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PREFACE

The 1994 International Symposium on Mathematics/Science Education and Technology is the first
in anew series of biennial symposia sponsored by the Journal of Computers in Mathematics and Science
Teaching (JCMST) and the Association for the Advancement of Computing in Education (AACE).

JCMST was established in 1981 as the first journal published by AACE. Now with six international
journals and four conferences, AACE is for the first time offering a meeting for this initial division of
the 0. ganization—Computers in Math and Science Teaching Division.

Too often those who can influence the quality of math and science education work in isolation on
at least three different dimensions: 1) researchers, developers, and practitioners, 2) disciplines such as
mathematics, science, and computer science, and 3) various countries working in this field. Thus, the
primary purpose of the Symposium is to help foster the exchangc of information related to the research,
development, and applications of learning and teaching using information technology in mathematics
and science education. This meeting isaunique international forum designed to bring togetherthe ideas
of these groups on an international scale, as depicted in the figure below.

international Perspectives

Research

Science
Education

Mathematics
Education

i Development Applications

information Technoiogy

The Symposium theme, “Emerging Issues and Trends,” was identifed to reflect and encourage the
submission of papers written on the rapidly changing technology and how this technology can help
improve mathematics and science education. _

This proceedings contains 47 full papers and 15 demonstrations and posters. The result is an
interesting collection that helps to illuminate the issues and trends in the field. The contents of this
volume demonstrate that advanced work is being carried out and the potential for future advances in
the field is promising.

The Symposium organizers wish to thank all reviewers, the invited speakers—Aurt St. George
(National Science Foundation, USA), Stephen Marcus (Univ. of California-Santa Barbara, USA), and
Ricki Goldman-Segall (Univ. of British Columbia, Canada)—and the over 100 researchers and
practitioners from around the world who participated in this first Symposmm It is you who have made
this meeting a success.

Gary H. Marks
AACE Executive Director
July 1994
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Exploring and Visualizing Properties of
Polygonal Numbers in a Multiple-Application
Computer-Enhanced Environment

S. ABRAMOVICH, AND J. WILSON
Department of Mathematics Education
University of Georgia, 105 Aderhold Hall, Athens, GA 30602-7124, U.S.A.

T. FUII
Faculty of Education
University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, Japan, T400

Abstract: Polygonal numbers can be motivated, discovered or developed
from geometric, numerical or algebraic formulations. The paper demonstrates
the use of multiple software tools to provide visualization in each of these
approaches. The object is the understanding of polygonal numbers,
developing recursive and closed-form expressions of polygonal numbers of
arbitrary side and rank based on geometrical considerations, seeing the
relationships among various formuiations, and visualizing connection of
polygonal numbers to primes. We argue that a multiple-application
environment aliows learners to recognize patterns and regularities among
polygonal numbers, to make conjectures, and to test them through numerical
evidence. Even though these are elementary conjectures their proof often
requires more than elermentary means and in these cases computer applications
provide demonstration only. In some cases, however, demonstration through
numerical evidence stimulates the development of mathematical proofs.

The National Couicil of Teachers of Mathematics Standards f ati iculum give rise to
approaches that redefine mathematics curricula and traditional teaching strategies. Technology as a tool for
mathematics investigations brings about opportunities for new content, new curricula, and new teaching
strategies. One such content area, which represents enjoyable mathematics with little previous knowledge, is
elementary number theory. Before the theory of numbers became a scicutific study people used simple visual
patterns to portray numbers. The representation of numbers in simple geometric figures goes back to antiquity
when certain numbers were noticed to have different characteristics from others. For example, a numboer of
objects could be placed like pins in a bowling alley to form a triangle and in such a way the number becomes
triangular. Because one and the same number may be represented by objects of different nature, this abstraction
from visual images signifies a simple but very important generalization. In much the same way a number of
objects can form other regular polygonal patterns which represent numbers known as square, pentagonal,
hexagonal, etc. All these numbers are called polygonal numbers.

The study of polygonal numbers can be motivated by the use of technology. In the past, the use of
computers in number theory investigations required skills in programming languages. The approach in this
paper is to use newer software tools - dynamic geometry, relation graphers, and spreadsheets - to explore,
investigate and discover properties of polygonal numbers, and to show their connection to other remarkable
numbers, such as primes.

The dynamics of the development of polygonal patterns from sets of dots arranged in geometric patterns
can be visualized with Geometer's Sketchpad - a dynamic software for exploring geometry on Macintosh
computers. One can construct triangular, square, pentagonal, or hexagonal patterns in order to develop
polygonal numbers of corresponding side as an abstraction from figures. The power of visualization provided
by Sketchpad, makes it possible to study a general case of polygonal numbers of arbitrary side ai an
empirical, very intuitive level. Indeed, let us consider the Sketchpad sketch in Figure 1 as a model of
polygonal numbers (in this case, hexagonal numbers) of side m. The goal is to give analytic formulations for
these numbers.



The number of dots on each side of a polygon of n-th rank is exactly n. Denote P(m,n) as the polygonal
number of side m and of rank n. Recursive counting of the dots suggests that the transfer from n-/ to n in the
m-polygon increases the number of dots by (m-2)(n+1)+1. This leads to the following recursive definition of
the polygonal number of side m and rank #

P(n,n) = P(m,n-1) + (m-2)(n-1) + 1, o))
subject to the boundary condition
P(ml)=1foralim=3 @

that is, every polygonal number of rank 1 is 1.

Relation 1 is a first order difference equation in variable n. The computational capacity of » spreadsheet
allows modeling of difference equations in two integral variables. Thi% provides the opportunity to study
polygonal numbers through a numerical approach, i.e., to explore modeling data, discover numerical patterns in
special cases and generalize from these. i

One can also count the dots in an m-polygon of n-th rank by splitting the polygon into m-2 triangles of
the same rank (see Figure 2). Each triangle contains gﬁg;—_l) dots and the number of dots on each of m-3

overlapping sides is n. This way of counting dots suggests the following closed-form relation for the polygonal
number of side m and rank n

P = BBOED i, 3, 3)

Note that due to Relation 3, P(m,1) = 1 and this coincides with Condition 2. The latter may be given the
following geometric interpretation: all polygonal patterns of rank 1 are a single dot. Relation 3 allows the
possibility to construct a spreadsheet-based Square Test (Beiler, 1966) for determining whether a number is a
polygonal number:

The natural number N is a polygonal number of side m and rank n if and only if:
1) the number 8(m-2)N + (m-4)2 isa perfect square, and

- -4)2 -
2) the number \jg(m 2N ;(;3)4) + m-4 is an integer number.

Figure 1. Visualization of recursive definition Figure 2. Visualization of explicit definition
of polygonal numbers of polygonal numbers

Exploring properties of polygonal numbers

Multiple-application environment suggest: different ways of representing polygonal numbers:
(a) modeling Relation 1 subject to Condition 2; (b) modeling Relation 3; (c) modeling polygonal numbers
threugh applying the Square Test to natural numbers. Each approach would make it possible to visualize
polygonal numbers on the spreadsheet template. Different features of each representation would contribute to
the enhancement of students’ conjecturing of propertics of these numbers and their discovering of connections
between polygonal numbers and other remarkable integers.

2 1
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Figure 3. Modeling of polygonal numbers through a recursive definition (Relation 1)

For example, through visualizing polygonal numbers on the spreadsheet of Figure 3 students can discover
that P(4,n) = P(3.n) + P(3,n-1), P(5,n) = P(3,n) + 2P(3,n-1), P(6,n) = P(3,n) + 3P(3,n-1), and then come up
with the general conjecture

P{m,n) = P(3,n) + (m-3)P(3,n-1)
In other words mathematics visualization leads to discovery of Bachet's theorem:
Any polygonal number of side m is the sum of the triangular number of the
same rank and m-3 triangular numbers of the previous rank.
Spreadsheet modeling can be used to validate Bachet's theorem through numerical evidence. The latier can also
stimulate the development of procf by induction.

Students can use Algebra Xpresser to represent polygonal numbers algebraically. The important
advantage of the Algebra Xpresser in comparison to other drawing applications is its ability to graph relations
from any two-variable equations. This provides a nice opportunity to graph an equation without the need to
convert the latter into a form suitable for "function grapher” software. So, setting x = n and y = m one can
graph Relation 3 on the'xy plane for any integer value of its left-hand side. This would make it possible to
discover whether the graph passes through points with integral coordinates, and if so, every such a point would
represen: some polygonal number whose side and rank are just the coordinates of this point. The sketch shown
in Figure 4 represents the use the Algebra Xpresser in modeling of the relation

g (x+1)(y-2) - (y-3)x=C @

on the "rank-side” plane for C = 6, 15, and 28.

The search of points with integral coordinates through which the curves pass results in the three pairs of
points: (2.6) and (3,3), (3.6) and (5.3), (4.6} and (7,3). It is of interest not only to graph Relation 4 but also
provide its interpretation. The latter can be as follows: hexagonal numbers 6, 15, and 28 are also triangular
numbers. Is this true for all hexagonal numbers? Why or why not? This problem presents an excellent
opportunity to explore connections arnong different polygonal numbess in a multiple-application environment.

Mathematics visualization of graphical representation of Relation 4 provokes many profound questions
which may stimulate a discussion, conjecturing, and computer usage for justifying conjectures through
visualization. For example, by changing the scalc one may note that each graph has one and the same vertical
asymptote x = 1. In other wotds, Relation 4 is not defined at the point x = 1, though the latter does have a
sense in terms of polygonal numbers. What 1s the reason for that? Furthermore, each graph appears to have one
and the same horizontal asymptote y = 2. How can this be explained in terms of polygonal numbers? Is it true
for all polygonal numbers? Why or why not? Do these graphs have points in common with the asymptote
y = 2? Ard if so, what are the x-intercepts of these points? Is it possible for two such graphs to have points in
commoiu? Given an integer C, does there exist an integral point on the related graph which also belongs to the
bisector y = x? What is this point? Does there exist a polygonal number whose rank is two (three, four, etc.)
times less than the number itself? Indeed, speculating on these questions fosters critical thinking, and develops
skill in making connections among different representations of a concept.

Polygonal numbers can be generated by a spreadsheet through a Square Test. Modeling data are shown in
Figure 5. New kind of representation makes it possible to visualize new patterns, to explore and discover new
properties of polygonal numbers. For example, it is not hard to make the observation that there are pairs of
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triangular numbers such that the sum of the numbers in each pair is a triangular number. The natural curiosity
may raise the following questions:

How many such pairs can be found among triangular numbers?

Do the square numbers posses the same property?

Is it true for pentagonal numbers?

Does there exist any triple of triangular (square, pentagonalj numbers with

the same property?

Is the product ¢ two triangular numbers a triangular number?

Is the product of two triangular numbers a square number?

-
—
—
—

L E R E R
g

101 "TO 10

13 13

13 15

27 {21 2}

24 kA4S

LA

Figure 4. Graphical representation Figure 5. Modeling of polygonal numbers
Y of polygonal numbers through the square test

We argue that the usage of a computer strongly promotes students® ability to discover many properties of
integers. The teacher should convey his or her respect and admiration toward any new hypotheses that result
from students curiosity and thereby boost students' awareness of themselves as doers of mathematics.

The curiosity of students can be highly motivated by the following demonstrations: numbers 21, 2211,
222111, 22221111, ..., as well as numbers 55, 5050, 500500, 50005000, ... , are triangular ; while numbers
5151, 501501, 50015001, 5000150001, ..., and 45, 4950, 499500, 49995000, ... , and 45, 2415, 224115,
22241115, ... are both triangular and hexagenal.

The important theorem that can be conjectured and validated through special cases is that every natural
number is 1) either a triangular number, the sum of two such numbers, or at mest the sum of three triangular
numbers; 2) either a square number, the sum of two such numbers, or at most the sum of four square numbers;
3) either a pentagonal number, the sum of two such numbers, or at most the sum of five pentagonal numbers;
and in general, 4) either a polygonal number of side m, or the sum of at most m such numbers.

In spite of the eleinentary statement of this theorem, first stated by Fermat, its proof requires more than
elementary means (Ewell, 1992). The importance of technology in discovering and visualizing this theorem is )
very high.

Connection of polygonal numbers to primes
It is also possible to construct a learning environment which provides a dynamic visualization of how
polygonal numbers relate to primes - a classical investigation in number theory. We suggest to implement on

a single spreadsheet template both the Square Test for polygonal numbers and Eratosthenes' Sieve for primes.
This allows study of frequency of primes among different polygonal numbers. As noted above, past use of

4
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computers in such investigations required skills in programming languages. The replacement of the process of
programming by the spreadsheet representation of integers with different properties is of a great importance to
mathematics teaching - it gives students an opportunity to concentrate their attention on the subject matter
rather than on unimportant details of syntax and semantics of the programming language. Moreover, the
availability of dynamic media provided by a spreadsheet considerably enhances students ability to abstract from
invariance. Actually, in order to discover invariance, to see what stays the same, one must have variation
(Kaput, 1992). In such a way students can visualize and then conjecture that a prime exists between any two
consecutive triangular or square numbers. The dynamic environment enables students to do explorations in
number theory that may be beyond their teacher's knowledge. In this way mathematics classroom can be

actually transformed into a laboratory, where the students and the teacher work as partners in exploring and
discovering significant mathematical ideas.
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Using Artificial Intelligence in the Teaching of Statistics

I. BourNAUD, J. MATHIEU
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D. CorrROYER
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Groupe Mathématiques et Psychologie
Université Paris V, 75005 Paris, France

Abstract: The teaching of statistics raises two important issues: how to han-
dle a large amount of data on the one hand, and how to develop strategies using
both quantitative and qualitative reasoning to analyze these data on the other hand.
Computer-based learning systems can be used in the teaching of statistics. How-
ever, to be efficient, their instruction should be individualized. In other words, they
ought to take into account each student’s specificities. One approach that addresses
this problem is to build a student model. Our student model QUARTS is described
as a set of knowlzige that evolves during the instruction. We use Artificial Intelli-
gence tccnniques to represent the student model and dynamically update it during
the instruction.

The tea:hing of statistics raises two important issues: how to handle a large amount of data on the one
hand, and tow to develop strategies using botn gualitative and quantitative reasoning to analyze these data
on the other hand. Because of their natural abilities to perform computations, computers have been used
very widely in the field of statistics. Thus, many computer-based tools for statistics have been developed
[Dambroise and Massotte, 1986]. They allow the student to avoid boring zamputations and to concentrate on
the choice of appropriate problem solving procedures, and results interpretations. However, these systems are
not tutoring sysiems, they can only be used as a complement of traditioral instruction.

On the opposite, computer Aided instruction (CAl) systems address the problem of instruction. The
instruction of CAl systems for statistics is based on pedagogical hypothesis about the learning of statistics.
In these environments, statistics tools are proposed to the student in order to facilitate data computation.
However, although useful, CAl systems have proven limitations. An important one is that their instruction
does not vary with the student that uses it. In fact, when a learner starts on a given course, he has personal
knowledge and experiences that impacts on the way he will learn. Such individual knowledge is not taken into
account by traditional CAl systems. In order to learn something new, we consider that it is important to have
some means to ralate it to earlier knowledge [Papert, 1991]. In this perspective, efficient systems should take

into account individual student’s knowledge so as to suggest student appropriate means to learn new concepts
[Clancey and Soloway, 1990).

Individualizing instruction using a student model

In real life, a teacher does adapt his/her teaching to different students because different students need dif-
ferent pedagogical approaches. To do so, the teacher may use a mental representation of students’ specificities,
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i.e. their knowledge and/or the way they reason, their preconceptions, misconceptions, etc. One way to make
a computer system adapt its teaching is to provide it with a model to represent and rnanipulate knowledge
about students. Such knowledge is often embedded in a model called the student model. The student model
allows the system to use different pedagogical course for different types of student. In other wards, it means
that the curriculum is not identical for every student, but dynamically buiit depending on the student’s profile.
Tutoring systems that possess such a model are known as Intelligent CAl (ICAl) systems. To build student
models, which involves representing human resolution processes, Artificial Intelligence (Al) techniques have
been widely used [Mizoguchi, 1991]. They address the modelization of different aspects of student knowledge
and reasoning.

In the next section, we present the kind of knzwledge that we consider to be necessary in a student model
for the teaching of elementary descriptive statistics.

What kind of student model ?

In our multidisciplinary research team, we see the teaching of statistics as the teaching of a process which
takes the student from raw data to the elaboration of conclusion using strategies and reasoning. One goal of
teaching descriptive statistics is to make the student acquire problem solving strategies using both qualitative
and quantitative reasoning to anaiyze the data. Our hypothesis is that an efficient teaching of statistics using
computers shouuid be based on a deep understanding of the kind of knowledge and reasoning used by the student
[Rouanet et al., 1987].

