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Abstract

Computer simulations under three conditions of polytomous DIF compared the ability of

three different statistical procedures to detect nonuniform DIF. The procedures were a nominal

and an ordinal extension of the Mantel-Haenszel statistic, and logistic discriminant function

analysis. Results showed that only the logistic discriminant function analysis could detect all

types of nonuniform DIF simulated when sample sizes were moderate-to-large (i.e. N > 500).

This procedure is recommended when nonuniform DIF identification is required.



Identifying Nonuniform DIF in Polytomously Scored Test Items

The use of polytomously scored items in addition to, or in place of the more traditional

correct/incorrect item formats, requires reconsideration of some of the psychometric procedures

that are specific to the dichotomous situation. In particular, the identification of differential item

functioning or DIF within each of J categories of a polytomously scored item requires either

modifications of procedures that are currently used for dichotomous items, or the creation of new

procedures that are especially suited for multiple-category item scoring. Several extensions of

the existing Mantel-Haenszel procedure, a popular method for identifying DIF in dichotomous

items, have been suggested for the polytomous case. These extended Mantel-Haenszel procedures

are similar to those used in the dichotomous situation for 0/1 item responses which have been

tabulated in a 2 X 2 X K table, in that they assume that there is no three-way interaction. In

other words, nonuniform DIF is assumed not to exist. The only way that this assumption can

be tested is if a procedure is used that allows for a specific test of the presence of the three-way

interaction. Examples include tests of significance of the interaction term in the fitting of a log-

linear model, or of the interaction coefficient in a logistic regression model (Swaminathan &

Rogers, 1990).

The identification of nonuniform DIF might be more important in a polytomous item than

in a dichotomous one because there are potentially more ways in which the group-by-response-

by-score interaction can manifest itself in the polytomous situation. For example, it is possible

that in addition to the usual nonuniform DIF situation in which the proportion of examinees in

a group with some response, U = u, varies as a function of the conditioning score, o. le could

have the situation where the proportion remains constant throughout the score scale but reverses

group direction for different item response categories. Although this is not the typical way in
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hich nonuniform DIE occurs, its detection is still important. Any useful polytomous DIF

procedure should he powerful enough to detect such occurrences with sufficiently large power.

Another method proposed to detect situations of nonuniform DIF in polytomous items is

called logistic discriminanilaction analysis (LDFA). This Method has recently been suggested

as a useful procedure for the identification of DIF (both uniform and nonuniform cases) in

polytomous items (Miller & Spray, 1993). The method is similar to those mentioned previously

(i.e., log-linear modeling and logistic regression) in that a separate test of the significance of the

interaction is available. However, the LDFA method is much easier to implement than the

logistic regression for the polytomous case (Miller & Spray, 1993). The method is identical to

some log-linear modeling approaches (Hanson, 1992), but may be easier to interpret because of

graphical procedures which can be used post hoc to investigate the direction and magnitude of

the DIF visually (Miller & Spray, 1993).

Although they lack separate tests of any possible interaction, several extensions of the

antel-Haenszel procedure are available for DIF identification in polytomous items, depending

upon whether the responses can be treated as nominal or ordinal. Mantel and Haenszel (1959)

extended the 2 X 2 X K situation to the 2 X 3 X K case with 3 nominal levels of response, and

showed that a summary chi-squared statistic with 2 degrees of freedom could he obtained (pp.

743-745). The authors also gave approximations for the more general, 2 X ./ X K situation,

where there are./ nominal response levels. Agresti (199()) later summarized work which gave

exact. rather than approximate, procedures for the more general / X ./ X K case.

Mantel t 1963) late) proposed an extension whereby the,/ responses are scored or weighted

by (miffed scores. Mantel showed that the summary score statistic was simply the weighted sum

of the trequem ies. weighted 11-\ the ./ scores at each of the K le% els. This amounted to testiw_!



a null hypothesis about the mean level of the J responses, so that the summary statistic was tested

with a single degree of freedom only (Mantel, 1963). This score statistic was extended by

Landis, Heyman, and Koch (1978) to the / X I X K situation where either the .1 response levels,

the / levels, or both are ordered and ordinal scores can be assigned to the responses. A

convenient vector representation of this situation is provided by Agresti (1990, p. 2X6).

In the 2 X 2 X K situation with dichotomous items, the Mantel-Haenszel procedure often

is quite robust in detecting D1F, even when there is a serious violation of the assumption of no

`ree-way interaction. Therefore, the purpose of this paper was to report a series of computer

simulations in which different types of DIF were present in simulated polytomous item responses.

Three procedures were then used to detect the presence of DIF. The procedures were compared

on the basis of their ability to detect true DIF when it existed (i.e., statistical power) and to detect

it when it did not exist (i.e., Type I error). The procedures used in the simulations were (1) the

extended Mantel-Haenszel test on nominal data with ./- I degrees of freedom, (2) the Mantel

score statistic on ordinal data with one degree of freedom , and (3) the LDFA procedure. Each

procedure is briefly described below.

