [23]. Namely, we first learn an approximation for the intersection

region by applying the standard algorithm with all "?" examples treated as negative. Since the

boxes have a non-empty intersection, we can subdivide Ed into at most 3d sub-regions based

83
9

on this common intersection. Each sub-region can be translated and relabeled so that we can

apply our algorithm for learning the union of origin-incident boxes. In the worst case, some

piece of each of the s boxes will lie in each of the 3d regions of the sub-divided problem forcing

us to learn 0(33d) boxes.

It is important to note that in obtaining our algorithm to learn the agreement of boxes we

take advantage of our ability to efficiently compute the intersection region and then use this

information to aid in more efficiently learning the union of the boxes. It is uncommon for both

intersections and unions of concepts to be learnable, and thus, the possibility that information

from one of these could be used to learn the other is of particular interest.

5.4.3.1 Learning the Union of Origin-incident Boxes

We present an algorithm to learn the union of s origin-incident boxes in Ed where all of the

boxes are in the same quadrant (for simplicity we only present the algorithm for the positive

quadrant). We refer to the class of origin-incident boxes in the positive quadrant as BPQ. We

define the upper corner of a box b E BPQ to be the corner of the box diametrically opposed

to the origin. Since any box in BPQ is uniquely identified by its upper corner, we denote an

origin-incident box by box(p) where p is its upper corner. Finally, we define maxCorner to be a

function that takes a set of points in the positive quadrant of Ed and returns the upper corner

of the smallest box in BPQ that contains every point in the set.

In the PAC model, an. important contribution in characterizing what concept classes are

learnable was made by Blumer et al. [23]. A finite set S C X is shattered by C if for each

subset S' C S, there is a concept f E C that contains all of S' and none of S 5'. The Vapnik-

Chervonenkis dimension of C, denoted vcD(C), is defined to be the largest d for which some set of

d points is shattered by C. Building on the work of Vapnik and Chervonenkis [101], Blumer et al.

proved that any PAC learning algorithm must draw at least Si(1, In vc D(C)) examples.

Furthermore, they proved that the general technique of finding a hypothesis consistent with

a set of 0(1. In -1e; vc,Dc In-,1-) examples, when feasible, always results in a (possibly super-

polynomial time) PAC learning algorithm's. We use this result to show that BPQu(s) is PAC

with membership query learnable.

4There arc some technical restrictions on the concept classes for which this result applies.

84

9 7

LearnBPQ(S)

/* S is a labeled sample. */

/* This algorithm will, with probability at least 1 6, output a hypothesis with error
at most e given that ISI > max{1 log 26, ,16dslog3s log 91. */

1 h := 0 I* The set of boxes in the hypothesis; represented as upper corners

2 P := {x : x E 5, x is a positive example}

3 while there exists an example x E P

4 P := P {x}

5 for each y E P if member(maxCorner{x, y}) = "yes" then

6 x := maxCornerfx, yl

7 P := P {y}

8 add box(x) to h

9 return h I* That is, output the union of boxes in h */

Figure 5.2: Algorithm to learn a union of origin-incident boxes.

Theorem 64 Let BPQu(s) be the union of at most s origin. incident boxes. The class BPQu(s)

is PAC with membership query learnable with time and sample complexity polynomial in 3, d,

1/E,118.

Proof: To prove the theorem, we show that

1. Algorithm LearnBOQ (Figure 5.2), takes as input a sample 5, runs in time polynomial in

5, and outputs a union of at most s origin- incident boxes (that is, an element of BPQu(s))

that is consistent with the sample.

2. The VC-dimension of BPQu(s) grows polynomially with s and d (in particular, it is at

most 2ds log 3s).

It then follows from Theorem 2,1 of Blumer et al. [231 that if LearnBOQ is given a sample of
l6ds log(3s)cardinality at least in = max { :I log 2., }, then with probability at least 1 6, it

will output a hypothesis h with error at most E.

To see that (2) is true, we that the VC-dimension of BPQ is at most d. A point can
be uniquely excluded from a set of points by a box in BPQ box only if at least one of its

components is the largest among all points in the set, kr that component; since there are only d

85 9b

components, the VC-dimension can be at most d.5 Then by Lemma 3.2.3 of Blumer et al. [23],

the VC-dimension of BPQu(s) is at most 2dslog(3s). To complete the proof, it remains to be

shown that (1) holds. We first show that LearnBOQ produces a hypothesis that is consistent

with the sample S. The hypothesis produced is consistent with the positive examples of S since

the algorithm does not terminate until all positive examples of S have been removed from P

and no point is removed unless the box about to be placed in h contains it. Furthermore, if

box(x) was placed in it, then x was a positive example (either it was in P or verified to be

positive with a membership query). Since x is a positive example, box(x) is contained within

some box of the target. Thus no negative points (even those not in S) can be contained in any

of the boxes placed in h.

We now prove that the hypothesis h output by LearnBOQ contains at most s boxes. Suppose

h contained more than s boxes. Since each box of h is contained within a box of the target,

it follows that there must be at least two boxes (say bi and bi) in h that are contained within

the same box (say b*k) of the target. Assume, without loss of generality, that bi was placed in

h first. Let p, be the point from P selected in step 3 during the iteration of the while loop in

which bi was added to h. Thus pi must be contained within bi. Likewise, let pi be the point

from P selected during the iteration of the while loop in which bi was added to h. (So pj is in

ba.) Since p3 E P after bi was placed in h, a membership query must have been performed on

maxCorner{ii,pj}, where box(ii) contains pi. Furthermore, since pi was not removed during

the construction of bi, it fellows that maxCorner{pii, pi} is a negative example. Since pi is

contained within box(p9 it must be that maxCorner{pi,pi} is also a negative example. Recall

that the box bZ of the target contains bi and b.; and thus b4/,' contains pi and pj. However, this

contradicts the fact that maxCornerfpi,pil is a negative example. Thus h contains at most s

boxes.

Finally, note that LearnBOQ runs in polynomial time, since there are at most s iterations

of the while loop, each of which takes at most 0(m) time, where m is the cardinality of S. This

completes the proof of (1) above, and hence of the thecrem.

0

'In fact, the VC-dimension is exactly d because any subset S of the set of points fp, : p. = (x , =
3, = 1} can be selectively' excluded from the set by the box b E BPQ having upper corner
where r,Es = 2 and ,r,,gs = 4.

86 9 ti

We note that LearnBOQ is easily modified to obtain an algorithm to learn the union of s

origin-incident boxes in Ed when all of the boxes are in any single quadrant.

5.4.3.2 Learning the Agreement of Boxes with Samplable Intersection

In this section we give an algorithin to learn the agreement of s boxes in Ed (hence, an algorithm

to learn boxes from a consistently ignorant teacher) when the intersection region is samplable.

Our algorithm has polynomial time and sample complexity in both d and s when d = 0(log s).

The intuition behind our algorithm lies in the way in which the non-empty intersection of a

set of boxes can be used to partition Ed into 3d sub-regions. Let B be the set of boxes for

which we are computing the agreement. Figure 5.3 illustrates the effect of this partitioning on

a typical box b E B. The large, transparent box is 6, and the solidly shaded box bi in the

center is the intersection of all boxes in B (and thus must be contained in b). By infinitely

extending the faces of I)/ we decompose 6 into a set of sub-boxes that are also axis-parallel. A

few of the sub-boxes generated by this extension have been cross-hatched. Notice that some of

the sub-boxes generated in this manner share a face with kr, others share only an edge, and

still others share only a corner. Including to/ itself, the decomposition of E3 results in 33 = 27

sub-regions. In general, there are 3d sub-regions in Ed as seen informally by first observing that

the bounds of the intersection region are d pairs of parallel hyperplanes, one pair of parallel

hyperplanes for each dimension. Thus, in each dimension the sub-region lies either above both

of the hyperplanes, lies between the pair, or lies beneath both of the hyperplanes. Therefore,

we have 3 choices for each set of bounding planes giving a total of 3d sub-regions.

Sub-regions and Sub-boxes. A useful way to categorize these 3d sub-regions is by the

dimension of the boundaries they share with the intersection region. For example, in Figure 5.3

a sub-region that shares a face with the intersection region shares a 2-dimensional boundary. A

sub-region that shares an edge shares a 1-dimensional boundary, and a sub-region that shares

only a corner shares a 0-dimensional boundary.

Since, by definition the intersection region is contained in every box in 13, the manner

in which these boxes can overlap in a sub-region is restricted based on the dimension of the

boundary that the sub-region shares with the intersection region. Figure 5.4 illustrates the

constraints imp,sed by the dimension of the shared boundary the higher the dimension of the

87

10

Figure 5.3: Decomposition of an axis-parallel box with respect to the intersection region.

shared boundary the greater the number of dimensions that are constrained by the intersection.

From the figure we see that in sub-regions that share only a corner point with the intersection

region, we have almost no information about the way the sub-boxes in that sub-region might

be arranged. At the other extreme, in the sub-regions that share a face with the intersection

region, we know almost precisely how the sub-boxes are arrangedthe only unknown is how

far oeyond the face the sub-boxes extend.

To eliminate the dimensions of a sub-region that are already constrained by the intersection

region we introduce the following notation. Let p = (x 1,x2, ..., x4 be a point in Ed, and
let I be a set of indices {i1, j2, ik} such that 1 < it < i2 < < ik < d. Then the

point 7ri(p) = (x11, xik) in Ek is the projection of p with respect to I. In general, if a

sub-region shares a k-dimensional boundary with a d-dimensional intersection region, then for

any sub-box in that sub-region we need only determine the sub-box's extent in the remaining

d k dimensions. Equivalently, boxes in the same sub-region can be translated to all be origin-

incident boxes in a d k dimensional space for which we can apply LearnBOQ. Furthermore

these d k dimensions are exactly those which are not shared with the intersection region.

Let the intersection region of the boxes in B be {(x1,:c2,...,xd) : wi < xi < zi} for constants

wi and zi (1 < i < d). Now for any point p = (at,a2,...,ad) E Ed, if wi < 7ri(p) < zi and

p is contained in some box b E B then for any point y such that ?Di < y < zi, the point

(a i , a2, , y, att.!, .,a4) is also contained in b. Thus for any point p we can ignore any

dimension i of p if p lies in a sub-region that is bounded between the pair of parallel hyperplanes

88
I 1

shares
0-dimensional
boundary

shares 1-dimensional
boundary

intersection
region

shares 2-dimensional
boundary

Figure 5.4: Sub-region constraints imposed by the dimension of the boundary shared with the
intersection region.

that bound dimension i of the intersection region. This observation is used by our algorithm

to take a collection of points for a specific sub-region, project out any dimension for which the

sui.)-region is bounded, and then learn all the sub-boxes in that sub-region using a version of

LearnBOQ of suitable dimension for the resulting projected and translated points.

Removing Intersection Box Estimation Error. There remains a subtle point that we

must address. So far we have assumed that we know the intersection region exactly. How-

ever, i. r^1.1;ty, we apply a known PAC algorithm [23] to obtain a good approximation of the

intersection region; the approximation box is contained in the intersection region. To obtain

an approximation with error at most e with probability at least 1 5, this algorithm draws

log _cda sample of size max (1 l is log
f31 and returns the smallest box that is consistent with

the sample. Let IBox(S) be a procedure that takes a sample S and returns the smallest box

consistent with S. To apply this algorithm to learn the intersection region of the boxes in our

model, we simply modify the sample by changing all "?" examples to negative examples.

The difficulty presented here is that the sub-region in which a point p lies may differ when

subdividing based on the true intersection region versus sub-dividing based on the underestimate

for the intersection region. Figure 5.5 illustrates how this may happen where A* is the true

1_02

Figure 5.5: An example assigned to the wrong sub-region.

intersection region and A is our (underestimate) of A*; the point marked "?" lies between the

vertical boundaries for A*, but lies to the right of the vertical boundaries for A. We handle

this difficulty by discretizing Ed with an irregular Cartesian grid.

Suppose we have a collection S of points from Ed. For each dimension i consider the set

Si = {r{i}(p) : p E S}. Notice that Si is a collection of points from E1 and that if we consider

labeling the coordinate axis for dimension i of Ed using only values found in Si, then we will

have effectively discretized Ed in such a way that every point of the sample S lies at some

intersection point of the resulting irregular Cartesian grid. We then expand our estimate A

of the true intersection region A* in such a way that for every point p in S, the sub-region

generated by A in which p lies and the sub-region generated by A* in. which p lies are the same.

An algorithm to achieve this goal is given in Figure 5.6. We have the following lemma.

Lemma 65 Let A be a non-empty underestimate of the true intersection region A*. The al-

gorithm Expand(A, S) outputs a box A' so that for all p E S, the sub-region generated by A'

in which p lies and the sub-region generated by A* in which p lies are the same. Furthermore,

Expand runs in time polynomial in the size of S.

Proof Sketch: Consider the infinitely tall, finitely wide strip in Figure 5.5 bounded between

the right edges of A and A* in which the "?" point lies. If this strip were samplable, Expand

would have been likely to witness some point in the strip. Any point in the strip, when projected

between the top and bottom edges of A would have been a positive example. Thus the right

edge of A would have been closer to the right edge of A*.

90 11 0 d

Expand(A,S)

/* A is a non-empty underestimate of the true intersection r.:.gion.

/* S is a set of labeled example points. */

Let (ai, a2, , ad) be any point contained in A.

2 For i := 1 to d

3 /* Use membership queries to obtain a lower bound for dimension i. */
Set ti to be the smallest v such that v = w{i)(p) for some p E S and
(ai,a2, ati, v, a:44, ., ad) is a positive example.

4 /* Use membership queries to obtain an upper bound for dimension i. */
Set ui to be the largest v such that v = w{i}(p) for some p E S and
(al, a2,..., ai_i, ..., ad) is a positive example.

5 Return the box A' having opposing corners (it, e2,...,Cd) and (ui,u2,...,ud).

Figure 5.6: Algorithm to expand an underestimate A of the the true intersection region A*
to an estimate A' such that for any point p in 5, the sub-region generated by A' in which p lies
is the same as the sub-region generated by A* in which p lies.

The Full Algorithm. Putting all the pieces together we obtain our algorithm. We first

approximate the intersection region, and then we refine this estimate using Expand. Next

we apply a version of LearnBOQ of suitable dimension to the points in the various sub-regions

generated by the intersection region. Finally, we combine the hypotheses obtained from the calls

to LearnBOQ along with our estimate of the intersection region to obtain our final hypothesis.

The complete algorithm is shown in Figure 5.7.

Theorem 66 LearnBoxesAgreement is a PAC with membership query algorithm for learning

the agreement of s axis-parallel boxes in Ed. Let p+ be the probability of receiving a positive

example from D. The sample complexity is m = (log s log + 2*. log ,

and the time complexity is 0(sm).

Proof: Note that by drawing a sample of size 1/p+ ln 2/6 with probability at least 1 6/2

we will obtain a positive example. It follows directly from Blumer et al. [231 that our sample

suffices to ensure that the hypothesis output by IBox(T) has error at most E73d with prob-

ability at least 1 Au. We now show that for each of the 3d 1 remaining sub-regions,

the sample is sufficiently large so that with probability at least 1 4. there are enough

points so that the hypothesis output by LearnBOQ for that region has error at most /3(1.

It immediately follows from Theorem 64 that it is sufficient to provide LearnI30Q with a

91

LearnBoxesAgreement()

1

2 If there are no positive examples halt and report failure.

3 Let T be set of examples obtained by relabeling all "?" examples of S as negative.

4 Set A := Expand(IBox(T, S)).

Let R be the set of sub-regions generated by A (excluding A itself).

6 For each sub-region r E R

7 Choose any point pr in the boundary shared by A and the sub-region r such
that A. is an extreme point in every dimension of the boundary. Let Jr be the
coordinate transformation that translates fr to the origin of Ed.

8 /* Identify dimensions for which we already know the extent of any sub-box lying
in r */
Let /7. be the dimensions for which r is not bounded between a pair of parallel
hyperplane bounds for A.

9 /* Project out those dimensions for any point of S that lies in r, relabel "?"
examples */
Let Sr:_ {p' : p E r and = rir(fr(P))}
If E Sr is labeled with "?" then relabel it as positive.

10 Set Br to be the set of boxes returned by LearnBOQ(5,-)

11 Given any unlabeled example x, predict

Draw a sample S of size rn := max {
_

,
o.nd ..^d 32.9d.ds1g3s) 133a 1 1

p+ ig 61-

1

1 if x lies in A
? if 3r E R,b E Br such that x lies in sub-region r and TO fr(x)) lies in b
0 otherwise

Figure 5.7: The algorithm LearnBoxesAgreement for learning the agreement of a set of axis-
parallel boxes with samplable intersection region.

92

1 0 o

4.3d 16.3dds log(3s) ,0sample of m' = max log 75, WI} points from the given region. By

applying Chernoff bounds from Fact 6 it is straightforward to show that a sample of size

m = max {-a,m'3d, 14 In -24-} is sufficiently large so that there for each sub-region of weight at

least sd there are at least m' points from the sample with probability at least 1 (Note

that sub-regions with weight less than e/ 3d can contribute at most e/3d to the total error.) It

follows from Lemma 65 that the total error of our final hypothesis is the sum of the errors of

the hypotheses we generate for each of the 3d regions. Thus the probability that the error of

the final hypothesis is more than 3d E/3d = E is at most 3`ig = 6/2.

We now compute the time complexity. It is easily argued that the first five steps take 0(m)

time. Observe that the loop in step 6 goes over 3d 1 regions. While each of the s boxes can

be sub-divided to have a piece in each sub-region, each point in the sample falls into at most

one of the regions. Thus the total time for step 6 is ErER 0(87/1r) where mr is the number of

sample points that are in region r. Finally since 7rER mr < m, we get that the total time for

step 6 is at most 0(sm).

5.5 A Negative Result

By the results of chapter 2, the class of propositional Horn sentences is known to be PAC with

membership query learnable. We provide evidence that this result cannot be strengthened to

allow learning Horn sentences from a consistently ignorant teacher, by showing that such an

algorithm could be used to learn the class of DNF formulas.

Unlike in the previous section where we used the knowledge of the intersection region of a

set of s boxes to aid in an algorithm to learn the agreement of any set of s boxes having a non-

empty intersection, here we show that the knowledge of the intersection region of a set of Horn

sentences appears to be insufficient in providing the leverage needed to learn the disjunction

(and thus agreement) of the Horn sentences.

Let DHF represent the class of disjunctions of Horn Sentences. We begin with the observa-

tion that the class of DNF formulas is a subset of the class of DHF formulas.

Claim 87 For any DNF formula there exists a logically equivalent D1117 formula.

93 1_.(

Proof: Observe that every unnegated literal v is equivalent to the Horn clause (T v)

and every negated literal v is equivalent to the Horn clause (v F). For example, abc

(T a)(b F)(T c). Thus we can represent each term by a Horn sentence and take

the disjunction of these Horn sentences to build a DHF formula that is logically equivalent

to the given DNF formula. Finally, observe that the size of the DHF formula created by this

transformation has size polynomial in the DNF formula from which it was created.

Using the above observation, it is easily shown that the problem of learning an agreement of

Horn sentences (without any restrictions) is as hard as learning DNF. However, as demonstrated

by our algorithm to learn the agreement of boxes, if the intersection of the Horn sentences in

the agreement were non-empty then it may be possible to use the intersection information to

successfully learn the disjunction. We now prove the stronger negative result that learning

the agreement of Horn sentences even when the intersection region is samplable is as hard as

learning the class of DNF formulas.

Theorem 08 PAC with membership query learning the agreement of Horn sentences for which

the intersection region is samplable is as hard as PAC with membership query learning the class

of DNF formulas.

Proof: We prove this through a sequence of prediction preserving reductions [84 Let DHF-

1pos be the class of DHF formulas with exactly one positive example p that satisfies every

disjunct. Let agree-Horn-lpos be the agreement of Horn sentences that have exactly one

example in their intersection. Finally, let agree-Horn be the agreement of Horn sentences with

a samplable intersection region.

Applying Claim 67 it immediately follows that the learnability of DHF implies the learn-

ability of DNF. We now give a reduction showing that the learnability of DHF -lpos (even

when the learner has a priori knowledge of the single positive example) implies the learnability

of DIIF . Let f be the target of the algorithm for DHF and fp be the target of the algorithm

to be constructed for DIIF-lpos . Choose as the zero vector as the positive example p known to

the learner, and let {vi; va} be the set of variables over which f is defined. We construct fp

from f by adding an extra literal v to the antecedent of every Horn clause in f as well as adding

the Horn sentence (v F)(vt I) (vn F). Note that the only example satisfying every

disjunct of fp is the zero vector p.

