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Validity of Large-scale Assessments I

Abstract

This study demonstrates that the validity and usefulness of mathematics
achievement tests can be improved by defining psychologically meaningful
subscores that yield differential relations with student, teacher, and school
variables. The NELS:88 8th and 10th grade math tests were subjected to full
information item factor analysis. Math knowledge and math reasoning factors
were distinguished at both grade levels. Regression analyses showed that
student attitudes, instructional variables, course, and program experiences
related more to knowledge, whereas gender, SES, and some ethnic differences
related more to reasoning. Teacher emphasis on higher-order thinking,
student use of home computers, and early experience with-advanced math
courses related to both dimensions. It is recommended that national

educational surveys use multidimensional achievement scores, not total scores
alone.
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Enhancing the Validity and Usefulness of
Large-Scale Educational Assessments:

I. NEILS:88 Mathematics Achievement

This study is one of a series examining the construct validity of
mathematics and science achievement tests used in national survey research
on school and teaching effects on educational outcomes. Qur purpose was to
determine whether or not psychologically meaningful subscores could be
distingnished within these tests that might show differential patterns of
relationship with educational variables. If so, then the usefulness of such
surveys for informing educational policy and practice might be significantly
enhanced.

Background

There is mouating federal and state commitment to national
educational achievement tests as a way to monitor and promote the success of
US. schools. Also, national educational surveys including achievement tests
have been used increasingly in recent decades to estimate the effects of
myriad societal and school variables on educational outcomes for the purpose
of informing educational policy. Principal examples are the research on social
inequalities in education (Coleman et. al., 1966; Jencks et. al., 1972) and on
public versus private school effectiveness (Coleman, Hoffer, & Kilgore, 1982;
Coleman & Hoffer, 1987; Chubb & Moe, 1990). As state-by-state
comparisons using the National Assessment of Educational Progress (NAEP)
are instituted (Glaser & Linn, 1992, 1993) and as one or another proposed
national assessment system is developed, we can expect substantial and
regularized influence of assessment data on state as well as federal
educational policy. Also, as policy makers focus on different parts of the
education problem, evaluations will need to address readiuess to learn,
opportunity to learn, gender and ethnic differences, subject matter differences,
and a host of other special issues. Furthermore, the new goals for education
not only specify higher standards of achievement, they emphasize deep g
understanding and higher-order reasoning as central educational outcomes.
Assessments used to study these issues involve new psychological
interpretations and thus depend on new construct validity arguments.

The survey methods and measuring instruments used in this work have
been criticized, as have some of the interpretations derived from them
(Alexander & Pallas, 1983; Cain & Goldberger, 1983; Haertel, 1988; Haertel,
James, & Levin, 1987; Witte, 1990). Standardized achievement tests, of
course, have been criticized acress a broad front tcyond their use in survey or
policy research (e.g., Gifford, 1989a, 1989b), and there are many suggestions




for improvement. Many of these proposals derive in one way or another from
considering the cognitive psychology of educational achieveme:it alongside the
psychometrics of achievement assessment (see, e.g., Frederiksen, Glaser,
Lesgold, & Shafto, 1990; Frederiksen, Mislevy, & Bejar, 1993; Snow &
Lohman, 1989). There has also been a move to bring cognitive analysis to
bear in the improvement of survey questionnaires and methods (Jabine, Straf,
Tanur, & Torangeau, 1984). In both initiatives, the goal is to build a bridge
between cognitive science and measurement science for the benefit of
educational evaluation policy and practice. -

The present research attempts to contribute to that bridge. It
addresses the problem of how to improve the interpretation and use of tests
and surveys that assess high school students’ achievement in the diverse
subject areas and classroom contexts of U.S. secondary education. It
concentrates on some existing tests and questionnaires from the National
Educational Longitudinal Study of 1988 (NELS:88), although the present
approach could be used in building new kinds of instruments, or in
reanalyzing old measures and data as well.

A schematic view of the NEI S:88 survey. NELS:88 is the latest of
three national longitudinal surveys conducted by the U.S. Department of
Education and, compared with its predecessors, is especially designed to
measure instructional practices and cognitive outcomes in four core subject
areas. It began in Spring 1988 with a national survey and testing of 8th grade
students. For details on design and initial analysis, sec Horn, Hafner, and
Owings (1992). The first follow-up of these students was conducted at 10th
grade in Spring 1990, with a second follow-up at 12th grade in Spring 1992.
Extensive student, parent, teacher, and school questionnaires were
administered.

Figure 1 gives a schematic framework showing the main categories of
variables available in the NELS:88 data structure and identifies with arrows
the relationships studied and reported in the present paper. We are
concerned here only with the analyses of mathematics tests into subscores at
8th and 10th grades and their prediction from student and teaching variables
at these grades. A following paper provides the parallel analyses of the
science tests. Data and analyses for 12th grade math and science will be
added as our research continues. The project combines analyses of national
NELS:88 data with our own small-scale studies of the same tests and
questionnaires. Technical reports showing our exploratory large-scale and
small scale work on the 8th grade math and science tests are available (see
Enris, Kerkhoven, & Snow, 1993; Snow & Ennis, in press). Another report,
on technical issues and comparative methodology, is forthcoming (Kupermintz
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& Snow, in preparation). Further reports on our analyses in other regions of
the data structure of Figure 1 are also planned.

Figure 1 here

The NELS:88 tests. Rock, Pollack. Owings, and Hafner (1990)
provided a detailed psychometric report for the NELS:88 base year test
battery. In brief summary, they produced four multiple-choice tests, covering
reading, history, math, and science, to fit into 1-1/2 hours of testing time and
yet be sufficiently reliable to justify IRT scoring. The tests would thus allow
adaptive testing at 10th and 12th grades, vertical scaling to study-individual
student gain across the three testings, and cross-sectional trend comparisons
with the 10th-to-12th grade gains obtained in 1980-82 in the High School and
Beyond study. The tests were also shown to be relatively unspeeded and free
of gender and ethnic bias. In addition, the test developers paid attention to
the need for educational and psychological diagnosis, as far as was possible
within practical limits. They formed content testlets to allow subscores for
specific content areas within subject-matter domains and, for reading and
math, they designed proficiency level scores to provide somewhat richer
cognitive interpretation than is usually available from standardized tests.

However, the test design also required that three forms of the 10th
grade math test be administered, for students who scored in the low 25%
(Form L), middle 50% (Form M), or high 25% (Form H) of the 8th grade
distribution. Only 20 items were common to the 8th grade and all three 10th
grade forms. Table 1 pr0v1des the math item identification numbers used in
the 8th grade form and in each 10th grade form, keyed to the master item
numbers we use to report our analyses. A verbal description of each item is
also provided, reproduced here from Rock, et.al. (1990); we are prohibited by
government rules from providing more detailed item descriptions. The 10th
grade reading comprehension test was also designed and administered in two
forms for two levels of 8th grade performance. However, for our math item
analysis we used only the 8th grade total reading IRT scale score as a
reference variable.