Our studies on the teaching of elementary descriptive statistics [Corroyer et al., 1988] have lead us to
consider two key aspects that should be supported by a student model. The first one is the ability to represent
both qualitative and quantitative knowledge as well as their associated reasonings and probleta solving heuristics.
The second one is the ability to represent student’s possible misconceptions and non-monotonic reasonings;
e.g. a student being able to calculate the weighted average of his exams notes, but unable to calculate the
weighted average of bananas’ length. :

Regarding the use of the model, we see the student model as a set of knowledge that should evolve during
the instruction. The student model is only significant for the system to individualize instruction if it reflects the
dynamic evolution of the student's knowledge. Using Al techniques, such evolution of the student’'s knowledge
may partially reflects human acquisition processes.

The QUARTS student model

in order to represent the student's knowledge key aspects (see section above), we use in our stu-
dent model called QUARTS two Al approaches: Problem Solving Principles and Theory Revision. We
have adapted Problem Solving to problems where qualitative and quantitative reasonings are needed
[Williams and de Kieer, 1991]. To represent the dynamic evolution of such knowledge, we have decided to
adapt Theory revision [Adé et al., 1994] to theories where both qualitative and quantitative information are
used. QUARTS' four main components are sketched on figure 1 hereafter.

The three first components are described in the next section, whereas the fourth one is explained in a
following section.

An Al based model to represent the student’s theory

The student's theory is comnposed of problem solving knowledge, domain knowledge and a resolution
module. This theory reflects the way the student uses knowledge and solves problem. The student's theory
contains all information needed by the system to individualize its instruction.

General problem solving knowledge

Our work is based on the hypothesis that to build a strategy to solve a problem, a student uses problem
solving knowledge that is independent of the domain of instruction. In other words, we want to introduce in
our model some general common sense that is dedicated to problem solving. To do so, we break down problem
solving knowledge into three types of knowledge:

¢ Elementary Operation (ELO).This is a problem solving potential action (e.g.Characterize data).
An ELO is instantiated in a concrete domain with one domain operator (e.g. Determine the average
on the two data sets). Each ELO may be instantiated by more than one domain operator. ieuristic
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Knowledge for updating
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Adaptable layer weighted average procedure in non—academic cortext

Figure 1: The four components of QUARTS (Ezamples of sub-components are in italics)

knowliedge associated with an ELO is used to choose the domain operator and its parameters to perform
the elementary operation.

e Complex Operation (cxo0).This is an operation which is decomposed into both elementary and
complex operations. The instantiation of a CX0 in a concrete domain is a sequence of domain operators.
Heuristic knowledge associated with .« CX0 is used to choose a strategy to solve the complex operation
considered, depending on the resolution state of the problem (cf. figure 2). As an example, to solve the

complex operation Analyze the data, the strategy S=Characterize data, Compare judgements can be
chosen.

o Strategies.They determine the problem solving stages. Each strategy corresponds to a list of elemen-
tary and complex operations to solve the problem. The strategies are predefinite and associated with the
complex operation they are supposed to solve. An example of strategy to solve the problem of Comparing
sets of numbers can be S=Rank the data, Analyze the data, Conclude.

The domain knowledge

The domain knowledge is used to modelize specific knowledge of the instruction field. In our case, it

corresponds to elementary descriptive statistics knowledge. The domain knowledge is mainly represented by
operators and objects.

e Operators. These are domain related potential actions used to solve an elementary operation. An

example of operator to solve the ELO Characterize data could be Determine the average, Determine
the mazimum.

e Objects. The objects are the parameters of the domain operators. Examples of objects are the two
sets of data, one set of data, a subset of data, etc.

Resolution Module

The resolution module modelizes the student’s reasoning. The resolution module manipulates a resolution
state that contains the problem description, different objects created during the solving process and the strategy
used to solve the problem. The resolution module modifies the resolution state (see figure 2) using different
kinds of student's inferences and problem solving heuristics, until conclusions do satisfy a criteria that measures
the conclusions’ quality. Figure 2 shows an example of a final resolution state on a very simnle problem. The
problem'’s data are the two sets P1 and P2. To solve the problem, the resolution module has chosen the
strategy CXx90:Rank CX0:Analyze cXo:Conclude. It has already chosen strategies to solve complex operations,

and applied some domain operators to solve elementary operations. The current operation is the complex
operation ¢x0:Conclude.

Q
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Objects Judgements | Conclusions Strategy
P1={7.3.9.5} P2={4,84,1} Plaver: good, CXO:Solving the problem
Paver: bad Plaver is {CXO:Rank
PlRank={3.5,7.9} P2Rank={1.4.4.8} v better CXO:Analyze (ELO:Characterize
than P2aver ELO:Match
Plaver=6 Plaver=4.25 ELO:Compare)
(Plaver, P2aver) ELO:Conclnde

Figure 2: Example of a resolution state where the current operation is set to Conclude

Acquiring and updating the model

We describe in this section how the model is acquired and focus on the model's component dedicated to
revision. Then we present the general principles of the automated updating process.

Acquiring

Two research teams cooperate to acquire the student model within this representation knowledge frame-
work: one composed of Al researchers, and one composed of Statistics teachers. The domain is " descriptive
statistics taught to first-year undergraduate students”. The stztisticians team is mainly concerned with the
students’ processes and pre- and mis-conceptions in the domain of descriptive statistics. In fact, any student has
already used, consciously or not, statistical notions, even before he is explicitly taught statistics. For example,
most student frequently analyze their exams notes. When a student, who has never learned statistics, is asked
to analyze some numerical data, the procedures he wili use are most likely to be related to statistical ones. We
call natural processes these processes that exist before an explicit learning of statistics [Corroyer et al., 1988].
We claim that, before the instruction starts, the student’s model must contain an initial student’s prototype. A
student’s theory which can be shared by several students is referred as a prototype of student’s theory. So far,
we have identified three prototypes of theory for beginners: one for students who mostly manipulate qualitative
knowledge and make qualitative reasonings, one for students who raostly use quantitative knowledge and make
quantitative reasonings, and one for students who mostly use quantitative knowledge and make quantitative or
qualitative reasonings.

When a student starts the instruction, the system associates him with one of the three pre-defined proto-
type student model. This initialized student model has then to be adapted to the student. The principles of
adapting a prototype to a real student are identical to the one used to update the model during the instruc-

tion. Before explaining these revision principles, we describe QUARTS' component that has been defined for
controlling the model’s updating.

The Knowledge for Updating

The Knowledge for Updating (KU) is considered as representing the potentially acceptable evolution of a
student model initialized with a pre-defined prototype. The KU is represented with two components: a kernel,
corresponding to knowledge that is a priori indispensable, and an adaptable layer corresponding to knowledge
that can be revised. Both components are a set of links on knowledge of the student’s theory, i.e. domain
knowledge, objects, heuristic knowledge.

To clarify tha notion of kernel and adaptable layer, let us give a concrete example. The typical student
we are interested in is first-year undergraduate. He has often calculated a weighted average of notes, in an
academic context. Thus, we set the "weighted average procedure in an academic contert” as part of the
kernel of a student model prototype. It means that this knowledge is indispensable. Every student who has
been associated to this prototype is considered as having this knowledge. On the opposite, the "weighted
average procedure in another context”, belong to the adaptable layer. It means that the system supposes that
the student has this knowledge, but such belief can be revised it appears later that the student does not have
this knowledge.

If we consider two students that have been associated with the same initial prototype, their student model's
kernel is exactly the same, but the content of their adaptable layer may be different.
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Updating the model: a form of revision

During the instruction, new information about the student is made available for the model to be updated.
To integrate this new information, the system revises the content of the student model. A revision consists
in modifying the current model or re-initializing the model with another pre-defined prototype. Modifying the
current mode! consists in adding new knowledge into the adaptable layer, or modifying or deleting an existing
krnowledge of the adaptable layer. However, if the new information is inconsistent with te student model
kernel, for example if it contradicts a kernel information, modifying the current model is impossible. The
prototype used at the initialization is then considered to be inappropriate for the student, and another one has
to be chosen. Thus, updating the model consists in changing the student model adaptable layer, enriching its
content, or, if it becomes necessary, choosing a more appropriate kernsl.

Conclusion

Computer-based statistics instruction can be improved by the use of student models. There already exists
ICAl systems in statistics such as PROSAIC [Terral, 1990], but we consider that their student model is not suited
for the kind of teaching we want to provide. We believe that ICAl systems in statistics should teach problem
solving strategy and reasoning on both qualitative and quantitative knowledge. We propcse a general student
model integrating both qualitative and quantitative information. We have adapted Al techniques, namely
Theory revision and Multi representation Problem Solving to respectively represent the model and update
it. We have briefly presented how this model could be used in the field of elementary descriptive statistics.

QUARTS is currently under implementation and we plan to evaluate it in a classroom before integrating it into
a tutoring system.
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Abstract: Serious problems exist in mathematics achievement in Canada. In response to this problem,
we conducted a four month remedial tutorial program for at-risk students of mathematics who
attended Grades 9 - 12 in the Canadian Province of Newfoundland and Labrador. In both tutorial
groups, cach at-risk student received individual attention from a qualified instructor. In the computer-
assisted (CAIT) tutorial groups, this personalized instruction was supplemented by access to computer
software designed to teach mathematics.

In this paper, we focus on the CAT tutorial groups. We describe practical suggestions for improving
CAI in this kind of tutorial setting based on careful observations and acutal problems experienced
during the project.  We discuss suggestions for the preparations of CAI tutorials, for the
iniplementation of CAI tutorials, and for evaluating the success of CAI tutorials. This discussion will
include instructor, students, and curriculum-related considerations. Finally, the need for follow-up
instruction is discussed.

Introduction to the Tutorials in Math Project

General Background

Serious problems exist in mathematics education and achievement in Canada (Government of
Newfoundiand and Labrador, 1989; 1992; 1993 Spain and Sharpe, 1990). In response to this problem we
conducted a four-month tutorial program for at-risk Grade 9-12 mathematics students in the Canadian
Province of Newfoundland and Labrador. The remedial tutorials were carried out twe evenings a week (three
hours per evening) outside of school hours. '

In an attempt to establish bascline data for students participating and to determine if these were indeed
at-risk, during the first night of the program cach was asked to write the Mathematics skill section of CTBS
(Can dian Test of Basic Skills) appropriate to cach student’s grade level. These tests are regularly used by
the province to measure the skill level of Newfoundland students compared with norms set by those nationally
standardized tests.  The average range lies between the 40th and the 60th percentile.  Students in
Newfoundland and Labrador score at the lower end of the average range; ie., at the 40th percentile
(Government of Newfoundland and Labrador, 1992, 31). The CTBS average for students on the Tutorials in
Math Project was at the 24th percentile, which made these standards very much at risk.

In December 1992, we were asked to develop a remedial tutuorial program for at-risk students of
Mathematics by the Canadian Employment and Immigration Centre’s "Stay in Schools” initiative. The project
began in January of 1993 with very little lead-time and it was completed in June 1993, Students were randomly
assigned to once of two types of tutorials: three standard or traditional small tutorial groups and three small
tutorial groups with access to CAL Each student received six hours of instruction per week. Al six of the
instructors hired had backgrounds in mathematics instruction; three were assigned to the standard tutorial
groups and three to the tutorial groups with computer assistance. Students in the three standard groups were
instructed in separate classrooms while the three groups with access to CAI were instructed in a computer
room with additional classroom scating space.
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The Students

Forty-eight students were selected from eleven schools to participate in the project: 24 were assigned to
the standard groups and 24 were assigned to the computer assisted instructional groups. Candidates were
recommended mainly by their assroom Mathematics teachers. Students were selected as follows: 12 grade
nine, 12 grade ten, 12 grade eleven, and 12 grade twelve. Most students were currently enroled in an

academic, or mid-range of difficulty, Mathematics program. There were no special education students in the
program.

Preparation of CAI Tutorials

Adequate preparation for a CAl tutorial should include a comiprehensive review of the relevant literature
related to CAland how best to instruct using CAT (Barnes, 1991; Bennett, 1991; Dalton, Hannafin & Hopper,
1989; Kulik and Kulik, 1989; Mackie, 1992). A review of literature related to the characteristics of the leamers
(at-risk students of mathematics in our case) is also uscful (Bosch and Bowers, 1992; Sagor, 1988; Vatter,
1992).

Candidate software must be identified and tested and the actual software that will be used must be selected
and obtained. We recommend that the chosen software match the school curriculum and be suited to the
learners’ abilities.  Lfforts were made to identify and choose appropriate software using printed catalogues,
clectronic searches, requests on the Internet, and personal sources.  Difficulties were also encountered in
identifying appropriate software and then in obtaining that software. We have concluded that the importance
of obtaining suitable software, and the difficulties encountered, cannot be underestimated.

Preparation should include adequate time forsubstantial in-service training to thoroughly familiarize the
tutorial instructors with the selected software. The assumption that computer-experienced instructors know
how to instruct effectively using CAT should be carefully examined. It may be necessary to provide instructors
with training in how to icach effectively using CAL

In summary, we have concluded that substantial “lead time"” (at least 10 weeks) is necessary for adequate
preparation of a CAI project.

Implementing CAI Tutorials

Our pilot study included careful observation of instructors and students during actual CAI instruction.
Obscrvations were made nightly of the tutorial sessions; these sessions yielded data which form the basis of
a descriptive profile of the at-risk Mathematics student. Four students were also identitied for closer study.
Regular meetings of the research team were conducted to plan and report monitoring ebservations and to
make adjustments.  Extensive interviews were conducted mainly by researcher with project team members,
students, instructors, and classroom teachers.

Several important lessons were leamed. Instructors may make the faulty assumption that the CAI package
can teach students independently, requiring little or no w.ntervention on the instructors’ part. Such was certainly
not the case for our at-risk students. These students appeared to pay little attention to the verbal instruction
offered by the CAI packages.  This could be partly attributed to poor reading skills in at-risk students of
mathematics. The results of the standardized Canadian Test of Basic Skills (CTBS) reading scale indicated
that our at-risk students should be carefully and thoroughly instructed in how to use a particular CAI package.
At-risk students should also be carcfully guided and monitored by their instructors while using CAT packages.

Other observations indicated the inadvisability of mixing students from different grade levels in a single
CAI tutorial group; formation of several small tutorial groups with students from the same grade level kept
together may be more effective. e also observed that students spent less time than anticipated with the CAl
packages nerhaps because of a poor match with the curriculum. Finally, our observations suggest that tutorial
sessions should be fairly brief (an hour maximum) with at-risk students.

Evaluating the Success of CAl
We used a varicty of methods to try to determine the success of both the CAI and standard tutorials.
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These included the use of standarized tests (CTBS), questionnaire measures of students’ attitudes toward
mathematics, observations during actual tutorial instruction, in-depth interviews of students and their regular
classroom teachers, and final grades.

We have more orless abandoned a "pure”, scientific comparison of the two tutorial groups (standard plus
CALI versus standard tutorial instruction) partly because different instructional events transpired in the two
groups. Such a comparison is always fraught with various difficulties unless a very tightly controlled study can
be conducted which is rarely possible. Interviews with CAI students indicated that they belicved that they were
deriving significant benefits from the tutorials generally but not specifically from the CAL One change that
was evident in both interviews with many students and with their regular classroom teachers was an improved
attitude and increased confidence towards mathematics. Final grades indicated some improvement in both
standard and CAI groups.

We would recommend collection of a variety of measures from a variety of sources to assess the success
of CAL. We suggest measuring the effects of CAl on student attitudes as well as on performance. Finally,
onc should be aware that the effects of CAI (or of any instruction) may be delayed rather than immediate.
We intend to follow our students as they proceed through high school to chart their progress.

Follow-up Instruction

Mauy rescarch projects have fixed funding and a limited duration. Our studentswere given four months
of tutorial instruction but were then on their own. Clearly, there may be a need for continuing remedial

instruction, but there is the question of who will provide this? This problem, common to many research
projects, will be discussed.
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Abstract: It has been argued that computer microworlds may offer a fertile soil for
implementing a situated leaming environment in the classroom. In this paper we
report on a project in which a mathematical, ‘pre-Logo’ microworld, previously
Jeveloped by the author, was implemented in a primary classroom over a period of
several months. First, the Microworld environment with the associated learning
materials and itnplementation strategies is described. Classroom observations are
then reported, demonstrating that the microworld, coupled with the appropriate
instructional intervention, enabled the development of a learning environment and
classroom culture in accordance with the principles of cognitive apprenticeship and
situated leamning.

Introduction

Recently, the topic of situated cognition has received a great deal of attention from educational
researchers. Brown, Collins and Duguid (1989) have suggested that learning should take place in the context
of realistic scttings; by engaging in "authentic tasks", students immerse themselves in the culture of an
academic domain. Concern with the situatedness of learning spans all aspects of the instructional process, from
lesson planning to the assessment of outcomes (Steibel, 1989; Young, 1993). Situated learning is closely
related to the concept of ‘vognitive apprenticeship’, as described by Collins, Brown & Newman (1989).
Cognitive apprenticeship methods try to enculturate students into authentic practices through activity and
social interaction in a way similar to that evident in craft apprenticeship.