94

10'7

The DHF algorithm A simulates the queries for the DHF-lpos algorithm A+ as follo.vs:

When A+ requests an example, A obtains a random example x (that assigns values only to

v1, ..., vn), generates the example x' that is like x with the additional variable v set to 1, and

gives x' to A+ labeled as x was. If A+ makes a membership query on some vector .r', if v = 0

then A returns "1" and if v = 1 then A responds with the result of a membership query on the

example x that is just x' with the setting for the variable v eliminated. Once A+ terminates

with hypothesis h+, A is able to predict the label of any example, x, by setting v to 1 and

evaluating f+ on that example. Note that setting v to 1 causes the added Horn sentence in fp

to evaluate to 0 and the antecedents of all the remaining Horn clauses to not be affected by .r.

We now show that the learnability of agree-Horn-lpos implies that DHF-lpos is learnable.

It is at this point that we switch from learning a standard boolean concept to learning an

agreement. Note that the learning problem for the class DHF-lpos assumes that the learner

knows the single positive example that satisfies every disjunct of the the target. Any algorithm

for agree-Horn-lpos can be used to learn DHF-1pos by simply providing the sole positive

example of agree-Horn-lpos to DHF-lpos as p and changing all "?" examples to positive

examples.

Finally, we show that the learnability of agree-Horn implies that agree-Horn-lpos is learn-

able. Recall that a PAC with membership query learning algorithm must learn under any

distribution D. When the agree-Horn algorithm requests a random example, the simulation

algorithm flips a fair coin. With probability 1/2, the simulation provides the agree-Horn al-

gorithm with the single positive point in agree-Horn-lpos (and thus the positive region is

samplable). Otherwise, a random example drawn from the oracle is given to the agree-Horn

algorithm. Clearly agree-Horn is a generalization of agree-Horn-lpos and thus at least as

hard.

Thus it follows from this sequence of reductions that PAC with membership query learning

the agreement of Horn sentences with a samplable positive region is as hard as PAC with

membership very learning the class of DNF formulas.

Finally, we further strengthen this result by using the hardness result of Angluin and

Kharitonov [10] showing that, under the assumption that one-way functions exist, member

ship queries do not help in learning IMF formulas (with an unbounded number of terms).

5

Corollary 69 PAC with membership query learning the agreement of Horn sentences for which

the intersection region is samplable is as hard as PAC learning the class of DNF formulas

assuming that one-way functions exist.

5.6 Relating Agreements and Version Spaces

We take a brief diversion and compare Mitchell's definition of version spaces [80] to agree-

meats [78].

Given a concept class C of boolean functions, a finite sample E of examples, a set of positive

examples P C E, and a set of negatives examples N C E, recall that the version space [80]

is the set of concepts in C consistent with P and N. As there may be many such consistent

concepts, a version space is often represented using two sets G and S defined as follows. Let

Cv=ffEC:VnENf(n)= 0 AVpEPf(p)= 1}.

Next, taking g > f for functions g and f to denote that g is strictly more general than f ,7

define

and define

G={f ECv*ECg> f},

S = {f E Cv E C f >g }.

Intuitively, G is the set of concepts in C consistent with a set of labeled examples such that the

concepts in G are maximally general and S is the set of concepts in Cv consistent with a set

of labeled examples such that the concepts in S are maximally specific.

Mitchell observes that associated with any G and S sets is a ternary function VS[s.0 (our

notation) that expresses how a version space predicts the label of an example x:

6 It need not be the case that P U N = E.
'That is, for every x E E, g(x) > f(x) and there is some zo E E such that g(x0) > f(.co) In other words the

set of examples labeled positive by g is a proper superset of the examples labeled positive by f.

96

1 if s(x) = 1 for each s E 5,

VSts,Gi(x)= 0 if g(x) = 0 for each g E G,

otherwise.

We now relate agreements to VSts,Gi and discuss why the former is more appropriate for

our purposes.

Let S and G delimit a version space. To see that VS[s,GI defines an agreement of functions,

observe that for all examples x, VS1s4(x) = AgreesuG(x). Specifically, if VS[,s,G] labels an

example x with "?," then for some s in S and some g in G, s labels x negative, and g labels

x positive. Thus, since s and g disagree on the label of x, AgreesuG labels x with "?" also. If

VS[s,Gi labels x positive, then, by definition, every s in S labels x positive. Since the elements

of G are more general than the elements of S, every g in G labels x positive also. So AgreesuG

labels x positive also. (Dually when VS[s,GI labels x negative.)

Furthermore, every agreement can be represented by a ternary function, VS(s4, for suitably

defined S and G. Let F be a subset of C. Recall that E is a finite subset of examples, and that

AgreeF and f are functions with ranges {0,1, ?} and {0, 1}, respectively. Define

Now define

and

CA = ff EC : Vs E E f(x)= AgreeF(x) }.

G = ff E CA *ECAg>

S = If E CA *ECAI> 9}

We show that, for all examples x, AgreeF(x) = VS[s,Gi(x).

Note that all the functions in the set F are trivially contained in the set CA. If Agree),

labels x with "?," there exists functions ft and f2 in F such that ft labels x negative and f2

labels x positive. Since ft and 12 are themselves in F, they are also in CA. Further, since ft

and 12 are in CA, there exists s and g in S and (7 respectively, such that s labels x negative

and g labels x positive, where s is at least as specific as ft and g is at least as general as f2.

971

BEST COPY AVAILABLE

(So, regardless of where fi and f2 "lie relative to" the elements of S and G, there is an element

of S that labels x negative and an element of G that labels x positive.) Consequently, VS(s,Gi

labels x with "?."

If Agrees labels x positive then every f in CA, labels x positive. Since S is a subset of CA,

every s in S labels x positive. Thus VS[s,G1 labels x positive also. (Dually when Agrees labels

x negative.)

We now discuss why the agreement representation is more appropriate for our purposes.

Membership Queries The concept classes we investigate (for example, the agreement of

a constant number of monotone DNF, k-term DNF, or decision trees) are not known to be

learnab'-' without membership queries. It can be shown that the candidate elimination algorithm

(CEA) -fined in [80]) requires exponential time to learn these concept classes. However,

since the CL,A. does not have access to membership queries, the comparison seems ill-founded.

Moreover, it is not clear how to augment the CEA:with membership queries. Thus, the CEA

is not appropriate for the classes we consider.

Order of Labeled Examples Even if we could augment the CEA with membership queries,

since the CEA is sensitive to the order labeled examples are provided, it is again not suitable

for our purposes.

There has been previous evidence of the exponential growth associated with maintaining

G and S sets [53, 57, 55]. Hirsh [62] has proposed avoiding this growth by constructing only

the smaller of the sets G and S and maintaining the training examples as a representation of

the unconstructed set. We present a situation in which the size of both the G and S set grow

exponentially due to the order in which labeled examples are provided to the CEA. Thus, even

representations which maintain only one of G or S do not inhibit the problem of exponential

growth.

Let C be the class of monotone monomials defined over the variable set {xi}P21, such that

C contains exactly the constant functions true and false together with monomials of the form

Ai Es xi where S is a subset of {l ...,2n} of cardinality exactly n. For example, if n = 1,

C = {false, x , x2, true}.

08

Now consider how the CEA behaves for general n. Observe that initially G = {true} and

S = {false }. Suppose the following thr..t. labeled examples were supplied to the CEA:

the positive example (1 -11 . 1) with all variables satisfied,

the negative example (0 . .00 . .0) with all variables falsified, and

s the negative example (1 10 . .0) with the first n variables satisfied and the remaining

variables falsified.

After the first two examples, both G and S consist of the (2') monotone monomials from C.

However, altering the order of the examples so that the third example is provided first causes

the G and S sets to consist of one element each. In contrast, observe that the class C is trivially

learnable with membership queries.

Conciseness We have already demonstrated that the agreement representation is always as

small as and sometimes exponentially smaller than the G and S set representation. Thus a

positive result in the agreement representation is "stronger" in the sense that we are allowed

possibly exponentially less time.

Why is the G and S set representation not always concise? Our purpose is only to capture

a ternary function. With this in mind, one reason for this relative lack of conciseness is that

the agreement representation need not use only those functions that can be partitioned into

two sets, one "general" and the other "specific;" indeed the agreement representation is free to

represent the ternary function as a set of mutually incomparable functions.

This relative lack of conciseness also occurs when the agreement representation does consist

of functions that can be partitioned into the general and specific sets sometimes there exist

exponentially smaller subsets G' and S' of C and S respectively, that are equivalent in terms of

prediction (that is, for all examples x, VSEG,,s,i(x) = VSEG,s1(x)) G and S may contain many

more consistent functions than are necessary for accurate prediction [781.

5.7 Discussion

We have presented a new formal learning model for learning from a consistently ignorant teacher.

Along with giving several useful characterizations of this model, we have given some general

conditions indicating when one can successfully learn under this model. In addition we present

a polynomial time algorithm for learning the agreement of .s boxes in Ed for d = O(log s) . We

have also shown that learning the agreement of Horn Sentences is as hard as learning DNF

from random examples.

There are many interesting open problems raised by this work. First of all it would be

interesting to explore other concept classes for which learning finite unions (or intersections) is

hard to see if the agreement of concepts from the class is learnable. Also, although we have

shown that the complexity of learning the agreement of an arbitrary number of Horn sentences

is hard as learning the class of DNF formulas, this hardness result may not hold when the

number of Horn sentences in the agreement is bounded with respect to the number of variables.

For example, it is an open question as to whether or not there is an algorithm for learning the

agreement of a constant number of Horn sentences.

100 :3

Chapter 6

Restricted First-Order Horn

Sentences

We now make a transition from propositional concepts to first-order concepts. We return to

learning from entailment, and begin with a restricted class of first-order Horn sentences.

A natural framework for research in inductive logic programming is the investigation of

the learnability/predictability of various classes of definite clause theories, particularly in the

PAC [98] and exact learning models [4]. Relatively little work has been done within this

framework, though interest is rising sharply [15, 34, 35, 41, 70, 81, 82]. This chapter describes

new results on the learnability of several restricted classes of simple (two-clause) definite clause

theories that may contain recursive clauses; theories with recursive clauses appear to be the

most difficult to learn. The positive results are proven for learning by equivalence queries,

which implies PAC learnability [4]. In obtaining the results, we introduce techniques that may

be useful in studying the learnability of other classes of definite clause theories with recursion.

The results are presented with the following organization. Section 2 describes the learning

model. Section 3 shows that the class 112,1, whose concepts are built from unary predicates,

constants, variables, and unary functions, is learnable. Section 4 shows that the class 112,., an

extension of 112,1 that allows predicates of arbitrary arity, is not learnable under a reasonable

complexity-theoretic assumption.' Nevertheless, Section 4 also shows that each subclass 112,k

'The classes 'H2,, and 1{2,k (discussed next) have one other restriction, that variables are stationary. This
restriction is defined later.

101 114

of in which predicates are restricted to arity k, is learnable in terms of a slightly more

general class, and is therefore PAC predictable. The prediction algorithm is a generalization

of the learning algorithm in Section 3. The results of Section 4 leave open the questions of

whether (1) 7-12, is PAC predictable and (2) 712,k is PAC learnable. Section 5 shows that the

techniques used in Section 4 can also be used to prove that the class TP2 U C FT F13ig [15],

which allows higher-arity functions, cannot be learned. It conjectures that a related, and in

some ways broader, class can be learned, using techniques from earlier sections. Section 6

returns to unary predicates, but allows an arbitrary number of clauses; the resulting class is

called 1-(.1. Section 6 shows that this class is equivalent to the class of regular languages,

though the question of representation size remains open. While the results of this section do

not subsume any other results of the chapter, Section 6 does show that it may be possible to

obtain learnability results for some classes of definite clause theories from results about formal

languages and automata. Section 7 relates our results to other work on the learnability of

definite clause theories in the PAC or exact learning models. The primary distinction of this

work from the most closely related work [41] is that the classes studied in. this paper are not

determinate because functions can be nested to arbitrary depth.'

6.1 The Model

Algorithms that learn concepts expressed in propositional logic traditionally have used as ex-

amples truth assignments, or models. Such an example is positive if and only if it satisfies

the concept. But concepts in first-order logic may (and almost always do) have infinite mod-

els. Therefore, algorithms that learn definite clause3 theories typically take logical formulas,

usually ground atomic formulas, as examples instead. Such an example is positive if and

only if it is a logical consequence of the concept. The algorithms in this chapter use ground

atomic formulas (atoms) as examples in this manner. A concept is used to classify ground

atoms according to the atoms' truth value in the concept's least Herbrand model,4 which is

2Nfore precisely, the classes that result from flattening (rewriting to contain no functions) the concepts are
not determinate.

3A definite clause is a disjunction of atoms, exactly one of which is unnegated.
4The least Herbrand model of a set of definite clauses (every such set has one) is sometimes referred to as the

model or the unique minimal model of the set. The set of definite clauses entails a logical sentence if and only
if the sentence is true in this model. It is often useful to think of this model as a set, namely, the set of ground
atoms that it makes true.

102 115

to say, according to whether the atoms logically follow from the concept. For example, the

concept [V x(p(f (g(x))))] A [NI x(p(f (x)) p(f (h(x))))1, which is in H2,1, classifies p(f (g(c)))

and p(f (h(h(h(g(c)))))) as true or positive while it classifies p(f (c)) as false or negative. If A

and B are two concepts that have the same least Herbrand model, we say they are equivalent,

and we write A 'L-" B.

In a learning problem, a concept C, called the target, is chosen from some class of concepts

C and is hidden from the learner. Each concept classifies each possible example element x

from a set X, called the instance space, as either positive or negative. The learner infers some

concept C' based on information about how the target C classifies the elements of the instance

space X. For each of our learning problems, the concept class C is a class of definite clause

theories, and we require that any learning algorithm, A, must for any C E C produce a concept

C' E C such that C' = C, that is, that C and C' have the same least Herbrand model. (For

predictability we remove the requirement that C' belong to C.) The instance spce X is the

Herbrand universe of C, and the learning algorithm .4 is able to obtain information about the

way C classifies elements of X only by asking equivalence queries, in which A conjectures some

C' and is told whether C' = C. If C' C, A is provided a counterexample x that C' and C

classify differently.

We close this section by observing that the union of several classes can be learned by

interleaving the learning algorithms for each class.

Fact 70 Let p(n) 1,e a polynomial in n, and let {Ci : 1 < i < p(n)} be concept classes with

learning algorithms {Ai : 1 < i < p(n)} having time complexities {TA, : 1 < i < p(n)}
respectively. Then the concept class U7:int)ei can be learned in time maxi<i<p(n){P(71)TA,}.

6.2 The Class 7-12,1

The concept class 'H2,1 is the class of concepts that can be expressed as a conjunction of at

most two simple clauses, where a simple clause is a positive literal (an atom) composed of unary

predicates and unary or 0-ary functions or an implication between two such positive literals.

Allowing arbitrarily many literals in the antecedent of the implication, rather than only one,

provides no additional expressivity. This is because we are considering the least Herbrand model

to be the meaning of a concept in 'H2,1. The least Herbrand model of a pair of implicative clauses

103 116

is empty; on the other hand if one of the clauses is an atom A, the implicative clause will add

atoms to the least Herbrand model only if every literal in the antecedent of the implicative

clause unifies with A.

As an example, the following is a concept in 712,1 that we have seen already.

[Vx(p(f(g(x))))] A [Vx(p(f(x)) p(f(h(x))))]

Since our conjuncts are always universally quantified, we henceforth leave the quantification

implicit. Thus the above concept is written

[p(f(g(x)))] A [13(f (x)) p(f(h(x)))]

We can divide 712,1 into two classes: trivial concepts, which are equivalent to conjunc-

tions of at most two atoms, and non-trivial, or recursive, concepts. The trivial concepts of 712,1

can be learned easily.5 We next describe an algorithm that learns the non-trivial, or recursive,

concepts in 712,1. It follows that n2,1 is learnable, since we can interleave this algorithm with

the one that learns the trivial concepts of 'H2,1.

It can be shown that the recursive concepts in 712,1 have the form

[P(t1)] A [P(t2(x)) p(t3(x))] (6.1)

where t1 is a term, and t2(x) and t3(x) are terms ending in the same vari -ble, x.6 The fact that

the functions and predicates are unary leads to a very concise description of a recursive concept

in 712,1. Specifically, we can drop all parentheses in and around terms. Further, since we are

discussing recursive concepts, all predicate symbols are the same and can likewise be dropped.

Thus any concept having the form of concept (6.1) may be written [ae] A [/3x 7x], or

ae

Ox 7x
(6.2)

sThe basic idea is that the learning algorithm, by using equivalence queries, is able to obtain one example
for each of the (at most two) atoms in the concept. Only a few atoms are more general than (that is, have as
instances) each example, and the algorithm conjectures all combinations of these atoms, one for each of the (at
most two) examples.

6The proof of this is omitted for brevity, as arc some other proofs.

104

1F

where a, 13, and 7 are strings of function symbols, x is a variable, and e is either a constant or

a variable. Using this notation, determining whether, for example, ae unifies with /3x requires

only determining whether either a is a prefix of 0 or /3 is a prefix of a. For any strings a and

0, if a is a prefix of /3 then we write a<0.

The atoms in the least Herbrand model that are not instances of the base atom in the

concept7 are generated by applying the recursive clause. A concept is equivalent toa conjunction

of two atoms if its recursive clause can be applied at most once. For the recursive clause to

apply at all, a must unify with /3, and for it to apply more than once, /3 must unify with 7.

Hence a concept is non-trivial only if either a < 0 or /3 < a and either)3 < 7 or 7 < 0. In light

of Fact70, to show that the non-trivial concepts can be learned in polynomial time, we need

show only that the class of non-trivial concepts can be partitioned into a polynomial number of

concept classes, each of which can be learned in polynomial time. Therefore, we carve the class

of non-trivial concepts into five different subclasses defined by the prefix relationships among

a, /3, and 7. The approach for each subclass is similargeneralize the first positive example in

such a way that the oracle is forced to provide a positive example containing whatever pieces

of a, 0, or y are missing from the first example. The five possible sets of prefix relationships

that can yield recursive concepts, based on our earlier discussion, are (1) ,8<a and /3<7, (2)

a </3 and /3 <7, (3) a<-y and 70, (4) a<0 and 7<a, (5) /3<a and 7</3. We do not need to

divide case (1) into two cases because the relationship between a and -y is irrelevant here.

6.2.1 /3<a and fl<7

This class consists of concepts with the form

{0e
q5x 4.1x

(6.3)

Concepts of this form insert arbitrarily many copies of w between cb and '. Thus a concept of

this class has for its least Elerbrand model

Ow* (Pe

'Since we are speaking now of recursive concepts only, we refer to the two parts of the concept as the base
atom and the recurssve clause,

105
116

Lemma 71 This class can be learned in polynomial time.

Proof: To learn this class an algorithm needs to obtain an example that contains (4,, cc,,

and O. Every example contains and y, and every example except an instance of the base

atom contains co. The algorithm first conjectures the null concept and receives a positive

counterexample ae, which is an instance of some atom generated by the concept (either the

base atom or the result of applying the recursive clause some number of times). There are

jal + 1 atoms of which ae is an instanceae itself and each aix where at is a prefix of a.

The algorithm guesses one of these as the generated atom. (Here and throughout, when we

use the term guesses, we actually mean that the algorithm dovetails all the possible choices.)

It then proposes the generated atom in an equivalence query and receives another positive

counterexample, which is an instance of some other generated atom. The algorithm guesses

this generated atom from this example in a similar manner. Then the algorithm guesses which

of the two generated atoms is generated later; this atom must contain (/), cQ. 711 (and e if e is a

constant). Finally, the algorithm guesses whether e is a constant or a variable,8 and, from the

later atom guesses the values of j, w, and 0. It is straightforward to verify that there are at

most 2n3 possible combinations of such guesses.

6.2.2 a<f3 and 13<y

This class consists of concepts with the form

Icbe

(Plbx Oibwx
(6.4)

Co. cepts of this form add copies of cv after a prefix of 0.0. This class has as its least Herbrand

model

(be + w«

provided (Pe unifies with fi x, otherwise the least Herbrand model degenerates to Oc.

Lemma 72 This class is exactly learnable.

slf e is a constant, it is the last symbol in each example.

106

119

Proof Sketch: Let pe be the the (positive) counterexample to the empty hypothesis. Assum-

ing that p = 01Pcvk(for some k > 0, 00/A4) guesses suffice to identify 0, *, and w.

If p does not contain a copy of w, then p = 0(and 0(1p1) guesses suffice to identify 0. Once

has been identified, conjecturing

cbe (6.5)

will elicit a (positive) counterexample pie that does contain copies of both V) and w; identifying

each of these requires only O(Irho'13) guesses.

6.2.3 cc<7 and 7<3

This class consists of concepts with the form

{0e
07,1..)x OVX

(6.6)

The recursive rule adds nothing to the least Herbrand model, so concepts of this form have as

the least Herbrand model

0e

, so concepts of this form are equivalent to

(Pe

Lemma 73 This class is exactly learnable.