Logistic Discriminant Function Analysis

The logistic discriminant function, which is estimated via the LDFA procedure, can be

written as

Prob(G X,U) = (1)

where the oc,, i = 0, 1, 2, 3, are the discriminant function coefficients to be estimated and G is

a Group indicator variable where, for example, G = 1 for the Reference (R) group and G = (1 for

the Focal (F) group. is the item response variable that can take on any one of the .1 values

associated with each item.

3
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Tests of significance of the coefficients, a, and a,, provide answers to the questions

concerning nonuniform and uniform D1F, respectively. Specifically, the significance of al is

tested by first fitting the hierarchical model given by

-a --12V

Prob(G i X.L1) = (2)

The difference in the log of the likelihood functions obtained from Equations 2 and 1 is used to

test for nonuniform DIF or the significance of a,. The significance of a, is tested by next fitting

the null model, given by

Prob(G X,U) = Prob(G =
a,N;( -+ e

(3)

Equation 3 is termed the null model because it represents the probability of group

membership only as a function of group sample sizes and group distributions on X. The item

response variable is ignored. Thus, the null model given by Equation 3 remains constant from

item to item. The difference in the log of the likelihood functions obtained from Equations 3 and

2 is used to test for uniform DIF or the significance of a2.

Each difference in the log likelihood functions is asymptotically distributed as a chi-

squared random variable with one degree of freedom. Thus, with the LDFA procedure, two

separate tests can be performed for nonuniform and uniform DIF. The nonuniform DIF test can

also be thought of as a test of the no-three-way interaction assumption.

Mantel-Haenszel Extensions

For both extensions described below, the data are assumed to he tabulated in a 2 X .1 X

K table (i.e., 2 groups by responses by K levels of the conditioning or matching variable).



Nominal Case

The observed counts or absolute frequencies in ./-I cells for the R group across K levels

are denoted by Ilk = (nklt, nmk. niuik J.. The expected frequencies under the hypothesis of

conditional independence (i.e.. no uniform DIF) are mk = (nv,knflk, nxis11,2k, Vk

denotes the null covariance matrix of 11k (see .Agresti, 199(I. p.234). Summing over the A. strata

n Ink. in auk, and V = Then the nominal version of the extended Mantel-

Ilai.-nszel statistic is

iLztti,tic has a large sample chi-squared distribution with ./-I degrees of freedom undi. r the

null hypothesis of conditional independence. A significant test implies that unifolm 1)11' is

present in the nem.

Ordinal Cave

The oh,cred counts of absolute frequencies in the kth Ind are denoted h

n, k I . The eNpeeted frequencies under the hypothesis of Loilditional

independence :Le.. no uniform I)11:1 we mk. 'k denotes the null emorion«- monk of nh. Also.

1:1 a vector of tesponse category scores. such as The seines kill

lKti.1111 to the as:igned to the suiting of the item. Then. let B, denote a Lsetor

II scow Lonstains, whet,: B, (11, 'iii The otilittol seored

ssiIII it the esterided \hotel I idensiei statistic is Oven (Agresti l(;)(), p,

t B, ) nk- in,

V, 'WIC the .Nt111.01;Innn ON. el" 4. This statistiL has a Liar-',d1111)1e t.111 Millalleti iblin(111 clth

I (1, (.1 reed' MI under the null hypothesis nt conditional independence i.e.. no uniform

A s,ignittL.tint test implies that imitotni 1)11' is present in the item. A simplet but Nut\ :dent.
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algebraic representation of Mantel's score statistic for ordinal responses is given by Mantel (1963,

p. 694).

Method

Tlw Simulations

Item responses were generated from Muraki's generalized partial credit model (Mural..i.

1991), which gives the item-response density functions or item category characteristic curves

(ICCCs) as functions of a unidimensional latent ability, 0. This model can be written as

expl a(0-b )1
Prob(U=u/ 121) =

expl I a(0 -bd
m=i J=1

(4)

where the bl, bb parameters define the points of intersection of the adjoining 1CCCs and a

represents a slope parameter relating to the discriminating power of the item. According to

Muraki," ... the discriminating power of each ICCC depends on the combination of the slope and

threshold parameters" (p.7). Thus, it is possible to have several different levels of discriminating

power for the different item responses within the same test item.