1t has been argued that computer microworlds (Papert, 1980 ) and similar technology-enhanced learning
environments may offer appropriate tools for implementing situated learning in the classroom (e.g. Collins,
Brown & Newman, 1989; Cognition and Technology Group at Vanderbilt; 1990). Particularly, students
working with computer microworlds are exposed to concepts and skills in a problem-solving context where
their functions are instrumental to the accomplishment of meaningful, authentic tasks. (Damarin, 1993).

In this paper we report on a study in which a mathematical, ‘pre-Logo', microworld, previously developed
by the author (Cohen & Geva, 1989; Cohen, 1990) was implemented in a primary classroom over a period of
several months. As will be shown below, the resulting learning environment and classroom culture could be
considered to be a primary classroom implementation of a cognitive apprenticeship environment.

The Microworld Learning Environment

The Macintosh-based Microworld used in this study was the second in a graduated series of four
microworlds previously designed by the author (Cohen & Geva, 1989; Cohen, 1990). The Microworld consists
of an open-ended computer environment including a set of commands which can be used to order the turtle to
move or draw within a bordered graphics screen, referred to as the "Turtle's room”. To encourage use of
measurement, the graphic screen borders, or "walls", are marked as rulers with visible units of distance. (sce
Fig. 1). One unit along the border corresponds to one “turtle step”. If the Turtle is given a command that would
cause it to move or draw beyond the screen boundaries, an appropriate error message such as "I will hit the
floor if I do this" (or ceiling, wall, etc.) appears on the screen.

Unlike the turtle geometry microworld in Logo, in this Microworld an absolute frame of reference is used,
namely, the Turtle always faces the top of the screen, and can only move up, down or sideways with respect to
the screen boundaries, without changing its heading. Commands can be given to the turtle to make it move Up,
Down, Right or Left on the screen a specified number of units, with or without dragging the pen. The
commands include the Draw commands: DU, DD, DR and DL (Draw Up, Down, Right and Left), or the Jnmp
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commands: JU, JD, JR and JL. (Jump Up, Down, etc.). Three ready-made shapes, a Square(SQ), a Circle(C)
and a Triangle(T), are also available, filled with a pattern or outline only. Numeric inputs are used with each
of these commands. For instance, the command DR 5 causes the Turtle to draw a line to the right 5 units long,
SQ 3 (T 3) causes it to draw a square (triangle) with side length 3 (base and Height length 3), and C 4 causes
the Turtle to draw a circle with a diameter 4 units long. Several commands can be chunked on one line, if
desired. .

The Macintosh-based Microworld includes a menu-driven user interface, especially designed for young
school children. Features of the interface include an on-line HELP utility, illustrating all basic microworld
commands aud features, a TOOLS menu, offering on-line measurement tools such as horizontal and vertical
ruler, and a grid. The grid is meant to facilitate the child's understanding of two dimensional coordinates, while
the ruler utility enables the child to "grab” the ruler and move it across the screen to the desiied location.
Additional features include highlighting of errors in command lines, along with specific error messages (e.g. "1
will hit the wall if I do this" , "I don't understand JRR" or "I need a number after DR") and an UNDO
command which cancels the effects of the last command line entered (see Figure 1 below).

A recording facility is also included, which records, along with every command line issued by the child,
also every error made and every use made of the HELP menu or of the measurement toois. The child's actions
can later be "replayed” fast, movie style, or line-by-line, where each command line, along with its graphic
effects, can be examined. Such a utility has the potential to assist the students in reviewing their work, planning
and improving strategies, as well as in sharing not only their final prodsct but also their processes.

YRR

laq 10 dots

Figure 1. A typical Microworld screen with the on-line ruler
Classroom Implementation and Methodology

Microworld was implemented in a combined grade 2-3 classroom equipped with 3 Macintosh computers
over a five month period. Computer practice was a regularly scheduled component of classroom activities and
was monitored by the classroom teacher. Each student spent an average of 3 25-30-minute sessions per week
working on the computer. Initially, all students worked with a partner, but later on, some of them preferred to
work individually and were allowed to do that.

Much of the students' activity within the Microworlds was devoted to exploration and pursuit of self-
defined goals. To encourage the children to preplan their computer work, they were supplied with "planning
sheets” which consisted of a paper version of the bordered screen, often with a grid background, on which to
plan their graphic designs.

Five collections of structurcd computer tasks, referred to as challenges, were supplicd to the teacher with
the Microworld software. A typical challenge involves asking the student to produce, on the right side of a
divided screen, an exact replica of a drawing presented on the left side. In some challenges, the right side of
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the screen is initially empty. In others, it may have an incomplete reproduction of the drawing on the left side,
and the student is asked to complete the drawing on the right s0 as to make it identical to that on the left . In
still other types of challenges, the child is asked to continue a repesiing pattem (see Figure 2 below).

These challenges were devised by the researchers as a means of ensuring exposure to specific concepts,
skills or strategies, as well as for evaluating a child's progress within a Microworld. The challenge collections
were organized in increasing level of complexity.

The Microworld software also inciuded an easy-to-use challenge creation utility. This utility was often
utilized not only by the teacher, in designing leaming materials, but also by the students, who liked to create
challenges for 2ach other, ar. also for the teacher and researcher. '

Classroom cbservations were conducted by research staff 1-2 times per week for a two hour period. The
researchers acted as participant observers, usually not initiating activiti€s or discussion but rather responding 1o
students’ questions or requests for help. Sometimes, however, the researchers would provide students with
specific challenges in order to assess their progress. Detailed protocols of children's work on the challenges

were automatically recorded on the computer. Informal teacher and student interviews were also conducted
throughout the study period.
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Figure 2, Examples of challenges.
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Findings and Discussion

Classroom observations indicated that the Microworld, coupled with the specific instructional intervention,
provided a fertile soil for the development of a learning environment and a classroom culture in accordance
with the principles of cognitive apprenticeship and situated leaming. In what follows, we will describe the
leaming environment and classroom culture, as observed in this study. It will be shown that such a learning
environment possesses nearly all of the characteristics included in the Framework for Designing Learning
Environments, suggested by Collins & al. (1989, pp. 466-491) in their paper on cognitive apprenticeship. In
what follows, we will be referring to the above Framework.,

Content: The content learned within the Microworld environment includes domain knowledge, namely,
specific mathematical-spatial concepts, as weli as the heuristic sirategies , control strategies and learning
strategies developed by the students while exploring the Microworld, working on projects or solving
challenges.

Sequence: The teacher introduced the Microworld concepts and skills in a sequence dictated by level of
difficulty. The learning activities were presented in order of increasing complexity, where more and more of
the skills and concepts necessary for expert performance were required. Specifically, the challenge coliections
included in the Microworld software package covered different topics and were organized by increasing
complexity, and also in increasing diversity. Each challenge collection was organized according to incr:asing
difficulty level. Furthermore, in contrast with the Logo language, the Microworld provided the studenis with
ready-made shapes and tools, so that even 6-7 year old children could produce pleasing and meaningful
designs or ‘pictures’. These students were relieved of having to carry out lower level or composite sub-tasks in
which they lacked skills, and were able to build a conceptual map of the whole process, while being exposed
only to the global skills. So this 'pre-Logo' Microworld was designed according to the principle of global
before local skills, with the intention that the students might later on be introduced to subsequent, more
complex, microworlds, or to the full blown Logo language. (As indicated above, this Micro world was the
second in a graduated series of four microworlds previously designed by the author. These Microworlds or task
environments were also organized in order of increasing complexity. )

Teaching Methods: The teacher, who was the domain expert or 'master’, played a central role in
supporting the students' learning. Whiie the learning phitosophy associated with microworlds strongly favours
experiential discovery and learner controi, the students needed access to practical and theoretical support,
assistance and guidance, particularly in the initial stages of acquiring the new knowledge. As was mentioned
above, the computer environment itself provided a variety of leamer support and scaffolding features;
specifically, the HELP screens, the friendly user interface that was tailored to young children, the on-line
measurement tools and the recording utility.

Yet, the computerized support features did not replace the teacher, who continually monitored student
activity through guiding, coaching, scaffolding, providing valuable feedback and modelling problem solving
processes. The teacher's support in technical and procedural matters faded over time as the young leammers
assumed greater ownership of the knowledge and processes involved. However, the teacher continued to be
actively involved in the learning process. She encouraged her students to reflect on their learning by observing
their own, as well as their peers’, preblem solving processes using the REPLAY feature, trying alternative
solution processes and evaluating them with their classmates.

Sociology: The classroom culture was certainly the culture of expert practice, where the participants
actively communicated about and engaged in the skills involved in expertise. The teacher continually
stimulated her students by suggesting meaningful project ideas, initiating class or small group discussions and
linking the Microworld work with other classroom activities, topics and projects. The teacher and the
researchers designed on-line and off-line learning units and materials related to specific themes in Social
Studies or Science. In Mathematics, for instance, activities with manipulative materials related to patterning,
place value arithmetic, geometric shapes and measurement were closely linked with teacher-designed
Microworld activities. Another unit related to map reading, called 'Adventures of the Country Turtle who
Travels to the City', was linked with other Environmental Studies activities. Other examples of linking the
Microworld work with classroom activities were related to story writing, nutrition, and the Pioneers. Thus the
learning activities were situated in meaningful and varied contexts.

Microworld related activity was often the topic of discussion in this classroom. While working on the
teacher/rescarcher designed structured activities, students also continued to engage in free exploration and
creative enterprises, both individually and in pairs. They particularly cnjoyed constructing difficult challenges
for each other, or for the teacher and rescarchers, utilizing the challenge creation utility. The most difficult
challenges were often given to the teacher (or researcher) to solve in front of the class, or a group of students,
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thus exposing the students to the expert's problem solving processes. Some of these challenges, created by
some persevering students through repeated, and clever use of overlapping colored shapes, in combination
with the Erase feature (which whites out a whole area), were indeed challenging even for the teacher and
researchers (e.g. se¢ the third example in Figure 2 above). Activities such as the ones described above often
involved an element of competition, while they also usually involved cooperation among students.

Conclusion

The classroom environment described above shares many of the characteristics of a cognitive
apprenticeship and situated leamning environment. It should be pointed out that while the Microworld software
and materials were indeed essential for such an environment, it was the classroom teacher who played the
central role in creating the learning environment and classroom culture that accompanied the Microworld
activity. Through providing appropriate guidance and support, stimulating her students to engage in
Microworld-related problem solving, reflection and discussion, encouraging group work, acting as the class
‘expert’ while modelling her own solution processes to student-generated challenges, creatively linking the
Microworld work with other classroom topics and activities, this teacher helped create a cognitive

apprenticeship environment and learning cuiture in her classroom. For the students within this culture,
Microworld related activities were indeed authentic.
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Technology in the Teaching and Learning
of First Year Algebra

A. R. Crawford
Department of Specialty Studies
Donald R. Watson School of Education
University of North Carolina at Wilmington
Wilmington, Nosth Carolina, USA 28483

Abstract: Graphing capabilities of calculators and computers now make it
possible for first year aigebra students to explore visual representations of abstract
concepts. With spreadsheets, students can observe patterns then generate formulas.
and graphs for these patterns. By graphing linear app.icaiicns with calculators,
students visualize slope as a rate of change. Quadratic and exponential applications
allow students to investigate mathematical concepts in authentic situations. This
paper describes classroom examples of applications using technology in fixst year
algebra. In addition, the use of matrix capabilities of the graphing calculator for
teachers to generate their own quadratic applicatior: problems will be discussed.

As technology permeates socicty, it has become essential that mathematics teaching and learning
take full advantage of the many applications of computers and calculators in the classroom. Traditionally,
teaching in first ycar algebra has emphasized direct instruction of routine procedures with abstract symbols
placing little emphasis on conceptual understanding and applications of mathematics (Weiss, 1987). The
National Council of Teachers of Mathematics' Curriculum and Evaluation Siandards recommends that
students be involved with investigating, making conjectures, and constructing their own conceptual schema
(NCTM, 1989). Utilizing the graphing capabilities of calculators and computers. it is now possible for
students to explore visual represeniations of the abstract concepts. Technology allows numerical and
problem solving techniques to be accessible to all students. As a result, first year algebra can be the
"gateway" rather than the "filter” to the attainment of mathematical proficiency (Edwards, 1990). With
technology, the new curriculum for first year algebra places more emphasis on problem solving, functions,
and graphing. Applications are used to give meaning to the abstract symbols encouraging student discourse
and greater student understanding (Wagner and Parker, 1993).

Problem Solving in Algebra

Problem solving strategics can be introduced at the beginning of the algebra course then continued
to be applied throughout instruction. While developing the concept of variable, students can generate
patterns then write a variable expression to represent a gencralization of the pattern. Patterns can be linear,
quadratic and exponential. Consider the following problem that can be analyzed on a spreadsheet.

A. Tosha is designing a rectangular pasture for her horse using 100 meters of fence. What
length and width for the pasture would give the maximum area?

B.  What length and width would give the maximum area if 600 meters of f2nce are used?

What pattern do you notice about this problem? Test your hypothesis by trying another
problem following your pattern.

Table 1 depicts the student gencerated data from the spreadshect and a graph that was drawn. Students can use
the spreadsheet to ~ontinue to collect data for part B then make up their own problem to test their

hypothesis. They can conclude from their experiment that the shape of the pasture for the maximum area is
the squarc.
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thus exposing the students to the expert's problem solving processes. Some of these challenges, created by
some persevering students through repeated, and clever use of overlapping colored shapes, in combination
with the feature (which whites out a whole area), were indeed challenging even for the teacher and
rescarchers ¥¢.g. see the third example in Figure 2 above). Activities such as the ones described above often
involved an elsgnent of competition, while they also usually involved cooperation among stu/dents.

Conclusion

The classroom en 'ronmem descnbed above shares many of the cHaracteristics of a cognitive
apprenticeship and situa t while the Microworld software
and materials were indeed ntial for such an environment, it was the classroom teacher who played the
central role in creating the learhi
acuwty Through providing app riate guidance and supperd, stimulating her students to engage in

i iprf, encouraging group work, acting as the class
‘expert’ while modelling her own solutian processes to ent-generated challenges, creatively linking the
Microworld work with other classroonh topics an ctivities, this teacher helped create a cognitive

her classroom. For the students within this culture,
Microworld related activities were indeed authengie?
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Table 1 Spreadsheet Data to Determine the Maximum Area
100 Meters

Area
Length Width Area
0 50 0 800
5 45 225 .
10 40 400 600 T
15 35 525 400 ' Na
20 30 600 200 -/ \-
25 25 625 /. o\
30 20 600 iy = S S S S S S G QL
40 10 400
45 5 225
50 0 0

New Emphasis on Functions and Graphing

Past goals in algebra were: 1) simplify, 2) solve, and 3) graph. With the new curriculum, these
goals are reversed: 1) graph, 2) solve, then 3) simplify (Kysh, 1991). Functions which were
traditionally introduced in the second half of the course can now be taught ir conjunction with problem
solving throughout the year. Solving an equation such as 2x + 4 = 20 can be viewed as a specific case
from the function, 2x + 4 =y, For example, on the graphing calculator, students can graph a function to
represent the future value of a $5000 investment at 6% simple interest for n years. The equation graphed
would be y = 300n + 5000. The student can investigate the number of years it would take to double the
investment by substituting $10,000 for y. The student can use the graph to determine the number of years
or solve the equation algebraically. Thus, linear graphing can be a prerequisite skill to solving equations!

Concepts that were traditionally abstract become visual and concrete with the graphing calculator.
The concept of slope for many students has been merely a memorized formula. However, students can
generate a table for data, write the equations and graph these on a graphing calculator, then apply the
concept of slope through the application. Consider a checking account that charges a monthly rate of $5
plus $.10 a check. Students discuss the linear relationship from the graph and the concept of slope as the
rate of change. Students are involved in justifying, clarifying and communicating their ideas about the
graph.

Checking Account Costs

Cost per
Month  $10 ——

$5 m=.50
5

] . 1
T ¥ T

5 10 15 20 No. Checks

1
v

Figure 1, Checking Account Application
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New Applications

Quacsatic and exponential applications can also be introduced at the concrete level in first year
algebra. Examples of maximum and minimum problems with quadratic data and applications with
exponential growth can be graphed and analyzed. With the graphing calculator, students can investigate

compound interest, inflation, depreciation, consumption rates, and population growth. For example,
students can compare lirear versus exponential salary increases.

You are offered a job with a starting salary of $23,000. You may choose to take a salary
increase agreement that is a 5% ncrease every year or a $2000 per year increase. Which
contract should you choose if you plan to work for the company about 6 years? Which
should you choose if you plan to stay with the company for at least 30 years.

Students write the equations for the two contracts:
y = 23000 + 2000x
y = 23000(1.05)%
The equations can be graphed. Using zoom and trace, students determine that for six years, the

lincar increase yields the higher salary, however, the exponential percent increase is a better choice
over thirty years.

Salary
100000
80000
60000
40000
20000
1
510 15 20 25 30  No. of Years
Figure 2 Salary Increases: Linear and Exponential

Technology Empowers Teachers, Too!