Table 1 here

O




It is not our intent here to criticize the NELS:88 psychometric work.
Indeed, we think it an excellent example of how to use modern measurement
theory and practice to make high quality, functional assessment instruments
that are useful within the purposes and constraints of study designs such as
those represented by NELS:88.

Nonetheless, it does seem worthwhile also to move outside the
boundaries of conventional psychometric theory and practice to see whether
more elaborated, richer cognitive interpretations might be gotten from the
tests, and also the questionnaires. NELS:88 cost millions of dollars to
cenduct; millions more will be invested in data analysis. We think
psychological interpretations of student achievement scores in these analyses
can and should go beyond the typically vague, molar constructs of "amount of
science knowledge possessed” or "level of mathematical ability reached.”
Traditionally, such statements offer the only interpretation one can attach to
total scores from conventional achievement tests. In current cognitive
instructional psychology, by contrast, "science knowledge" and "mathematical
ability" are highly differentiated theoretical constructs. To whatever extent
possible, these differentiations ought to be represented explicitly in
educational assessments. The NELS:88 content and proficiency level
subscores developed by Rock, et.al. (1990) are useful steps toward more
detailed construct interpretations; the present research tests whether or not it
is possible to go still farther in this direction.

Overview of Project Methodology

Emphasis on construct validity argument. Most achievement tests are
still evaluated for validity only on content sampling considerations -- what the

test measures is simply represented by the categories and tasks identified in
the test specification tables, along with evidence that the test is without
significant content bias. But validity theory has progressed far beyond the
simple operationalism of a generation ago (see, e.g., Cronbach, 1988, 1989;
Messick, 1989). Test users are entitled to expect evidence justifying
recommended interpretations and ruling out rival alternatives. And these
interpretations always involve hypothesized cognitive processes and structures,
not just content distinctions. Indeed, most achievement tests are built using
test specification tables that explicitly include process as well as content
distinctions, though these distinctions are almost never validated empirically.

Some might argue that the prime issue, at least for educational tests
such as NAEDP, is indeed content sampling not psychological constructs.

NAEP tests are simply designed to show the proportions of population groups
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who do or do not respond correctly to given problems, and the results are
often reported at the item level, with the item itself in view. Even here -
however, as soon as one moves to interpretations about proficiency levels, or
relations with other person or school characteristics, or explanations for
changes in trend lines across years, psychological constructs enter the
_discussion. Furthermore, when tests such as those of NELS:88 become
criteria for psychological and sociological hypothesis testing and modelling in
the service of policy decisions, interpretations rest primarily on construct
validity arguments. ' ‘

Our approach thus puts the validity standard foremost. We use two
kinds of studies in tandem: large-scale statistical analyses based on the item
level test and questionnaire data in the national sample; and small-scale
interview studies of the same .tests and questionnaires using local student
samples.

Large-scale studies. In support of the validity concern, a second
emphasis reflects Tukey’s (1969) view of data analysis as detective work. In
conventional psychometrics, one usually chooses a strong measurement model,
such as IRT, checks that the data can be made to fit it, and then proceeds
with application. Similarly, a particular statistical model is often fit without
regard for alternatives. But interest should also attach to features of the data
that the chosen model leaves out. It is not usually appreciated that all models
throw some kinds of information away; there are always tradeoffs. Therefore,
our approach in the large-scale studies uses alternative statistical analyses to
see if different methods lead to similar or different interpretations. We study
various item statistics, different kinds of item intercorrelations and
scatterplots, different component and factor analyses of items, different
rotations of axes, and different hierarchical modelling techniques. Nonmetric
multidimensional scaling adds a useful alternative to the metric methods. Our
main aim is to test whether meaningfully distinguishable and interpretable
subscores are possible within each test. If so, then the achievement construct
represented by the test has been substantially elaborated.

Small-scale studies. The small-scale studies also emphasize detective
work with multiple methods to reach understandable and usable subscores.
Here we obtain small samples of local students, administer the tests and
questionnaires to them under standard conditions similar to those used in the
nutonal study, and then interview them individually about their responses to
each item and their knowledge and attitudes in each subject-matter domain.
Retrospective reports about thought processes during the test are obtained.
Detailed coding schemes are used to score these interviews. Also included
for the science domain is a computer-based depth interview technique. In the
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plan for future studies are additional think-aloud, teach-back, and other
performance tasks designed to assess student ability, domain knowledge, and
thinking style. We can administer reference tests to locate students on
national norms, and choose student participants to represent different
categories of expertise and experience in the subject matter domains.
Computing subscores for each student using formulae derived from the large-
scale analyses allows individual profiles on the large-scale reference
dimensions to be compared. The evidence on items and students from the
small-scale studies is also used to corroborate or elaborate the large-scale

analyses. There is thus a two-way street; the large-scale analyses can help
direct the small-scale work and vice versa.

Given space limitations, the present report focuses on what we
consider the best large-scale results. Details of supporting analyses of both
large-scale and small-scale studies are merely summarized. Also, of course,
validation is a continuing process. The derived subscores for each test and
questionnaire are provisional; their meaning will be elaborated as multiple
analyses continue across the 8th, 10th, and 12th grade data. The aim of all
these methods is to reach richer substantive descriptions of what each item
might represent psychologically for different individuals.

Samples. The NELS:88 base year sample consisted of 24,600 8th
graders from 1052 schools. For some large-scale analyses, we used random
student subsamples to allow for cross validation. Analyses of test item data
were conducted initially using one-sixteenth random samples. Given
comparable results in different samples, these analyses were then merged to
form approximate quarter-samples and then half-samples of the 8th and 10th
grade data. This allowed us to bring teacher questionnaire variables into the
analyses in various corzbinations. In the NELS:88 sampling design, only
certain pairs of teachers were surveyed for each student; no student had both
math and science teachers reporting within a grade, and some students who
had a math or a science teacher reporting in 8th grade may not have had a
same-subject teacher reporting in 10th grade (see Horn, Hafner, & Owings,
1992). There was also substantial student attrition between grades. Thus,
sample size varies across analyses. For example, one original subsample we
chose for preliminary analyses consisted of 8th graders who had both math
and English teachers reporting; it contained 6022 cases. This number was
reduced to 5823 8th graders for test item dimensional analyses due to missing
scores, reduced further to 4059 cases for analyses in which both 8th and 10th
grade math scores were required, and reduced still further to 3044 cases for
whom a math teacher reported at 10th grade. Since about half of the original
subsample was lost due to these restrictions, we constructed subsamples that
maximized our test and teacher data in the subject domains. For math, our
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student sample included all students for whom cognitive tests and math
teacher responses were available at 8th and 10th grade; it consisted of 5460
cases. Attrition between grades is not random (see Ingels, et al., 1992), so we
can expect substantive differences in results for analyses on different
subsamples.