(6.7)

Proof Sketch: Let pe be the the (positive) counterexample to the empty hypothesis. Because

P = 45(, only 0(iPi) guesses are needed to identify Q.

107

6.2.4 a<13 and -y<ce

This class consists of concepts with the form

0/Pe

q5111(,) x q5x
(6.8)

Again the recursive rule adds nothing to the least Herbrand model, so concepts of this form

have as the least Herbrand model

e

, where 41 = 45 ,. Thus concepts of this form are equivalent to

e (6.9)

Lemma 74 This class is exactly learnable.

Proof Sketch: Let pe be the the (positive) counterexample to the empty hypothesis. Because

p = O'C, only 0(Ipl) guesses are needed to identify (Y.

6.2.5 8<a and 7<0.

This class consists of concepts having the form

{q57,bwe

x x
(6.10)

Concepts of this form generate smaller and smaller atoms by deleting copies of b at the front

of w; if is not a prefix of w, the concept can delete only one copy of 0. Any concept of this

form has the least Herbrand model described by

cobk(e for 1 < k < n + 1, where w = On(

Lemma 75 This class can be learned in polynomial time.

108

Proof: To learn this class an algorithm needs to obtain an example that contains p,

and (. It then must determine n. We give an algorithm that makes at most two equivalence

queries to obtain 0, *, (,), and (. It then guesses larger and larger values for n until it guesses

the correct value. This value of n is linearly related to the length of the base atom, so overall

the algorithm takes polynomial time.

1. Conjecture the false concept to obtain counterexample pe

2. Dovetail the following algorithms

Assuming p = op' «e for some j > 1

(a) Select 0,0,C, from p

(b) Guess the value of n

(c) Halt with output
01P+ICe

00x

Assuming p = Ocee

(a) Select 0,(*, from p

(b) Conjecture
OCe

to obtain counterexample p' e' . Note that

p' necessarily contains 0 as a substring.

(c) Select 0 from p'

(d) Guess n

(e) Halt with output
oon+ice,

0/px

When the algorithm selects substrings from a counterexample, it is in reality dovetailing all

possible choices; nevertheless, we observe that there are only 0(Ip15) (respectively O(IM))

choices to try. Similarly, when the algorithm guesses the value f a, it is actually making

successively larger and larger guesses for n and testing whether it is correct with an equivalence

query. It will obtain the correct value for n in time polynomial in the size of the target concept..

At that point it outputs the necessarily correct concept and halts.

Some observations about the above example are in order. In these, and afterward, we use

go to denote the base atom and, inductively, y1+1 to denote the result of applying the recursive

109 122)

clause to gi.9 11, ;s worth noting that the algorithm above uses only two of the counterexamples

it receives, though it typically makes more than two equivalence queries. This is the case with

the algorithms for the other subclasses as well. It is also worth noting that when the algorithm

above guesses the value of n, it is guessing the number of times the recursive clause is applied

to generate the earliest generated atom g of which either example is an instance.

From the preceding arguments, we have Theorem 76, below.

Theorem 76 The concept class 112,1 is learnable.

6.3 Increasing Predicate Arity

It is often useful to have predicates of higher arity, but otherwise maintain the form of the

concepts in 1-12,1. For example

plus(x, 0, x) greater(s(x), 0)

plus(x, y, z) plus(x, s(y), s(z)) greateqx , y) greater(s(x), s(y))

In this section we remove the requirement that predicates be unary. Specifically, let 712,« be the

result of allowing predicates of arbitrary arity but requiring functions to remain unary, with the

additional restriction, which we define next, that variables be stationary. Notice that because

functions are unary, each argument has at most one variable (it may have a constant instead of

a variable), and that variable must be the last symbol of the argument. A concept meets the

stationary variables restriction if for any variable x, if x appears in argument i of the consequent

of the recursive clause then x also appears in argument i of the antecedent. This class does

include the above arithmetic concepts built with the successor function and the constant 0,

but does not include the concept [p(a,b,c)] A [p(x , y, z) --+ p(z , x, y)] because variables "shift

positions" in the recursive clause.

We begin with the following observation. As for the class 112,1, a concept in 112,. is trivial

if it is equivalent to a conjunction of at most two atoms. It is straightforward to verify that,

because variables are stationary, the non-trivial concepts in 112,. have the form

[Att(et),..,1k(ek))1 A [Ati(ei),...,tideik)) P(q(eiti),...,q(e7;))1 (6.11)

If the concept is a conjunction of two atoms, the choice of which atom is go and which is gj is arbitrary.

110

where ti(ei), ei(e`i), and (eii`) denote terms ending in ei, eti, and e7, respectively, and for some

1 < j < k we have e' = elq = x for some variable x.

Unfortunately, we have the following result for the class n2,..

Theorem 77 H2,. is not learnable, assuming RP N P.1°

Before proving the theorem, we prove the following useful lemma.

Lemma 78 Any concept in 1.12,. generates at most two function free atoms, that is, at most

two atoms whose arguments are constants or variables.

Proof: The result clearly holds for the trivial concepts in 712,.. Any other concept has

form 6.11 above. Suppose a concept of this form generates at least three function-free atoms.

One of these may be the base atom itself, while at least two of these atoms must be generated

using the recursive clause. For the recursive clause to be used in generating such atoms, its

consequent p(tit' (en , (eZ))) must be function-free, that is, must be of the form p(e', et0),

where each et,' is a constant or a variable. Let p(di, dk), where each di is a constant or a

variable, be the first function-free atom generated using the recursive clause. We show that

any atom generated after p(di, dk) is also p(di, dk); hence, no third function-free atom is

generated by the concept.

For the recursive clause to generate an atom after p(di, dk), p(di, dk) must unify with

the antecedent of the recursive clause, p(ei(e11) , tc,(4)). Therefore, we kno'.v that for each

1 < i < k, at least one of the following is true: di = = c for some constant c, or tii(eii)

is a variable x, or di is a variable. In the first case, etit = c (and in fact ei = c), so every atom

generated by the concept has c = d, at argument i. In the second case, if = x, then ei =

di, so every atom generated by the concept has di at argument i; otherwise, et,' = di, so every

atom generated by applying the recursive clause has di at argument i. In the third case,

must be a variable y. We have just argued the case where t`i(e'i) and et: are the same variable,

x. If t',(e'i) 0 et:, then d, = et: = y, so every atom generated by applying the recursive clause

has di at argument i. Thus every atom generated after p(di, dk) agrees with p(d , ...dk) at

every argument.

"'That is, 1-(2, is not PAC learnable, and therefore is not learnable in polynomial time by equivalence queries.
RP is the class of problems that can be solved in random polynomial time.

Proof of Theorem 77: We show that the consistency problem [85] fbr this concept class is

NP-hard. Our reduction is from the consistency problem for two-term-DNF. The consistency

problem is: given a set of labeled examples, determine whether there exists a concept in the

class that agrees with all examples on their labels. In particular, the consistency problem for

7-12.4, requires determining whether there exists a concept in that entails all of the positive

examples but none of the negative ones. If the consistency problem for a given class is NP-hard,

then that the class is not PAC learnable (assuming RP N P) [85], which in turn implies that

it is not polynomial-time learnable by equivalence queries.

We first claim, based on Lemma 78, that if all examples are function-free then 712o, contains

a concept consistent with the examples if and only if there exists a function-free conjunction of

at most two atoms11 that is consistent with the examples. To see the if case, notice that every

function-free conjunction of at most two atoms is in To see the only if case, notice that

only function-free atoms can have other function-free atoms as instances; therefore, a function-

free atom is classified positive by a given concept in if and only if it is an instance of one

of the (at most two, by Lemma 78) function-free atoms generated by the concept.

Therefore, it is enough to show that the problem of finding a function-free conjunction of

at most two atoms consistent with a labeled sample of function-free atoms is NP-hard. (Doing

so will in fact show that the consistency problem is NP-complete, since we can efficiently check

whether a given conjunction of at most two atoms is consistent with a labeled sample.) To do

so, we reduce from the consistency problem for 2-term-DNF [85].

Define a mapping f : {0, 1}n + 10, 1, Z1, Z2, ZnIn as follows: y = f(x) where y' = 1 and

yn+' = zi when x' = 1, and yi = zi and yn+i = 0 when xi = 0.

Now consider any labeled sample S and construct S' = {p(y)lx E S, y = f(x)} where S'

preserves the labels of S. We show that there is a two atom conjunction consistent with S' if

and.only if there is a 2-term-DNF consistent with S.

If: Define a mapping g from (propositional) terms, t, to atoms as follows. Start with the atom

p(zi, , Zn). If the literal xi appears in t, change zi to 1. If the literal xi appears in t,

change za+, to 0. Notice that for any (propositional) term t and any example .c, every instance

"That is, a single function-free atom or a conjunction of two function-free atoms.

112 1I"

of p(f (x)) is an instance of g(t) if and only if x satisfies t. Thus, g(ti) A g(t2) is consistent with

5' if t1 V t2 is consistent with S.

Only If: Now consider a conjunction of two atoms consistent with S'. We must show how to

construct a 2-term-DNF consistent with S.

Consider any two atom conjunction, al A a2, consistent with 5'. For each atom, a, construct

a (propositional) term as follows. If argument i(i < n) of a is 1, place xi in the term. If

argument n + i of a is 0, place x= in the term. If arguments i and j (i < j < n) are the same,

place both xi and xi in the term. If arguments n i and n j are the same, place both ti and

fi in the term. We claim that the disjunction of the two terms so formed from al and a2 is a

2-term-DNF consistent with S.

Observe that we can form two (not necessarily disjoint) subsets, SI and S2 of 5' such that

each atom in Si is entailed by al and each atom in SZ is entailed by a2. Notice that neither

Si nor SZ contains any of the negative examples of S', but between them they contain all the

positive examples of S'. Without loss of generality consider Si and al. If the ith argument of

al is 1, then the ith argument of every atom in Si is 1. But the atoms in Si have 1 as their

ith argument only if their (propositional) counterparts had xi set to 1. Therefore, placing xi in

the (propositional) term arising from al does not mis-label any of the (propositional) examples

that gave rise to atoms in Si. Similarly if the n ith argument of at is 0.

Finally, notice that no atom in 5' contains a co-reference (ie, no variable appears twice in

an atom). Thus if al contains a co-reference, the co-reference must correspond to arguments

that were equal constants in the atoms in Si. However, any constants appearing among the

first n arguments of an atom in Si must be 1, while any constants appearing among the last n

arguments of an atom in Si must be 0. Therefore, we can make al more specific by changing

a co-reference among the first 71 arguments to a 1, and by changing a co-reference among the

last n arguments to a 0; the resulting atom entails no more than at but still entails every atom

in Si.

A similar construction can be done for a2 and S2. Disjoining the (propositional) terms so

constructed produces a 2-term-DNF consistent with S. 0

Our conjecture is that the class 1-l2,. is not even predictable (that is, learnable in terms

of any other class), though this is an open question. Nevertheless, we now show that if we

113

1 2 6

fix the predicate arity to any integer k, then the resulting concept class 1-12,k is learnable in

terms of a slightly more general class, called 1-12,k', and is therefore predictable (the question of

learnability of 7-12,k in terms of fl2,k itself remains open). Concepts in 112,k1 may be any union

of a concept in 7-12,k and two additional atoms built from variables, constants, unary functions,

and predicates with arity at most k; an example is classified as positive by such a concept if

and only if it is classified as positive by the concept in 7/2,k or is an instance of one of the

additional atoms. For the class 7-12,k', we consider conjunctions of at most three atoms to be

trivial concepts. The class of such concepts can be learned by a simple algorithm that is similar

to the algorithm that learns the trivial concepts of 712,1. We now focus, instead, on the learning

algorithm for the recursive concepts of Ha. This learning algorithm is based on the learning

algorithm for 712,1, and central to it are the following definition and lemma. In the lemma,

and afterward, we use Go to denote the base atom and, inductively, G; +.1 to denote the result

of applying the recursive clause to G. The following lemma allows us to learn n2,k using the

algorithm for learning 712,1.

Definition 79 Let

be a concept in 7-12,k.

is

Lemma 80 Let

{p(aiei, ..., akek)

p(Oleil,...,Okek) ---. P(71q, ...T7keZ)

Then we say the subconcept at argument i, for 1 < i < k, of this concept

aiei

Ojei fie"

p(a lei , ..., akek){

P(thei , ..., Okeik) ' P(7teii, -.., l'keZ)

be a concept in 1-12,k For any 1 < j < k, if eij is a variable x, then for any n > 2: if

GT, = p(ti,...,tk) unifies12 with p(Olet,...,13keik), the binding generated for x by this unification

is the same as the binding generated for x by unifying t with Oix.13

"Note that G3 exists if and only if G2 unifies with p(theti,...,iikek). If G3 does not exist, the result holds
trivially.

"The proof of this lemma is rather long. We present it here because the lemma is both non-obvious and
central to one main result of the chapter, Theorem 81.

114

Proof: We prove the contrapositive. Assume that for some 1 < j < k, cif is a variable x, and

for some 71 > 2, Gen = p(ti,...,tk) unifies with p(thei,...,Oke0, but the binding generated for x

by this unification is not the same as the binding generated for x by unifying t3 with /3j. Then

for some 1 < i < k, ei is also x, and unifying ti with fix yields a different binding for x than

does unifying tj with lijx. We obtain a contradiction by showing that these unifications cannot

yield different bindings.

Because the concept is stationary, and ei and ei are each x, each of el and must be

either x or a constant. Furthermore, for the recursive clause to be applicable to generate G3,

if and elq are both constants then the'y must be some same constant, c. This leaves us three

cases to consider.

First, both el and e7 are some constant c. Then the recursive rules for argument i and

argument j, respectively, are Qix 4 -yic and 135x + yjc. Hence G1 has -yic and 7jc at arguments

i and j, respectively. Then since G2 is generated, igit = -yic and Ojt = 7jc for some term t. Then

argument i and argument j always, individually bind x to t after G2, giving a contradiction.

Second, e'l is a constant, c, and e7 is a variable, x. (By symmetry, this case also covers

the case where eil is x and e' c.) Then the recursive rules for argument i and argument

j, respectively, are Oix ^tic and 132x --0 yjx. Hence G1 has -yic at argument i. Since G2

is generated, we have Oa = 'yic for some ground term t. Then on unification of C11 with

p(014,...,13/4), x is bound to t. Furthermore, it must be the case that either fij < 7; or

7j < gj for unification to succeed. Consider both cases.

Case 1: f3j < 7j, so 0j0 = 7j for some q5 such that 101 > 0. Then G2 has -yit = 1.3.4t at

argument j, and -tic = /31t at argument i. Since C3 is generated, (8it,0j0t) must unify with

(Oix,Ois), which can occur only if 101 = O. If k/4 = 0, then after C2 the recursive rules for

argument i and argument j will always, independently bind x to t, giving a contradiction.

Case 2: 7j < Oj, so 7j0 = /3 for some 0 such that 101 > 0. Then C2 has yjt at argument

j and -he = Oit at argument i. Since G3 is generated, (Pit,7it) must unify with (iiix,Ojx) =

(13ix,7j0x), which can occur only if 101 = 0. If 101 = 0 then, again, after C2 the recursive rules

for argument i and argument j will always, independently bind x to t, giving a contradiction.

Finally, both e7 and e7 are the variable x. Then the recursive rules for argument i and

argument j, respectively, are OiX 7iX and Oix 7j.r. Then G2 has -yit and 7 ;t, for some

115
128

BEST COPY AVAILABLE

term t, at argument i and argument j, respectively. Since G3 is generated, we have either

< -yi or 7i < Oi. Consider both cases.

Case 1: < 7i, so = -yi for some 0 such that 10I > 0. For G2 to be generated, (-yit,^6t)

must unify with (13ix,t3ix). This is possible only if 0.45 = 73, in which case, during unification

with Gm, m > 1, the recursive rules for argument i and argument j will always, independently

bind x to 0mt, giving a contradiction.

Case 2: -yi < fii, so f3i = 7i* for some 0 such that 101 > 0. For G2 to be generated,

(^fit,-yjt) must unify with (Oix3.ix) = /3.ix). For this to occur, either (A) t = *y, for

s' 7-..e variable y, and * < 0, or (B) t = *e, for some constant or variable e, and 0 < *. If (A)

is true, then since t = Oy where & < 0, we have 'Ow = 0 for some w such that 1w1 > 0. Since

(yit,-yit) = (70ky,7ilky) must unify with (7i0x,P.ix) = (7i*wx,13.ix), it must be the case that

0.; = 7.0/ica. Then x is left unbound during unification, so G3 has 7ix and 7ix at arguments i

and j, respectively. Then for each Gm, m > 3, x remains unbound, and Gm has 7ix and 7.ix

at arguments i and j respectively. Because x remains unbound throughout, bindings given by

the recursive rules for arguments i and j cannot disagreea contradiction. If (B) is true, then

since < 0, we have * = Ow for some w such that > 0. For (7it,7.it) = (7i*e,v,be) =

(7i44.7e,7.0...m) to unify with (7i0x,13.ix), it must be the case that 13.; = 7.45. Then x is bound to

we. The recursive rules for arguments i and j therefore have the forms, respectively, 7i*x 7ix

and ya*x -6x. Hence Cm, m > 3, is generated if and only if q5w = cb for some n, where

n > (m - 2). In unifying Cm, m > 2, with p(thei, ...,Okek), the recursive rules for arguments i

and j will always, independently bind x to On-mqa contradiction.

Theorem 81 For any constant I:, the class 1-I2,k is predictable from equivalence queries alone.

Proof: (Sketch) By Lemma 80, any concept C in 1-12,k can be rewritten as the union of

three concepts (only polynomially larger than C), two of which are the atoms Go and GI. The

third concept is some C in 112,k whose base atom do is G2 and whose recursive clause (if any)

generates 61 = C3, , = Gm+2,... meeting the following condition: for all m > 0 and any

variable x in the antecedent of the recursive clause, no two argument po:;itions impose different

bindings on x when generating Cm+t from Gm. In other words, the behavior of C can be

understood as a simple composition of the behavior of the subconcepts at arguments 1 through

k. This observation motivates an algorithm that learns 112,k in terms of 112.k'

116

1 2 5

At the highest

level of description, the algorithm poses equivalence queries in such a way that it obtains, as

examples, instances of Go, GI, and ai and 03 for distinct i and j. The algorithm determines

Go and GI from their examples, and it determines C from di and Of. To determine C the

algorithm uses the learning algorithm for 1-(2,1 to learn the subconcepts of 6'." We now fill in

the details of the algorithm.

The algorithm begins by conjecturing the empty theory, and it necessarily receives a positive

counterexample in response. This counterexample is an instance of some more general atom,

A1, that is either Go, GI, or some C1. The algorithm guesses Ai and guesses whether At is Go,

GI, or some C1. It then conjectures Al in. an equivalence query and, if Al is not the target,

necessarily receives another positive example. (As earlier, by guess we mean that the algorithm

dovetails the possible choices.) This example is also an instance of Go, GI, or some di, but

it is not an instance of Ai. Again, the algorithm guesses that atomcall it A2and guesses

whether it is of Go, GI, or some C1. Following the second example, and following each new

example thereafter, the algorithm has at least two of of Go, GI, C1, and di (some i j).
It conjectures the union of those that it has, with the following exception: if it has both ai,

and aj (any i j), it uses a guess of C in place of di and ai. Again, in response to such a

conjecture, either the algorithm is correct or it receives a positive counterexample. It remains

only to show how (1) the atoms Go, GI, Oh and j are "efficiently guessed", and (2) a is
"efficiently guessed" from ai and Oi.

Given any atom, A, entailed by Go, we know that Go is a generalization A. Because no

function has arity greater than 1, there are at most 0((21A1)k) generalizations of A to consider,

all of which can be tried in parallel. Note that, because k is fixed, the number of possible

generalizations is polynomial in the size of the example. GI, C1, al are efficiently guessed in

the same way.

To learn C, the algorithm first determines the high-level structure of C; specifically, it guesses

how many variables are in the base atom and in the antecedent and consequent of the recursive

"The only subtlety is that the learning algorithm for 1{2,1 might return a concept that is a conjunction of at
most two atoms; such a concept cannot serve as a subconcept for a member of 1-12,k. But the only case in which
this can occur is the case for which every atom after go is the same. And we provide the learning algorithm
with only examples of g2, g3, ... (examples extracted from G2, G3, ...). Therefore, if the concept returned by
the learning algorithm is a conjunction of at most two atoms, it is in fact a single atom, ac, in which case we
may use the concept. in H2,1 whose base atom, recursive clause antecedent, and recursive clause consequent arc
all a e .