How can teachers who traditionally took their problems directly from the mathematics text design
new quadratic application examples for their classroom? One way is to watch the newspaper and use the
matrix capabilities of the graphing calculator! In February 1993, the graph in figure 3 appeared in an
article about the federal deficit in USA Today. However, the equation for the graph was not in the paper!
From the graph, a teacher can write the equation using the graphing calculator and matrix algebra. The

following application problem can then be used in the algebra classroom by giving the equation to the
students:

Docs the Government Necd to Reduce 1he Federal Deficit?

The fedceral budget hasn't been balanced since 1969 with the governmen: now
borrowing $1 million every minute of the day. A model developed with data from the
Congressional Budgct Office, Institute of Policy Innovation, can be used to predict the
dcficit for the next 10 years with the cquation:  y = 4.8 x2 - 13.5x + 310, where x is the

number of years with 0 = 1993 and y is the defici? in billions of dollars. (Baumann, 1993;
Crawford, 1993)
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Graph the equation on your calculator. Use the trace key to answer these
questions. What was the deficit in 1993? According to this model, in how many years

will the deficit reach 500 billion? Describe the deficit over the next § years according to
this model.

billions

700 =
600 -
500 —
400 —
300 —3
200 =T
100 ~1—

012345678910 Years
Figure 3  Federal Deficit, Prediction in Billions of Dollars

© =yb)

Note, Graph is from "Why We Can't Put Off Reducing the Deficit” by M. Baumann, USA_
TODAY Copyright 1993, USA TODAY. Reprinted with permission.

To write the equation for the classroom applicatif)n from the graph that appeared in the newspaper,
first, read any three ordered pairs from the graph. One must assume that the graph can be modeled by a
quadratic equation with a restricted range in the first quadrant. Substitute the x and y values for the ordered

pairs into the general quadratic equation y = ax2 + bx + ¢ , to obtain a set of equations:
Ordered Paris: (0, 310), (6, 400), and (10, 650)

Equations:
202+ b0+c=310
a-62 + b6 + ¢ = 400
a-102 + b-10 + ¢ = 650

To solve for a, b, and c, set up the matrices A , X and B. Matrix A contains the coefficients in the
equations, matrix X contains the variables a, b, and ¢, and matrix Y contains the constant terms.

"0 0 1 a 310
A= 36 6 1 X=|b B=| 400
100 10 1 ¢ 650

Now, enter matrices A and B into the graphing calculator. By solving the matrix equation
A X = B apply the inverse matrix operation, X= A -1 B, and the coefficient a, b, and ¢ are obtained.

4.75
X=1-135
310

Substituting the coefficients, the equation for the application is Y = 4.8x2 - 13.5x + 310. Although

matrix algebra is not a topic taught in algebra one, algebra one teachers have been excited to apply this
process to develop good quadratic applications for their students.
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Closing Remarks

It is an exciting time in the teaching and learning of algebra. Graphing calculators are now
available to students. Teachers are being retrained in problem solving methodology and use of technology.
New methods and technology allow algebraic thinking to be accessible to students with diverse learning
styles (Stiff, Johnson, & Johnson, 1993). As researchers, we now must seriously gather the necessary data
to determine the effects of the new teaching methodologies on classrcom learning. Are teachers using
technology to teach in the same direct instructional methods or are they asking more critical thinking
questions with investigation? Are the course changes producing higher achievement in algebra? We must

continue with efforts to see that teachers not only have the equipment but the training and support necessary
to continue the evolution of first year algebra.
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Towards developing a model for the implementation of CAL in black
schools in the Natal/Kwazulu region of South Africa

N. DAVIDS
Centre for the Advancement of Science and Mathematics Education (CASME)
University of Natal, P.O. Box 17112, Congella, 4013, South Africa
E-mail: davids @superbowl.und.ac.za

Abstract: This paper describes the issues arising in the implementation of
computers in the context of Black schools in the Kwazulu/Natal region of South
Africa. The author, as an implementor on the periphery of the schools, describes
the anthropological approach taken to the said implementation. The experience
points to the need to consider the double innovation approach when designing,
developing or supplying computers and software for education.

Background:

The legacy of apartheid manifests itself no more brutally than in the sphere of education. As at 27th April
1994 when the first democratic elections were held for the adult population of South Africa, there was in place
14 extremely beaurocratised education departments. These departments could roughly be divided between
privileged and highly resourced White departments and underprivileged and varying degrees of under-
resourced black departments. Black schools do not, with very few exceptions, have access to basic resources
such as text books, proper classrooms, laboratories and adequately trained teachers and thus certainly not to
computers.

Figures for 1991 (Table 1) indicate that 39% of “african” students writing the school leaving (matric)
examination in 1991 passed compared to the 96% pass rate for their white counterparts. Those who obtained
the basic university entrance qualification (exemption) was 10% and 41% respectively.

Table 1 : Standard 10 EXAMINATION RESULTS BY DEPARTMENT, 1991

Department Candidates | Total Pass | % Exemption o
KwaZulu 47 357 16 338 34 3894 8
"African" Total 306 480 120 528 39 30989 10
White 65 933 63 504 96 27 356 41

Source: Edusource Data News September 1992, Education Foundation

The state departments were unable and/or unwilling to address the imbalances that existed in education. It
was primarily in an attempt to redress these inequities in education that educational NGO's (Non-
Governmental Organisations) were born. These organisations were funded through various sources including
the private sector and foreign governments. They were independent of the state education structure and by and
large involved themselves in projects aimed at addressing educational needs in disadvantaged communities.
These NGO's, for various reasons, tended to focus their activities. These activities ranged from pre-school,
primary science, distance education, career guidance to senior science.

The Centre for the Advancement of Science and Mathematics Education (CASME) is one such NGO. Its
stated mission is to "... contribute to the advancement of science and mathematics education through the
development of sustainable models for the professional development of educators." CASME's focus is on
science and mathematics in the last two years of schooling (matric). During its 8 years in existence its
activities directly involved both students and teachers, but has tended in recent years to focus more broadly on
in-service training to teachers.

Tables 2 and 3 reflects the science and mathematics results for 1992. 15% of all "african” candidates in
matric wrote the science examination compared to 43% white. Of the total candidates, 7% of "african"
students and 43% of white students passed the science examination. Correspondingly, of tle 24% of "african”
students writing the mathematics examination, 7% of the total candidates passed. 63% and 60% of the total
white students wrote and passed matric mathematics respectively. The figures for KwaZulu shows a similar
trend to that of the national figures.
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Table 2 : Standard 10 Examination Results in Science, 1992

Department Total Candidates No. Writing Science No. passing Science
DET 92 522 18 820 (20%) 9 309 (10%)
KwaZulu 46 562 5461 (12%) 2573 (6%)
"'African' Total 342 848 50791 (15%) 24 965 (71%)

White 66 141 28 386 (43%) 27 838 (42%)

Source: Edusource, Education Foundation

Table 3 : Standard 10 Examination Results in Mathematics, 1992

Department Total Candidates No. Writing Science | No. passing Science
DET 92522 28 597 31%) 8 610 (9%)
KwaZulu 46 562 12 658 (27%) 3136 (7%)
"African" Total 342 848 83 933 (24%) 23 868 (7%)

White 66 141 41 720 (63%) 39 929 (60%)

Source: Edusource, Education Foundation

CASME thus rose to the challenge of addressing the extremely poor mathematics and science results as
well as to foster an interest in these subjects in the Natal/KwaZulu region. Part of this strategy was the
formation of CiSP (The Computers in schools Project) in August 1992. The Project works in schools in the
urban and peri-urban areas around Durban in the Natal/KwaZulu region of South Africa. The schools are
managed by one of two black education departments namely Department of Education and Training (DET)
and the KwaZulu Department of Education and Culture (KDEC).

One of the tasks of CiSP was and is to investigate the role of computers in the teaching and learning of
mathematics and science in the context of a black school. It also set out to formulate a model for implementing
CAL in KwaZulu schools. It is the issues that arose during the implementation of these tasks that form the
basis of discussion in this paper.

Conceptualisation of the CiSP

At the inception of the CiSP the following contextual realities existed for the project:
it was a one person project
prior initiatives to introduce computers to black students in South Africa had primarily been
through outreach programs. This entailed bussing students from their schools to a technology centre
that was usually a private school. Since I planned to introduce computers directly into black
schools, there was thus a lack of data that could inform my implementation practice.
. CiSP "inherited" four schools from a previous mini-project that had placed two computers in each of
thesc schools. These computers were running a wordproccessor and a South African designed school
administration program.

Implementation - General issues

There were two immediate tasks 1 set myself as the co-ordinator of CiSP. First of these was to investigate
how, why and by whom the computers had been used in the four schools, and secondly to initiate
implementation of a mathematics package for use by students in a selected school.

Initial investigations at the four schools indicated the following:

. There were two computers and a printer per school, one of which was a double drive without a hard
disk, and the other was a XT with hard drive. X
. The computers were housed in the "administration” rvom in the school, which in three of the cases

was the only room with adequate security
This room was congested and was, as far as we were concerned, inaccessible to teachers
In two of the schools there were one or two teachers only using the equipment, in another only the
administrator and in the fourth the equipment wasn't being used at all
Whilst trying establish reasons for the low usage of the computer equipment we found the following:
Teachers did not have any or adequate training
Where teachers did have the necessary training, we found that their failure to utilise the existing
equipment was largely due to the dynamics or "politics” existing in a school. Computers tended to be
used in order to re-inforce a position of power and/or to re-inforce existing divisions. In a couple  of
instances the lines of demarcation were racial. In one other instance it was between teachers who  had  and
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hadn't supported strike action. Other more subtle divisions existed along gender and along structural
lines. In all cases these divisions manifest :d itself as those who controlled the technology and  those  who
didn't.

Based upon both the project's and schools' initial realities as sketched in the above points, the following
strategy was embarked upon:

Training was done on two levels. The first of these was more intense off-site training in a commercial
word processor and spreadsheet. Secondly, training was done by regular on-site visits. All teachers at the
schools were invited to attend the off-site training on a voluntary basis. Alth6ugh teachers generally expressed
a need for them to keep abreast of the "computer age", less than 50% took the opportunity to receive training.
Each of the courses were conducted over two afternoons.

Loss of learning time due to unscheduled disruptions is a major problem in the schools in KwaZulu/Natal.
O'Neill in a discussion paper highlighted the problem of loss of time in black schools in the Durban area of
Natal. He states " ...reviewing records of school visits for two schools where 1 have worked over a one year
period revealed that ...almost one third of th. .caching year is lost to disruptions to the normal school
activities...". So as not to contribute further to this problem, 1 was always very wary not to schedule -wherever
possible - activities such as training and on-site visits during teaching time.

The schools were geographically widely spread with the two furthest being 60km apart. On-site visits to
each school could thus be done on a weekly basis at most. The time for these visits were negotiated with
ourselves and those teachers who had received off-site training. These visits, although being, from our
perspective, extremely labour and time intensive, afforded us the opportunity of:

. identifying training needs and/or deficiencies

. offering personalised training to teachers. (Teachers were actively encouraged to utilise the
technology and to log any problems and suggestions. These could then be raised at these on-site
visits)

U evaluating hardware and software requirements on an ongoing basis, and where possible, acting
upon these requirements

. getting to know and understand the dynamics existing in the schools and the surrounding community

Ongoing reflection and analysis during this initial implementation process revealed the following:

Of the teachers receiving initial training, three different categories arose. Firstly those who, for whatever
reason, did not utilise the technology. Secondly those who used it whenever the need arose (preparing
examinations papers, etc.). Thirdly those who went beyond what was taught, both in the investigating of the
capabilities of the specific package taught as well as to start to question the possibility of the broader
applications of the technology in their classrooms. (It was from this very tiny third group of teachers that we
identified candidates to participate in a project at the start of 1994 to investigate the role of a single computer
in a mathematics, science or biology classroom).

Existing power relations around the technology continued to prevail in some cases. Where we felt this was
an impediment to teachers' free usage of the equipment, we embarked upon a strategy to change this in as
diplomatic a manner as possible. This typically involved suggesting the principal take action. In a particularly
extreme case we had to threaten withdrawing the equipment from the school. This gave us and the
marginalised teachers the, required results, but unfortunately not without completely alienating the two guilty
teachers.

Besides the 4 schools, we were constantly getting requests for training, support and backup from teachers
from other schools. Some of these schools had computer/s that had been funded or donated by a private
company or a university. In about 90% of the cases these computers were not being ustilised. The technology
had been placed in the schools without teachers receiving training and support in its usage, pointing to the
importance of double innovation considerations - the innovation has to have the implementation strategy built
into it.

Implementing CAL package for use by students

The extremely low pass rate of mathematics students in KwaZulu is reflected in Table 3. This has serious
implications for students trying to gain entry into university, technikons and the job market in a society that
places a very high value on having attained a pass mark in mathematics.

It was in this context that it was decided to pilot a South African designed mathematics CAL drill and
practice package, SERGO in a KwaZulu school. The package - overs the South African secondary school
syllabus from standards 6 to 10 (last 5 years of schooling). The package has a management feature that allows
the teacher to monitor pupil's performances as well as manage their route through the exercises. It had been
designed for and used primarily in white South African schools for remediation.

We were allowed, by the KDEC, to choose one of three schools as the pilot site. The schools were rated on
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the availability of a room to house the computers as well as electricity and the necessary furniture
the availability of adequate security

mathematics teachers who were enthusiastic about using the computer as a tool in the teaching of
mathematics

¢  aprincipal (head tcacher) who would be committed to the implementation of the project

e  students doing mathematics from standards 6 to 10.

Two of the three schools qualified based on the above criteria. Whilst both were situated in areas that were
characterised by violence our choice was the school that would be most accessible, with respect to both
distance and safety, by ourselves. The school, Kwa-Makhutha Comprehensive High School, is situated
approximately 25km south of Durban in a township. of the same name. The school had prior to 1992 only
offered standard 9 and 10. Due to amongst other things a donation from an automotive company which drew
its workforce from the area, the school was upgraded to comprehensive status by offering both an academic
and technical streams. This upgrade in 1992 also co-incided with the school offering standard 6, standard 7
in 1993, etc. until it become a fully fledged high school in 1994. Thus, at the start of implementation the
school was registering students for both standards 6 and 9 from surrounding feeder schools. This meant at
these levels teachers were faced with having to teach students from varying academic backgrounds. This posed
a problem for the mathematics teachers in that, in the extreme cases, some students came from schools where
there were no mathematics teachers and/or no other resources, and various other circumstances that served to
disadvantaged the student. Although it was not a stated intention of both ourselves or the teachers, we found
that the software helped greatly to begin to address this problem of equity in the mathematics class.

A network of 12 computers and a printer was installed in what was to be a “dedicated"” room in the school -
11 workstations and a file server. Noveil 3.1 was chosen as the operating system., and for the period of the
pilot (a year) the only software installed was SERGO. The schoel had two mathematics teachers, both very
confident with their subject. Both had very little prior computer experience. A few weeks after installation one
of the teachers stated the following as the purpose of the project:

"... to help teachers present mathematics in a lively, exciting and intelligible way"

“to inculcate in pupils a love for, an interest in, and a positive attitude towards mathematics"”

"to stimulate the pupils ecagerness to learn mathematics independently”

"to give the pupils the opportunity to gradually master mathematics with the use of computers as the
vehicie”

"... to close the gap between theory and practice.”

He furthermore reported his initial findings, some of which together with the above purposes re-inforces
Schoenmaker et al's assertion that “... the use of computers ... sometimes seems to be of value in itself ... one
should also think of the goals of using a new technology and about possibilities arising as a result of the new
technology. " These findings were:

"the pupils were all excited by the prospect of studying mathematics through computers.”

"the look of ecstasy on the pupils faces proved that all of them just loved to work at the computers.
they derived pleasure by just making them work."

"rewards for partial success and victory were powerful incentives for them to work more accurately”

Even at this early stage in the project he was experiencing that new technology and/or software implied
extra time, commitment and management skills on the part of the teacher when he further reported in his
findings:

“the teacher must however keep constant surveillance because the most dctive and aggressive (in
the group of pupils) simply take over the machines and do not want to share"

"a preview of the topics by the teacher is important"

“time seemed to go too fast and the periods overlapped"

A salient feature of black schools in South Africa is the large class sizes. The teacher stated in his initial
report that he foresaw this, in conjunction with limited contact time, being a problem. A specific exainple he
gave was that there were 74 students in his standard 9 mathematics class, and as the package was a "drill and
practice” , implying optimum usage would be gained if students could use it on a one on one basis. As the
package demanded he be available at call to students at the computers, if each student had 30 minutes
computer contact time per week, he would have no teaching time left for that class. He none the less made the
following initial rccommendations:

"to accoinmodate large classes, more sitting furniture should be added in the computer room"
"each student should be allowed a double period (& 60 minutes) per week”

“ratio of students per computer be 1:1 at any specific point in time"

“"two teachers should ideally be available per computer session” - he did note that this would not be
possible at that time
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"more time will be needed by mathematics teachers for effective previewing of programmes to be
run and for preparing their students for these programmes"

As was predicted, the teachers encountered an enormous amount of difficulty trying to manage the
resource. This was born out by their statements at evaluation:

"the major difficulty was that of planning, time-scheduling and initiation. However teaching

becomes more of challenge and responsibility.”