There were 20 items on the simulated tests. Only the last item, item #20, had simulated

DIF. The remaining 19 items had identical item parameters for the two groups. These

parameters were a = 1.0, b, = .00, b2= -1.00, b, = .5, and b4 = 1.00. Two sample sizes were

used for each group: 500 and 2000. Ability populations were assumed to be identical for both

the focal (F) and reference (R) populations. Ability (i.e.. 0) sampling was simulated from a

standard normal distribution.
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There were three DIF conditions simulated. The first condition was a simple unifOrni DIF

case ,N. here the a-parameters for both groups remained the same but the b-parameters were shifted

or offset by a constant amount. For Condition I, the R group parameters were {a=1.0,b1=0.0,b2=-

1.0,b,=.5,114=1.01, while the F group parameters were fa= I .0,b1=0.0,b2.-.75,b,..75,b4=--1.25 }. In

other words. the item was consistently more difficult for each response category for members of

the F group than for comparable members of the R group. Figure 1 illustrates the ICCCs for this

item. Response probabilities for the F group are plotted as dotted lines.

see Figure I at end of report

For the second condition, nonuniform DIF was simulated where the a-parameters for each

group varied but the h-parameters remained the same. For Condition 2, the R group parameters

were la.] 0,b1=0.0,b2=-1.0.b,=.5,b=1.01, while the F group parameters were fa=.5,b,=0.0,b2=-

.0,b,=.5,b4,.-1.01. This item was more discriminating for the R group for all response categories.

See Figure 2.

see Figure 2 at end of report

For the last condition, a less traditional type of nonuniform DIF was simulated. In this

case, the a parameters for each group once again remained the same and only two of the h-

parameters varied, but in different directions. For Condition 3, the R group parameters were

}, while the F group parameters were



1a=1.0,b1=0.0,h2=.75,b,.75,b4=2.01. This item was therefore easier for the R group for the

second category but more difficult for the third category. See Figure 3.

see Figure 3 at end of report

One hundred replications were performed for each (if the two sample sizes and for each

of the duce D1F conditions. A test was significant if the null hypothesis was rejected ,at a

probability level that was less than .05/20 or .0025. Power was computed as the number of

replications, out of a possible 100, that a significant test was observed for item # 20. A ty pc 1

error rate ma, computed as the number of replications, out it a possible 100. that a significant

te,t was observed for items #.1-#19. The summary error late was the average error rate over

those 19 no -1)11' item,.

Results

The results of the ,imulations are summarized in Table\ I and 2. Table
1 Ctint:Itt.,

01 pov.er for Item :11-:0 for each of the three different DU' procedures. along with the a ei age chi

Nquard . For Condition I where the item was consistently more difficult Ion each

tespiiniise 1.01 members of the group than for comparable members of the R gr'itip. all

thiee of the 1)11- procedures identified the item as having infirm in l)11: c.cith similar rowel.

500, the tioniindl faun of the \111 \A a,. less pow elful than the irdinal

MI c\ tension. Ilov eN, cr. at the larger -ample siic of 211(1(1. all (0' the procedures yielded high

pall er estimate,. OR I I )1A ti-,t for nonunifoint DU; \\ as tion.igoilic, nt. its it idiould bean

lor this NI condition.
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see Table 1 at end of report

For Condition 2, where item #20 was more discriminating for the R group for all response

categories and the traditional nonuniform DIF was present, the LDFA test for nonuniform DIF

showed moderate power for a sample size of 500 and higher power at the larger sample size.

Two of the three uniform DIF tests (MH, and LDFA) showed very low power to detect this

type of nonuniform DIE as was to be expected. However, the MH, procedure showed

moderate power (.30) in identifying this traditional nonuniform DIF at the larger sample size

(2000). See Table 1.

For the third condition, where item #20 was somewhat consistently easier for the R group

for the second category but more difficult for the third, the MHI10111 procedure showed very high

power to detect this type of nonuniform DIF even with the smaller sample size. The LDFA

nonuniform DIF test had a low-to-moderate degree of power at the same sample size. Both the

LDFA nonuniform test and the MH, demonstrated a high degree of estimated power for DIF

identification at the larger sample size. Both the and the uniform test of the LDFA

procedure failed to identify this DIF situation in item# 20.

Table 2 gives estimates of average type I error for Items #1 #19 for each of the three

different DIF procedures for the three DIF conditions. Recall that the nominal a level for these

simulations was .0025. Table 2 shows that, with the exception of the LDFA nonuniform test for

Condition 2, estimated type I error rates were within reasona0e ranges of the nominal level for

all procedures, for all sample sizes, and under all DIF conditions.
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see Table 2 at end of report

Discussion and Conclusions

These simulations showed that the LDFA procedure was capable of identifying simulated

DIF, both uniform and nonuniform, in polytomous items with a high degree of power. The

procedure could also distinguish between uniform and nonuniform DIF. The only instance where

the performance of the LDFA procedure was surpassed by another procedure was the condition

simulated by Condition 3 when the sample sizes were fairly small. In this instance, the M

procedure was much more sensitive to the directional change across response categories.