The samples for small-scale studies noted in this report included 50 8th
and 10th graders. They were recruited as paid volunteers from local schools.

Scoring. For the present analyses, the NELS:88 achievement tests
were scored at the item level simply as right versus wrong. The math
proficiency level scores were also used in some analyses (Rock, et al., 1990).
The IRT total score for Reading Comprehension was used to represent
general verbal comprehension and reading ability. The IRT total scores for
math and science were used for comparison purposes. Some of the NELS:88
teacher and student questionnaire items were rescored for our purposes using
our own analyses of national data. "

Analyses and Results

Our report of analyses and results is organized as follows. We first
report the dimensional analyses that lead us to define psychologically different
dimensions and subscores of mathematics achievement. Next we relate these
subscores to the categories of the test specification table originally used to
select items. We then form categories of predictor variables representing
student, course, program, and instructional variables for use in regression
models. Finally, we present regression results for main effects of these
variables on the 10th grade math achievement subscores, as well as on math
total scores.

Dimensional analysis. In previous exploratory work with the 8th grade
data alcne, five component subscales were identified for the mathematics test.
We used conventional factor and principal component analysis on both
Pearson and tetrachoric item correlation matrices, as well as nonmetric
multidimensional scaling for this purpose. A small-scale study using local 8th
graders also provided interviews concerning approaches and reactions to
particular items. The five-component solution with varimax rotation seemed
most satisfactory based on eigenvalues, the number of salient loadings on
each dimension, and their interpretability using all available information. A
unidimensional model could also be rejected using Stout’s (1987) test. The
upper panel of Table 2 shows these 8th grade mathematics subscales. Details
of the analysis are given by Ennis, Kerkhoven, and Snow (1993).




Table 2 here

Although justifiable on both statistical and substantive grounds in the
8th grade data, these distinctions were regarded as provisional. The last two
components were small; the last, particularly, was of doubtful reliability. And
it is well-known that item-level correlational analyses of this sort can be
distorted by distributional anomalies. When the test data for the 10th grade
year became available, it was possible to analyze both grade levels in parallel
and to include a cross validation by comparing factor loadings obtained in
random subsamples. We also investigated full-information factor analysis
{Bock, Gibbons, & Muraki, 1988) as a new and improved approach to this
problem. This new raethod is now implemented in the TESTFACT computer
program (Wilson, Woods, & Gibbons, 1991). It is based on specifying a
multi-dimensional item response model for the test items. Thurstonian factor
structure is employed for modelling the latent ability dimensions that affect
the probability of correct responses. Combining the n.odels for ability
structure and item response provides a strong tool for estimating item
loadings on distinct abilities. The statistical analysis of the test data is based
on maximum likelihood estimates and iterative computation, where a
principal factor analysis of the tetrachoric correlation matrix provides
reasonable starting points for the iterative process. The procedure allows for
combining information from different test forms, omitted responses, and
adjustment for guessing. Factorial solutions can be rotated using orthogonal
or oblique techniques. An explicit Chi-square statistic for improvement in fit
is used to determine the number of statistically significant dimensions. Once
a factor structure is decided upon, a Bayes estimate (average of the posterior
ability distribution) generates scores on each ability dimension.

Along with exploratory use of conventional factor analyses applied to
the 20 math items common to 8th grade and 10th grade test forms, and to the
low, middle, and high 10th grade test forms separately, we also applied the
full information factor method to the 8th grade and 10th grade test items, and
to the combined data set for both grades. Since mathematical abilities were
expected to be correlated, promax rotation was employed. Results proved
highly satisfactory. We were able to obtain factor solutions that apparently
provided the same two major dimensions in both grades. At the 8th grade
level, the full-information procedure again identified the inferential reasoning
factor shown in Table 2 and a knowledge-computation factor that combined
the advanced and basic facts knowledge and computation factors of Table 2.
It also isolated the specific counterexample reasoning items as a factor. At
the 10th grade level, the full-information procedure again provided the
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inferential reasoning and knowledge-computatica factors, along with a small
factor different from that obtained at the 8th grade level. With the 8th and
10th grade levels analyzed together, the number of dimensions was decided
using change in Chi-squared statistics for the fitted models. This indicated
significant results for adding a second (Chi-squared change = 739.34, df =
57) and a third factor (Chi-squared change = 155.38, df = 56).

The lower panel of Table 2 defines the two major factors that appear
common to both grade levels regardless of test form. Table 3 gives the factor
loadings for each item at the two levels. In both years, items that were highly
loaded on the first factor, symbolized as MR, required mainly inferential
reasoning. Typically, no direct computation was called for in answering these
items; rather, the correct solution was derived more from a logical argument.
Although some knowledge of formal mathematical facts facilitated the
solution, it alone was not sufficient to arrive at the correct answer. Most of
the items in this factor introduced some kind of a scenario, not just
mathematical expressions. On the other hand, items that were highly loaded
on the knowledge-computation factor, symbolized here as MK, required
mainly a straightforward computation or the use of mathematical knowledge.
Most of these items were composed of a mathematical expression for which a
one-step solution was possible. New items that were added to the 10th grade
test had the same characteristics as 8th grade test items in each factor; of the
19 common items in the 10th grade reasoning factor, 16 were also classified
as reasoning items in the 8th grade. The correlation between the two factor
scores (over persons) was .72 and .75 at 8th and 10th grade, respectively. The
correlation (over items) of the reasoning factor loadings from the 10th grade
with the 8th grade reasoning factor loadings was .69; the correlation was -.74
with the 8th grade knowledge-computation factor. New items added to the
knowledge-computation dimension appeared to be in the form of one-step
solution mathematical expressions; 11 of the 18 items in this factor were
classified in the 8th grade test as knowledge-computation. The correlation of
10th grade factor loadings was .68 with the 8th grade knowledge-computation
factor and -.73 with the 8th grade reasoning factor.