"computers make great demands on me. In the morning sessions I have to supervise the pupils thus

relegating some of the (other) activities"”

"obviously the teacher roles of being a classroom manager and record keeper are extended.
a) he becomes a tutor that instructs by alternative methods including lecturing,
demonstrations, etc.

b) he previews and evaluates the programs proposed for adoption
c) he sees to the servicing and maintenance of the microcomputers
d) he supervizes the general cleanliness of the computer room”

One teacher, however, made huaself available to supervise the computer room during non-formal teaching
time. He allowed students to utilise the equipment for an hour before schonl started, during lunch break and
for about an hour after school. Students were and are always queuing in order to utilise the equipment during
this voluntary time. Other positive observations at evaluation relating to the introduction of the technology
into the school included:

"pupils differ in ability and rate of learning. Computers aliow drill and practice for slow learners,
time pressure is reduced. Through this they are reassured by the sense of accomplishment, {ee!
pleasure in achievement and thus find high motivation to do more work. Able pupils are given the
opportunity to do accelerated work."

"using the computer as an aid in tutoring mathematics is especially appropriate. The computer

permits instruction to proceed whilst teacher attention is directed towards helping other individuals
or groups. "

"the computer has helped me as a teacher in building pupils' self-concept and self-image and it does

help to intrinsically motivate pupils to learn and sce themselves as part of the technologically
advancing world"

* ... excitement is totally shown by pupils when entering the computer room."

“...there has been drastic improvement in the pupils ability to do mathematics. First quarterly tests in

1993 and computer progress reports confirm this."

Negative comments coming from the mathematics teachers are:

"I have nothing against the use of computers for teaching mathematics, but I would suggest that

pupils' motor neuron abilities must be looked after, for example in sketching of graphs...."

"... pupils are deprived of chances to show innovativeness. Instead I see the learning mathematics on

computers as a form of recipe as its exercises are followed slavishly on the screen.”

Comments from teachers and students who the technology wasn't targeted at were largely negative. One
non-mathematics student interviewed commented:

"I see the need to know the computer... I do not like the idea that the computers are only used for
the mathematics students - it makes me sick!. The impression created is that computers are only for
mathematics/scientific people... I feel that those who do use the computers are very lucky and
should make the most of the opportunity. "

Reaction from the mathematics students vrere largely positive. Problems that arose from these students
were those relating to insufficient access time and being forced to work in a group.

Conclusions

By far the most overriding feature of the implementation process was the positive attitude from both
teachers and students. For teachers it appears to be empowering to be able to in the first instance demystify
computer technology and, in the tong term, reduce the workload involved in as well as improve the quality of
classroom materials development. When time allows it offers them a chance to expose their students to
broader applications of the subject content. As it was put by one teacher when asked by myself whether a
particular package might be problematic because it does not conform rigidly to the syllabus she replied "... it
does not matter, as I am not teaching them only about science but also about life...". A current reality and
talking point in South African educational circles is that of the lack of a "learning culture” in communities that
were oppressed under the apartheid regime. This learning culture amongst students was eroded by a racist
education policy and the resulting apathy towards learning and action this illicitcd from the oppressed people.
As was evident from the implementation of the CAL package described earlier ip this paper, students interest
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in the learning of the subject increased just by virtue of introducing the technology into the subject
(Schoenmaker 1989).

The introduction of computers into the context described in this paper should be sustainable. This would
involve working with a manageable number of schools intensively for a finite period of time. At the end of this
period a new set of schools should be taken on board whilst the first set has "hotline" contact with the
implementing agency. The choice of a set of schools should be based on factors such as their geographical
locations with respect to each other and approval from the relevant authorities (principals, teachers, inspectors,
etc). In order for the model to be sustainable, support should involve general training, regular on-site visits
and support, materials developed reflecting typical support required, intensive training for one or two teachers
who will act as trouble shooters and the encouragement to form a SIG (subject interest group) with the
surrounding schools. :

This model is, by its very nature, one that developes quite slowly. If we in South Africa are looking to
build capacity with respect to teachers who will be able to cope with the possible introduction, in the near
future, of computers into schools for CAL and as a school subject, other initiatives have now to be intensified.
These could include addressing the issue at both pre-service and in-service training of teachers. Furthermore.
policy needs to be developed relating to the role of computers in education as even in white education

- departments this does not seem to be the case. Bean comments, from his investigations in these schools, that

".. there is at present in South African educational policy a considerable lack of consistency and co-ordination
regarding computers in education..."
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Using Mathematica to Visualize New Concepts
in Linear Algebra

TILAK DE ALWIS
Department of Mathematics
Southeastern Louisiana University, Hammond, LA 70402, USA.

Abstract: Mathematica is a revolutionary computer algebra system (CAS)
that can be used as a numerical or symbolic caleulator, a tool for graphing or
as a visualization system to analyze data. One of the major strengths of
Mathematica is its built in high level programming language. This provides
an ideal tool for forming and testing conjectures in mathematics. In this
paper, we will use Mathematica to introduce the brand new concept of fixed
points of a family of matrices in linear algebra. We will also show how to
use the animation and sound capabilities of Mathematica to make linear

aigebra come alive! In the process we will discover several conjectures and
theorems.

Introduction
Consider the family of matrices
a b -l
Ay = where a,b and ¢ are given real constants and ¢ is a real parameter. We want to
c t

investigate the behavior of the family of characteristic polynomials fi(g) = Det(A;—zI) for a
changing parameter t, where I is the 2x2 identity matrix (Anton, 1991). For given values a,b and c,
the following simple Mathematica program plots the graphs of the family of characteristic
polynomials f ¢ for various t values on the same set of axes. What we have used was the
Mathematica standard version 2.0 on a Macintosh IIfx platform running at a clock speed of 46 MHz.
Some good references on Mathematica are Wagon (1991) and Wolfram (1991).

Program 1.1.
a=7; !
A={{ab},{ct}};
B = IdentityMatrix[ 2] ;

Plot [ Evaluate [ Table [ Det [A - x+B ], {t,-3,3}]1], {x,-7,7}]

=?;¢=7;

Example 1.2. Assign a = I, b = 2, ¢ = 3 and press "Enter”. The students will be pleasantly
surprised to observe that all the graphs pass through a common point. In this particular instance, the
common point seems to be approximately (1, —6). The output is given in figure 1.3.

It is now time to raise some questions. Was the above a mere coincidence? To answer this
question, the students can again experiment with Mathematica by using different sets of values for a,b
and c. However, each time it appears as if the families of the characteristic polynomials f4 pass
through some common point or a fixed point. In this way, they can form a conjecture and prove it to

obtain theorem 2.1, given in the next section. This will also lead to the notion of the fixed point of a
family of matrices.
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Figure 1.3
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Some Interesting Theorems and the Fixed Points of Matrices

Theorem 2.1. Let A, = (aij) be a family of 2x2 real matrices with a;, = a, ajg = b, ag; = care
given constants and a9y = f, a parameter. Then the family of characteristic polynomials

fi(z) = Det(A,—zl) where I is the 2x2 identity matrix, passes through the unique common point
F = (a, ~bc) for varying t.

Proof. It is easy to see that f,(z) = Det(A;—zl) = (a~z)(t~z)—bc = t(a—z)—z(a~z)~be.
Note that the coefficient of t is (a ~ z). This implies that f,(a) is independent of the parameter ¢,
and in fact f,(a) = —bc. Hence for any ¢, all the characteristic polynomials f, pass through the
common point (@, —bc). It is clear that there cannot be any other common point. For suppose (p,g)
is a common point. This implies that f,(p) = t(a~ p)— p(a—p)—bc must be a constant not
depending on t. Hence p = a and f,(p) = —bc. This proves the uniqueness of the common point.

Definition 2.2. The point F in the previous theoiem is called the fixed point of the family of matrices
Ay or more appropriately, the fixed point of the family of characteristic polynomials f, .

A curious student might want to know a whole lot more. Clearly in our 2x2 case all the
characteristic polynomials are parabolas. Figure 1.3 might suggest that the fixed point F is also the
minimum point of one of the parabolas. Another question of interest is how F is related to the
minimum points of f, for an increasing parameter t. This is an excellent place to make use of the
multimedia capabilities of Mathematica. The following Mathematica program animates the
characteristic polynomials fy for varying t.

Program 2.3.

a=?;b=7,¢=7;

A={{ab},{ct}};

B = IdentityMatrix [ 2] ;

u=(a4y)/2;v=-((a-y)*2+4sbsc)/4;

(t=-4;Label[1]; t=t+1;f[t==4,Goto[3],Goto[2]];Label[2];
Plot [Det [ A - x#B ), { x, -7, 7 }, PlotRange -> { -15,25 } ,

Epilog -> { { PointSize [ 1/40 ], RGBColor [0, 0, 1], Point [ { a, -bsc } ] },

{ PointSize { 1/70 }, RGBColor [ 1, 0, 0], Table [Point [{u,v} ], {y,-3,t}]1}}];
Goto [ 1];Label[3]; Break [ ])
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Example 2.4. Assign the values a = 1, b = 2, ¢ = 3 and press "Enter”. Group the resulting
sequence of graphs into a single cell and double click on this single cell to start the animation. One
can even add some music into our animation. The program will plot the minimum points of the
parabolas f, in red and the fixed point F in blue. In the actual presentation, one can observe the
characteristic polynomials f, dancing to music, while their minimum points traversing a red

parabola. Our students will definitely be inspired by linear algebra taught in this fashion! A few
frames of the animation are given in figure 2.5.
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Figure 2.5

In the above example, amazingly one can notice that the blue fixed point F is nothing but the
maximum point of the red parabola. One can try this for different sets of values of a,b and ¢. These
observations will enable us to form and prove several conjectures as given below.

Theorem 2.6. Let A, be the family of matrices given in theorem 2.1. Then for varying ¢, the locus of
the minimum points of the characteristic polynomials f, is a parabola. Moreover, the maximum
point of this parabola is the same as the fixed point F.

Proof. It is clear that f,(z) = 22 ~z(a+1t)+(at—-bc). This is the equation of a parabola. Let
Vi = (a,8) be its vertex. It is not hard to verify that o = (a+1t)/2 and
B =-{(a— t)2+4bc}/4. Eliminating ¢ between these two equations yields 8 = —(a—a)2—bc.
Therefore the locus of V; is the parabola y = —(a—z)2—bc which proves the first part of our
theorem. Clearly, the vertex of this parabola is (a, — bc) which is the fixed point F given in theorem
2.1. g

The proof of the above theorem implies that V¢ coincides with the fixed point F if and only if

t = a. The next theorem answers an interesting ramification of this in terms of the eigenvalues of
A, (Auion, 1991).
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Theorem 2.7. The notation is as given in theorems 2.1 and 2.6. The absolute value of the difference
of the eigenvalues of A; is minimized when V; coincides with the fixed point F.

Proof.  The eigenvalues X; and Ag of the matrix A; are the solutions of the equation

:z:2—:z:(a+t)+(at—bc) = 0. This implies that A{ + X9 = a+t and AjAg = at —bc. Therefore,

M =Xyl = \J(,\l +29)2—4xhg = \(a+t)2—4(at—bc)=\(a—t)2+4bc. This is clearly
minimized when ¢ = a. However, this happens if and only if V4 coincides with the fixed point F by
the comment preceding theorem 2.7. 8]

Now let us look back and reflect on the approach we had used so far. A CAS such as
Mathematica will enable the student to experiment with mathematical or physical phenomena (de
Alwis, 1993). By fully exploiting the multimedia capabilities of Mathematica, one can indeed make
the experiments very lively. However, the student must keep a very open and a curious mind as these
experiments are being performed. This allows one to form and test various conjectures. However,
one’s adventure should not stop with this. One must try to prove those conjectures mathematically.
This gives the student a valuable opportunity tc reinforce some important mathematical ideas. For
example, in proving the previous theorems, we used certain facts about eigenvalues and characteristic
polynomials of matrices. Experimenting with data before proving conjectures is an integral part of
modern computational mathematics and must be stressed at an earlier stage of student’s career.

Generalizations to Higher Order Matrices

A natural question is to ask whether one can generalize some of the previous definitions and
theorems to families of matrices other than 2x2. To this end, consider the nxn family of matrices
Ay = (a;)) .where a; . are given real constants for (3, j) # (n, n) and Upp =L, 2 real parameter.
One can o'Lv:ously exgend definition 2.2 to define a fixed point of this family of matrices as a point. F'
such that all the characteristic polynomials f,(z) = Det(A;—zI) pass through F. Here I denotes

the nxn identity matrix. As the following theorem implies, for n > 2, such a fixed point may or may
not exist. ‘

Theorem 3.1. Let A; be the family of real nxn matrices defined in this section. Then the
z —coordinates of the fixed points of A; are exactly the eigenvalues of the (n—1)x(n—1)
submatrix B obtained from A, by deleting the row and column containing the entry a,;,.

Proof. Let f/(z) = Det(A;~zI) where I is the nxn identity matrix. By expanding the matrix
A; —zI by the last row, one obtains that f,(z) = g(z) + (¢t —z)Det(B —zJ) where the matrix B is
as defined in the statement of the theorem, J is the (n—1)x(n—1) identity matrix, and g¢ is a
polynomial in the z variable which is independent of ¢. This implies that fi(z) is independent of ¢ if
and only if Det(B—zJ) = 0. However, by definition, Det(B—zJ) = 0 if and only if z is an
eigenvalue of B (Anton, 1991). Hence the theorem. a

The above theorem implies, for example, when n = 3, the family of 3x3 matrices A, can have
exactly one fixed point, two fixed points or no fixed points. This is because, the 2x2 real submatrix B
can have exactly one real eigenvalue, two distinct real eigenvalues or no real eigenvalues. The
following example illustrates the latter case.

Example 3.2. Let A, = (a,.) be the family of 3x3 real matrices with a;; = 1, ayp = 1, ayq = 5,
t tj 11 12 13
ag) = —2,0899 = =1, agg = -1, agy = -2, agg = 3 and agg = ¢ a real parameter. Then the

1 1
2 -1

submatrix B described in theorem 3.1 becomes . A simple calculation reveals that the

eigenvalues of B are £1i where i = Y= 1. Hence the family of matrices Ay does not have any fixed
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point, because these eigenvalues are not real. One can also write a Mathematica program to illustrate
that, the graphs of the characteristic polynomials f,(z) = Det(A;—zI) do not pass through a
common point in this example.

However, as the following corollary indicates, under certain conditions, the family of real matrices
A, will always have at least one fixed point.

Corollary 3.3. Let A; = (adJ ) be a family of nXn real symmetric matrices with a;. are given
a

constants for (%,7) # (n,n) nn = {, a parameter. Then the family of matrices A, will always
have at least one fixed point.

Proof. This directly follows from theorem 3.1, since the eigenvalues of a real symmetric matrix are
all real (Anton, 1991). 0
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Abstract

Due-to the serious problems encountered in school education in the black dis-
advanatged communities of South Africa in the past, very few students qualify
for acceptance into tertiary technology-based institutions. A special academic
support program (Bridging program) is offered at the Port Elizabeth Techni-
kon to assist students to overcome their academic disadvantages. In spite of
*his program problems with certain mathematical concepts prevail. A project
was launched with a group of Bridging students to investigate the effectiveness
of CAL to address these problems. A well known South African Mathmatics
CAL Bridging System was used for this purpose. The system used is described
and the project is evaluated. Systems providing computer aided learning and
evaluation (testing) can be an efficient way to overcome the educational crisis
of the disadvantaged communities in South Africa provided that students are
motivated and enthusiastic.

Introduction

The Port Elizabeth (PE) Technikon was one of the first tertiary inslitutions in South Africa to observe
that due to the serious problems experienced in the secondary education of blacks from the disadvantaged
communities in South Africa, large numbg:lof these students do not pass the standard selection criteria for
tertiary (post-secondary) education. The official statistics of the Department of Education and Training
showed that in the Port Elizabeth area 229 out of 4 910 black students taking mnathematics as a subject,
i.e. 4.7%, passed their matriculation (twelfth grade) examinatior in 1991. Only 20 of these i.e. 0.4%,
qualified for entry into a technology-based main stream education at a tertiary institution.

In July 1989 the PE Technikon decided to launch its Academic Support Program (ASP) [4], to prepare
students with potential, who failed the standard selection crileria, for careers in the field of technology.
Aptitude tests have been used to select some of these students to enter the ASP program. In this prograni
students attend a so-called Pre-Techuician or ‘Bridging’ academic year aimed to upgrade the students’
school education in mathematics, science, and gencral communication and life skills.