However, with a larger sample size, the LDFA procedure also identified this type of nonuniform

DIF accurately. The fact that the MH, procedure could not identify the type of nonuniform

DIF simulated in Condition 2, even with fairly large samples of 2000 in each group. would

suggest that it might not be the best procedure to use if the identification of such DIF is

important. The statistic was not accurate in identifying true DIF except in the uniform

D1F situation. Even then, the LDFA approach was equally powerful in uncovering this type of

DIF. Therefore, when fairly large sample sizes are available (i.e. N > 50(1), it is recommended

that the LDFA procedure be used for DIF identification with polytomously scored test items.

1(
15



References

Agresti, A. (1994 Categorical Data Analysis. New York: Wiley.

Holland, P. W., & Thayer, D. T. (1986). Differential item fUnctioning and the Mantel-Haenszel
procedure. Princeton, NJ: Educational Testing Service, Research Report RR-86-31.

Hanson, B. (1992). Comments on the Miller and Spray paper. Internal memorandum.
American College Testing.

Hauck, W. W. (1983). A note on confidence hands for the logistic response curve. The
American Statistician, 37, I 5X-160.

Landis, J.R., Heyman, E.R., & Koch, G.G. (1978). Average partial association in three-way
contingency tables: a review and discussion of alternative tests. International Statistical
Review, 46, 237-254.

Mantel, N. (1963). Chi-square tests with one degree of freedom: Extensions of the Mantel-
Haenszel procedure. Journal of the American Statistical Association, 58, 690-700.

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective
studies of disease. Journal of the National Cancer Institute, 22, 719-741.

Miller, & Spray, J.A. (1993) Logistic discriminant function analysis for DIF identification
of polytomously scored items. Journal of Educational Measurement, 30, 1(17-122.

Muraki. E. (1991). A generalized partial credit model: Application of an EM algorithm.
Unpublished paper.

Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic
regression procedures. Journal of Educational Measurement, 27. 361-370.



Table I
Power Results, Item # 20

Condition Sample Size Procedure Power Average x2

MHn, (3 df) .350 13.016

M1-1,,,,, (1 df) .570 11.390

500 LDFA (uniform) (1 df) .600 12.136

LDFA (nonuniform) (1 df) .000 1.111

1 WI., (3 df) 1.000 40.172

MH,,,,, (1 df) 1.000 38.177

2000 LDFA (uniform) (1 df) 1.000 38.715

LDFA (nonuniform) (1 df) .000 0.667

MI-Lon, (3 df) .040 5.467

MEIrd (1 df) .020 1.869

500 LDFA (uniform) (1 df) .020 1.868

LDFA (nonuniform) (1 df) .440 9.686

2 MH,), (3 df) .300 11.693

MF10, (1 df) .070 2.737

2000 LDFA (uniform) (1 df) .060 2.692

LDFA (nonuniform) (1 df) 1.000 31.196

MH,,,,,,, (3 df) 1.000 88.951

MH, (1 df) .000 1.393

500 LDFA (uniform) (1 df) .000 1.578

LDFA (nonuniform) (1 df) .370 8.857

3 MFInoin (3 df) 1.000 367.159

Mlio, (1 df) .000 1.945

2000 LDFA (uniform) (1 de .000 1.937

LDFA (nonuniform) (1 df) 1.000 31.797
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Table 2
Type I Error Results, Items #1 - #19

Condition Sample Size Procedure Error Average x2

ME1,,,,,, (3 df) .003 3.080

MI- lord (1 df) .005 1.056

500 LDFA (uniform) (1 df) .004 1.043

LDFA (nonuniform) (1 df) .004 1.106

1 MHnom (3 df) .004 3.146

MI-lord (1 df) , .004 1.124

2000 LDFA (uniform) (1 df) .004 1.121

LDFA (nonuniform) (1 df) .003 1.106

MEI., (3 df) .002 3.023

MHrd (1 df) .002 1.106

500 LDFA (uniform) (1 df) .002 .993

LDFA (nonuniform) (1 df) .002 .970

2 MHon, (3 df) .002 2.977

MI-lord (1 df) .002 .996

200(1 LDFA (uniform) (1 df) .002 1.001

LDFA (nonuniform) (1 df) .007 1.237

MHnom (3 df) .005 3.045

MHord (1 df) .005 1.019

500 LDFA (uniform) (1 df) .0o5 1.012

LDFA (nonuniform) (1 df) .005 1.018

3 MHon, (3 df) .003 3.018

MFlo, (1 df) .002 .977

2000 LDFA (uniform) (1 df) .002 .979

LDFA (nonuniform) (1 df) .001 1.009
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Figure I ICCCs for Item #20, Condition 1
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Figure 2 ICCCs for Item #20, Condition 2
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Figure 3 ICCCs for Item #20, Condition 3
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