117 130

clause yf C and which subconcept uses which (if any) variable. There are at most O(k3k)

possibilities, where k is fixed. The algorithm is then left with the task of precisely determining

the subconcepts of C. Because it has two examples of distinct (most general) atoms generated

by 0di and C; it has two examples of each subconcept. The algorithm uses the learning

algorithm for 112,1 to learn these subconcepts from these examples, with the following slight

modification. While the learning algorithm for 112,1 would ordinarily conjecture a concept

in 712,1, the present learning algorithm must conjecture a concept in 112,k'. Therefore, the

algorithm conjectures every concept in 112,k' that results from any combination of conjectures,

by the learning algorithm for 7-12,1, for the subconcepts; that is, it tries all combinations of

subconcepts. Because k is fixed, the number of such combinations is polynomial in the sizes of

the counterexamples seen thus far. Finally, recall that in some cases (as in concept 6.10, page

4) the learning algorithm for 112,1 must guess the value for n, where n is the smallest number of

times the recursive clause is applied to generate one of the examples.15 Therefore, the present

learning algorithm may have to guess n. This is handled by initially guessing n = 1 and guessing

successively higher values of n until the correct n is reached. This approach succeeds provided

that the target truly contains a type 6.10 subconcept. In the case that the target does not

contain a type 6.10 concept, the potentially non-terminating, errant search for a non-existent

71 halts because we are interleaving the steps form all pending guesses of all formsincluding

the correct non-type 6.10 formof the subconcept.

6.4 Increasing Function Arity

This section provides some evidence that the techniques introduced in the previous sections are

useful in studying the learnability of other classes of definite clause theories with recursion. In

this particular, this section considers the concept class TP2 UCFTF13,q studied by Arimura,

[shizaka, and Shinohara [151. They show that TP2 U C FT F Buniq is learnable in the limit

with polynomial update time, from positive examples only. Until now, the learnability of this

class in the PAC learning and equivalence query models has been unknown. Using techniques

that allowed us to show that the class 112,* is not learnable, this section shows that the class

TP2 U C ET F13,,ig is not learnable (in both models), assuming P # RP.

I5The n sought is necessarily the same for all subconcepts; thus only on n needs to be found.

118

13.1

Arimura, Ishizaka, and Shinohara define the class C FT FB to contain each Prolog program

P defining the predicate p with at most two clauses Co and C1

Co= p(si, ,sk)

C1= p(x 1, k) --+ p(t 1, t k)

meeting the following additional conditions.

1. Every argument si (1 < i < k) of the head of Co is either a function symbol of arity 0 or

a variable symbol.

2. All arguments xi, ..., xk of the body of C1 are mutually distinct variables.

3. For every 1 < i < k, every argument xi of the body of C1 occurs exactly once in the term

ti of the head. Moreover, xi does not occur in any arguments ti (i # j) of the head.

In addition, the predicate arity k is fixed (as in the class ?-12,k, for example). Notice that another

way to state condition (1) is that Co is function-free. The class CFTFBuniq is the subclass of

C FT F B whose concepts have a unique 2 -mmg; a 2-mmg is a pair of maximally-specific atoms

whose instances include all the ground atoms in the concept's least Herbrand model (the ground

atoms that logically follow from the concept). The class TP2 is the class of all conjunctions of

atoms (again the bound on predicate arity is assumed, though, again, no bound is placed on

function arity). The class TP2 uCFTFB,aq obviously contains exactly the concepts in TP2

or C FT 17 Buniq

Theorem 82 The class TP2 U C FT F Buniq is not learnable, assuming P.0 RP.

Proof: [Sketch] The proof is a nple 'ariant of the proof of Theorem 77. Instead of function-

free examples built from an n-ary predicate p, where n is arbitrary, we use examples built from

a unary predicate p (thus the proof works regardless of how small k is restricted to be) and

an n-ary function f . The proof is modified only slightly to replace claims about function-free

concepts by analogous claims about concepts of the form p(f (t t, t)), where t1,..., t are
either constants or variables (are function free).

119

132

We now define the class CFTF131 to be the union of CFTFB and conjunctions of at most

two atoms, one of which is function-free. In a way, this class is a more natural extension

of CFTFB, in that it can also be described as the union of a function-free atom Co and a

clause C1 which may either be an atom or a clause of the form p(xi,..., x,n) --+ p(ti,...,t,)

meeting the restrictions given above. Notice also that this class is in some ways broader than

TP2 U CFTFB,,ig, since it includes those concepts in CFTFB that do not have a unique

2-mmg. We conjecture that CFTFB' can be learned using methods similar to those used in

this chapter for 712,1 and 1-12,k. This is an important area for further work since (1) it would be

the first positive learnability result, to our knowledge, for a non-determinate class of recursive

concepts with functions of arity greater than one, and (2) it would provide additional evidence

for the utility of the techniques presented in this chapter.

6.5 Increasing the Number of Clauses: The Class 7-i,1

In this section we return to the class 112,1 and extend it along a different dimension, allowing

an arbitrary number of clauses. In other words, we consider concepts that consist of arbitrarily

many definite clauses with antecedents of at most one literal where again all literals in the

clauses are built from unary predicates and from constants, variables, and unary functions. We

call this class x. 1. The following example is a concept in 7-I,,1 that defines the even integers

using the constant 0 and unary functions s for successor and p for predecessor (of course, under

this definition each integer is represented by infinitely many different terms).

even(0)

even(x) even(s(s(x)))

even(x) even(s(p(x)))

even(x) --+ even(p(s(x)))

even(x) even(p(p(x)))

As in the previous section, because all literals have the same predicate and all functions

are unary, we may disregard the predicate and view the literals as strings. And again, we

may assume that for any recursive clause, both literals end with some same variable .c. In this

section we introduce prefix grammars and prefix languages, and we indicate how the concepts

in 11,.,1 may be viewed as prefix grammars. Moreover, every prefix grammar is equivalent to

120
1

3 3

a concept in 1-(,1 where, by equivalent, we mean that the set of strings generated by the

grammar is exactly the least Herbrand model of the concept, when the members of this model

are viewed as strings. The major result of this section is that the class of languages gemlrated

by prefix grammars, and therefore the class of least Herbrand models of concepts in is the

same as the class of regular languages. While this result alone does not lead to a polynomial-

time learning algorithm, it does lead to a weaker learning algorithm, and it also shows that

the answers to open questions about prefix grammars will provide learnability results (either

positive or negative) for 1-1,.a.

Definition 83 (Prefix Grammar) A prefix grammar is a triple

G = (E,S,F)

where E is a finite set of symbols, S is a finite set of strings over E, and P is a finite set of

productions. Each production in P has the form a /3 where a and /3 are strings over E. The

sentential forms for G are the strings over E alone.' A production a (3 may be applied to

a string 7 if and only if y = mu for some w; the result of applying the production to 7 is the

string /3w. L(G) contains exactly the strings w such that either: w E S or w is the result of

applying a production in P to a string in L(G).

Prefix grammars are so named because their productions may be applied only to a prefix of

a string, to rewrite that prefix. Note that, in contrast with ordinary grammars, every sentential

form generated by a prefix grammar (7 is a member of L(G). The prefix languages are exactly

the languages generated by prefix grammars.

The following example shows the set of definite clauses for the predicate even from the

previous example rewritten as a prefix grammar. Predicate symbols are omitted, literals are

treated as strings, and variables in the recursive clauses are treated as the empty string. The

grammar generates strings in precisely the same way that the set of definite clauses generates

atoms. The symbol E denotes the empty string.

E = 10,5,P1

S = 101

"That is to say, there are no non-terminal symbols in this grammar.

1 21 1 3 4

P= {c SS, E sp, E pS, E --+ pp}

Theorem 84 The classes of prefix languages and regular languages are the same. Specifically,

for any prefix grammar there exists a right-linear grammar only polynomially larger that gen-

erates the same language. And for any DFA, there exists a prefix grammar that generates the

language accepted by the DFA, and the grammar is at most exponentially larger than the DFA.

Because the proof is relatively long, we spread it over the following two sections of the paper.

6.6 The. Regular Languages Contain the Prefix Languages

We present an algorithm that transforms a prefix grammar Gp into a right-linear grammar

GR only polynomially larger than G p. We assume that Gp has no productions of the form

e 6, because we can eliminate all such productions with at most polynomial growth of Gp

as follows. We assume 6 is nonempty, since any production e E can be deleted. For each

production e 6 and every symbol c in Gp, add the production c + Sc to Gp, and if E is a

production of Gp, add S to the base set S of Gp. Remove every production c 6 from Gp.

6.6.1 Prefix Grammar to Right-Linear Grammar Transformation Algorithm

Input: A prefix grammar Gp having base set {at, ..., am} and productions {th 71, ...,

Om 7m}.

Output: A right-linear grammar GR for L(G p).

We define a grammar GR with start symbol S, nonterminals V01, ...,1/40,, and all symbols

of Gp as terminals. Let GR contain the following productions.

S * at I I an I 7tVoi 7m V0,

In addition, add to GR productions of the following form until no more productions can be

added.

V/3) where 011/04

V.8i, cb2V8,2

122

135

V3,k_1 Qkw1/3.,

are productions already in GR, 01. ,(1.,k are strings of terminals of GR, 0102.- Q)k

= 13; is a nonempty string of terminals of GR, Vai and are

nonterminals of 3R, and V3, is a nonterminal of GR or is e. Notice that

Or, ..,0k-1 are nonempty since every right-linear production has a nonempty

terminal string.17

(1) Termination: To see that the algorithm halts with a grammar GR only polynomially larger

than Gp, observe that the terminal string in each new production is a suffix of some a, or 7,

in Gp, and no new non-terminal symbols are introduced. Let a be the longest of at, ...,

let 13 be the longest of /31,...,0m, and let y be the longest of 71,...,7m. It follows that at most

nice' ml7i such suffixes exist. Thus there are only m(m+1)(nlal mI71) productions18 added

to GR, although the algorithm may take exponential time to construct this grammar. (We

are interested in the algorithm only to establish an equivalence between the languages and to

describe the sizes of their representations; thus it need not be efficient.)

(2) L(Gp) = L(GR): The intuition behind the algorithm is helpful in understanding why

L(GR) = L(Gp). In presenting the intuition, and in the proof, we give the nonterminal S of

CR the alternative name "1/,". Note that this does not create a naming conflict since e never

appears as the left-hand side of a production of Gp. The strings ai, 1 < i < n, in Gp each

assert, "ai is a string in L(Gp)." The productions /3; 1 < j < rn, in Gp assert, if .3,;

is a string in L(Gp) for some string w, then 7iw is also in L(Gp)," or less formally, "anything

that can follow 1.31 can also follow j." The right-linear grammar GR simply makes these same

assertions in a different way. We want a nonterminal V3 to represent the set of all strings that

can follow i3 in L(Gp); that is, we want the set of strings that CR can generate from V to be

the set of all strings w such that Jaw E L(Gp). As a special case, notice that we want V or

ir We use the phrase terminal string to mean the entire string of terminals on the right-hand side of a
production.

"It can be shown that the maximum size of any such production is bounded by a polynomial in the
size of Gp.

123 136

S, to represent the set of all strings that can follow in L(Gp), that is, the set of all strings

in L(Gp). This shows L(GR) = L(Gp). To achieve this result, we want a production V3 7

in GR to assert, "y can follow /3 in. L(Gp)," and we want a production Vo, --0 7Vo2 to assert,

"7, followed by any string that can follow 02 in L(Gp), can follow 01 in L(Gp)." The following

lemma says this is indeed what the productions of GR assert. The lemma is then used to prove

that L(GR) = L(Gp) by showing that the productions force the nonterminals to represent the

appropriate sets of strings.

Lemma 85 At any time during the construction of GR, (1) if Vo -y is added to GR then we

have /37 E L(Gp), and (2) if Vo 71/0, is added to GR then for any (3'0., E L(Gp) we have

/(37(.7 E L(Gp).

Proof: All the Vcproductions are added first. The result clearly holds after each of these is

added: a production V 7 is added only if -y is a production of Gp, so 7 = 7 E L(Gp),

and a production 7V0, is added only if /3' -+ 7 is a production of Gp, so if 0'44) E L(Gp)

then applying 0' 7 yields 7co = eyw E L(Gp). Assume all productions added up to some

arbitrary other point in the construction of GR have the specified properties. If the algorithm

now adds a production Vo y, GR must already contain productions

VE + b1 voji

02V0i2

VO k-I 0k7

where 01452.-Ok = /3. So 04_, cbk-y E L(Gp) and 434_20k-100 E L(Gp) and ... and 0t02.-45k7 =

07 E L(G p).

Similarly, if the algorithm now adds a production Vo 71/13,, then GR must already contain

productions

vc

Viii

124

13(

Vaik_t cbk7VO'

where 0052...0k = /3. Then for any /3'w E L(Gp), it is the case that di,_,Ok7u., E L(Gp) and

Bik_2(i5v,:--10k7w E L(Gp) and ... and Etb102...0k7w = /37c,../ E L(Gp).

(2.1) L(Cp) D L(GR):

Proof: L(Gp) D L(GR) may be restated as follows: if V, y is a derivation of GR then

E7 = 7 E L(Gp). We prove, more generally, that for any nonterminal Ye of GR, if Vo -y

is a derivation of GR then 07 L(Gp), and if Vo 7Vo, is a derivation of GR then for any

/3'w E L(Cp) we have /3yw E L(Gp). The proof is by induction on the length of the derivation.

If the length is 1, then Vo (V0 + 7 Voi) is a production of GR, and the result therefore

holds by Lemma 85. If the length is greater than 1, let Vo 711131, be the first production

applied in the derivation. By Lemma 85, for any /3 "w E L(Gp) we have 071o., E L(Gp). Then

the remainder of the derivation must be 7i-y1 (or -yiVir -yilyiVoi) where 7172 = 7.

This derivation implies the existence of a derivation Voir 72 (or Von 721/00 of the same

length. By the inductive hypothesis, Von 72 implies /3 "72 E L(Gp) (and Von 721/0, implies

that for any /3'w' L(Cp) we have 13 "72w' E L(Gp)). Therefore, because if /3 "w E L(Gp) then

1371w E L(Gp), letting w be 72 (or 72w') we have 07172 = 07 E L(Cp) (or 1371720-/ = 137cd E

L(Gp)).

(2.2) L(Gp) C L(GR):

Proof: We begin by proving that for any nonterminal Vo other than V if GR generates 7V13

and Cp generates /3w then GR generates 7c,-. The proof is by induction on the length of the

derivation of 71/8 in GR. If the length of the derivation is 1, GR must contain a production

71/3. Then /3 7 must be a production of Cp. Therefore, since Gp generates /3w and

has a production d 7, it generates -yw as well. If the length of the derivation of 7V,3 in GR

is greater than l then, because all productions in OR are right-linear, the last sentential form

generated before 7118 in a given derivation is some 711/0,, where 7 = 7172, 72 is nonempty, and

125 13 8

721/0 is a production of GR. By Lemma 85 we know from Voi 72V3 and /3w E L(Gp)

that 0'72w E L(Gp). By the inductive hypothesis, since GR generates 71V3, (with a shorter

derivation than for)V0) and 0'72w E L(Gp), we know GR generates 7172w = 7w.

To prove the complete result, let w be any string that Gp generates. If the derivation of w

has length 1, that is, if w is itself a production of Gp, then GR has a production V, w, so

clearly GR generates w. Otherwise, the last production applied in the derivation of w is some

7 that maps /37' to 77' where w = 77'. Because Gp has the production /3 7, GR has the

production V, 7V0. Since GR generates 71/0 and Gp generates /37', by our previous result

we know that CR generates 77' = w.

6.7 The Prefix Languages Contain the Regular Languages

input: dfa M = (Q,q0,E,F,(5)

output: prefix grammar G

1. For each f E F

(a) For each string 7 accepted by a cycle-free transition sequence from go to f.

(b) Add 7 to the base set S of G

2. For each q E Q

(a) For each pair of strings (a, /3) each of which induce a cycle-free transition sequence

from qo to q

i. Add the production a to G

ii. Add the production /3 a to G

(b) For each pair of strings (a, /3) where a induces a cycle-free transition sequence from

qo to q and /3 induces a cycle from q to q which does not properly contain any cycles

i. Add the production a a/3 to G

Claim 86 The algorithm produces a prefix grammar that defines exactly the same language as

the given DFA.

126

13'j

Proof: First observe that at each step the algorithm looks for cyclefree transition sequences.

Such sequences are bounded in length by pi, and hence there are at most IQ I! such sequences.

Thus the algorithm terminates.

Next observe that for DFAs, a given string and an initial state uniquely determine the state

after applying the string to the initial state. Now, every production in G replaces a prefix of a

sentential form with another prefix, and the replacement prefixes are chosen from among those

strings which leave the DFA in precisely the same state as the replaced prefix. Thus every

production of the grammar is guaranteed to preserve acceptance. Finally, the only sentential

forms explicitly given for L(G) are strings accepted by the DFA. Thus L(G) C L(M).

What now remains is to show that L(M) C L(G). This portion of the proof is accomplished

by strong induction on the number of state revisitations19 by a string accepted by the DFA.

Suppose w is accepted by M and no state revisitations occur. In. this case, this string was

explicitly placed in the grammar G in step 1 of the algorithm; thus w E L(G). Now suppose

inductively that all strings accepted by M causing at most k state revisitations can be gener-

ated by G, and consider any string w accepted by M which causes k +1 state revisitations.

Necessarily, w must cause M to revisit some state within its first IQ' symbols. Furthermore,

without loss of generality, we may assume that this revisitation is a simplecycle. Consider

the first such revisit. Name the substring that causes this revisitation wm, so that w may be

rewritten as wpww, (where wp is the prefix of w, Wm is the middle of w, and w, is the suffix

of w). We can remove Wm from w and the resulting string wpw, is accepted by Al and has at

most k state revisitations, so inductively, wpw, can be generated by G. Now, by our choice of

wp induces a cyclefree transition from qo to some state q and wm induces a cycle from

q to q which does not itself properly contain any cycles. But this implies that step 2 of the

algorithm added the production wp wpw, to G. Thus we can apply this production to the

string wpw, to obtain wpw,,w, = w. Therefore w E L(G), which completes the induction and

the proof.

This completes the proof that the regular languages are contained in the prefix languages.

15A state revisitation occurs whenever any state that has already been visited is visited again. Thus a string
which produces the state sequence qo, q4, q3, qo, q3 causes 2 state revisitations 1 revisitation of the state qo and
one revisitation of the state q3.

127
q

6.8 Applications to Learnability

It follows from Theorem 84 that 'H.,' can be learned in exponential time in terms of DFAs with

equivalence queries and membership gueries20 using Angluin's [3] L* algorithm.21 We should

emphasize that this result does not subsume the learnability result given earlier for 712,1 (it

clearly does not subsume the result for 7.12,1c) for at least two reasons. First, the earlier result is

for learning in polynomial time. Second, the earlier result does not require membership queries.

An interesting open question is whether there exists a polynomial time transformation from

strings to strings such that for every prefix grammar there exists a DFA, rather than right-linear

grammar, only polynomially larger than the prefix grammar that accepts the transformation

of language generated by the grammar.22 If so, 1-1,,1 can be learned in terms if DFAs, and

therefore predicted, with membership and equivalence queries. If, on the other hand, it can be

shown that there exists a polynomial size prefix grammar for any NFA, then predicting 71.,1 is

as hard as predicting NFAs, which cannot be done (under certain cryptographic assumptions)

[10, 66].

6.9 Related Work

The concept classes studied in this chapter are incomparable tothat is, neither subsume nor

are subsumed byother classes of definite clause theories whose learnability, in the PAC or exact

models, has been investigated [41, 82].23 Page and Frisch [82] investigated classes of definite

clauses that may have predicates and functions ,f arbitrary arity but explicitly do not have

recursion. In that work, a background theory24 was also allowed; allowing such a theory in the

present work is an interesting topic for future research. Cohen [35] investigates the learnability

of function-free, two clause, closed, linearly recursive, ij-determinant logic programs, given a

background theory. His positive result appeared at the same time as this chapter [43], and

20 A membership query asks whether the target concept classifies a particular example as positive or
negative.

'We say in this case that, 712,. can be predicted using membership and equivalence queries.
"It can be shown that if we demand that the transformation be the identity transformation, i.e., that the

DFA accept exactly the set of strings generated by the grammar, then the answer to this question is "no".
"Theoretical work related to the learnability of definite clauses in other models includes Shapiro's [95] work

on learning in the limit, Ling's [70] investigation of learning from good examples, and the work in Chapters 2
and 3 of this thesis on propositional Horn clause theories.

24A background theory essentially represents what the learner already knows about the world.

128 14j

both are distinctive in that they seem to be the first positive learnability results for recursive

theories for which the learner is not allowed to ask about the classification of specific examples.

Cohen [34] gives a negative result when the linear recursiveness restriction is removed and the
S.

target consists of a single clause.

Dieroski, Muggleton, and Russell [41] investigated the learnability of classes of function-free

determinate k-clause definite clause theories under simple distributions, also in the presence of

a background theory.25 This class includes recursive concepts; to learn recursive concepts, the

algorithm requires two additional kinds of queries (existential queries and membership queries).