Table 3 here

A noted, the full information factor analysis indicai>d the existence of
a third factor in each grade (X and Y in Table 3). In the 8th grade, this
small third factor was not easily identified as a distinct mathematical ability;
in the earlier exploratory work, it was interpreted as counterexample
reasoning (MC4 in Table 2). The three defining items were the only
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comparison items for which the correct answer was "the relationship cannot
be determined from the information given", so item format may also be the
key here. Respondents, when answering incorrectly, also tended to prefer one
particular option (resulting in high values for the guessing parameters). In
the 10th grade, the third factor seemed to capture a technical aspect of
functional notation that was present in both of the two highest loading items.
These items were also loaded substantially on the knowledge computation
factor. A

For present purposes, we have not retained these third factors, or the
distinction between basic and more advanced knowledge and computation
that seemed apparent in the 8th grade exploratory analyses. This does not
mean that such distinctions can never be important. For example,
counterexample or none-of-the-above reasoning could be usefully
distinguished if represented by a more substantial range of items. Also, in
other work on gender differences in the NELS:88 data, the subscore for basic
facts computation favored females over males, on average, whereas an
advanced knowledge subscore did not (see Snow & Ennis, in press).
Furthermore, factors that appear at one grade level and not another, or item
factor loadings that change between levels, should not be discounted. For
example, variance arising from one source, e.g. reasoning, at one grade level
could be replaced by variance from another source, e.g. knowledge, at a later
grade level due to the effects of intervening instruction. We adopt the
common two-factor representation as most expeditious for present purposes

while recognizing that some finer distinctions may prove more useful for other
purposes.

The common two-factor solution for the math tests at both 8th and
10th grade levels permitted computation of separate factor scores at each
level expressed on a common psychometric scale, despite the involvement of
different items at each level. This in turn allowed us to examine some
alternative measures of achievement gain or growth. If one assumes that like
factors at the two grade levels are indeed the same ability dimension, then
simple gains or residual gains might be computed separately for knowledge
and reasoning, or a three-parameter growth model might be considered (with
parameters reflecting average baseline, average growth, and differential
growth in knowledge versus reasoning). Clearly, a two-dimensional
representation of learning gain would be valuable theoretically, even though
the growth model approach is extremely limited when only two points in time
are available. When 12th grade data can be added, however, the growth
model approach may prove uniquely useful.
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For the present, we think it preferable to consider like factors across
grade levels as similar but not vertically equated dimensions.  Regression
analyses can simply treat 8th grade factors as predictors of 10th grade factors,
with no special status in the spectrum of other predictors. No assumption of
8th to 10th grade equivalence is then needed. (see Kupermintz & Snow,
forthcoming, for technical discussion of this issue, as well as comparative and
cross validational analyses).

Our subscale interpretations were aided considerably by small-scale
interview studies of loca! 8th and 10th graders concerning their approaches
and reactions in trying to solve particular items. Their responses for math
iterns included: guessing, eliminating some alternatives then guessing,
computation, estimation, reasoning the item out, and immediately knowing
the correct response. Apparent sources of incorrect responses were also
identified, including: computational errors, carelessness, lack of knowledge,
incorrect knowledge, failure to reason, and incorrect reasoning. Instances in
which examinees arrived at the correct answer using incorrect reasoning or
knowledge were also noted. It did appear that MR items called more on
reasoning strategies and produced errors due to incorrect reasoning as well as
lack of knowledge. On the other hand, MK items more often involved
computation or estimation strategies, with errors more often arising from
computational mistakes as well as faulty knowledge (see Ennis, Kerkhoven, &
Snow, 1993).

In addition to assisting with the interpretation of our math subscores,
the interviews identified some problem items. Of particular concern are
several items for which the correct answer can be obtained using incorrect
reasoning or knowledge. Examples are given in Ennis, Kerkhoven, & Snow
(1993). We decided to leave these in the large-scale analyses, but to keep
track of them in further analyses and interpretation. Of the four items that
might be questioned on this basis, none was crucial to defining a factor at
either grade level. Three of the four had low loadings on all factors at one or

both levels. Thus it seems that the results were not negatively influenced by
retaining these items.

Relation to test specifications and proficiency scores. As noted earlier,
the NELS:88 math test was developed using a typical process-by-content test
specification table. Separate content scores were computed. Examinees were
also assigned to proficiency levels according to their performance on three
four-item subsets. An important question concerns how our proposed math
subscores relate to these proficiency levels and to the process and content
dimensions of the test specification table.
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Table 4 shows the items as given in the original 8th grade specification
table (see Rock, et al.,, 1990} and indicates the subscore to which we assigned
each item. Items that mark one of the three proficiency levels are also
designated (1), (2), or (3). Our subscores do not represent any of the original
process or content distinctions cleanly. Although there is 2 preponderance of
MK items in the skills-knowledge row and of MR items in the understanding-
comprehension and problem solving rows, each subscore spans both process
and content categories. Comparing subscores and proficiency levels, each
proficiency level appears to be a mixture of knowledge and reasoning at the
8th grade level. We do not yet have a test specification table for the 10th
grade items. In the i10th grade factor analysis, however, Proficiency Level 1
items load on the MK or the Y factor, Proficiency Level 2 items all load on
MK, and all but one Proficiency Level 3 item load on MK. Also, many of the
proficiency items show relatively low factor loadings at 8th grade, as though
the -factor solution did not represent them well. It would appear that the
psychology of the proficiency levels is not well understood and may change
across grades, with reasoning variance tending to become knowledge variance.

Table 4 here

- Student, course, program, and instructional variables as predictors. In
addition to the student achievement factors from 8th grade, several other
categories of variables at one or both grade levels provided predictors of
achievement factors at 10th grade. As shown in Figure 1, 8th grade student
reading ability was one index of general prior achievement. Gender,
ethnicity, and socio-economic status indices were obvious additions. Further,
the student survey included questions on learning opportunities outside cf
school, such as visits to museums, computer availability, parental help with
homework, and amount of TV watching, as well as formal courses taken in
school during present and past years. In addition to courses taken, we have
included an index for academic program, contrasting advanced, academic, and

general-vocational tracks. A separate index for those students in programs for
the gified and talented was also included.

Both the 8th and 10th grade student questionnaires also contained
locus of control and self esteem scales, as well as items concerned with
anxiety about asking questions in class and attitude toward different subject
areas. Our own factor analysis of the 8th grade national sample data (not
reproduced here) produced component scores for positive and negative
statements about self esteem and a separate score reflecting attributions of
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success to luck versus hard work (called here Pos Self 8, Neg Self 8, and Luck
8). _

The variable labeled "positive self-esteem" represents a factor reflecting
positively worded statements (such as "I am a person of worth"); the "negative
seif-esteem" factor represents negatively-worded statements (such as "at times,
I think I am no good at all'). We also produced separate scales for math
anxiety and positive attitude toward math (called Math Anx and Math Att 8).
We expect that these student affective indicators will be important criterion
mersures along with the cognitive subscores in subsequent longitudinal
analyses; however, we have used them only as predictors in the present work.

From the 10th grade teacher questionnaire, we have used teacher
report on student absence and track level. We also subjected teacher reports
of instructional practices to a series of principal component analyses with
varimax rotation (not reproduced here) to identify distinct instructional
treatment dimensions. These are defined in Table 5. Of particular interest
here was the teaching dimension called "emphasis on higher-order thinking”,
including emphasis on conceptual structure and problem solving. In the
present work and in related studies (e.g., Raudenbush, Rowan, & Cheong,
1993; Talbert & DeAngelis, forthcoming) we have investigated this variable as
an indicator of teaching for understanding as opposed to memorization and
computation. As a complement to this index, we also included as a predictor
variable student report of teacher emphasis on understanding from the 10th
grace student questionnaire.