The bridging curriculum consists of :

1. A onc sexnester Mathernatics course at first year level, supplemented with extra lecture periods and
tutorial sessions. Contact time is increased by 50% in comparison with the normal course. (2].

2. A one semester course in cach of Physics and Chemistry revising the secondary school syllabi.
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point, because these eigenvalues are not real. One can also write a Mathematica program to illustrate

However, as théMollowing corollary indicates, under certain conditions, the family. of real matrices
Ay will alweys have at [€ast one fixed point. =

~
-

matrices with a;. are given
€ family of matrices A, will always

Corollary 3.3. Let A; = (a;.) a family of nXn real symmetri

constants for (i, j) # (n,n) and a,, = t, a parameter. Then
have at least one fixed point.

Proof. This directly follows from theorem 3.1

€ the eigenvalues of a real symmetric matrix are
all real (Anton, 1991).

O
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3. A one semiester selection course, either An [ntroduction to Human Biology or Engineering Techno-
logy.

4. A two semester course in Communication Skills, including a subcourse in Computer Literacy.

5. A onc scmester course in Life Skills.

The last two courses have been motivated by the following observations. Research has shown [5], that
most of the students from the disadvantaged communities, experience serious problems in understanding
the subject terminology and expressing their misunderstandings. The lecturing niedium being English,
is usually their second or third language. They are therefore very hesitant to ask their lecturers for
assistance.

Students accepted for the ASP can, at the end of the bridging ycar, apply for selection for standard
Technikon Diploma Studies and receives recognition if they passed the Mathematics course in the Bridging
year.

It was, however, observed by the lecturers involved that the majority of the ASP students continu-
ing with their studies, although they have passed first year Mathematics, still have serious problems
with math natical concepts as applied in first year Physics and Chemistry. Some of the problem areas
identified were exponents and logarithms, changing the subject of equations, solving word problems and
trigonometry. Since a very large increase in student numbers from the disadvanteged communities is
expected over the next decade, a serious effort is required to address these issues.

It was therefore, decided to consider a Mathematics Computer Assisted Learning (CAL) course to attempt
to remedy these problemns.

Aim of the Project

An investigation of the cffetiveness of Computer Aided Learning (CAL) in Mathemnatics for students

from disadvantaged comuiunities in a Bridging Program at the Port Elizabeth (PE) Technikon, South
Africa.

Project Application

After sucessfully completing the Mathematics course in the first semester, the group of ASP students
preparing to study for a Diploma in Applied Science, were given a Computer Aided Learning (CAL)
Computer Literacy course locally developed by the Department of End User Computing of the PE
Technikon.

A Mathematics pre-test, concentrating on the mathemnatics problem areas, as mentioned above, were
then administered. They also completed a questionaire conveying their own perceptions of their mathe-
matics capabilities and problem areas. In this questionaire the students were given a list of the different
sections of the first year mathematics syllabus and were asked to indicate to what extent (Good, Average,
Poor), they thought they have managed the sections.

On completion of the pre-test and questionaire, the students were exposed to a well known South
African developed Mathematics CAL Bridging Course.

The project lasted eight weeks during which the students attended two one and a half hour CAL
sessions per week, roncentrating on the identified problemn arcas. At the end of the period the students
wrote a Mathematics post-test and also completed a questionaire on their perceptions of the course. The
pre-test and the post-test were identical.

The students uscd a computer laboratory equiped with Intel 386-based microcomputers (with Super
VGA screens) interconnected by a local area network.

The CAL Bridging Course

The network version of the SERGQO Mathematics System Bridging Course developed and supplied
by Interlearn, was used. The primary aim of this Course is to cover the most essential topics from the
sccondary school Mathematics syllabus and selected topics of a typical first year Mathematics course at
tertiary level,

1:1 l‘.('
37

BEST COPY AVAILABLE




Q

ERIC

Aruitoxt provided by Eic:

The supervisor or lecturer controls the system to allow a student to work through the whole course
in the prescribed order or to follow one or more of the so-called topic related paths, e.g polynomials,
equations, exponents and logarithms, functions and graphs, calculus, vector aigebra and trigonometry.

Fach path consists of a number of modules (116 for the complete course and from 17 to 27 for a
topic related path}). In order to exclude introductory or advanced levels of a topic, a path can be limited
to a smaller sequence of modules. Each module, apart from covering the relevant theory and providing
worked-out examples, provides a substantial number of problems to be solved by the student. The lecturer
can determine the number of problems a student has to solve correctly before progressing to the next
follow-up module.

The lecturer can set various norms e.g. the ‘fail’ option, where, if a student has incorrectly completed
a specified number of problems, he is automatically taken to a remedial module. Once the student passes
the remedial module he will return to the module failed before. If a student ‘fails’ a remedial module,
he is moved back to a relevant lower level remedial module, etc. When a student terminates a session
the system records his position in the set path and will allow him to continue from the last completed
module,.

Progress reports on the class or a specific student can be obtained by the lecturer. These reports
contains information on the path(s), the specific modules completed, the number of problems attempted
and the number of problems which have been completed correctly. The average time spent on each
problem as well as a grading (%) for each module are given.

The marking 1s rather stereotype allocating 1 for a correct solution to a problem and 0 otherwise. No
credit is given for correct intermediate results. Note, however, that the system was not intended to be a
Computer Aided Testing or Evaluation System.

Help, providing underlying theoretical hints, is available but then no credit is given to a correct answer,
in fact it is taken as a problem ‘completed unsuccessfuily’.

In this project the students used the system without any assistance from a Mathematics lecturer.

Evaluation of the Project

Statistical Results

The eighteen prospective Applied Science students who were selected to continue with the second
semester of the Bridging program, participated in the project.

Average percentages No. of
Section Pre-Test Post-Test Increase Attendance | modules
Exp. & logs 32.1 38.4 6.3 84 13
Polynomials 30.0 36.7 6.7 90 11
Trig. 27.1 30.6 3.5 46 12
All 29.9 35.6 5.7 73 36

Table 1: Test scores and attendance of lessons

Table 1 give the scores of the students in the three sectious viz exponents and logarithms; polynomials,
and trigonometry, which corresponded to the topic related paths of the CAL system used. Under the
column ‘Attendance’, the average percentage of the miodules mastered for each path is given. Note
that this figure excludes the extra remedial modules completed sucessfully. The last row contains the
corresponding figures for the complete test and course.

The average mark for the group in their Mathematics examination was 59.4%. The low averages for
both the tests (29.9% and 35.6%) confirm that the topics selected were indeed problem areas. However,
it is interesting to note that the majority of the students (78%) rated their own understanding of the
work as above average.

The improvement in performance (19% relative or 5.7% absolute), displayed by the figures in the
column headed by ‘Increase’, can largely be attributed to the attendance of the CAL course. Although
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there seems to be a correlation between imiprovement and attendance, there is not sufficient statistical
evidence to support this,

Student Evaluation of the Course

In the evaluation questionaire students had to respond ‘Yes’, ‘Sometimes’ or ‘No' to questions covering
the following topics.

1. The Computer (hardwar=) - On eight of the nine questions e.g.
*Was it easy to learn how to use the computer ?"; ‘Did you learn to use the keyboard quickly ?*;
‘Were the letters on the screen big enough ?° .. .etc. the responses were overwhelmingly positive.
The only indeterminate response was on the question, ‘IWere the graphs easy to understand 7°. We
believe that this may rclate to perception problems experienced by students from disadvantaged
communities. Conipare [3] and [5].

2. The Software — On the four questions :

‘Did you understand the words used in the lessons 7’; ‘Did you understand the mathematical terms
used ?"; ‘Did the diagrams shown on the screen helped you in understanding the mathematical
concepts ?° and 'Did the supervisor explain clearly how to use the program 7, the responses were
strongly positive.

However the questions *Were the instructions on what to do, easy to understand 7"; ‘Did you often
have to look at the instructions to use the program ?° and ‘Was it easy to type special maths
characters like >, <, etc. 7', yielded indeterminate responses.

3. The lessons -- 'The seventeen questions on whether they liked doing mathematics on the computer,
thought it stimulating and whether it improved their understanding of the different topics, also
yielded overwhelmingly positive respounses.

4. Language The students were all happy that the lessons were in English. Amazingly, only two
would have liked it to be in Xhosa which is the home language of fifteen of them.

Each section had an open ended question of the forni ;. ‘Anything else you would like to say about ... 7"
More than 30% expressed th~ir wish to have remedial CAL lessons in other subjects as well, naming
both Chemiistry and Physics.
They also requested that a Mathematics and Science CAL outreach program should be established for
students from the disadvantaged conumnunities to inprove their preparation for tertiary education.
Yeaker students complained that they could not manage to progress in the cases where they did not
understand or manage the material. The system kept on reverting them back to remedial modules
without providing sufficient explanation to overcome their probleni(s).

Evaluation of Project Leader

Although the majority of the students had no previous contact with computers, they adapted casily
and showed a keen interest in using the coniputer as a tool to gain knowledge. It was also significant to
see their motivation and growing enthusiasin for the project. i

The teports produced by the CAL system on the progress of a group, or an individual student, are
invaliuable to the lecturer monitoring the progress. It identifies the students needing extra attention and
the lecturer can pin-point the problems of individual students and provide problemi-orientated help.

In our opinion this system can not he used without a lecturer to resalve such cases and provide the
necessary remedial tutoring, since the problems of these students are more fundamental and at the basic
secondary school level. Of course, the SERGO CAL High School Mathematics System could be used to
alleviate this problem.

The students confirmed two important advantages of CAL : they enjoyed working at their own speed
and time, and the majority spent a lot of extra tinte, even many a lunch break, in the computer laboratory.

Two instances were observed where the systenn marked a correct answer as incorrect. Although this
is statistically a small error rate, the impact on the students has been severe. Once they discovered one

<z
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of these errors, the credibilty of the system was in doubt and they queried the marking. The complaints
raised on this issue in their evaluation was out of praportion, but it emphasizes the importance that such
errors be elimated before the release of such systems.

Due to the fact that the System regarded a problem to be unsuccessfully completed when a student

used the ‘Help’ feature, students were unwilling to use it. This defeated its objective of supplementing
the course material.

Conclusion

Tertiary Education Institutions seriously concerned with the teaching of students from disadvantaged
communities can certainly benefit from CAL and Computer Aided Testing (CAT) systems. Furthermore
large numbers of students can be taught effectively and efficiently provided that strict monitoring is
applied to ensure that students with problems are identified timeously for personalized remedial action.

In the next couple of years it is going to be crucial to rectify the past inefficient school education of
people from the disadvantaged communities in South Africa. A computer aided approach can play an
important role to solve this education crisis in South Africa ([1] and [6]), provided that the students are
motivated and enthusiastic.

Any computer laboratory which is not fully utilized can be used to assist large numbers of students
from these communities to come level with the normal main stream of tertiary students. At most tertiary

education institutions, such free capacity exists indeed, at least over week-ends and during academic
holidays.
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Abstract: As part of the academic support programme, a computerised bridging
course in Mathematics was developed at the University of Pretoria. The didactical
approach of the system is that of criterion referenced instruction or mastery learning
in which the progress of the student strictly depends on proven mastery of the concepts.
Each university topic is preceded by modules on the school Mathematics that is needed
to understand the particular concepts and techniques involved. A description of the
course is given and the success of the course so far, is discussed.

The shortage of qualified Mathematics teachers (in the black community in particular) in South Africa,
places a big responsibility on Mathematics departments at the universities. First year students experience
difficulty in adapting to the change from school standards to university standards in Mathematics with
respect to subject content as well as the pace of the lecturing at the university. it being much faster than
what they are used to at school.

Mathematics i perhaps the biggest problem since a sound mathematical foundation is needed by a large
number of other subjects and because of the conceptual nature of the subject.

To address these problems. it was decided to develop a computeriscd bridging course in Mathematics at
the University of Pretoria. This course forms part of the academic support programme at the university.

A student works through the course in parallel to the normal lectures working on the computer for two

or three hours each week. By the end of the first semester a student working on the course will have
caught un with his fellow students.

Description of the course

Mathematical content

We did some research on which school topics are most needed in the university subjects with mathematical
content. The entire course consists of 112 niodules - about half the modules covering the above mentioned
topics from the high school Mathematics and the rest of the modules covering the contents of the first
semester Mathematics course at the university.

The order in which the course is planned is such that the content builds up in a logical mathematical order.
Each university topic is preceded by modules on the school Mathematics that is needed to understand
the particular concepts and techniques involved.

The ideal situation is that a student will work through the 112 modules in this prescribed order. This will
ensure that all topics are covered. This is done parallel to the normal lectures working on the computer
for two or three hours each week. By the end of the first semester a student working on the course will
have caught up with his fellow students.

The course also makes provision for different paths or topics. These paths are meant to solve a particular
problem in a student's mathematical background. Each path consists of a number of modules and each
medule contains a great number of different problems.
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The programme is divided into eight different paths or topics. In path 1 (the complete course) the student
works through the entire course in a linear way. The other paths each covers a certair topic.

Path 1 : Complete course

Path 2 : Polynomial Algebra

Path 3 : Equations

Path 4 : Exponents and Logarithms
Path 5 : Functions and Graphs
Path 6 : Differential Calculus

Path 7 : Vector Algebra

Path 8 : Trigonometry

Unless otherwise instructed, a student will automatically begin working on Path 1 {the complete course).
At any stage, however, the student can be moved to another path or to another module.

Structure of a module

The didactical approach of the entire system is that of criterion referenced instruction or mastery learning
in which the progress of the student strictly depends on proven mastery of the concepts.

According to Bigge (1982:307) "Mastery learning offers a powerful new approach to student learning which

can provide almost all students with the successful and rewarding learning experiences now allowed to
only a few.” ’

In the system this is used in the following way: Each module begins with an explanation of the theory
and concepts needed to solve the problems. This tutorial section is optional and some students may
decide to skip this section. This section normally contains soine worked examples.

After this the student has to do a number of problems on the topic. Before a student, is allowed to continue
with the next module he has to prove to the computer that he has mastered the concept involved by
satisfying certain predetermined progress criteria.

According to Poppen & Poppen (1988:39) it is important that certain behaviouristic principles should
be used when developing quality courseware. Two of the most important of these principles, built into
the system. are immediate feedback and hints supplied by the computer. A help function is included into
the system to enable the student to get inforination without actually asking the lecturer. Guidelines are
given to encourage the student to think positively towards a solution of the problem.

User friendliness is a high priority. The student is addressed on first name terms while encouragement
and advice are given throughout. If the answer supplied by the student is correct but not in the format

expected by the computer, it will be accepted as correct with a remark on what would be a better format
in which the answer should be given.

Students working on the system

The lecturer controls the entire process from a central co:itrol unit. As soon as a student satisfies the

progress criteria of a particular module, he will automatically be moved to the next module by the
computer.

The lecturer can decide on the progress criteria for any particular module. The criteria that can be
altered are the following.

Should second correct answers get credit?

How many problems must be done correctly?
Must the problems be done correctly in 2 row?

Is there a fail criterium?

How many incorrect answers for the fail criterium?
Is there a time limit?

If ves, how long?

i
0o

42




Q

ERIC

Aruitoxt provided by Eic:

Progress reports

The system keeps complete record of each student’s progress in every module. This information is

accessible as a hard copy or can be read on the screen. The system makes provision for two types of
reports.

Class reports contain the names of the students in a class arranged alphabetically. In every topic a
reading is given for each student giving a percentage of the exercises completed in the particular path.

This enables the lecturer to detect students having problems with certain topics in the -ubject with a
single glance. )

Individual progress reports contain detailed information on each module completed by the student, indi-
cating the date, number of problems done, number correct and the average number of seconds spent on
a problem. This report supplies valuable information to the student as well as to the lecturer.

Remediation

Remediation is an important and powerful component of the system. Its diagnostic features have the
effect that unique problem areas of a student are immediately addressed and can be remedied. This can

be done automatically by the system or the lecturer can control the remediation process using the results
of the progress reports.

Automatic remediation can be accomplished by determining the progress criteria for each module. For
each module in the system, there is an “escape” module. This is a module on the same topic but of
an easier nature. If a student "fails™ a module by satisfying the fail criteria, he is automatically moved
backwards 1o the particular escape module.

This "fail” option makes special provision for the weaker student. It is an ongoing diagnostic process.
doing automatic remediation of topics which can be considered as bad spots in the student's mathematical
background. This process ensures mastery before a student is allowed to move on to new content.

By analysing the results of the progress reports made available by the system. the lecturer can immediately
detect the weak areas in a student’s mathematical background. Using the flexibility of the system, he
can now move the students to the relevant modules in the system.

A homework booklet containing a homework exercise for each module, has been compiled. When a
student’s computer session is ended. a suminary of the exercises completed in that session appears on the
screen. The student hence knows exactly which homework exercises he has to do for the next session.

Experience in 1991 and 1992

First year Mathematics students with a D symbol in Higher Grade matric Mathematics are advised
to follow the course. Unfortunately there is an enrolment fee (we had to buy computers and employ
assistants) so 99 students entered the course in 1991 and 90 in 1992.