Rewriting definite clause theories that contain functions to function-free clauses allows their

algorithm to learn in the presence of functions. Nevertheless, the restriction that clauses be de-

terminate effectively limits the depth of function nesting; their algorithm takes time exponential

in this depth. So, for example, while the algorithm can easily learn the concept even integer,

or multiple of 2, from 7-12,1 [even(0)] A [even(x) even(s(s(x)))] the time it requires grows

exponentially in moving to a concept such as multiple of 10 or multiple of 1000, also in "1-(2,1.

It is easy to show that the classes 1-12,1, 7-12,k, and 1-12,,,, rewritten to be function-free, are

not {i, j}-determinate, for any i and j.

Finally, Dieroski, Muggleton, and Russell [41] obtain their results by a transformation

to a concept class in propositional logic, and they note the importance of finding learnable

classes of first-order concepts that have no such transformation. While we have been unable to

find any such transformation for the classes presented here, showing that a class has no such

transformation appears to be a difficult task, and also one we have been unable to accomplish.

In addition, Section 6 indicates that it may be important as well to determine whether a

learnable class of first-order concepts has such a transformation to a class of formal languages

or automata, particularly when recursion is present. That section also leads one to speculate

about whether various classes of first-order concepts may even be interesting hybrids between

concepts of propositional logic and formal languages or automata. The relationship of concept

classes described in this chapter to other classes is also an interesting area for further research.

25 the restriction to simple distributions is a small one that quite possibly can be removed.

129
14 2

Chapter 7

Description Logics

Description logics, also called terminological logics, are commonly used in knowledge-based

systems to describe objects and their relationships. This chapter investigates the learnability

of a typical description logic, CLASSIC, and shows that CLASSIC seatences are learnable in

polynomial time in the exact learning model using membership queries (which are in essence,

"subsumption queries"). It is shown that membership queries alone are insufficient for poly-

nomial time learning of CLASSIC sentences. Combined with earlier negative results of Cohen

and Hirsh [33] showing, given standard complexity-theoretic assumptions, that random exam-

ples alone are insufficient in the PAC setting, this shows that both sources of information are

necessary for efficient learning in that neither type alone is sufficient. In addition, it is shown

that a modification of the algorithm deals robustly with persistent malicious two-sided classifi-

cation noise in the membership queries with the probability of a misclassification polynomially

bounded below 1/2. This fact that this first order language can be learned in full is surprising;

even more surprising is the robust error tolerance.

7.1 Introduction

A central problem facing automated Information Systems is knowledge acquisition (eg. [76]).

Whether dealing with expert systems, database constraints, or deductive databases, applying

knowledge demands that knowledge be at hand. Unfortunately, extracting knowledge from

a domain expert results in either an extremely narrow base of knowledge, or an enormous

130

143

amount of potentially buggy knowledge, or both. We address the problem of efficient knowledge

acquisition from the vantage point of computational learning theory.

Traditionally, computational learning theory has focused on propositional domains. We in-

vestigate learning in the first-order domain of description logics or terminological logics. Specif-

ically we consider the learnability of the description logic known as CLASSIC [39]. To the extent

that CLASSIC is a typical description logic, our results generalize to a variety of other such

logics.

Description logics are more expressive than the propositional calculus. A description logic

statement is essentially a first-order predicate calculus formula in. which all but one variable is

quantified. Therefore, the meaning of a statement in a description logic, instead of being either

true or false for a given interpretation, is the subset of the universe satisfying tke statement.

For example, suppose that the universe is a set of dogs, brown(x) asserts that x is brown, and

smaller(x,y) asserts that y is smaller than x. If it happens to be the case that Rex is the

only shaggy dog and Fido is the only brown dog, then Vy brown(x) A smaller(x, y) is a well-

formed description logic statement denoting the set {Fido} provided Fido is the largest dog in

the universe; otherwise the empty set is denoted. Likewise brown(x) A shaggy(x) denotes the

empty set. Neither statement is a closed formula in the predicate calculus and neither statement

has an associated truth value. Thus, description logics have a different flavor than the predicate

calculus. Description logics comprise "natural" classes of formulas in. that description logics are

used in the field of knowledge representation [17, 28, 25, 26, 39, 68, 77, 83].

7.1.1 CLASSIC

Essentially, CLASSIC permits constructing certain quantified descriptions which distinguish a

particular subset of a domain I of individuals. CLASSIC descriptions contain primitive symbols

which get mapped to arbitrary subsets of I, disjoint primitive symbols which get mapped to

mutually disjoint subsets of 1, roles which get mapped to binary relations on /, and attributes

which are roles that happen to be functions. Further, CLASSIC sentences contain constructors

which manipulate these primitives, roles, and attributes, in order to permit the denotation

of complicated subsets of 1. The following synopsis and semantics of CLASSIC is excerpted

from [26, 36, 33].

131
14,1

(SAME-AS (r1,1...ri,k,) (r2,1...r2,k2)) denotes the set

{x : ri,k,(ir1.2(ri,i(x)))) = r2,k2(' qr2,2(r2,1(x))))}

of individuals for which composing the first chain of attributes is the same as composing

the second chain of attributes.

(ALL r D) denotes the set {x : Vy [r(x, y) D(y)1} of individuals for which all of the r-

related individuals satisfy description D.

(AND DI ... Dn) denotes the set {x : Di(x) A A Dm(x)} of individuals that satisfy all of

the descriptions DI,- -, Dn.

(AT-LEAST n r) denotes the set {x : {y : r(x,y)}1 > n} of individuals having at least n

r-related individuals.

(AT-MOST n r) denotes the set {x {y : r(x, y) }1 < n} of individuals having at most n.

r-related individuals.

(PRIM pi) denotes the subset of individuals denoted by the primitive symbol pi (provided by

the interpretation)).

(FILLS r pr . . . pn) denotes the set {x : 3yi E pi such that r(x, y1) A A r(x, yn)} , where the

pi are disjoint primitive symbols.

(ONE-OF pi ...pm) denotes the set where the p2 are disjoint primitive symbols.

Descriptions are built from the individuals, primitives, and other descriptions. For example

if our set of individuals is the set of all dogs and breeds2 and we have at our disposal the

primitive concept brown for the set of brown dogs, the role smaller for comparing dog sizes.

the attribute breed for denoting breeds, the attribute father for associating a dog with its

I In our illustrations we omit this formalism and use descriptions such as brown to denote the primitive set of
things which are brown.

2 Keep in mind that these two different "types" of individuals are indistinguishable within a description logic
statement; it is the venue of the externally supplied meanings of the roles and primitives to preserve any intuitive
distinctions we may have concerning these different "types" of individuals.

132 145

father, the attribute mother for associating a dog with its mother, and the role school denoting

the obedience school classmates, then if we wished to denote the set

{x : by school(x, y) [brown(y)

A {z : smaller(y,z)}1 > 20

A breed(mother(y)) = breed(fatber(f ather(y))) I }

of dogs all of whose obedience school classmates were brown, larger than at least twenty other

dogs, and had mother and paternal grandfather of the same breed, we would write:

(ALL school (AND brown

(AT-LEAST 20 smaller)

(SAME-AS (mother breed) (father father breed))))

7.1.2 The Learning Problem

The meaning of a description logic statement depends on a particular interpretation. It is a

set selector: Given a choice of a universal set of individuals I, an assignment of the primitive

symbols (such as brown) to subsets of I, an assignment of the roles to binary relations on I,

and an assignment of attributes to functions from I to I, the statement denotes the set of

elements x in I that cause the corresponding first order expression to evaluate to true, given

the semantics on the previous page.

One way to define a positive example of a CLASSIC sentence is as an individual that is

in the denotation of the sentence. One drawback of this definition is that the classification

of an example depends on a particular interpretation, and not just on the target concept.

Further, the classification may depend on the relationships among a potentially infinite number

of individuals from the universe. An alternative definition, taken by Cohen and Hirsh [33], and

supported in the description logic community [25, 24, 40], is to define a positive example to be

the description of an individual (using the same description logic) that is a positive example for

every possible interpretation. Because such a description may not select a unique individual for

all interpretations, each such (positive) example is actually a concept itself, whose denotation is

a subset of the denotation of the target concept. Thus, C is a positive example if C. subsumes C.

'rhis viewpoint is also supported by previous work in inductive logic programming [82, 41, 43]

133

1 4 H

and learning from "entailment" [46, 2], where positive examples of an unknown (typically first-

order) formula are clauses or other formulas that are entailed by the unknown formula.

We employ the standard protocol of learning from equivalence and membership queries. Our

algorithm may conjecture any CLASSIC description H, and is told whether or not H is equivalent

to the target description C. (i.e., has the same denotation for all possible interpretations). If

H is not equivalent to C., then the algorithm receives a counterexample, which is a positive

example of one of II and C., but not both. The algorithm also may present a description C,

and is then told whether or not C is a positive example of C. (i.e., whether or not C. subsumes

C). Of course, a standard transformation turns this algorithm into a PAC with membership

query learning algorithm.

The algorithm takes advantage of the fact that such queries C may be arbitrary concepts,

so perhaps it is more appropriate to call these "subsumption" queries, or even "subset" queries.

The distinction between these notions is lost given the common use of the "single representation

trick" in. AI where it is often convenient and desirable to represent concepts and examples using

the same language. In fact, Cohen and Hirsh [33] note that in many implemented description

logics, "it is possible to attach an arbitrary description to an instance [example], hence the

distinction between instances [examples] and concepts is blurred."

Because the subsumption relation is computable in polynomial time [36, 33], both member-

ship and equivalence queries are efficiently computable by a teacher. The main results of the

chapter are now summarized:

Theorem CLASSIC is learnable in time polynomial in the size of the target description and the

length of the longest counterexample, using membership (subsumption) and equivalence

queries.

Theorem Any algorithm using membership (subsumption) queries alone requires a number of

membership queries that is exponential in the size of the target concept.3

3Thus the positive result does not come solely from the membership queries. Cohen and Hirsh (33] showed
that CLASSIC is not learnable in polynomial time (without membership queries) in the PAC model (assuming
RP 0 NP), hence CLASSIC cannot be learned from equivalence queries alone given the same assumption. Thus,
neither membership nor equivalence queries are dispensable they form a minimal set of learning queries for
CLASSIC.

134 1 4 7

Theorem CLASSIC remains learnable in the exact learning model with equivalence and mem-

bership queries, even when each answer to a membership query may be answered incor-

rectly by a malicious adversary with probability 1/2 - 1/r, where r is any polynomial

function of the size of the target concept.`

In particular, when a membership query is asked, an adversary flips coins, and with

probability 1/2 1/r, may choose to classify incorrectly. (Any future queries on the same

example are results in the same classification). We present a modification of our algorithm

that will work when r is any polynomial function of the size of the target concept. To

our knowledge, this is the first algorithm for any concept class capable of coping robustly

with such errors.

7.1.3 Comparison to Previous Results

Automating propositional explanation discovery has been well studied [7]. In comparison. effi-

cient first-order learnability has been less well studied. Even so, some results are known. Co-

hen [35] gives a PAC learning algorithm for function-free, two clause, closed, linearly recursive,

if-determinant logic programs; he goes on to show [34] that when the condition linear recur-

siveness is relaxed, the learning problem becomes cryptographically hard. Page and Frisch [82]

show that constrained atoms (a typed logic) are efficiently learnable, Frazier and Page [43]

provide a learning algorithm for a syntactically restricted subclass of first-order Horn formulas,

and Dieroski et al. [41] provide a _learning algorithm for a different restriction of first-order

Horn forthulas.

Haussler [57] investigated existentially quantified conjunctive concepts and describes a graph

representation for those concepts. He showed that learning some very simple scene descriptions

is difficult. Specifically, he showed that even restricted to unary atoms such concepts are not

learnable from random examples unless RP = NP, but did give a learning algorithm for settings

where the algorithm may use a richer vocabulary than that from which the target was chosen.

Indeed, positive first-order learning results appear to be quite rare for "natural" classes of

first-order formulas. It would seem that the difficulty of the learning task he faced revolved

around the ambiguity admitted by the graphical representation required to capture existential

4The errors are pergistent, so that the algorithm may not benefit from repeatedly asking the same question.

135

1 4 L'

quantification in the concept class he investigated; our concept class does not permit existential

quantification. It will be seen that the graphs we use suffer no such ambiguity, thus we are able

to avoid the difficulty he faced.

The work most closely related is that of Cohen and Hirsh [331 who employ a graphical

representation for CLASSIC concepts developed by Borgida and Patel-Schneider [261. To explain

their results, and present ours, we briefly explain the notion of a labeled equivalence graph (called

a concept graph in [26, 36, 33]).

beat friend ,

--11
at-least 1 brother

at-moat 2 sister

attorney \,

(brown)

1
dons)shaggy, brown)

at-least 20 child

Figure 7.1: A labeled equivalence graph.

Consider the graph in figure 7.1. This is a graphical depiction of the CLASSIC description of

the set of individuals who have at least one brother and at most two sisters, whose best friend

has brown hair, who are their best friend's attorney, and whose best friend only has brown,

shaggy dogs that have at least twenty puppies. The cycle in the graph also asserts infinitely

many other SAME-AS conditions for example, conditions about the best friend's attorney's

best friend.

Formally defined in S-ction 3, a labeled equivalence graph is a rooted, directed, vertex- and

edge-labeled graph. Further, no vertex has two identically labeled outgoing edges. The edge

labels represent binary relations over the universe of individuals, and an edge demands that all

individuals in the image of the relation satisfy the constraints asserted by the vertex to which

the edge leads. Also, any pair of disjoint directed paths between a pair of vertices involve

only binary relations which are in fact functions. This pair asserts that the individual selected

along one path must be the same as the individual selected along the other path. We associate

a subset of the set of individuals I with each vertex in the graph the subset of individuals

satisfying every constraint whether vertex label, edge label, or assertion of equivalence at

some reachable vertex asserted by the graph. The set of individuals denoted by the graph

is exactly the set of individuals associated with the root. Note that the presence of directed

cycles in the graph. and in particular, those involving the root, implies that the root concept is

136
1 4 9

being defined in terms of other concepts, ..., which are in turn being defined in terms of the

root. Thus, cycles allow co-referential definitions.

Polynomial time algorithms exist for transforming labeled equivalence graphs into CLASSIC

s..qi,..mces, and vice-versa [26, 36, 331, although not all labeled equivalence graphs correspond

to valid CLASSIC sentences. Thus, the question of learnability of CLASSIC sentences more or

less reduces to that of learning such equivalence graphs. What would a positive example of

an equivalence graph look like? It is another graph which satisfies all of the constraints (and

perhaps more) represented by the first. The subsumption algorithm for CLASSIC essentially

verifies that the vertex label reached by a path in the first graph is less restrictive than the

label of the corresponding vertex (which must exist) in the second graph, and that if in the

first graph the two paths labeled by strings w1 and w2 lead to the same vertex, then this occurs

in the second graph as well. For example, if we add an edge or vertex label to the graph in

Figure 7.1 we obtain a positive example. Conversely, deleting an edge or vertex label from

Figure 7.1 produces a negative example. The hard part of the learning problem is to determine

the structure of the graph and the edge labels, not to determine the vertex labels. Thus,

most of the constructors from the CLASSIC language are not problematic; the main challenge

is presented by the SAME-AS conditions (each represented by a disjoint pair of paths between

two vertices), and the role and attributes (which are edge labels). Henceforth we assume that

all the vertex labels are irrelevant; in Section 7.4 we show how the algorithm is modified when

this is not the case.

Figure 7.2: The universally positive example for equivalence graphs. E indicates that every
possible edge label o E E appears on a directed edge from the loot vertex back to itself.

A natural first attempt, to learn such graphs would be to simply intersect the graphs which

represent positive examples, thereby extracting the set of common vertices and edges. However.

since the universal positive example (figure 7.2) contains every path (and thus is subsumed by

any target), simply intersecting the graphs will not be enough. What does succeed is a variant

of the "cross-product of DPAs" construction for regular language intersection. liy re

[37

peatedly

taking the cross-product of positive examples, a (one-sided) learning algorithm is obtained. A

problem with this approach is that the cross-product of two equivalence graphs can be as large

as the product of their sizes; the repeated cross-product necessary to implement this approach

may yield exponentially sized hypotheses.

Cohen and Hirsh [33] circumvent this problem by restricting the number of distinct paths

through the graphical representation of a CLASSIC concept. Given a constant k they consider

graphs G having at most IGlk distinct paths (hence their graphs are acyclic). Denote this class

k- CLASSIC. They show that the intersection approach above yields a 0(mk+1) mistake-bounded

one-sided learning algorithm for k-CLASSIC:, assuming all counterexamples have size at most m.

Negatively, they show that in the PAC learning model, assuming that RP # NP, CLASSIC is not

learnable from random examples alone, even if either of the following constraints hold: (i) the

primitive class alphabet is singleton, the role alphabet is doubleton, and the equivalence graph

of every example is acyclic, or (ii) the primitive class alphabet is singleton, and the equivalence

graph of every example contains only two vertices.

7.2 The Algorithm

Simply stated, our algorithm employs the one-sided approach of graph cross-product discussed

above, but uses membership queries to bound the intermediate hypothesis size. Figures 7.3

and 7.4 give the learning algorithm. The cross-product G x H of labeled equivalence graphs G

and II is described in the next section, as is the argument that the algorithm efficiently learns.

At first glance, equivalence graphs seem DFA-like, but their semantics are quite different, so

well-known DFA learning algorithms [3, 89] do not apply.

Learn

1 Let 11 be the universally positive example

2 H := Prune(if)
3 While EQUIVALENT(H) provides counterexample C

4 G := Prune(G)
5 H := Prune(G x II)
6 Return If

Figure 7.3: Equivalence graphs learning algorithm.

138

151

Prune(G)

/* G is a positive example. */

1 For each edge e in G

2 If MEMBER(G\e)a is "yes", then remove e from G

3 Return G.

'Along with e remove any unreachable component.

Figure 7.4: Algorithm using membership queries to remove excess graph elements from a
positive example.

7.3 alence Graphs

As discussed above, the learning problem for CLASSIC sentences is closely related to that of

learning labeled equivalence graphs. We first consider equivalence graphs without vertex labels,

and then indicate how the algorithm is modified to the more general case in Section 7.4. Later,

in Section 7.5, we modify the algorithm again in order to learn CLASSIC.

Definition 87 Let E be a finite alphabet. A rooted, directed, edge-labeled graph '7' is an equiv-

alence graph over E if each vertex v in G is reachable from the root and for every symbol u in

E, v has at most one outgoing edge labeled cr. The size IGI of an equivalence graph is the sum

of the number of edges and vertices in G.

A string w of E* is G-supported if w is the concatenation of symbols on the edges of a

rooted, directed path in G. C defines an equivalence relation EG on strings of E* as follows:

w1 EG W2 iff both w1 and w2 are G-supported, and their paths terminate at the same vertex.

Thus, a G-unsupported string is not G-equivalent to any other string. The set of all strings

G-equivalent to a string w is denoted iwfiG, and, by an abuse of notation, the set of all strings

that terminate at a vertex v of G is denoted PIG. It is easily verified that for any equivalence

graph C. E-G is a right-invariant equivalence relation on strings, and that if w is C- supported

then so is every prefix of w.

We define a partial order on equivalence graphs based on which strings are supported and

which strings are equivalent:

Definition 88 Gi subsumes C2 if every C1- supported string is G2-supported and every pair of

G 1-equivalent strings are G2-equivalent.

139

15

Examples will be labeled according to their relationship to the target under this partial ordering.

Positive examples of an equivalence graph G will be exactly those graphs G' which are subsumed

by G.

Definition 89 ([33]) Let 01 = (Vi, E1) and G2 = (V2, E2) be two equivalence graphs. T'

cross-product of Gland 02, denoted 01 x G2, is defined as follows. Let denote

the vertices of GI with p1 denoting the root, and let ql, q2i ...,q1v2i denote the vertices of G2

with qi denoting the root. If 01 or G2 is empty, then 01 x G2 is empty. Otherwise, the vertex

set of G1 x 02 (a subset of V1 x V2) and the edge set of Gi x G2 are defined recursively:

The graph G1 x G2 has a root denoted (pi, qi)

The graph G1 x 02 has a vertex denoted (pie, q72) and edge (pi qi,) (Pi2, qi2) zff Gi

has edge pi, --c+ pie and G2 has edge qi1 q72 and 01 x 02 has the vertex denoted

Note that GI x 02 is an equivalence graph whenever both GI and G2 are equivalence graphs.

The following properties of GI x 02 are either easily verified, or follow from [36].

Property 90

1. A string w is (G1 x G2)-supported iff w is both Gi-supported and G2-supported.

2. For any strings s and t, s EEG, X G2 t zff both s -Gi t and s .G2 t.

3. Gt X 02 is the most specific generalization (least upper bound) of C1 and 02 with respect

to the subsumption ordering. That is, if GI, 02, and C are equivalence graphs, then if C

subsumes both G1 and G2, then G subsumes GI x 02.