Table 5 here

Regression analyses for main effects. To explore the degree to which
predictors of academic success might be differentially important for different
components of math achievement, regression analyses were carried out at the
subscore level as well as for the total math IRT scores.

Four regression models were computed for each of the two major math
subscores in 10th grade. Prior achievements represented by 8th grade math
and reading scores were entered at the first step in each model. The student
model then included student SES, gender, ethnicity, absenteeism, and the 8th
grade affective factors. A second model examined course and program
variables. A third included all the teacher and instructional factors. Finally,
a fourth model included indicators of opportunity to learn outside of school.
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All models were fitted by ordinary least squares on random halves of the
sample and compared. The present report shows combined results only for
the total sample. A fixed alpha level of .01 (corresponding to a t-ratio of
about 2.5 in this sample) was used tc designate statistical significance. All
variables (except dummy indicators) were standardized prior to model fitting.

Table 6 here

Table 6 presents the regression results for the MK factor as dependent
variable. As expected, 10th grade math knowledge was predicted by 8th grade
reading and math reasoning as well as math knowledge. Higher achievement
on MK was also associated with higher SES and Asian ethnicity. It is
interesting to note that no gender or other ethnicity effects were found for
this factor. As for the affective variables, higher math knowledge was
associated with a positive attitude toward math and, to a lesser extent, with
emphasizing hard work over luck and reporting a less negative self esteem.
There was also a negative effect due to student absence.

Strong effects were found for the course and program indicators.
Students who scored higher on math knowledge were more likely to have
taken algebra (I or II) and geometry courses, while lower achievement was
strongly related to having taken general math courses. Students in the
advanced track scored somewhat higher on math knowledge, whereas students
in the general-vocational track scored much lower, compared with students in
the academic track. Also important was having taken algebra in 8th grade.

The best instructional treatment predictor of math knowledge was
teacher emphasis on higher order thinking. Student report of teacher
emphasis on understanding was also significant. Higher student scores on
math knowledge were also related to teacher reports of more use of
traditional instruction, less use of individualized instruction, and more time

assigned to homework. A negative effect was associated with emphasis on
math applications.

Finally, students who reported visiting science museums and having a
computer at home for their educational use showed higher math knowledge

scores. Students with lower scores received more help from parents on
homework.

Table 7 here
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Table 7 presents the regression results for the MR factor. Again as
expected, 8th grade reading and math knowledge as well as math reasoning
predicted 10th grade math reasoning. Note however that prior math
reasoning appears to be a stronger predictor of later math knowledge than
prior math knowledge is of later math reasoning. Also as before, students
with higher SES performed better on reasoning. Large gender and ethnicity
effects were found; males and non-black students showed higher math
reasoning scores on average. No affective variables showed significant

relation to reasoning. These patterns stand in contrast to the findings for math
knowledge.

Course effects were less pronounced on math reasoning compared with
math knowledge. Again, general math courses were associated with lower
scores, whereas Algebra II and Geometry courses were associated with higher
scores. It is also noteworthy that taking Algebra I was associated with lower
math reasoning scores; this effect became significant in the overall model and
is analyzed further below. No significant track effects were found.

As with math knowledge, student achievement on math reasoning was
associated with teacher reports of more emphasis on higher order thinking
and less emphasis on individualized instruction, though both effects appeared
to be weaker. Here also student reports of teacher emphasis on
understanding were not significant.

Having a computer in the home for educational use appeared to have
a marked relation to reasoning. Again, parent help with homework showed a
negative relation. Museum visits had little relation to reasoning.

The next stage of analysis consisted of fitting two overall regression
models, for MK and MR separately, to include all of “he significant predictors
from the previous analyses. Table 8 presents these overall models for the
10th grade MK and MR factor scores, along with comparable results for the
total math IRT score.

"Table 8 here

For the knowledge factor, after taking other significant factors into
account, the student variables reflecting SES, Asian ethnicity, positive self
esteem, and emphasis on hard work over luck fell out of statistical
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significance. The coefficient for Black ethnicity became significantly negative.
The effects of museum visits and home computers were reduced. All other
effects previously noted remained significant in the overall model.

The overall model for the reasoning factor was consistent with the
partial models. The exception, previously noted, was that taking Algebra I in
the 9th or 10th grade became a statistically significant negative predictor.
Further analysis revealed that this result arose from a quadratic pattern in the
distribution of Algebra I course taking along the two math achievement
scales; the likelihood of having taken that course n 9th or 10th grade was
considerably higher in the middle achievement region in comparison to the
upper and lower regiozs. However, since lower MR scores in particular were
more associated with. Algebra I than higher MR scores, on average, negative
relation appeared for MR, not for MK. '

It is also worth noting that when comparing the magnitude of the
coefficients between the overall and partial models, almost no changes were
observed for MR. On the other hand, overall model coefficients for MK were

generally much smaller when compared with the coefficients from the partial
models.

Table 8 also shows that using the total math IRT score as a criterion
often seems to average the effects found for the two math factors studied
separately, and important effects are thus missed. The gender effect was
significant on reasoning, nonsigniticant but opposite in sign on knowledge.
Yet the total score analysis taken alone would have dismissed gender
differences as unimportant in general. Also, the Black ethnicity effect was
much stronger on reasoning than .n knowledge. On the other hand, the
knowledge factor showed stronger effects for student math attitude, and for
all significant course and instructional treatment variables. Student report of
teacher emphasis on understanding was important only for the knowledge
score, not for reasoning, yet the total score analysis would support a general
conclusion. Track showed no relation to reasoning, whereas home computer
availability was associated more strongly with reasoning. These differences
demonstrate our point that total score analyses may misconstrue some effects
and miss some effects entirely; psychological construct interpretations and
policy considerations may both be helped by differentiating total scores into
psychologically and educationally meaningful subscores.

Discussion and Conclusions
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The analyses reported herein examine only a few of the many
important questions that can be addressed with the NELS:88 data. And the
results in hand so far must be considered provisional. Our plans for further
analyses include studies of a variety of student and instructional treatment
interaction hypotheses and much more detailed analysis of gender, ethnic, and
other personal effects. Nonetheless, we believe our research to date supports
several important conclusions and implications. These provide guidelines for
further NELS:88 data analyses. They also suggest a new approach to future
survey research on educational achievement, with particular reference to

readiness and opportunity to learn, and the evaluation of educational
programs.