Lets begin with a success story by mentioning four exceptional cases. Our first year Mathematics course
consists of two (equal in weight) sections: Calculus and Algebra.

Table 1
Some extreme cases
Student numbver Matric svmbol Algebra % Calculus %

9204326 D 5] 81
9254749 D 72 78
8642818 E 62 70
9243828 E . 65 64
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In our first year the biggest group of students are engineering students - so we distinguished between
engineering and non-engineering students.

We compared the results of Lridging course (BC) students to those of the other D symbol students that
did not take the course (NBC).

Non-engineering students

In 1992 there were 122 non-engineering students (with D symbol in Matric Mathematics) that wrote the
semester examination of which 86 were WBC-students and 36 BC-students. All students were examined
in Algebra and Calculus separately.

Table 2
Number of non-engineering students (n), average mark (¥) and standard deviation (s)

Algebra Calculus

NBC BC NBC BC

n = 86 n =31 n = 82 n = 36
T = 49.186 T = 57.903 T = 45.122 T = 52.083

s = 14.428 s = 15.263 s = 14.529 s = 17.500

Using the method of hypothesis testing to compare the averages of the two independent samples, it

appears from the analysis that the performance of the BC-students was significantly better than those of
the NBC-students.

Engineering students
Engineering students have a combined mark for Algebra and Calculus. Of the 105 students (with D

symbol in Matric Mathematics) that wrote the examination. 72 were NBC and 33 were BC-students.

Table 3
Number of enginecring students (n). average (T} and standard deviation (s}

NBC BC

n="72 n =233
T = 46.389 T = 54.091

s = 13.141 s = 12.084

Here again the average performance of the BC-students was significantly better than those of the NBC-
students.

Questionnaire

A questionnaire was used to get feedback from the students that took the bridging course on how they
experienced the course. Included some of the questions with responses.

Question 1: To what extent did your self confidence in Mathematics improve?
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Table 4
Answers to Question 1

| Choices Very much Somewhat So-so Little Nothing Total
Percentages - 1991 23 58 17 2 0 100
| 1992 25 46 27 2 0 100
|

In 1991 81% of the students felt that their self confidence in Mathematics improved "Somewhat” to "Very
much” while in 1992 the percentage was 71%.

Question 2: To what extent did your understanding of Mathematics improve?

Table 5
Answers to Question 2
Choices Very much Somewhat So-so Little Nothing Total
Percentages - 1991 37 55 7 1 0 100
1992 40 51 T 2 0 100

From this table it is clear that in both years 91-92% of the students’ understanding of Mathematics
improved.

Question 3: Your general impression of the course?

Table 6
Answers to Question 3
Choices Very good Good Average So-so Bad Total
1991 45 51 3 1 0 100
1992 42 51 T 0 0 100

About 95% of the students in each year censider the course to be “good” to "very good™.

Conclusion

The average performance of students in the bridging course was significantly better than the other students
with a D-symbol in matric Mathematics for engineering as well as non-engineering students. Furthermore,
students experienced the course positively.

Our experience is that the success of the course depends highly on the measure of human involvement by

the supervisor. Leaving students on their own in the computer laboratory will definitely have an effect
on the results.

A shortcoming in implementing the course is the fact that students do not get any credit for the course.
It becomes difficult after a time to motivate the students to work regularly.
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Attaching Media-Rich Information
to Collaborative Biology Knowledge Networks
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Abstract: A knowledge network construction too} (SemNet) has been developed and
used successfully in many science classrooms. Five years of use in a biology class
for prospective elementary school teachers has resulted in learning improvements,
such as increases in deep processing, categorization skill, and hierarchy construction.
New software functions and instructional methods to support collaborative net
creation by small groups of students have been used to support integration of
cuncepts into an elaborated mental model, and to improve understanding by exposing
stidents’ alternative views for consideration and discussion by peers and instructors.
New functions have been created for attaching documents using other media such as
audio, video and , «phics to nodes and links in a knowledge network. This enables
students and teachers to enrich their conceptual represeniations with information
organized or represented differently, or to organize and access databanks of images
and documents from multiple viewpoints.

Our rescarch group has developed and tested a multidimensional knowledge construction tool, SemNet®
(Faletti, Fisher, Lipson, Patterson & Thornton, 1991), which provides support for thinking about ideas in
complex domains (Fisher, Faletti. Patterson, Thornton, Lipson, & Spring, 1990). SemNet has been used by
students in several dozen classrooms at various grade levels ranging from sixth grade to post-graduate (for
example, Fisher and Thomnton, 1987; Brody, 1990a, 1990b; Jay, Alldredge, & Peters, 1990). Each of these
studics found evidence that SemNet in its present form can be a useful knowledge construction tool for students.
It has been used success{ully for many different purposes and at many different levels including: as a learning
tool for middle school students (e.g., Jay, Alldredge, & Peters, 1990); for secondary biology students (e.g.,
Huppert, 1988); and for college biology students (c.g., Gorodetsky, Fisher, & Wyman, 1994); as a tool for
diagnosing biology misconceptions (Fisher, 1994); as a curriculum design tool (Allen, Kompella, Hoffman, &
Sticht, 1991); as a cognitive rescarch tool (Gordon, in press; Hoffman, 1991); and as a communication tool for a
working committee of the European Common Market (Hofmann, & Welschselgartner, 1990). It has also been
used to produce nets in many different languages, including Japancse, Hebrew, German, French, and Spanish.

SemNet was designed so that *so10gy students with no computer experience required less than two hours of
instruction before they could begin focusing on the content they were to learn. SemNet was designed primarily
to help students focus their attention on weaving individual pieces of knowlcdge together to construct an
integrated, cohesive, meaningful whole. In designing SemNet, the needs of instructors and researchers have also
been considered, particularly as a tool for organizing their own knowledge and studying students’ knowledge.
The SemNet interface, which is based in part upon scmantic network theory describing the organization of ideas
in long term memory (Kintsch, Miller & Polson, 1984; Norman, Rumelhart, & the LNR Rescarch Group, 1975;
Quillian, 1967, 1968; Sowa, 1983), appears to be intuitive and rcadily comprchensible. Some of the key ways in
which SemNet has been used are described below.

As a knowledge construction tool, SemNet prompts users to organize their ideas in systematic ways, link
ideas together with explicitly named relations, and create rich descriptions for important points. As a tool for
reflection, SemNet capturcs and mirrors a thinker’s thoughts, serving as a long-term extension of limited
capacity short term memory. Users can reflect at Ieisure upon the ways in which they have organized and
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described their ideas, and can cdit and recorganize them casity. They can also leam by looking over the shoulders
of their peers, sceing how others organize the same knowledge. When uscd by our students, this results in a
consistent significant increase in deep processing among high aptitude students, as measured by Schmeck’s
Inventory of Learning Processes (Schmeck, Ribich & Ramanaiah, 1977; Schmeck & Ribich, 1978). Similarly,
we believe significant growth of cognitive skills (such as categorizing and constructing hierarchies) occurs
among low aptitude students, although we do yet not have a quantitative measurc of these gains (Fisher, 1994).

As an analytic tool, SemNet offers users many different perspectives of their knowledge, including
overviews and ‘subviews’ (such as the main ideas and hierarchies in a network), along with precise quantitative
summaries of network characteristics. As a collaborative tool, SemNet allows individuals to compare their
thinking and negotiate meaning at a finer grain than is possible in written and spoken language. We have
studied students constructing nets alone, in pairs, and in groups of thrce or more. Preliminary evidence suggests
that the greatest gains result from collaborative cfforts involving three or more students, consistent with (Heller,
Keith & Anderson, 1992) and (Heller & Hollabaugh, 1992). In this format, cach individual develops and enters
ideas indcpendently and then the group collaborates in plarning, review, and revision.

Finally, as a rescarch tool, SemNet provides many insights into cognitive function. It offers a rich and
unobtrusive means for exploring alternative conceptions, the nature of relationships, and the ‘structure’ of
personal and public knowledge. It also reveals students’ habits of mind by revealing their choice of ordering,
focus and grain-level when describing a topic.

In a sense, SemNct is to thinking as molccular biology is to biology: it permits us to ask questions at a level
of detail herctofore unimagined. Among the things we think we have learned about learning are the following.
High aptitude biology students who usc SemNet for onc¢ semester make significant gains in deep processing
skills (Gorodetsky & Fisher, in press). High and low aptitude students make significant gains in their abilities to
catcgorize and organize knowledge. Students who usc SemNet to study a topic retricve about twice as many
ideas about thai topic as students who study in other ways (Gorodetsky & Fisher, 1994). Collaborative net-
building promotes significantly greater dialog, conversation, planning and polishing than working alonc (Allen
& Hoffman, in press). Peer review of student knnwledge constructions secms to be fascinating and surprisingly
valuable to students, in terms of conveying suc<inctly both possibilitics for action (what can be done) and how
to avoid pitfalls (what not to do).

Collaborative Use by Students

A new function allows diffcrent experts (or students) who have worked independently to merge their nets
into a single net, thus bring their differing perspectives together into an integrated view. For example, in spring
of 1993, science faculty from several different departments at the Universily of Eastern Kentucky each created a
nctwork on topics 10 be included in an integrated scicnce course; they then merged their nets and reviewed the
result, sceing clearly the major points of overlap and identifying potential points of confusion (McLaren,
personal communication).

In fall 1993 and spring 1994, the merge feature was usced regularly by students in a senior-level biology
course for futurc clementary school teachers. The studenls have taken an introductory biology course years
beforc and this follow-up course focuses on content and methods appropriate for tcaching younger students
biology. With regular use, students were able to work independently on diffcrent portions of the material and
then to bring the individual picces of the pic together into a whole. Students who owned their own computers
and wanted to do their assignmer - at home found this to be especially useful. Working student groups found it
advantageous to create a number ¢ © small, topic-specific nets (rather than one large onc), and then to merge the
nels to see the larger picture.

During the five ycars in which we have been experimenting with SemNet in this classroom, we have found
that some strategies are much more success{ul than others in promoting lcarning. We summarize these below.,

Students work in collaborative groups, typically made of four students cach. 1t helps if the groups are
constructed so as to include a recasonable balance of strengths in computer skills, biology knowledge, and
English language skills, but a suitable range of such skills is generally available even when groups are formed
by student selection. Collaboration has many well-documented benefits (c.g., Johnson, Johnson & Smith, 1991;
Pca, 1992; Mazur, 1992). The ongoing dialog about biology that cnsues combined with continuous meaning
negotiation and spontancous peer tutoring arc particularly valuable, as arc the fricndships that form and the
congenial environment that surrounds work in the computer lab.
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Groups arc monitored closcly for the first few weeks, with adjustments made as necessary to assure smooth
working relationships. A poor student-group match can be a nightmare for both the student and the group. One
student was reduced o0 tears and tantrums several times cach day because of animosities between her and her
group, but after we paired her with another student having apparently similar work habits, she worked happily
and productively all semester.

Introducing the idea of knowledge representation by demonstrating some concept maps and having students
construct a paper-based concept map is a useful stepping stone to semantic neiworking., Mapping a cell is
somcthing our incoming biology students can do quite well. We then have students work through several
tutorials on their own, including a Macintosh tutorial and a SemNet tutorial. Students are then asked to construct
their family trees using SemNet. In this exercise students are representing a domain in which they are cxperts.
Because the concepts (family members) and relations (parent/child, spouse, sibling, ctc.) are well known to
them, they can focus their attention on how the software works. Finally, studcnts complete some paper and
pencil exercises on identifying links between ideas and describing (naming) the relations in each direction.

These preliminaries are completed in the first week, after which students begin constructing knowledge nets
to describe the biology they are learning. Their first net is on a fairly small topic and one that is recasonably easy
to represent. The relations they will need arc already created in their starter net along with many of the concepts
they will need. Their task is to connect these fragments together.

Once the assignment is completed, each group reviews the nets created by at least four other groups. This
review of onc another’s work is extremely instructive and interesting to the students. They learn a great deal
about what to do and what not to do, and often want to revise their nets aftecrwards. This scems to work best
when the review is not connected in any way with grading, but docs provide fecdback to the net authors.
Revicws are especially important during the first third or so of the course.

The scaffolding for nct-building given by the provision of initial concept and relation lists by the instructor
is gradually reduced in successive assignments, so that by the fourth net or so cach group is creating all of its
own concepts and relations. Each week new net-building skills appropriate to the kinds of biology knowledge
being (carned are introduced; intermediate cditing functions are demonstrated seon after initial net creation,
followed by overvicws, masking, jumping, merging, and saving a portion of a net, as appropriate. The instructor
and tutors review nets regularly and provide as much specific feedback as possible to promote the optimum
devclopment of cognitive skills for thinking about and representing the biology being studied. Students are
encouraged to integrate their cxperiential knowledge from the lab with more abstract ideas from text and
syllabus.

Onec strategy to decpen student understanding is to require that students attend to key features of a topic.
For cxample, in studying the human body, students must include the flow of materials through each organ
system. Thus, for the digestive system, students show the flow of “foodstuff” from mouth to anus, adding each
structure that the foodstuff passes through and identifying the key events that occur in cach structure. They also
illustrate the flow of bile from the liver and of enzymes from the pancreas. Attending to these details helps to
cnsure that students develop a working mental model. When the digestive system is merged with the circulatory
system, conncctions are made (such as between the capillarics of the small intestine and the veins) that allow
onc to trace the flow of a sugar molecule from the digestive system to the brain.

Nets arc usvally graded in clectronic form. It is possible to append notes to any concept or relation so as 1o
provide fecdback on-linc. Sometimes nets arc printed out and marked up on paper. In gencral they are graded
like cssays—by assessing the quality of the entirc creation as a whole, not of each individual fact. Net-grading
guides have been created for different assessment goals. Nets arc worth about as much as tests in our course.
Each midierm and final typically has both a written portion and a ScmNet-bascd task.

Attaching Media-Rich Information

Conceptual understanding involves visual, aural, and expericntial knowledge as well as semantic
knowledge (Pea & Gomez, 1992). Sights and sounds arc valuable for cnriching conceptual representations.
With a new SemNet function, users can attach documents created with other applications to nodes or links in
their semantic networks. These documents can be created with any other application on the computer and so can
include styled and formatted text, sounds of all types, and visual images including diagrams, sketches, drawings,
animations, movics, photographs, electron micrographs, diagrams, charts, ¢ic. Visual malcri;ﬂs/ may be stored on
hard disks, CD-ROM, or vidcodisc. The attachment itsclf includes a short description of the document's
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relevance to the concept, so that the same document (c.g., a photomicrograph of a cell with a prominent
nucleus) might be attached to several concepts for different reasons (e.g., to “photomicrograph”, “cell”,
“eukaryotic cell”, and “nucleus” with the latter perhaps described as “nucleus in context”). A related new
feature allows the attachment of text, pictures, or documents to individual links between concepts, thus allowing
attachment of illustrations of relationships between concepts (e.g., attaching the photomicrograph to the link
expressing the fact that the nucleus is contained in a cell),

This new development makes possible the merging of an intelligently and systematically structured
knowledge net with a plethora of multimedia. Semantic networks can provide a meaningful way to structure
large collections of sounds and images and thus are useful for organizing libraries and other resource maierials.
They also provide access for people approaching a databank from many different areas of specialization—
multiple world-views are allowed and encouraged. Given an existing network organizing a collection of
documents, a user can superimpose a new organization on the collection simply by creating a new relationship
and new links between concepts to represent the desired structure.

This feature is 100 ncw to have allowed full exploration of its usc. However, it appears that by getting away
from the linear and hicrarchical structures usually imposed by other media-organization tools, a SemNet-based
organizer supports browsing that follows the direction of the user’s thoughts and intcrests, rather than the
structure imposed by the creator of the collection.

Conclusion

Concept-mapping and semantic nctworks are a maturing methodology for enhancing student learning by
giving them an external representation to focus their attention on, facilitating reflective thought and
col.aborative discussion resulting in increased understanding. New features of SemNet to support collaboration
have produced significant improvements in motivation and learning by students. New features support the
integration of other media types into conceptual nets further enrich students understanding of a topic and can
also bring tcgether disparate representations of the same concept into a central place.
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A New Knowledge Representation Scheme
For The Subject Of Physics
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Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202
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Abstract: Discussed in this paper is a new knowledge base representation
scheme for the subject of physics. This new scheme is called the situational
based architecture and is presently employed by a computer program call Pro
Solv, an expert system for physics problems. The architecture is explained
and contrasted to the traditional method of organizing physical knowledge.
The steps involved in setting up and solving problems within this scheme are
detailed as is the search algorithm employed by Pro Solv. The benefits of this
representation are discussed as well as the generality of this model in terms of
its ability to cover all problems. Finally a justification for this model is given
based on the experimental method for acquiring new physics knowledge.