Definition 91 An equivalence graph C is said to be pruned with respect to an equivalence

graph G. if G. subsumes C, but does not subsume any proper subgraph of G.

The following is a useful property of pruned graphs.

Property 92 Let (1 and G. be two equivalence graphs such that C is pruned with respect to

G.. Then for every vertex v in C and every outgoing edge label o from v, Ha contains some

(0.-supported) string s such that so- is G.-supported.

140 1 5

Proof Sketch: Suppose to the contrary that G contains a vertex v with outgoing edge label

a such that IviG contains no string s such that so is G.-supported. But then deleting v's

outgoing edge labeled o produces a proper subgraph of G that supports every G.-supported

string and leaves equivalent every pair of G.-equivalent strings. This contradicts the hypothesis

that G is pruned.

We need the following technical lemma.

Lemma 93 Let G1, G2, and G. be equivalence graphs such that both G1 and G2 are pruned

with respect to G.. If there exists a vertex v of G1 x G2 such that ([viGi G2 contains only

G.-unsupported strings, then there are two G.-supported strings that are G1- equivalent but not

(G1 x C2)- equivalent.

Proof: First observe that if G. supports no strings at all not even the empty string then

G., GI, and G2 must each be the empty graph. In this case the lemma holds trivially. The rest

of the proof assumes that at least the empty string is supported by G. and therefore also by G1

and G2 by Property 90 item 1. The proof assumes the existence of a vertex v of G1 x G2 such

that Tv1G, x G2 contains only G.-unsupported strings and then constructs two G.-supported

strings s and s' that are C1- equivalent but (GI x G2)-inequivalent.

Let v be a vertex of G1 x G2 such that [[v]Gi G2 contains only G.-unsupported strings,

and let w be any string in [[v]]Gi X G2 Now, since the GI x G2 equivalence class containing

the empty string contains a G.-supported string (the empty string itself) and since [14GI x G2

contains no G.-supported stings, there exists a prefix wp of w and an edge label a such that

wper is a prefix of w,

x G2 contains a G.-supported string, and

TwperIGI x G2 contains no G.-supported string.

Let s be any G. supported string in ir..wp,G, X G2 Now observe that since w is (Gt x G2)-

supported so are both wpo- and wp. Also observe that since wpo. is (C1 x C2)- supported wpc,

must be GI-supported by Property 90 item 1. But then, by Property 92 since G1 is pruned with

respect to G IwpfiGi must contain a C.-supported string s' such that s'a is also G.-supported.

Thus we have two G.-supported strings s and s' such that s X G2 wp (which by Property 90

item 2 implies that s wp) and s' =G, wp, and so s .G1 s'. Now since s'cr is G.-supported,

141

V)

if s =GI X G2 s' then s' :=-G1 X G2 Wp so that if laL./up- ,,G, X G2 contains the G. -supported string s'cr,

contradicting the choice of tvp and cr. Thus s --Gi X G2 .51. Therefore we have constructed two

G.-supported strings that are G1- equivalent but are (GI x G2)-inequivalent.

The proof that the learning algorithm is correct and efficient (Theorem 96) will follow

easily from a technical lemma (Lemma 95), which asserts that progress is made with each new

hypothesis of the algorithm. The proof of the lemma follows the proof of Theorem 96. We first

need the following definition:

Definition 94 Let G be an equivalence graph that G. subsumes. Then ag* is the equivalence

relation EG restricted to G.-supported strings.

Lemma 95 Let Gi and G2 both be pruned with respect to G., and let G = Prune(Gi x G2).

Further, suppose that Gi does not subsume G2. Then .g- is a proper refinement of .=4;.

Theorem 96 Let G. be the target concept. The algorithm Learn finds an equivalence graph

equivalent to G., and at no point during execution does the running time exceed a polynomial

in lEi, IG.i, and the size of the largest counterexample seen so far.

Proof Sketch: The initial hypothesis has one equivalence class. A simple inductive proof

shows that every hypothesis is a positive example. By Lemma 95, each counterexample causes

the number of equivalence classes over supported strings to increase by at least one. Since the

number of equivalence classes in the hypothesis is bounded above by the number of equivalence

classes in the target', the number of equivalence queries is bounded above by that number.

Finally, observe that at each step, if G is the counterexample with the greatest number of

vertices seen so far, the algorithm has made at most IG.1210HEImembership queries, and has

run for at most a number of steps that is polynomial in «I , Cl,
,IC

and I El. This follows from the7

fact that at each step, if the counterexample having the greatest number of vertices seen

so far. the number of membership queries used by Prune on I/ x G is at most 0(11;1 rq no),

where nil and no are the number of vertices in II and 0, respectively. Since nu is bounded

51f some vertex of the hypothesis contained no G.-supported string, that vertex would have been pruned. On
the other hand, if the number of vertices in the hypothesis containing G.-supported strings is greater than the
number of vertices in G., then the hypothesis is a negative example because some pair of G. equivalent strings
are inequivalent in the hypothesis.

l42

155

above by nG. and since IHI < IG.1,6 the number of membership queries used by a single call

to Prune is 0(1E1 IG.I lal), where a is the largest counterexample yet witnessed by the

algorithm.

Proof of Lemma 95: It is sufficient to show that =G. X G2 is a proper refinement of 4; ,

since G is obtained by pruning from G1 x G2, and no edges or vertices are added only

deleted, hence is a refinement of G2.

Now, --7-G1 X G2 is a refinement of . Further, since both are subsumed by G., they both

I
_support every G.-supported string. Hence, G,G X G2 is a refinement of G

If the number of equivalence classes of X G2 exceeds the number of equivalence classes of

=Gi, then the lemma is proved. Otherwise, since -a-2 G2 is a refinement of =g;, the number

of equivalence classes must be the same, and the classes must be identical. We show that this

leads to a contradiction, thus proving the lemma.

By Property 90 item 2, for any strings x and y, x Ez7G, < G2 y iff x y and x =G2 y, and

since all three support all G.-supported strings, we have that for any G.-supported strings x

and y, -2 y iff x y and x -z-g; y. This, together with our assumption that the

relations Egi G2 and -agi are identical, implies that the relations gi and are identical.

By the hypothesis of this lemma, G1 does not subsume G2, hence there exist strings t1 and

t2 such that t1 t2, but t1 OG, t2. (Otherwise, G1 supports some t that C2 does not; but

then t is GI-equivalent to some G.-supported w, since G1 is pruned. But t is not C2- equivalent

to w, since t is not supported in G2. In this case, let ti = t and t2 = w.)

Clearly, both ti and t2 are supported in GI.

Case 1: both t1 and t2 are supported in G2. Since both t1 and t2 are supported in both

GI and G2, they are both supported in G1 x G2. Since they are not equivalent in C2, they

are not equivalent in C1 x G2. Let v be the vertex that ti and t2 both go to in Gi, and let

vi and v2 (vi 0 v2) be the vertices that ti and t2 go to, respectively, in G1 x G.2. Since Gi is

pruned with respect to G., there exists a G.-supported string w that goes to v in GI. If there

6 For every edge of H that could not be deleted by Prune, there is some equivalence class, i.e., vertex, of G.
to which that edge can be associated. Thus the number of edges of H is at most the number of edges in G., so
1111 <

143

156

do not exist G.-supported strings w1 and w2 such that w1 and w2 go to vt and v2 in G1 x G2,

respectively, then Lemma 93 applies, and we conclude that GI and C1 x G2 are not equivalent

on G.-supported strings, a contradiction. Since t1 and w1 are equivalent in GI x G2, and since

t2 and w2 are equivalent in G1 x G2, we must have the same equivalences in C1 (noting that GI

supports all four strings). But ti and t2 are equivalent in GI, hence w1 and w2 are equivalent

in Gi, transitively. But w1 and w2 are not equivalent in GI x G2, contradicting our assumption

that GI x G2 and G1 define the same relation on G.-supported strings.

Case 2: at least one of ti and t2 is not supported in G2. Without loss of generality, assume

t1 is not supported by G2. Let to be the shortest prefix of t1 such that t is G2-supported, but

to is not G2-supported.7

Both GI and G2 support t, so consider the two paths that t induces in these two graphs;

we claim that the Eg; equivalence class containing t is the same as the E.-g; equivalence class

containing t. Suppose by way of contradiction that this is not the case. Now t = cr1cr2-

so look at the first i such that o-10-2 cri is contained in non-identical equivalence classes of

EGG; and Et. Since G1 and G2 are pruned, the equivalence class containing .71(72 must

contain some G.-supported string w such that wai is also G.-supported.8 Now since the equiv-

alence classes of Eg; and Eg; are identical, the Eg; and Eg; equivalence classes containing

Wai must be identical. But wai is both GI- and G2-equivalent to ato-2 ai, contradicting

the assumption that cri is the first i where cricr2 criti reaches non-identical equivalence classes

in EGG'; and EGG;. Hence t is in identical mg; and E_--g; equivalence classes. Now, since itIG
2

contained no outgoing edge labeled a-, no G.-supported string w in [[tiG2 is such that wa is

G.-supported. But then this means that the outgoing edge from [MG, labeled a can be deleted

from GI, contradicting our assumption that G1 was pruned with respect to G..

7.4 Labeled Equivalence Graphs

Here we consider extending the class of equivalence graphs to allow for labeled vertices. The

set of vertex labels is required to possess enough structure to allow computing what will be

7Such a prefix exists because the empty string is supported.
'If i is 1, tv is the empty string. Clearly the empty string must be contained in the equivalence class represented

by the root of any equivalence graph, and since the relations FGG., . FE.Gand are identical, the empty string must
be in identical equivalence classes in GI and C2.

144

157

the unique most specific generalization (least upper bound) between any pair of vertex labels.

Specifically, the structure we require is a finite lattice. The following definition supplies the

notion we adopt.

Definition 97 Let E be an alphabet, and let L = be a finite lattice having partial

order -< over elements of the set F, having (unique) minimum element 1, and having the

binary join operator U1 that returns the unique least upper bound of its two operands. Then an

G-labeled equivalence graph over E is a graph G that is an equivalence graph over Es in which

each vertex v of G has been labeled with some y E F.9

For any labeled equivalence graph G and any G-supported string w, let £G(w) denote the

label of the vertex reached by w. We now modify the earlier subsumption-induced partial order

for equivalence graphs to obtain a partial order on labeled equivalence graphs based on which

strings are supported, which strings are equivalent, and which vertex labels are assigned to the

supported strings.

Definition 98 Let 01 and 02 be two L-labeled equivalence graphs. Then G1 subsumes G2 if

every Gi-supported string is G2-supported, if G,(w) G1(w) for every 01-supported string w,

and if every pair of GI-equivalent strings are G2-equivalent.

It is shown in [33] that a CLASSIC description subsumes a second CLASSIC description if

the labeled equivalence graph of the first subsumes that of the second. Thus, positive examples

of a labeled equivalence graph G will be graphs G` which are subsumed by G.

We now modify the earlier cross-product definition for equivalence graphs to obtain the

cross-product definition for labeled equivalence graphs.

Definition 99 Let G1 = El) and 02 = (V2, E2) be two L-labeled equivalence graphs. The

cross-product o f G1 and 02, denoted G1 x 02, is defined as follows. Let Pt,P2, , pm' denote

the vertices of GI with Pt denoting the root, and let qi, q2, . qv,' denote the vertices of 02

with qi denoting the root. If G1 or 02 is empty, then G1 x G2 is empty. Otherwise, the vertex

set of C1 x 02 (a subset of V1 x V2) and the edge set of 01 x 02 are defined recursively:

'If (C,}711 is a collection of finite lattices, then the tuples ((n 1m) : Y, E form a finite lattice by
taking (11,...,1,) as the minimum element and taking (y;,...,^r,;,) exactly when y, 1, -y: for
each z. We will use this observation later when we return to our discussion of CLASSIC.

145

5 5

The graph GI x 02 has a root vertex denoted (p", q") labeled eGi(pi)U eG2(qi)

The graph G1 x G2 also has a vertex denoted (p=2, q72) labeled eG1(p12)u eG2(qh) together

with the edge (pigl,) (pi,,qh) if G has edge pi, pi, and 02 has edge qi, qj,

and GI x G2 has the vertex denoted (1111,gir).

Note that GI x 02 is an ,C- labeled equivalence graph whenever both Gi and G2 are equivalence

graphs.

Theorem 100 Let 1 be the minimum element of a finite lattice L having maximum chain

length d and having polynomial time computable join operator U, and let E be a set of edge

labels. Then the algorithm composed of figures 7.3 and 7.4 learns L-labeled equivalence graphs

over E from membership and equivalence queries in time polynomial in 1E1, d, the longest

counterexample received, and the size of the target concept.")

Proof: The algorithm is modified only in that the sole vertex of the initial hypothesis is

labeled by 1 and the cross-product operator for labeled equivalence graphs is used; specifically,

Prune does not change only edge deletions are attempted.

Observe that a counterexample G to H must be of one of the following (not necessarily

mutally exclusive) types

Some string w supported by both H and G has CH(w) ec(w),

Some H-supported string is not G-supported, or

Some pair of H-equivalent strings are not 0-equivalent.

If the counterexample G was of either of the latter two types, then G is a counterexample to II

based solely on their underlying (non-vertex-labeled) equivalence graphs. Therefore, Lemma 95

9*une(11 xG)applies to show that = is a proper refinement of G.
. This can happen at most asPr

many times as there are vertices in G..

If the counterexample is only of the first type, then the underlying (non-vertex-labeled)

equivalence graphs of II and G (and therefore, Prune(11 x G)) are isomorphic. As such, some

10 At no point in the run of the algorithm will it have consumed time more than a polynomial in NI, d, the
size of the target concept, and the longest counterexample received to that point..

146

1.59

vertex label of H was generalized. Thus, this first type of counterexample can happen at most

dnif < d IHI < d.IG.1 times between occurrences of a counterexample of the second or third

type, where n H is the number of vertices in H.

A naive analysis assumes that in the worst case the label on every vertex must be updated

d times between changes to the equivalence classes of the hypothesis. This produces a bound

of 0(dn2G.) on the number of counterexamples received, where nG, is the number of vertices in

G..

A more careful analysis recognizes that, until a collection of target equivalence classes were

split, generalizing the vertex label for one of the equivalence classes generalized the label for

every target equivalence class in the collection; thus every target equivalence class need only be

isolated once and have its vertex label changed at most d times overall. This bounds the number

of counterexamples by 0(dnG.). Thus the algorithm witnesses 0(d IG.1) counterexamples to

its equivalence queries.

As in the case of (non-vertex-labeled) equivalence graphs, the number of membership queries

used by Prune on H x C is at most 0(1E1 nif nG), where nH and nG are the number of

vertices in H and G, respectively, so that the number of membership queries used by a single

call to Prune is 0(1E11G4,1 lap, where a is the largest counterexample yet witnessed by the

algorithm.

Finally, since U can be applied in polynomial time, and since 1H1 < IG1 for each hypothesis

H, the class of labeled equivalence graphs are polynomial time learnable using membership and

equivalence queries.

7.5 Application to CLASSIC

The graphical representation of CLASSIC used in [36] annotates the vertices of the graph with

the AT-LEAST, AT-MOST, FILLS, ONE-OF, and PRIM constraints; thus these constraints

make a natural choice for the vertex labels discussed in the previous section. Combining these

different kinds of constraints into tuples that serve as the actual vertex label lattice L. is also a

natural choice, because ordering tuples (si, sk) (t1,..., tk) exactly when every s, < t, is

in accordance with the notion of subsumption for CLASSIC [36].

147

We would like to exploit this similarity to labeled equivalence graphs by employing a pre-

diction preserving reduction using the labeled equivalence graph learning algorithm developed

in the previous section. The reduction would use the polynomial time transformations be-

tween CLASSIC descriptions and their graphical representations developed by [26, 36] to turn

the CLASSIC description examples into a form suitable for Learn and to turn the graphi-

cal representations queried and hypothesized by Learn into CLASSIC descriptions suitable for

examination outside of Learn. Unfortunately, the semantics imposed on the graphical represen-

tation of CLASSIC dissuade us from this black box approach; we will employ the transformations

of [26, 36, 33] only after modifying Learn.

Because no legal graphical representation of a CLASSIC description has non-attribute roles

participating in a SAME-AS constraint, we are prevented from constructing the suggested

universal positive example for Learn. Thus we are forced to modify Learn so that it constructs

only labeled equivalence graphs whose edge labels adhere to this restriction on equivalent strings

over the role alphabet.

In lieu of a universally positive example that satisfies every constraint of the target, we rely

on the semantics of the AT-LEAST and AT-MOST constructors to build a CLASSIC description

that always denotes the empty set, which is guaranteed to be a subset (and therefore a positive

example) of any target description. Concretely, let r be any role. Then

(AND

(AT-LEAST 1 r)

(AT-MOST 0 r)

always denotes the empty set; such a concept is said to be inconsistent. Making an equivalence

query on the graph of this concept will provide the learner with a positive counterexample,

Co, that satisfies all the constraints of the target. The graph Co serves the purpose of the

initial universal positive example I/ used as the initial hypothesis by Learn. Having solved the

problem of the distinction between attributes and arbitrary roles in CLASSIC, we now address

another impediment to a direct application of Theorem 100.

Most of the graphical annotations for CLASSIC possess sufficient structure to apply Theo-

rem 100 immediately. As an example of computing upper bounds for a set of PRIM vertex

label, suppose that we have one label {red, shaggy, obese} and a second label {brown, shaggy,

graceful, obese} then the set intersection {shaggy, obese} is the most specific label that

generalizes both of these labels. Thus, proper generalizations are made by removing some prim-

itive from the set. Consequently, proper generalization can occur at most O(IPI) times, where

is the set of primitives. Unfortunately, the AT-LEAST and AT-MOST constraints as used

in CLASSIC do not possess the structure required because they do not form finite lattices.

The set of possible AT-LEAST constraints has the ordering (AT-LEAST k + j r) - (AT-

LEAST k r) for non-negative integers k and j and role r; thus the AT-LEAST constraints

preclude the existence of the minimum element we need to express our initial hypothesis. Note,

however, that because the counterexample Go obtained above is a positive example that does

not always denote the empty set, the AT-LEAST conditions appearing in Go finitely bound

the AT-LEAST lattice. That is, any AT-LEAST constraint on the vertex of Go reached by

any target supported string w is more restrictive than the corresponding AT-LEAST constraint

reached by w in the target. Therefore, the lattice of plausible AT-LEAST constraints for w is

finite, having as the minimal element the value reached by w in Go.

The set of AT-MOST constraints suffers from a slightly different problem; the most general

AT-MOST constraint is the absence of an AT-MOST constraint, which is not an AT-MOST

constraint at all. This situation allows an adversary to prevent us from ever determining

certain targets, even after seeing infinitely many equivalence query counterexamples. To see

this consider the target consisting of a root with no AT-MOST constraint for role r. Now

consider a sequence of (positive) counterexamples that are simply a root with an explicit AT-

MOST condition, where example i asserts (AT-MOST i r). After faample i, Learn would

hypothesize a single root vertex asserting (AT-MOST i r). Clearly, no positive example ever

allows the AT-MOST constraint to be removed from the root."

To overcome this difficulty, we use a standard technique of decomposing the concept class to

be learned into a collection of subclasses indexed by some parameter in such that the union of

these subclasses is the original concept class and such that there is an algorithm that given in

learns the subclass indexed by m and that runs in time polynomial in m and the other relevant

parameters of the class. This permits us to "guess" efficiently the smallest subclass index in

11This problem does not arise in the AT-LEAST constraint because (AT-LEAST 0) is semantically equivalent.
to imposing no AT-LEAST constraint.

149

16

which the chosen target lies try a value of m and if the algorithm exceeds its polynomial time

hound, restart the algorithm using m + 1.

The decomposition we use is the value of the largest integer appearing in any AT-LEAST

or AT-MOST constraint in any vertex of the graph. Any graph in the subclass indexed by m

must have no explicit AT-MOST constraints more general than (AT-MOST m), thus whenever

we would infer a hypothesis with an AT-MOST constraint more general than this we simply

erase the AT-MOST constraint altogether.

The remainder of the CLASSIC constructs used to annotate vertices of the graph are straight-

forward. We assume predefined (finite) sets P of primitives, of disjoint primitives, and R. of

roles. The most restrictive PRIM annotation demands that individuals satisfy every primitive.

In the worst case this annotation would be properly generalized 0(121) times before obtaining

the null constraint not demanding that individuals satisfy any primitive. The FILLS constraint

behaves like the PRIM constraint, except over the disjoint primitives I.