A first conclusion is that the NELS:88 mathematics test is
multidimensional and should be treated as such. At least two dimensions,
representing separate scores for knowledge and reasoning, can be
distinguished at both 8th and 10th grade levels. These two dimensions differ
psychologically and thus statistically in their relations to other student,
instructional, and school characteristics. They should therefore be
distinguished in research seeking 10 improve our understanding of student
readiness to learn, of teacher, course, and program effects on opportunity to
learn, and of effective instructional design in general.

A second set of conclusions derives from this distinction. Math
knowledge and reasoning, which can be distinguished in the laboratory, can
also be distinguished in survey-level multiple choice tests. Of course, the
labels "knowledge" versus "reasoning" offer only a simplistic shorthand. Both
are complex constructs intimately related in cognitive learning and
performance. But it is reasonable to think of these two aspects of
mathematical achievement as having different weight in influencing student
performance on particular tasks. Some tasks emphasize the application of
concepts and computational skill. Although reasoning may be involved in
deciding what is applicable and what to do when, differences in student
success or failure on an item arise mainly from the presence or absence of the
relevant declarative . 1d procedural knowledge. Other tasks emphasize
perceptive analysis and sequencing of steps to find solutions to problems
embedded in scenes. Knowledge of concepts and computation is involved, but
here student success or failure arises more from the ability to decontextualize
the key mathematical aspects of a problem and interrelate them in a system.
The contrast in the NELS:88 math test may be akin to the more general
distinction between crystallized and fluid intelligence (see, e.g., Carroll, 1993;
Snow, 1982). It is known that many other math achievement tests display
these two aspects of ability. Although growth in crystallized knowledge and
skill and in fluid analytic reasoning in mathematics are both promoted by




educational experiences, it is to be expected that they will be differentially
affected by specific instructional practices and learning opportunities.

Our results suggest some of these differentials. Average differences
favoring males occur on reasoning but not on knowledge. Average
differences favoring Asian-Americans occur on knowledge, but not on
reasoning, while average differences reflecting African-American disadvantage
are more pronounced on reasoning than on knowledge. Research aiming to
understand such differences will be aided by knowing where to look more
specifically, and thus perhaps what to lock at in the spectrum of readiness and
opportunity to learn variables. Student affective variables such as positive
attitude toward math seem more relevant to knowledge than to reasoning.
Instructional, course, and program variables also show more pronounced
relation to knowledge than to reasoning, as does time spent on homework.
On the other hand, home computing and the advantages of SES in general
seem more strongly related to reasoning. All these patterns seem consistent
with the hypothesis that crystallized knowledge growth is more influenced by
formal educational factors and by personal factors such as attitude,
homework, and attendance, whereas growth in fluid reasoning ability is more
a function of informal learning experience promoted by home and family
advantages, as well as school advantages, over the long haul.

With respect to opportunity-to-learn objectives, it is clear that taking
Algebra early, and taking advanced courses by 10th grade, are positive factors
in promoting both knowledge and reasoning development. Several
instructional factors, such as emphasis on traditional instruction and
homework, also promote knowledge growth specifically. But beyond course
taking patterns, only teacher emphasis on higher order thinking and parental
provision of home computers for educational use seem associated with both
knowledge and reasoning development in mathematics.

The notion of opportunity to learn should consider the cognitive
dimensions of student learning and differences in the instructional
environments conducive to developing different kinds of cognitive aptitudes.
Indeed, the thrust of current reforms in math education aim precisely to
enhance U.S. students’ math reasoning aptitude, which our analysis suggests is
not strongly related to in-school learning opportunities at present. Large-scale
assessments of student learning and educational progress should certainly aim
to represent the cognitive and educational distinctions being made by
cognitive psychologists, math educators, and by the nation’s education goals.

A final conclusion is a reemphasis and recommendation that further
research aimed at theory or policy not use total math IRT scores as a lone
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criterion. We believe our analysis shows that mathematizs achievement is
multidimensional and that much is to be gained by recognizing this fact.
Research that relies on total score criteria misrepresents some important
issues and misses others altogether.
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Figure Caption

Fig 1. A schematic representation of categories of variables in the NELS:88
survey indicating the main relationships studied in the present report.
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Aruitoxt provided by Eic:

Table 1

N m e d iption
Master ltem 10th Grade 10th Grade 10th Grade
Number 8th Grade Form L Form M Form H  Description
MO1 1 1 1 Compare 2 algebraic expressions, given values of variables
MO2 2 2 1 Compare 2 numbers read from a graph
MO3 3 3 2 Read two numbers from a graph and perform an operation with them
MO4 4 2 4 3 Compare two algebraic expressions, given a relationship
MOS 5 3 5 4 Perform an arithmetic operation and compare result with a number
MO6 5 6 5 Determine coordinates of points on a graph, perform an operation
MO7 7 7 6 Compare two algebraic expressions
M08 8 8 7 Perform an arithmetic operation, compare resuit with a number
MO9 9 4 9 8 FPerform an arithmetic operation, compare result with a number
M10 10 5 10 9 Compare statements about locations on two number lines
M11 11 10 11 10 Compare length of line segments iilustrated in a diagram
M12 12 11 12 11 Compare expressions involving multiplication and division of integers
M13 13 12 13 12 Compare an integer with an expression using division of decimals
M14 14 13 14 13 Compare expressions, given information containing exponents
M15 15 14 14 Compare expressions, requifing solution of simple equations
M16 16 15 15 Compare two quantities of money expressed differently
M17 17 16 16 Compare two simple arithmetic expressions involving division
M18 18 17 17 15 Compare two simple arithmetic expressions involving division
M19 19 18 18 Compare two simple arithmetic expressions involving multiplication
M20 20 21 19 Set up a simple equation that is the soiution of a word problem
M21 21 22 16 Estimate a probability that is the solution of a word problem
M22 22 23 . Determine the greatest of 4 decimal numbers
M23 23 24 20 Determine the smallest of 4 fractions in a word problem
M24 24 25 21 17 Choose verbal description of a problem that doesn't match diagram
M25 25 26 Determine the length of a line segment in a diagram
M26 26 27 22 18 Evaluate a relationship given statements about the variables
M27 27 28 Find an algebraic expression odd or even given fact about variables
M28 28 29 23 19 Solve a word problem requiring logical inference
M29 29 30 24 20 Solve a word problem whose answer is an algebraic expression
M30 30 31 25 21 Solve a word problem using multiplication or factoring
M31 31 32 26 - Choose which decimal number is between two other numbers
M32 32 33 Choose points on a number line that include a specified decimal
M33 33 27 22 Estimate a number using a percentage indicated in a diagram
M34 34 34 28 23 Solve a simple algebraic equation
M35 35 35 29 24 Evaluate statements inferred from a word problem with a fraction
M36 36 36 30 25 Choose which expression is different from a specified percentage
M37 37 31 26 Solve a word problem requiring logical inference
M38 38 37 32 27 Evaluate statements referring to area and diagonal of a diagram
M39 39 38 33 28 Supply number that completes an algebraic equation correctly
M40 40 39 34 29 Simplify an algebraic expression
M41 6 Perform an arithmetic operation, compare resuit with number
M42 7 Compare two numbers containing exponents
M43 8 Compare two numbers involving multiplication and division of fractions
M44 9 Compare two expressions involving addition and multiplication of integers
M45 19 Compare two expressions involving addition and subtraction of a variable
M46 20 Perform an arithmetic operation involving decimals, compare with number
M47 40 Identify paralle! line segments
M48 35 34 Determine distance between points in a diagram
M49 36 36 Solve a long division problem
M50 37 37 Determine length of side of figure given area
M51 38 a8 Determine least odd integer from set of expressions
M52 39 39 Solve an algebraic inequality
M53 40 40 Determine which of a set of expressions represents a positive number
M54 30 Compute a factornal
M55 31 Solve a word problem involving area and dimensions
M56 32 Determine highest score given lowest score, mean, and range
M57 33 Solve an equation involving function notation
M58 35 Solve an equation involving function notation and exponents

Source: Rock, Pollack, Owings, & Hafner (1990)
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Table 2

Proposed Math Subscales and Interpretations for
Preliminary 8th Grade and Revised 8th and 10th Grade Analyses

Components from Preliminary 8th Grade Analysis

MCi:

MC2:

MC3:

MC4:

Advanced Knowledge - Computation (items 5, 8, 9, 11, 12, 13, 14, 18, 34, 39, 40)
Computational items that require knowledge of roots, exponents, negative numbers, algebra,
multiplication or division of decimals.

Inferential Reasoning (items 21, 22, 23, 25, 27, 31, 35, 37)
"If--then" items that require examinee to draw conclusions about possible outcomes, given a particular
scenario, and probability items; these items do not require (or invite) computation.

Basic Facts - computation (items 15, 16, 17, 19, 20)
Items that require basic mathematics knowledge, with answers readily computed by adding, subtracting,
multiplying, or dividing whole numbers.

Counterexample Reasoning (items 4, 7, 10)

Items that invite examinees to devise their own concrete examples (a typical item involves the
comparison of twe unspecified real numbers) to eliminate alternatives.

Items that require interpretation of graphical or figural information as well as several computational

Items requiring inferential reasoning as in MC2 above, usually involving a scenario not just math
expressions. Minimal computation needed. Multiple steps required. Mathematical knowledge necessary

MC5: Muitiple Steps with Figures (items 3, 33, 38)
steps.
Factors from Revised 8th and 10th Grade Analysis
MR: Mathematical Inferential Reasoning
but not sufficient.
MK: Mathematical Kn‘.owledge and Computation

Items requiring computation and knowledge as in MC1 and MC3 above, usually involving solution of
a mathematical expression in one or two steps. Minimal inferential reasoning required.




ERIC

Aruitoxt provided by Eic:

Factor MR MK s MR MK bd
M54 99* -32 03
MES 94* 27 15
M25 68* 09 o8 81* 04 -14
M37 57* ~06 18 81* 01 -06
M22 92« -12 -07 80% 03 -03
M56 78% 01 ~04
M50 75% 11 08
M38 16 25% 10 72% 12 ~-06
M48 €8* 04 ,01
M31 70%* 02 03 66* 00 ‘14
M36 . 39* 10 28 59%* 21 -03
M21 58* 02 -05 57* 20 -13
M52 56* 18 o1
M35 5% 05 -05 50%* [¢]] 0s
M27 48%* 14 23 48* 34 11
M28 40* 05 17 48* 12 13
Ml0 17 -10 T1* 45% 36 -01
M26 36* 27 16 45% 31 -00
M51 44* 38 04
M53 43% 22 [o:]
M33 36* 00 06 41* 15 02
M30 26* 16 14 38%* 11 14
MO6 18 26 32 37%* 35 08
M24 38* 20 -01 36%* 16 11
M29 34* 17 22 36% 26 0S8
M47 36 =02 22
MO02 40% 06 20 34* 31 -04
Mas 29 20 26
M32 48%* 07 [o]:} 32% 04 0s
M45 30 85* 36
M42 11 72+ 08
M15 -06 84* ~11 11 70% 03
M44 05 70%* 10
M4l 22 68* 16
MO5 -05 52* 34 11 67% 12
MlS o8 6€3* -08 08 62* 23
M13 26 36* 14 13 61% 00
M1l2 12 38* 22 12 61* 03
Ml8 36* 15 30 38 60* 15
Ml4 28 3g8%* 11 26 59% -03
M38 20 37* 35 34 57« -02
Ml1l 30%* 2% 13 28 57% ~10
MOS 14 43* 28 24 53% 00
MO1 10 31 38%* 00 53% 29
MO7 11 -05 75% 36 52% ~12
M34 11 51* 18 14 52% 15
M43 08 49% 41
M40 -18 60%* 40 15 46* 20
M04 01 06 73% 42 44* =01
MO3 23 36* 08 27 43* 02
MO8 36* 28 13 18 42* 10
M46 05 42 40
M17 31%* 17 01 14 26* 08
M57 14 42 72%
M58 01 38 53%*
M20 38%* 26 -18 21 04 45*
M23 54* =02 -08 28 -10 33%
Mlé 16 49* =17 07 20 28%*
Notes.
Decimal points omitted
* indicates highest loading for each item
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Table 4

i Content
Process Arithmetic I Algebra Geometry Data / Advanced
Probability topics

Skills / M 5 (2)f X 1 MR 25 M 3 X 6
knowledge MR 8 M 15

M 9 MK 34

MK 12 MK 40 (3)

MK 13 (2)

M 16 (1)

MR 17 (1)

M 18 (2)

M 19 (1)

M 22
Understanding / X 10 X 4 M 11 (3)| MR 2
comprehension M 20 (1)} X 7 MR 37 MR 21

’ MR 31 M 14 (2)] MK 38 M 24

MR 32 MR 26

MR 33 M 27

MR 36 (3)| MR 29

MK 39 (3)

Problem solving MR 23 MR 35

MR 28

MR 30
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Table 5

Instructional Factors with Corresponding Items from the NELS:88 10th Grade
Matl £5 I - . .

Factor and

Item Identifier® Item Description

TRADITIONAL INSTRUCTION
Py F1T2_18D Use of oral question response
F1T2_18A Use of lecture
F1T2_12A Use of textbooks
F1T2_1l6Aa Time spent instructing whole class

ADMINISTRATIVE TASKS
F1T2_16F Time spent on administrative tasks
F1T2_16D Time spent maintaining order
F1T2_16E Time spent administering test/quizzes
F1T2_16B Time spent instructing small groups

DISCUSSION
F1T2_18E Use of student-led discussions
F1T2_ 18C Use of whole-group discussion
‘F1T2_18H Use of oral reports

INDIVIDUALIZATION
F1T2_ 186G Use of written assignments
F1T2_18F Use of working in small groups
F1T2_16C Time spent instructing individuals

MATERIALS/AUDIO-VISUALS
F1T2_18B Use of film
F1T2_1l2C Use of audio-visual materials
F1T2_12B Use of other reading materials
F1T2_16G Time spent conducting lab periocds

TEACHER CONTROL .