The ONE-OF constraint is most restrictive when no disjoint primitive is specified; as positive

examples are seen that name disjoint primitives in a ONE-OF constraint, the named disjoint

primitives are unioned to the current collection. The ONE-OF constraint of penultimate gener-

ality is the constraint that permits individuals to satisfy any of the disjoint primitives; the most

general ONE-OF constraint is simply eliminating the ONE-OF constraint altogether. Thus

there are at most 0(111) proper generalization made for a ONE-OF constraint.

We are now ready to apply Theorem 100 to CLASSIC.

Theorem 101 CLASSIC is learnable from membership and equivalence queries in time polyno-

mial in in ill, s, t, and m, where 7Z is the set of roles, I is the set of disjoint primitives,

P is the set of primitives, s is the number of symbols needed to write the target CLASSIC de-

scription, t is the number of symbols needed to write the largest counterexample description

witnessed, and m is the largest integer appearing in any AT-LEAST or AT-MOST constraint

in the target description.

Proof: For the vertex labels F we chose tuples over the AT-LEAST, AT-MOST, PRIM,

FILLS, and ONE-OF constraints the AND, ALL, and SAME-AS constraints are reflected in

the structure of the graph and were handled in Section 7.3. '['here are 1R1 AT-LEAST, 17Z1

MOST, and 1R1 FILLS components in the tuple one of each for each role in R; there is also

150

one PRIM and one ONE-OF component in the tuple. Now, ordering the tuples in accordance

with the CLASSIC subsumption relation, we find that the longest chain in the subclass indexed

by m has length 0(17ZI m+ ICI IlI + IPI + iii) Theorem 100 applies to each subclass. We

can assume that the largest integer appearing in an AT-LEAST or AT-MOST constraint of the

target is i until the time bound under this assumption is exceeded, at which point we restart

assuming that 2i will upper bound the largest integer appearing in an AT-LEAST or AT-MOST

constraint of the target. After at most lg m restarts, our assumed upper bound will be sufficient

and will be at most twice m. This "guessing" produces at most a factor of 0(1g m) slowdown

over having known m from the outset.

This theorem is somewhat unappealing in that it actually demonstrates only a pseudo-

polynomial time algorithm for CLASSIC. For any reasonable encoding of the integers the value

of m is exponentially larger than the number of digits needed to express it; thus allowing

time polynomial in m is allowing us, in a very real sense, time exponential in m. However,

observe that the problematic constraints AT-LEAST and AT-MOST each form a total

ordering. Thus, the pseudo-polynomial running time of the algorithm can be reduced via

binary search to polynomial running time. Specifically, Prune will, using membership queries,

perform independent binary searches for each AT-LEAST constraint of each vertex to minimize

the value of each AT-LEAST constraint.

Similarly, Prune will determine whether any AT-MOST constraint can be removed from

any vertex, and for any constraint that must remain, Prune will maximize the integer value

used to express the constraint. To determine whether a constraint can be removed, Prune

tentatively removes the constraint and makes a membership query on the resulting graph,

which will remain a positive example if and only if that AT-MOST constraint can be removed.

If the result is a negative example, then Prune successively doubles the current AT-MOST

constraint value and makes a membership query until a negative example is obtained. Then

a standard binary search finds the largest integer value for this AT-MOST constraint that

produces a positive example. The updated Prune is shown in figure 7.5.

The m used in this new version of Prune is meant to suggest the index of parameterization

used in Theorem 101. This modification reduces the time dependency from a polynomial in rn

to a polynomial in log rn, so that we have the following stronger theorem asserting the fully

polynomial time learnability of CLAssIc.

151

Prune(G)

I* G is a. positive example. Each question about whether some alteration to G results
in a positive example is answered by asking a membership query. */

1 For each edge e in G

2 If removing' e from G produces a positive example, then remove e from G.

3 For each vertex v

4 For each AT-LEAST constraint c of v

5 Let m be the current value for c.

6 Perform a binary search in the range [0, m] to find the minimum value for c for
which C remains a positive example, and replace the current value for c with
that value.

7 For each AT-MOST constraint c of v

8 If removing c from G results in a positive example, then remove c from G.

9 Else

10 Let 7n be the larger,of 1 and the current value for c

11 While replacing m with 2m in c produces a positive example, replace m
with 2m in c.

12 Perform a binary search in the range [0, m] to find the maximum value for
c for which C remains a positive example, and replace the current value for
c with that value.

13 Return G

'Along with e remove any unreachable component.

Figure 7.5: Updated Prune.

152

165

Figure 7.6: A target schema requiring exponentially many membership queries.

Theorem 102 CLASSIC is learnable from membership and equivalence queries in time polyno-

mial in !RI, III, 121, s, and t, where R. is the set of roles, I is the set of disjoint primitives, P is

the set of primitives, s is the number of symbols needed to write the target CLASSIC description,

and t is the number of symbols needed to write the largest counterexample description witnessed.

Proof: The running time of the algorithm depends only polynomially on log m for the largest

integer m explicitly appearing' in an AT-LEAST or AT-MOST constraint; this means that the

algorithm depends only polynomially on. the number of digits needed to represent the largest

integer in explicitly appearing in an AT-LEAST or AT-MOST constraint. But the number of

digits need to represent this m is certainly no more than s, the number of symbols needed to

write the the target CLASSIC description. Note also that the updated version of Prune obviates

the "guessing" done in Theorem 101 to determine a suitable value of m we have abandoned

the parameterization by m completely.

7.6 The Insufficiency of Membership Queries

We show in this section that learnability cannot be achieved solely through membership queries.

This, coupled with the result of Cohen and Hirsh [33] shows that membership and equivalence

queries form a minimal set of queries with which CLASSIC can be exactly learned.

To this end, we now show that it is impossible to learn the class CLASSIC sentences with

simple corresponding labeled equivalence graphs in polynomial time using membership queries

alone. To do this we exhibit a target for which an adversarial teacher will be able to force the

learner to ask exponentially many membership queries before producing a concept equivalent

to the target concept.

153

1 6 i)

Theorem 103 Any algorithm that uses membership queries alone requires Q(2121) membership

queries to distinguish between CLASSIC sentences whose equivalence graphs have the form shown

in figure 7.6.
to.

Proof: Figure 7.6 is a template for O(21E1) distinct concepts based on the partitioning of

edge labels12 of E into (disjoint but exhaustive) sets S1 and 52. A straightforward adversary

argument shows that at least, 2121-1 - 1 membership queries are still required:

First, any membership query supporting all strings with a single equivalence class is a pos-

itive example no information is obtained by asking such a query. Second, any membership

query that does not support some edge lai)el from the root is .a negative example because a

target-supported string is unsupported membership queries of this form provide no infor-

mation. Third, any membership query that partitions the set of edge labels emanating from

the root into more than two sets is a negative example because some pair of target-equivalent

strings are inequivalent such membership queries provide no information in distinguishing

among the possible targets.

Thus, only membership queries that partition the set of length 1 strings into two supported

equivalence classes can provide any information. Any query that does not partition the edge

labels into exactly the same sets as the target is a negative example. There are 21E1-1 such par-

titions. The adversary simply answers any such query "no" until all but one of the partitionings

have been exhausted. Notice that if the learner outputs some conjecture before exhausting all

possible partitions, the teacher simply asserts that the conjecture is incorrect by choosing as

the target any unexplored partitioning.

Corollary 104 The class of unlabeled equivalence graphs (labeled equivalence graphs) (CLASSIC

descriptions) cannot be learned in polynomial time from membership queries alone, even when

the target is known to be acyclic and contain at most three vertices.

A similar result holds when there are only two roles (i . e . ,
I I = 2):

Corollary 105 The class of unlabeled equivalence graphs (labeled equivalence graphs) (CLASSIC

descriptions) cannot be learned in polynomial time from membership queries alone, even when

1E1 = 2 and the target is known to be acyclic.

'2To adhere to the semantics of CLAssic, consider a collection of roles all of which arc attributes.

154
167

Proof Sketch: Simulate a set Ei of edge labels with IE'l = n = 2k by using the labels of E as

a binary code to label a depth k 1 binary tree so that all length k 1 strings are supported

and every string of length k 1 or less is in its own equivalence class. Now construct two more

equivalence classes such that every string of length k is in one of these equivalence classes. (See

figure 7.7). These last two equivalence classes simulate the non-root equivalence classes of the

target in Theorem 103, so that learning this target requires 2m -1 1 membership queries, but

the target has only 2' = 0(n) vertices. 0

Figure 7.7: This schema requires exponentially many membership queries even though E is
known to be the set {al, cr2}.

7.7 Membership Query Response Errors

Valiant [99] introduced the notion of PAC learning in the presence of malicious errors [38]. In

this learning model, an adversary is allowed to maliciously perturb the probability distribution

D on examples by substituting for an example chosen randomly according to D an arbitrary ex-

ample with arbitrary label; the probability of this substitution occurring is called the malicious

error rate [38]. A number of authors have investigated this and related models (for example,

see [11, 16, 38, 64, 84, 90, 96, 93]). In this section we investigate the presence of malicious

noise in the answers to membership queries and show that very high rates of such noise can be

robustly tolerated.

Our model of persistent malicious classification errors is as follows. Let r() be any poly-

nomial, and let (7 be any graph. The first time a membership query is made on C the teacher

(adversary) flips a coin that with probability
2
.1

r(1G
1

.1
,

)
lands heads, where G. is the target

concept. If the coin lands heads, the adversary is permitted to answer the query incorrectly

155

ib

if he chooses; however, if the coin lands tails the adversary must correctly answer the query.

Thereafter, the answer to a membership query on G will be the same answer as was first given.

The language of labeled equivalence graphs admits the random construction of a number

of independent examples having the property that either all of them are positive examples or

all of them are negative examples. Exploiting this property, we give a general test for verifying

the answer to a membership query in the presence of even a significant amount of "persistent

malicious noise" in the ansv..;,,..s to membership queries.

For technical reasons, wc. consider only reduced labeled equivalence graphs labeled equiva-

lence graphs in which every vertex with maximal label and outdegree 0 has indegree at least 2.

Prohibiting maximal-label vertices with indegree 1 and outdegree 0 does not change the ability

of labeled equivalence graphs to represent CLASSIC descriptions concisely; however permitting

such vertices does illuminate a difference between the semantics of labeled equivalence graphs

and the sem.antics of C Lassie. A given labeled equivalence graph may be a negative example

of the target due to the fact that some target string is unsupported but the vertex reached by

this supported string imposes no other semantic constraint in terms of equivalence of strings or

vertex label in CLASSIC such a graph would have arisen from some subexpression stating, "All

individuals in the relation r to individuals in this set are individuals in the universe." Clearly

such a statement is true for every role r and every individual in the universe; eliminating such

a subexpression does not change the semantics of a CLASSIC description, but the two labeled

equivalence graphs representing these descriptions would be semantically different. We now

claim the following result.

Lemma 106 Let G. be the target, let r be any polynomial, let 6 > 0 be any probability, and let

C be any positive example of G.. If IF4 > 1, then there is a polynomial time algorithm using

membership queries with persistent malicious classification error rate
2
I I , that determines

rIIG*1)
with probability 1 6 whether deleting a given edge, e, from C produces a positive example.

Proof: Let nc,, be the number of vertices in C. Let k = 1 -I- nG. 6r2(nG.)111 -le. Choose

a random string s from Ek, and construct a labeled path p from s using k unlabeled vertices

where the last symbol of s is the label of a self-loop edge on the last vertex. Redirect the

terminus of c to the beginning of this path. If c was deletable, then this new graph is a positive

example.

156

169

If e was not deletable, then either it must be used to capture some equivalence constraint

expressed in the target or it must be used in a path that reaches some vertex label constraint

expressed in the target.' In either case such a constraint must occur along a path of length

at most nG, within the target, as that is the number of vertices in G. However the first nG,

vertices of path p express no constraint of any kind, so that redirecting e must cause some

constraint of G. to be violated. Thus if e is not deletable, this new graph is a negative example.

Now generate 6r(na.) (r(nG) 2) Ina such variations of G being careful not to use the same

string s. It is clear that every one of these variations is a positive example if e is deletable and

every one of these variations is a negative example if e is not deletable. Ask a membership query

on each of these variations. By Chernoff bounds, the probability that fewer than 21 +

of these queries are answered correctly is less than S. Thus, with probability 1 6, e can be

deleted if and only if the majority of these queries are answered "yes".

We hasten to add that the assumption that the edge label set E have cardinality at least

two is minor; the class of labeled equivalence graphs over an edge label set of size 1 can be

easily learned using a straightforward dovetailing algorithm that guesses whether there is a

cycle in the graph and if so, how long before the cycle begins. Vertex labels are modified only

in response to equivalence query counterexamples and are thus not affected by the errors in

membership query responses.

We now have the main result of this section.

Theorem 107 Let r be any polynomial and let S > 0 be given. Then the class of reduced labeled

equivalence graphs is exactly learnable with probability I - 60, in time polynomial in In E, d

(the length of the longest chain in the lattice over which the vertex labels are defined), the size

of the target concept, and the size of the longest counterexample received, from membership and

equivalence queries, even with a persistent malicious classification error rate of 1 1

2 r(G.)

Proof Sketch: Membership queries are used only in the Prune procedure of figure 7.4.

Instead of relying on the answers, replace each such query with the procedure in the proof of

Lemma 106, with parameter 6 = 60/s, where s is the total number of membership queries that

the learning algorithm would make without noisy membership queries. Thus, the probability

that any of the invocations of this procedure is incorrect totals at most 5. If the size of the

"This makes use of the assumption that the equivalence graph is reduced.

157

target concept and longest counterexample to be received is known a priori, then s is given

by Theorem 96. If these values are not known, then the standard technique of dynamically

guessing .5 can be employed while increasing the running time only polynomially.

7.8 Summary

We have demonstrated a positive polynomial time learnability result using membership and

equivalence queries for labeled equivalence graphs with vertex labels chosen from a finite lattice,

and we adapted this algorithm to obtain a polynomial time algorithm for the "natural" first-

order concept class CLASSIC. We then showed that the learnability did not rest solely on the

power of the membership queries by giving a non-learnability result for membership query

only algorithms. Finally we showed that, although the membership queries are necessary, the

accuracy in the answers to those queries need only be polynomially better than 1/2.

Another possible research direction centers around the joining of two graphs. When the join

is computed, edge labels are deleted if the label does not appear in both graphs to be joined.

What if the edge labels are chosen from a partially ordered set, where joining two edge labels

might permit constructing an edge labeled with the least upper bound of the two edge labels to

be joined? Because the edge labels capture functions in CLASSIC, such generalizations appear

to dwell in world of second order logics. For this reason we believe that a positive result in this

direction will rely heavily upon the structure of the underlying partially ordered set.

158 171

Chapter 8

Conclusion

The goal of inquiry about automating the knowledge representation process is either to pro-

duce a learning algorithm that effici,mtly automates the encoding of any representation that

uses some useful representation languages G or to show that no such learning algorithm is

possible. The centerpiece of this thesis was that there do exist learning algorithms for two

natural representation languages: propositional Horn sentences and CLASSIC. In addition, this

thesis introduced a new method consistently ignorant teachers of modeling uncertainty in

the information being collected. The thesis demonstrated that, by careful consideration of the

task at hand, the tools that have been developed in the field of computational learning theory

can be used to automate the process of constructing the explanations required by real-world

tasks in fields outside computational learning theory. This has been the foundation; it is hoped

that by way of example, the potential of adapting computationally learning theory techniques

to more ambitious domains has been demonstrated along with the considerations required in

making such an adaptation. Adapting the tools of computational learning theory to other

representation languages for many other domains lies ahead.

159

172

Appendix A

Thesis Synopsis

For expository purposes, we define a variety of characters that the example class might assume.

To fully describe an. example class we must specify its elements and the way that labels are

assigned to elements of the example class by the concept class. Because the examples are

intended to teach the learner the behavior of the target, we speak of the examples as being

provided by a teacher. Thus, we associate a teacher with each kind of example class.

Definition 108 (Standard Teacher) Let C be a concept class of propositional formulas, let

X be the set of truth assignments over the variables used in C, and let C. be the target. A

teacher who uses X and labels examples according to whether C. is satisfied is called a standard

teacher.

Definition 109 (Entailed Example Teacher) Let C be a concept class of propositional (re-

spectively, first-order) logical formulas, let X be a class of propositional (respectively, first-order)

logical formulas, and let C. be the target. A teacher who uses X and labels examples according

to entailment by C. (that is. whether every truth assignment satisfying C. also satisfies the the

example) is called an entailed example teacher.

The next definition provides foi a new variety of teacher. The definition allows for teachers

who are rational but not omniscient; that is, teachers who have knowledge gaps for which

knowledge about the concept class does not help.

Definition 110 (Consistently Ignorant Teacher) Let C be a concept class of propositional

formulas and let X be the set of truth assignments over the variables used in C. A consistently

160

173

ignorant teacher is a standard teacher who is permitted not to know the label of some example

x provided that among all the concepts in C consistent with what the teacher does know, there

are concepts C1 and C2 which disagree on the label of x.

In practice, the amount of uncertainty held by a consistently ignorant teacher is measured

by assuming that the teacher has some particular subset S of concepts from C in mind and

declares an example to be positive if every concept in S calls the example positive, declares an

example to be negative if every concept in S calls the example negative, and declares "I don't

know" if some pair of concepts in S disagree about the labeling of the The learner is

permitted time polynomial in the amount of uncertainty of the teacher.

This work presents several results concerning modeling the world with propositional or first-

order concepts. This work also presents alternatives to the idea that an example is a setting

of the variables that is labeled according to whether it satisfies the unknown propositional

description of the world. Specifically the following results have been obtained.

Positive Results

1. Propositional Horn sentences are exactly learnable using equivalence and member-

ship queries given a standard teacher (Theorem 23).

2. Propositional Horn sentences are exactly learnable using equivalence and member-

ship queries given an entailed example teacher using Horn clauses as examples (The-

orem 40).

3. The first-order class 1-t2,k of conjunctions of pairs of definite clauses with k-ary pred-

icates and unary functions is exactly learnable using equivalence queries given an

entailed example teacher using literals as examples (Theorem 76). Achieving this

result produced a new characterization of the regular languages.

4. Several classes of boolean functions are learnable using equivalence and membership

queries given a consistently ignor nt teacher (Corollary 63).

5. Sets of boxes in Ed with samplable intersection are PAC learnable using membership

queries and random examples given a consistently ignorant teacher using points as

examples (Theorem 66).

6. Embedded multi,ymmetric functions are exactly predictable using membership and

equivalence queries from a standard teacher (Theorem 5).

7. CLASSIC is exactly learnable using membership queries from an entailed example

teacher using CLASSIC descriptions as examples, even when the membership queries

are maliciously erroneously answered with probability bounded polynomially below

1/2 (Theorem 107).

Negative Results

1. PAC learning propositional 2-quasi Horn sentences (conjunctions of clauses having

at most two positive literals) using membership queries from a standard teacher

is no easier than PAC learning arbitrary DNF formulas from a standard teacher

(Corollary 27).

2. Exactly learning propositional Horn sentences using equivalence queries from an

entailed example teacher using Horn sentences as examples is no easier than exactly

learning arbitrary DNF formulas using equivalence queries from a standard teacher

(Theorem 45).

3. The first-order class 112,. of conjunctions of pairs of definite clauses is not PAC

learnable using random examples given an entailed example teacher using atoms as

examples unless NP = RP (Theorem 77).

4. Sets of propositional Horn sentences with samplable intersection are not PAC learn-

able using membership queries and random examples given a consistently ignorant

teacher unless arbitrary DNF are PAC learnable using random examples given a

standard teacher, assuming the existence of one-way functions (Corollary 69).

5. CLASSIC is not learnable using only membership queries from an entailed example

teacher using CLASSIC descriptions as examples (Theorem 103). As a consequence

of this result, random examples and membership queries form a minimal set of

queries for PAC learning CLASSIC from an entailed example teacher using CLASSIC

descriptions as examples.

162

175

Bibliography

[1] D. Angluin. Learning k-term dnf formulas using queries and counterexamples. Technical

Report YALEU/DCS/RR-559, Department of Computer Science, Yale University, August

1987.

[2] D. Angluin. Learning propositional Horn sentences with hints. Technical report, Yale

University, YALE/DCS/RR-590, 1987.

[3] D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput.,

75(2):87-106, November 1987.

[4] D. Angluin. Queries and concept learning Machine Learning, 2(4):319-342, April 1988.

[5] D. Angluin. Requests for hints that return 110 hints. Technical report, Yale University,

YALE/DCS/RR-647, 1988.

[6] D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150, 1990.

[7] D. Angluin. Computational learning theory: survey and selected bibliography. In Proc.

24th Annu. ACM Syrnpos. Theory Comput., pages 351-369. ACM Press, New York, NY,

1992.

[8] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine

Learning, 9:147-164, 199'4.

[9] D. Ang kin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries.