. F1T2_17¢C Control over teaching techniques
F1T2_17E Control over amount of homework
F1T2_17D Control over disciplining
F1T2_17B Control over content taught
F1T2 17A Control over texts/materials

EMPHASIS ON MATH APPLICATIONS
F1T2M19F Emphasis on importance of math
F1T2M19K Emphasis on math in business
F1T2M191 Emphasis on math in science
F1T2M19D Emphasis on interest in math
F1T2M1S9L Emphasis on gq's about math

EMPHASIS ON HIGHER ORDER THINKING
F1T2M19J Emphasis on math concepts
F1T2M19A Emphasis on logical structure
. F1T2M19B Emphasis on nature of proof
F1T2M19G Emphasis on problem solution

EMPHASIS ON ENOWLEDGE/COMPUTATION
F1T2M15C Emphasis on memorizing facts
F1T2M19H Emphagis on speedy computation

Neote.

1 2 Item identifiers are variable names on NELS:88 public data release
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ressi e for 10t

VARIABLE

r Math

STUDENT

atical

wledge

COURSE/PRG

(N=5460)

INSTRUCT

QUTSIDE

INTERCEPT 42

PRIOR ACHIEVEMENT
READING 8 16
MATH KNOWLEDGE 8
MATH REASONING 8

STUDENT
ABSENT
GENDER -05
3= 07 *
ASIAN 11°
BLACK -02
HISPANIC 04
MATH ANX -01
LUCK 8
NEG SELF 8
POSSELF 8 -01
MATH ATT 8

COURSE/PROGRAM
ADVANCED TRACK
GENERAL TRACK
GFTEDPRG

GENERAL MATH TAKEN
ALGEBRA I TAKEN
ALGEBRA Il TAKEN
GEOMETRY TAKEN
ALGEBRAIN 8TH

INSTRUCTIONAL
TRADITIONAL INSTRUCT
ADMINISTRATIVE TASKS
DISCUSSION
INDIVIDUALIZATION
MATERIALS/AV

TEACHER CONTROL

EMPH. MATH APPLICATIONS
HIGHER-ORDER THINKING
KNOWLEDGE/COMPUTATION
UNDERSTANDING
HOMEWORK DISCUSS

TIME ON HOMEWORK

OUTSIDE

SCIENCE MUSEUMS
HOURS TV

COMPUTER IN HOME
COMPUTER CLASS
HELP WITH HOMEWORK

R-SQUARED 63

156

16*
37
31"

06
-08 ¢

-34°
18 *
17
19
09 *

66

39

16 *
40 *
35*

o6 *
-03
00
-07°*
-01
-02
-05*
13*
-02
05"
02
05"

64

356

18°*
43 °*
36"

08"
-00

08 *
-03*

62

Decimal points omitted
‘p<.01
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Table 7

i It 1 de Mat tical ing (N=5460)

VARIABLE

STUDENT

COURSE/PRG

INSTRUCT

QUTSIDE

NTERCEFT

PRIOR ACHIEVEMENT
READING8

MATH KNOWLEDGE 8
MATH REASONING 8

STUDENT
ABSENT
GENDER
S
ASIAN
BLACK
HISPANIC
MATH ANX
LUCK 8
NEG SELF 8
POS SELF 8

JMATH ATT 8

COURSE/PROGRAM
ADVANCED TRACK
GENERAL TRACK
GFTEDPRG

GENERAL MATH TAKEN
ALGEBRA| TAKEN
ALGEBRA | TAKEN
GEOMETRY TAKEN
ALGEBRA IN 8TH

INSTRUCTIONAL .
TRADITIONAL INSTRUCT
ADMINISTRATIVE TASKS
DISCUSSION
INDIVIDUALIZATION
MATERIALS/AV

TEACHER CONTROL

EMPH. MATH APPLICATIONS
HIGHER-ORDER THINKING
KNOWLEDGE/COMPUTATION
UNDERSTANDING
HOMEWORK DISCUSS

TIME ON HOMEWORK

OUTSIDE

SCIENCE MUSEUMS
HOURS TV

COMPUTER IN HOME
COMPUTER CLASS
HELP WITH HOMEWORK

R-SQUARED

42

16 *
28 *
47 *

-05*
13°*
08 *
03
-20 *
-04
-01
-01
-03
-00
02

66

38

65

45

03
-01

-06*
-01
-01
-01
06"
-02
01

02

65

40

03
-01

i6°*
-03*

65

Decimal points omitted
“p<.01




Table 8

Begression Results for Overall Models for 10th Grade Mathematical Knowledge. Mathematical Reasoning, and
Total Math IRT Score (N=5460)
* VARIABLE MK MR TOTAL IRT

NTERCEFPT 19 33 12

B |

* PRIOR ACHEVEMENT
READING 8 13°* 14°* 13°
MATH KNOWLEDGE 8 33° 21° 24"
MATH REASONING 8 29 ° 44" 33°
STUDENT
ABSENT -086 * -04 " -05 *
GENDER -03 12° 01
&3 03 06 * 03"
ASIAN 06 -00 00
BLACK -08 * -24° -14 *
HISPANIC 01 -06 -01
LUCK 8 -02 -01 -01
NEG SELF 8 -01 -01 -01
MATH ATT 8 ’ 04° 01 03"
COURSE/PROGRAM
ADVANCED TRACK 04 02 02
GENERAL TRACK -06 * 02 -04 °
GENERAL MATH TAKEN -20° -14°* Too-22°
ALGEBRA | TAKEN 12° -07 06 *
ALGEBRA |l TAKEN 17 11° 12°
GEOMETRY TAKEN 10" 06" o8 *
ALGEBRA IN 8TH 08 * 07° 08 *
INSTRUCTIONAL
TRADITIONAL INSTRUCT 04° 02 03°*
INDIVIDUAUZATION -05 * -04° -05 *
EMPH. MATH APPLICATIONS -03* -02 -03 *
HIGHER-ORDER THINKING 08 * 05 * 06 *
KNOWLEDGE/C OMPUTATION -02 -01 -01
UNDERSTANDING 04 ° 01 03°
TIME ON HOMEWORK 03* 01 02
QUTSIDE
SCIENCE MUSEUMS 02 -01 00
COMPUTER IN HOME 06 * 09" 07
HELP WITH HOMEWCRK -03° -04°* -03*
R-SQUARED 68 67 75
Note
Decimal points omitted
‘p<.01
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