J. ACM, 40:185 -210, 1993.

163
()

[10] D. Angluin and M. Kharitonov. When won't membership queries help? In Proc. of the

23rd Symposium on Theory of Computing, pages 444-454. ACM Press, New York, NY,

1991.

[11] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370,

1988.

[12] D. Angluin and D. K. Slonim. Learning monotone DNF with an incomplete member-

ship oracle. In Proc. 4th Annu. Workshop on Comput. Learning Theory, pages 139-146.

Morgan Kaufmann, San Mateo, CA, 1991.

[13] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and

matchings. Journal of Computer and System Sciences, 18(2):155 -193, 1979.

[14] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,

2(4):343 -370, 1988.

[15] H. Arimura, H. Ishizaka, and T. Shinohara. Polynomial time inference of a subclass of

context-free transformations. In Proc. 5th Annu. Workshop on Comput. Learning Theory,

pages 136-143. ACM Press, New York, NY, 1992.

[16] P. Auer. On-line learning of rectangles in noisy environments. In Proceedings of the

Sixth Annual ACM Conference on Computational Learning Theory, pages 253-261. ACM

Press, New York, NY, 1993.

[17] H. Beck, H. Gala, and S. Navathe. Classification as a query processing technique in

the CANDIDE semantic model. In Data Engineering Conference, pages 572-581, Los

Angeles, CA, 1989.

[18] U. Berggren. Linear time deterministic learning of k-term DNF. In Proceedings of the

Sixth Annual ACM Conference on Computational Learning Theory, pages 37-40. ACM

Press, New York, NY, 1993.

[191 A. Blum. Separating distribution-free and mistake-bound learning models over the

Boolean domain. In Proc. of the 31st Symposium on the Foundations of Comp. Sci.,

pages 211-218. IEEE Computer Society Press, Los Alamitos, CA, 1990.

164

1'r

[20] A. Blum, P. Chalasani, and J. Jackson. On learning embedded symmetric concepts. In

Proc. 6th Annu. Workshop on Comput. Learning Theory, pages 337-346. ACM Press,

New York, NY, 1993.

[21] A. Blum and S. Rudich. Fast learning of k-term DNF with queries. In Proceedings of the

Twenty Fourth Annual ACM Symposium on Theory of Computing, pages 382-389, May

1992.

[22] A. Blum and M. Singh. Learning functions of k terms. In Proc. 3rd Annu. Workshop on

Comput. Learning Theory, pages 144-153. Morgan Kaufmann, San Mateo, CA, 1990.

[23] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the

Vapnik-Chervonenkis dimension. J. ACM, 36(4):929 -965, 1989.

[24] Daniel G. Bobrow and Terry Winograd. An overview of KRL, a knowledge representation

language. Cognitive Science, 1(1):3-46,1977.

[25] Alex Borgida. Description logics are not just for the flightless-birds: a new look at

the utility and foundations of description logics. Technical Report DCS-TR-295, Rutgers

University Department of Computer Science, 1992.

[26] Alex Borgida and Peter F. Patel-Schneider. A semantics and complete algorithm for

subsumption in the CLASSIC description logic. Technical report, AT&T, 1992.

[27] E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inference of all valid implications

for Horn and related formulae. Annals of Mathematics and Artificial Intelligence. 1:21-32,

1990.

[28] R. J. Brachman, R. E. Fikes, and H. J. Levesque. Krypton: A functional approach to

knowledge representation. IEEE Computer, 16(10):67-73,1983.

[29] N. Bshouty. Exact learning via the monotone theory. In Proceedings of the 34th Annual

Symposium on Foundations of Computer Science, pages 302-311, November 1993.

[30] Z. Chen. Learning unions of two rectangles in the plane with equivalence queries. In

Proc. 6th Annu. Workshop on cornput. Learning Theory, pages 243 252. ACM Press,

New York, NY, 1993.

165

l'1

[31] Z. Chen and S. Homer. Fast learning unions of rectangles with queries. Unpublished

manuscript, July 1993.

[32] Z. Chen and W. Maass. On-line learning of rectangles. In Proc. 5th Annu. Workshop on

Comput. Learning Theory, pages 16-28. ACM Press, New York, NY, 1992.

[33] W. W. Cohen and H. Hirsh. Learnability of description logics. In Proc. 5th Annu.

Workshop on Comput. Learning Theory, pages 116-127. ACM Press, New York, NY,

1992. A longer version, available from the authors, is in preparation.

[34] William Cohen. Cryptographic limitations on learning one-clause logic programs. In

Prol-edings of the Tenth National Conference on Artificial Intelligence, Washington, D.C.,

1993.

[35] William Cohen. Pac-learning a restricted class of recursive logic programs. In Proceedings

of the Tenth National Conference on Artificial Intelligence, Washington, D.C., 1993.

[36] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least common subsumers

in description logics. In Proceedinrc of the Tenth National Conference on Artificial Intel-

ligence, 1992.

[37] Mukesh Dalai and David Etherington. Tractable approximate deduction using limited

vocabulary. In CSCSI-92, Vancouver, May 1992.

[38] S. E. Decatur. Statistical queries and faulty PAC oracles. In Proc. 6th Annu. Workshop

on Comput. Learning Theory, pages 262-268. ACM Press, New York, NY, 1993.

[39] P. Devanbu, R. J. Brachman, P. Selfridge, and B. Ballard. LaSSIE: A knowledge-based

software information system. Communications of the ACM, 35(5):255-257, May 1991.

[40] Thomas Glen Dietterich, Bob London, Kenneth Clarkson, and Geoff Dromey. Learning

and inductive inference. In The handbook of Artificial Intelligence, Volume 3. William

Kaufmann, 1982.

[41] Sago Dieroski, Stephen Muggleton, and Stuart Russell. Pac-learnability of logic programs.

In Proceedings of the 1992 Workshop on Computational Learning Theory, pages 128-135,

New York, 1992. The Association for Computing Machinery.

166

[42] A. Ehrenfeucht and D. flaussler. Learning decision trees from random examples. In Proc.

1st Annu. Workshop on Cornput. Learning Theory, pages 182-194. Morgan Kaufmann,

San Mateo, CA, 1988.

[43] M. Frazier and C. D. Page. Learnability of recursive, non-determinate theories: Some

basic results and techniques. In Third International Workshop on Inductive Logic Pro-

gramming, 1993.

[44] Michael Frazier, Sally Goldman, Nina Mishra, and Lenny Pitt. Learning from a consis-

tently ignorant teacher. In Proceeding of the Seventh Annual Conference on Computa-

tional Learning Theory, 1994.

[45] Michael Frazier and Lenny Pitt. CLASSIC learning. In Proceedings of the seventh annual

conference on computational learning theory, 1994.

[46] Michael Frazier and Leonard Pitt. Learning from entailment: An application to propo-

sitional horn sentences. In Proceedings of the Tenth Internation Conference on Machine

Learning, 1993.

[47] M. Fulk and J. Case, editors. Proc. 4th Annu. Workshop on Comput. Learning Theory.

Morgan Kaufmann, Rochester, NY, 1990.

[48] M. Fulk and J. Case (editors). Proc. 3rd Annu. Workshop on Comput. Learning Theory.

Morgan Kaufmann, Inc., August 1990.

[49] P. Goldberg, S. Goldman, and H. Mathias. Learning unions of rectangles with member-

ship and equivalence queries. Technical Report WUCS-93-46, Washington University,

Department of Computer Science, November 1993.

[50] Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identification

of circuits using fixed points of amplification functions. In .3Ist Annual Symposium on

Foundations of Computer Science, pages 193-202, October 1990.

[51] Sally A. Goldman and Robert H. Sloan. The difficulty of random attribute noise. Technical

Report WUCS-92-25, Washington University, Department of Computer Science. July

1992.

167

1

[52] Russell Greiner and Dale Schuurmans. Learning useful Horn approximations. In Pro-

ceedings of the Third International Joint Conference on Knowledge Representation, Cam-

bridge, MA, October 1992.

[53] D. Hauss ler. Applying valiant's learning framework to ai concept learning problems.

Technical Report UCSC-CRL-87-11, UCSC, 1987.

[54] D. Haussler. Bias, version spaces, and Valiant's learning framework. In Proceedings of the

.4th International Workshop on Machine Learning, pages 324-336, San Mateo, California,

June 1987. Morgan Kaufmann.

[55] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning

framework. Artificial Intelligence, 36:177-221, 1988.

[56] D. Haussler. Generalizing the PAC model: sample size bounds from metric dimension

based uniform convergence results. In Proc. 30th Annu. IEEE Synzpos. Found. Cornput.

Sci., pages 40-45. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[57] D. Haussler. Learning conjunctive concepts in structural domains. Machine Learning,

4(1):7-40, 1989.

[58] D. Haussler and R. P. Daley (editors). Proc. 6th Annu. Workshop on Comput. Learning

Theory. ACM Press, July 1992.

[59] D. Haussler, N. Littlestone, and M. K. liVarmuth. Preuicting {0,1} functions on randomly

drawn points. In Proceedings of the 29th Annual IEEE Symposium on Foundations of

Computer Science, pages 100-109. IEEE Computer Society Press, 1988.

[60] D. Haussler and L. Pitt, editors. Proc. 2nd Annu. Workshop on Comput. Learning Theory.

Morgan Kaufmann, San Mateo, CA, 1988.

[61] D. Haussler and L. Pitt(editors). Proc. 1st Annu. Workshop on Cornput. Learning Theory.

Morgan Kaufmann, Inc., August 1988.

[62] Haym Hirsh. Polynomial time learning with version spaces. In Proceedings -f AAA 1-92,

1992.

168 131

[63] Henry Kautz and Bart Selman. Speeding inference by acquiring new concepts. In Pro-

ceedings of AA AI-92, San Jose, July 1992.

[64] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM J. Cornput.,

22:807 -837, 1993.

[65] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of Boolean formulae. In

Proc. 19th Annu. ACM Sympos. Theory Cornput., pages 285-294. ACM Press, New York,

NY, 1987.

[66] M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean formulae

and finite automata. In Proc. of the 21st Symposium on Theory of Computing, pages

433-444. ACM Press, New York, NY, 1989.

[67] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic

concepts. In Proc. of the 31st Symposium on the Foundations of Comp. Sci., pages 382-

391. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[68] Jorg-Uwe Kietz. Some computational lower bounds for the computational complexity of

inductive logic programming. In 1993 European Conference of Machine Learning, Vienna,

Austria, 1993.

[69] Philip D. Laird. Learning from good and bad data. In Kluwer international series in

engineering and computer science. Kluwer Academic Publishers, Boston, 1988.

[70] C. X. Ling. Logic program synthesis from good examples. In S. H. Muggleton, editor,

Inductive Logic Programming, pages 113-129. Academic Press, London, 1992.

[71] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2.285-318,1988.

[72] N. Littlestone. From on-line to batch learning. In Proc. 2nd Annu. We rkshop on Comput.

Learning Theory, pages 269-284. Morgan Kaufmann, San Mateo, CA, 1989.

[73] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms.

PhD thesis, Technical Report UC.!SC-CRL-89-11, University of California Santa Cruz,

1989.

169

1,82

[74] Nicholas Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold

learning using winnow. In Proceedings of the Fourth Annual Workshop on Computational.

Learning Theory, pages 147-156, 19421.

[75] P. M. Long and M. K. Warmuth. Composite geometric concepts and polynomial pre-

dictability. Inform. Comput., 1993. To appear.

[76] S. Marcus, editor. Machine Learning, volume 3/4. December 1989.

[77] E. Mays, C. Apte, J. Griesmer, and J. Kastner. Organizing knowledge in a complex

financial domain. IEEE Expert, pages 61-70, Fall 1987.

[78] N. Mishra. Private communication, 1992.

[79] T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning. In Pro-

ceedings IJCAI-77, pages 305-310, Cambridge, Mass., August 1977. International Joint

Committee for Artificial Intelligence.

[80] T. M. Mitchell. Generalization as search. Art. Int., 18:203-226, 1982.

[81] S. H. Muggleton. Inductive logic programming. In S. H. IVIuggleton, editor, Inductive

Logic Programming, pages 3-27. Academic Press, London, 1992.

[82] C. D. Page and A. M. Frisch. Generalization and learnability: A study of constrained

atoms. In S. H. Muggleton, editor, Inductive Logic Programming, chapter 2, pages 29-60.

Academic Press, London, 1992.

[83] Peter F. Patel-Schneider. A four-valued semantics for terminological logics. Artificial

Intelligence, 38:319-351, 1989.

[84] L. Pitt and L. Valiant. Computational limitations on learning from examples. J. ACM,

35:965-984, 1988.

[85] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal

of the ACM, 35(4):965-984, 1988.

[86] L. Pitt and M. K. Wartnuth. Prediction preserving reducibility. J. of Cornput. Syst. Sci.,

41(3):430-467, December 1990. Special issue of the for the Third Annual Conference of

Structure in Complexity Theory (Washington, DC., June 88).

170

163

[87] Vijay Raghavan. Private communication, 1994.

[88] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229 -246, 1987.

[89] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences.

Inform. Comput., 103(2):299-347, April 1993.

[90] D. Ron and R. Rubinfeld. Learning fallible finite state automata. In Proc. 6th Annu.

Workshop on Comput. Learning Theory, pages 218-227. ACM Press, New York, NY,

1993.

[91] Yasubumi Sakakibara. On learning from queries and counterexamples in the presence of

noise. Information Processing Letters, To appear.

[92] Bart Selman and Henry Kautz. Knowledge compilation using Horn approximations. In

Proceedings of AAAI-91, Anaheim, August 1991.

[93] G. Shackelford and D. Volper. Learning k-DNF with noise in the attributes. In Proc.

1st Annu. Workshop on Comput. Learning Theory, pages 97-103, San Mateo, CA, 1988.

published by Morgan Kaufmann.

[94] George Shackelford and Dennis Volper. Learning k-DNI? with noise in the attributes.

In Proceedings of the First Annual Workshop on Computational Learning Theory, pages

97-103. Morgan Kaufmann, August 1988.

[95] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[96] R. Sloan. Types of noise in data for concept learning. In Proc. 1st Annu. Workshop on

Comput. Learning Theory, pages 91-96. Morgan Kaufmann, San Mateo, CA, 1988.

[97] Robert H. Sloan. Types of noise in data for concept learning. In Proceedings of the First

Annual Workshop on Computational Leaning Theory, pages 91-96. Morgan Kaufmann,

August 1988.

[98] L. C. Valiant. A theory of the learnable. COMMUTZ. ACM, 27(10:1134-1142, November

1984.

171

194

[991 L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the 9th Inter-

national Joint Conference on Artificial Intelligence, vol. 1, pages 560-566, Los Angeles,

California, 1985. International Joint Committee for Artificial Intelligence.

[1001 L. G. Valiant and M. K. Warmuth (editors). Proc. 5th Annu. Workshop on Comput.

Learning Theory. Morgan Kaufmann, Inc., August 1991.

[1011 V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probab. and its Applications, 16(2):264-280,

1971.

172

185

Vita

Michael Duane Frazier was born. October 21, 1963, in North Kansas City, Missouri. His profes-

sional experience includes object-oriented expert system shell research and research on recursive

query processing in distributed databases, both appointments being at Amoco's Tulsa Research

Center. He has also worked with knowledge-based geographic information systems with the U.S.

Geological Survey. He received a B.S. in computer science from the University of Missouri

Rolla in 1985, where he was selected as the Outstanding Senior Mathematics Student. He

received an M.S. in computer science from the University of Missouri Rolla in 1987.

In addition to leading teaching assistant orientation seminars for the University of Illinois

and receiving both the Teaching Assistant Award for excellence in instruction and the C. W.

Gear Award for excellence in graduate research and service, his work at Illinois includes the

following papers.

Learning Conjunctions of Horn Clauses. Invited paper for a special issue of this journal.

In Machine Learning, volume 9, 1992, with D. Angluin and L. Pitt.

Learning Conjunctions of Horn Clauses. In Proceedings of the 3 Ist Symposium on Foun-

dations of Computer Science (FOGS), 1990, with D. Angluin and L. Pitt. (This paper

is the extended abstract of the preceding paper.) This paper also appeared in The Third

Annual Workshop on Computational Learning Theory (COLT-90), 1990.

Learning from Entailment: An Application to Propositional Horn Sentences. Plenary

paper, The Tenth International Conference on Machine Learning (ML -93), 1993, with L.

Pitt.

173 186

Learnability in Inductive Logic Programming: Some Basic Results and Techniques. In

The Eleventh National Conference on Artificial Intelligence (AAA I-93), 1993, with C. D.

Page.

Learnability of Recursive, Non-determinate Theories: Some Basic Results and Techniques.

In The Third International Workshop on Inductive Logic Programming (ILP -93), 1993,

with C. D. Page.

Prefix Grammars: An Alternative Characterization of the Regular Languages. To appear

in Information Processing Letters, With C. D. Page.

Learning from a Consistently Ignorant Teacher. To appear in Proceedings of the Seventh

Annual Conference on Computational Learning Theory (COLT-94), with S. Goldman, N.

Mishra, and L. Pitt.

CLASSIC Learning. To appear in Proceedings of the Seventh Annual Conference on Com-

putational Learning Theory (COLT-94), with L. Pitt.

Some New Directions in Computational Learning Theory. To appear in Proceedings of

the First Annual European Conference on Computational Learning Theory, with L. Pitt.

Searching with a Non-Constant Number of Lies. Submission to Algorithmica withdrawn

after an independent publication of the results by A. Pe lc appeared.

174

11111.1011111APMIC DATA
'MIST

1. Aspect Na.
UIUCD - 94-1858

1

Learning

3. Restpiese's Aeressio. No.

Ti1117715i lilt
Anril 149Q 4

IS

Matters Horn and Other Features in the Computational

Theory Landscape: The Notion of Membershipitliarfa.. A)
1. P

Noorfarsisi
Ofssaiastisa Rept.

Michael Duane Frazier I- UIUCDCS -R -94 -1858

. Psefstoiss Ofgasssatioe Naas sa4 Address 10. Project/Task/Vogt Usk No.

University of Illinois
Department of Computer Science 11. Casatact/Gtsat No.

1304 W. Springfield Avenue
Urbana, Illinois 61801

1 Sp...miss Oessaisatioa Nast sad A44:ssa 13. Type of Report a Period
Coveted

14.

IS. S%ppIeseassey Notes

Computer automation of tasks is part of the natural progression of encoding information.
IC Abstracts When the task becomes well understood and repetitive, placing the task under computer control

becomes a possibility. Computers were once programmed by rewiring rather than with the use
of a modern program, management of a limited memory was once handled by the application
programmer rather than by the operating system, and efficient use of the computer's hardware
was once obtained by assembly language programmers rather than through a compiler. in
other areas, accounting moved from ledger books to spreadsheets, automobile fuel intake left
the carburetor for computer-controlled fuel injection, and diagnosis and scheduling left the
expert for the expert system.

Current knowledge representation research has sought to provide schemes for encoding
knowledge about how a given system behaves, with the goal being accuracy and utility. Can an
accurate description be given with the representation language being used? Can the resulting
representation be manipulated easily to answer luestions about the system being described? To
the extent that both questions can be answered affirmatively for some repiesentation language
C, encoding information using Z is well understood. Ideally, the goal of encoding knowledge is
not the task of encoding, but the product of the encoding task. If such encodings are required
for a variety of systems, then question of automating the process of encoding arises.

This thesis considers this automation process to be a question of whether it is possible to
automatically learn the encoding based on the behavior of the system to be described. A variety
of representation languages L are considered, as are a variety of means for the learner to acquire
a variety of types of data about the system in question. The learning process is abstracted as
a learning problem in which the goal is to collect efficiently sufficient information to identify
some hidden concept C represented using the language L. The source of information about C
is its relationship to some class of examples X that is assumed to be reasonably available even
though C itself is not. to addition to conjecturing guesses as to the identity of C, the learner
is permitted ask how C relates to individuals x E X.

The goal of inquiry about this automation process is either to produce a learning algorithm
that efficiently automates the encoding of any representation that uses some useful representa-
tion language C or to show that no such learning algorithm is possible. The centerpiece of this
thesis is that there do exist learning algorithms for two natural representation languages: propo-
sitional Horn sentences and the CLASSIC description logic. In addition, this thesis introduces a
new method - consistently ignorant teachers - of modeling uncertainty in the information being
collected. The goal of this thesis is to demonstrate that, by careful consideration of the task at
hand, the tools that have been developed in the field of computational learning theory can be
used to automate the process of constructing the explanations required by real-world tasks in
fields outside computational learning theory.

T/71eriads sod Doctuaosi %salvos.. 17s. Desetiptoes

PAC Learning, Exact Learning, Inductive Logic Programming, Concept Learning,

Membership Queries

..-.....
IL Avai1slosItcy Scsississt

21. No. of Pages

.,,, 88
BEST COPY ,.

1
1, :

L 'tics

uscomwoe 401191111
ws 11a.14