Intelligent technological systems which enable individuals to solve complex problems are becoming an
increasingly important tool to scientists, engineers and students. Such systems relegate to the technical
device many of the time consuming and tedious chores which would otherwise be performed by hand.
This technology allows the organization of problem solving tasks into higher levels or larger chunks,
which is an essential component of devcloping problem solving skills.

Systems of these types have existed for many years, most notably in the field of mathematics.
Calculators have allowed individuals to perform far more computations by relieving them of the tedious
aspects of subtraction, multiplication and division. Math softwarc such as Mathematica, Maple and
Macsyma provide similar benefits in more advanced areas of mathematics.

Intelligent problem solving aids of this type, however. have been virtually nonexistent in most areas of
physics and the related areas of technology and engineering. One such tool, however, recently introduced
is called Pro Solv. Pro Solv is an expert system for problems cncountered in the subjects of mechanics,
electricity, magnetism and optics. Pro Solv's design is unique in that it employs a novel approach to the
organization and manipulation of information within its knowledge base. The structure and benefits of
this organization are the focus of this presentation.

COGNITIVE ELEMENTS OF PROBLEM SOLVING

General problem solving systems involve two types of search, knowledge search and problem search.
Problem scarch takes place in a problem space consisting of an initial state, a goal state, the problem
space operators and all the possible intermediate states which the operators can produce. Problem search
is the process of finding a sequence of operators that will reach the goal state. Typical methods of
problem search include depth first search and breedth first search.

In a system covering a wide base of information, knowledge scarch is also required. Knowledge search
is the search for the knowledge which will be included in the problem space and which will guide the
problem search.  Of particuiar importance to this discussion is the process of finding the operators which
belong in the problem space.

In a physics problem, the initial state is the set of given information in the problem. The goal state can
take different forms but is, perhaps, most often of the form x = ?. The operators arc the principles of
physics and mathematics. Problem search is the process of applying the principles and mathematical
operations in order to calculate the unknown variable x. Knowledge scarch in a physics problem is the
process of establishing the operators (principles) which are relevant to solving the problem.
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Perhaps the most important aspect of problem solving is how information is organized and
represented in the knowledge base. This organization has a significant impact on the efficiency of the
problem solving systerr, whether a computer or a human. In particular, it affects the efficiency of both
knowledge search and problem search.

THE TRADITIONAL METHOD OF ORGANIZING PHYSICS KNOWLEDGE

The method of organization of physics mater..l in traditional textbooks and courses is considerably
different from that within Pro Solv. Most textbooks organize the material into subjects first and then
breakdown the material into several sub-topics. Following is a listing of topics from Part 1 Mechanics of
Raymond Serway's Physics for Scientists and Engineers:

Topic What the topic represents
Vectors Physical Object

Motion In One Dimension Situation

The Laws of Motion Principles

Circular Motion Situation

Work and Energy Physical Concepts

This organization is reasonable for the introduction of principles and concepts of physics. It follows a
pedogogically sound tutorial presentation. This organization of the material, however, is not very efficient
or effective when the task is that of solving problems. The reason for this inefficiency will be discussed
later, but is in part due to the inconsistency in what each topic actually represents. The difficulty

experienced by many students of introductory physics is also a strong indication of the failing of the
traditional presentation of physics material.

THE SITUATIONAL BASED ARCHITECTURE
Situation Definition

The organization upon which Pro Soly is designed is a situational based architecture. In this
represcntation scheme, principles of physics are organized into a number of general classes of situations.
A situation is a general description of the state of some set of physical objects. Listed below is a

representative sample of situations encountered in the mcchanics section of an introductory course in
physics.

Mechanics
Object Moving With Constant Velocity
Object With Constant Acceleration (One Dimension)
Object With Constant Acceleration (Two Dimensions)
Single Force On An Object (One Dimension)
Single Force On An Object (Two Dimensions)
Two Forces Applied To An Object (Two Dimensions)
Object In A Constant Gravitational Field

Constituent Entities and Their Attributes

A situation is composed of its constitucnt cntitics (physical objects) and the defining constraints which
apply to thesc cntitics. A physical object is any cnlity that may cxist in a situation. Examplcs are a
particle, a projectile, a charge, a force, a vector, an amount of encrgy. and time.

Each physical object is described by onc or more attributes which define its specific state. The physical
objects and their attributes for "An object moving with constant acccleration" arc listed below.
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1. Object:

d; - The initial position of the object (m)
, - The final position of the object (m)
Ad - The total displacement of the object (m)
v, - The initial velocity of the object (t/s)
v, - The final velocity of the chject (m/s)
v,.. - The average velocity of the object (m/s)

a - The acceleration of the object (nv/s?)
2. Time:

t, - The initial time (s)

t - The final time (s)

{
At - The total length of time the object was moving (s)

To define a specific situation one needs only to give values to the known attributes of the physical
objects within the situation class. Lets take a dragster as an example. A dragster moves in a straight line
and for simplicity sake we will assume with constant acceleration. This specific situation is therefore a
member of the class of situations "An object moving with constant acceleration®. The initial velocity of
the dragster is 0, and the displacement of the dragster is .25 miles.

v, =0
Ad =.25 miles

Principles of a Situation

Each situation c¢lass owns an associated set of physical principles which govern the relationships
between the attributes of each physical object. For example, the kinematic equations associated with
constantly accelerated motion belong to the situation of "An object moving with constant acceleration”
and describe the relationships between the object's velocity, acceleration and position as well as time
traveled.

Ad = %nAl2 +v,AL

3 3
v+ v] =2ald
("f‘"l‘
A(I )
Ve
Vave = = =~ Ad= Vave AL
Ad =dr-d,

A":f/'—l,

General Probiem Solving Process

The gencral process for solving a problem within the situational based architecture requires following
these steps:
1) Choose the proper situation or situations
2) Describe the values of the known attributes
3) Define the goal, or unknown to be calculated
4) Engage the problem search algorithm which will apply the set of principles

BENEFITS OF THE SITUATIONAL BASED ARCHITECTURE
The Search Algorithm

In a typical problem, the number of principles required to reach the goal state is usually less than 5. If
a depth first scarch algorithm is employed in this probliem space. the number of passible solution paths is
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51 =120. This number represents a worst case figure. In most cases. only a small percentage of the total
number of paths need actually be searched.

The situational based architecture ensures that the number of problem space operators is kept close to
the number actuaily needed to solve the problem. This point is critical irr reducing the time and energy
consumed by the problem search.

Pro Solv's search algorithm employs a depth first search strategy. There are very few heuristics
involved to the limiting of problem space operators. Typical problems encountered at an introductory
level can be solved within a few seconds.

Establishing The Search Space Operators

Perhaps the most critical step in solving physics problems, is performing the knowledge search. This
is where the traditional organ:zation of physics material is particularly deficient. When principles are
organized in the traditional fashion, there is no efficient method for establishing the problem space
operators. One can fairly easily identify the applicable subjects and pcrhaps even one level of sub-topic.
This, however, still leaves one with a potentially large number of principles. One must now examine the
limitations of each principle to discover if it even applies to the problem at hand.

Serway advices in the introductory remarks to his textbook that.-"1 often find that students fail to
recognize the limitations of certain formulas or physical laws in a particular situation. It is very important
that you understand and remember the assumptions which underlie a particular theory or formalism. For
example. certain equations in kinematics apply only to a particle moving with constant acceleration.
Thesc cquations arc not valid for situations in which the acceleration is not constant, such as the motion
of an object connected to a spring..." '

This quote points out both the major problem with the traditional presentation of physics and
introduces the rationalization behind the sitnational based architecturc. Every physical principle is
applicable only under a sct of limiting conditions (which define a general situation class). Before any
principle can be included in the problem space, it must be determined whether or not the specific problem
is a member of the situation class to which the principle applics. One must thercfore first understand the
situation described in the probiem, then understand the situation to which cach principle applies and see if
the two situations arc identical. If they are. then the principle may be uscful. This process must be done
for every principle to be considered for inclusion into the problem space. This is not an efficicnt process,
nor one easily carricd out by beginning students.

Why not instcad organize the principles by situation in the first place. Some principles will appear
more than once, like energy conservation, but this is not a problem. This organization would eliminate a
time consuming. difficult and frustrating task.

Organizing the physical principles into situation classes with their own set of applicable principles,
virtually climinates the problem of finding relevant principles. Establishing the operators for the search
space is rcduced to mapping the rcal world problem to onc or more of the general situation classcs
available. Once a situation class has becn identified, the applicable principles are immediately known.
This mapping is a far casicr task than the process required with the traditional organization of physics
principles.

Mapping The Known Quantities To Equation Variables

An additional difficulty with physics problem solving is mapping the known quantities to the variables
within an equation. Within the traditional organization of physics material this process is somewhat
creative. There is no straight-forward method for performing this mapping. Within the situational based
architecture, the specific meaning of cach variable within an cquation can be clearly identified and can
unambiguously be correlated to onc of the attributes of the situation's constituent entities.

Relatively Easily Encoded ImA Computer

Perhaps the niost significant benefit to the situational based architecture is that it lends itscif very
nicely to encoding within a computer. The structure is consistent from subject to subject and from topic to
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topic. Thus, as a student or engineer calculates a problem within mechanics. the approach and user
interface will not change as he moves to a problem within optics. The fact that the operators (principles)
are identified by choice of the situation also eliminates the process of finding the proper operators.
Consequently, the problem search algorithm is very manageable. The fact that the variables within

equations are easily mapped to the known information also elimmates a serious problem in the design of a
general problem solving tool.

GENERALITY OF THE SITUATIONAL BASED ARCHITECTURE

An important question with regard to the situational based architecture is its generality. Is it
sufficiently general to enable description of all physical situations. The answer is ves and can be
supported in two ways. Both methods have their advantages and disadvantages.

The number of situations which can be included in the grand knowledge base of the system is
theoretically unlimited. Thus. for any new situation. a situation class could be defined and included in the
list of situations. ' Thus. shear numbers could account for all situations. For example, if a new electronic
circuit is constructed about which information is wished to be calculated. a general situation could be
constructed which is identical in structure to the new circuit. The entities of the situation would be the
various circuit elements with the attributes of resistance and capacitance.

The positive feature of this strategy is that the resulting situation is highly customized for the
engineer's needs. The negative aspect of this strategy is that it results in a large number of situations, and
may require a degree of search on the part of the engineer. This search, could of course. be facilitated by
certain features in the software or in an index. An additional negative is that while this strategy offers
complete generality to the developer of situations, it does not offer complete generality to the user of the
software. To offer complete generality to the user, another method must be emplnyed.

A more efficient method of accounting for all possible problems is to encode a set of fundamental
situations which can be used to compose all complex situations. The user could then construct any
arbitrary situation by combining two or more of the fundamental situations. For example, a rocket ship

would be a complex situation composed of “constant force applied to an object" and "an object moving
with constant velocity",

EMPIRICAL JUSTIFICATION FOR THE SITUATIONAL BASED ARCHITECTURE

A simplc justification for the situational based architecture can be found by examining the method of
developing physical laws in the first place. Experimental physicists examine nature by setting up
experiments under certain well defined conditions. They observe the relationships among the various
constituent elements of the experiment and determine the equations and laws which relate the attributes of
these elements.

The laws of physics discovered through cxperimentation can only be assumed to be true under the
general set of conditions defined by that experiment. This general set of conditions defines a situation
class. Therefore. each physical law has a general situation to which it applies. This situation may be
fundamental and emody other situations. For example. the principle of cnergy conservation is applicable
to the situation of any closed system which encompasses many other situations. It could be argued. then,
that the situational based architecture is the only one which cxperimental evidence supports.
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A Research Study of Teachers’ Beliefs About Calculator Use
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Abstract: Previously, Fleener (1994) noted mathematics teachers were divided on whether
students should master a concept before using calculators. This paper examines teachers’
attitudes and beliefs about calculator use from a contextual perspective (Kay, 1992).
Indicators of philosophical orientation and contextual perspective are developed by
identifying Habermasian interest categories. Results of 231 surveys suggest teachers have
differing philosophical orientations related to their stated beliefs about the need for
conceptual understanding before using calculators. Inservice efforts must address these
differences in philosophical perspectives as teachers struggle to make sense of the
calculator reform movement.

Much of the literature on teacher change emphasizes the need for on-going staff development
opportunities and support (Fullan, 1991; Strudler, 1991). Teacher beliefs are important when trying to
understand the change process as beliefs guide action, instructional decisions and practices in the classroom
(Clark & Peterson, 1986; Ernest, 1989; Fennema, 1989; Fennema & Franke, 1992; Munby 1984; Thompson,
1992; Thompson, 1984) and are related to the success of staff development efforts (Peterson, Fennema,
Carpenter, & Loef, 1987; Richardson, Anders, Tidwell, & Lloyd, 1991).

This study examines 231 teachers' beliefs about the use of calculators in mathematics instruction
to determine whether patterns of belief statements reveal differing philosophical orientations to knowledge
acquisition. Responses to conceptual mastery items on the Attitude Instrument for Mathematics and
Applied Technology-version 11 (AIM-AT-11) (see Fleener, 1994) provide data for evaluating characteristics
of three groups of teachers divided on the issue of whether students should be allowed to use calculators
before they had mastered the concept. Guiding questions for this study are:

1. Are classroom teachers’ opinions divided on the mastery issue revealing differing perspectives
toward calculator use in the classroom?
2. If different perspectives of calculator use exist, are these differences indicative of philosophical

orientations as expressed through Habermasian interests?
Background

In a review of teacher belief research, Pajares (1992) advocated the need for a clear definition of
beliefs scparate from the related constructs of knowledge, attitudes, and feelings. Kay (1992) favored a
contextual framework for understanding complex attitudes toward technology. Responding to efforts to
define beliefs as a distinct constrict, separate from knowledge, attitudes and feelings, Kay argued beliefs,
knowledge, attitudes, feelings and actions are intertwined within a contextual framework which includes
internal as weil as external/social facto-s. Based on the work of Bereiter (1991), Kay defined "[a]contextual
module is a kind of learing environment which synthesizes declarative knowledge, procedural knowledge,
goal structures, problem models, affect, self-concept, and code of conduct” (p. 164). According to Kay, the
contextual approach allows for a more "globaland interactive understanding” of complex systems by "focusing
on a number of influences simultancously” (p. 164).

Similarly, in this study, calculator use belief structures will be interpreted broadly as part of a
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complex, dynamic, contextually related framework with interactions among beliefs, attitudes, knowledge, and
action in a social environment. Underlying philosophical approaches guiding the complex leaming-teaching
environment will be identified by Habermasian interest categories and related to contextual belief
frameworks about using calculators.

Hahermas described three fundamental human interests (control, hermeneutic, and emnancipatory)
related to the empirical, pragmatic and critical philosophical approaches to knowledge (Habermas, 1971).
Habermas® work addresses the relationship between theory/knowledge and practice as fundamental human
interests gird know..- 'ge and idealogy as determiners of action (Grundy, 1987). As explained by Ewert
(1991), "different human interests require different forms of knowledge that require different scientific
methodologies (processes of knowing) based on different ...forms of rationality” (p. 347).

Methods

Procedures

The 29-item AIM-AT-1I was adapted from the AIM-AT (Fleener, 1994)to focus on teacher beliefs
about how calculators should be used in mathematics instruction. Internal and external reliability of the
AIM-AT were addressed in an earlier study (Fle=ner, 1994). Internal reliability for this population on the
AIM-AT-II was .67. Likert-type forced response options on AIM-AT-II items were Strongly Agree=4,
Agree=3, Disagree=2, and Strongly Disagree=1.

During October and November, 1993,231 Oklahoma teachers participated in graphing calculator
workshops coordinated through the University of Oklahoma, area Professional Development Centers and
individual schools and school systems.

Analyses

Mastery items 7 and 17 of the AIM-AT-1I were used to form three groups. Teachers who agreed
with item 7 (Students should not be allowed to use calculators uncil they have mastered the concept) and
disagreed with item 17 (Students should be allowed to use calculators even before they understand the
underlying concepts) formed the MASTERY =YES group indicating iheir belief that students should have
conceptual mastery before being allowed to use a calculator. Teachers who disagreed with item 7 and
agreed with item 17 formed the MASTERY =NO category and teachers who provided inconsistent responses
(either agreeing or disagreeing with both statements) formed the third group, MASTERY=MAYBE. Two
teachers who could not be classified were eliminated from the original pool of 233 respondents.

Analysis of variance (ANOVA) was used to determine whether mastery groups differed with respect
to their responses on AIM-AT-II items in order to answer research question 1. If significance was found,
Scheffe multiple comparisons was used to determine which groups differed significantly at the .05 level.

Items on which mastery group responses differed significantly were read by three educational
researchers familiar with Habermasian human interests categories and separated into CONTROL,
HERMENEUTIC and EMANCIPATORY categories. Within the CONTROL category, items were
considered positively or negatively oriented depending upon whether agreement or disagreement indicated
an interest in control. Agreement with positively scored and disagreement with negatively scored
CONTROL items indicated a controlling interest. The HERMENEUTIC/UNDERSTANDING  items were
considered positive if agreement indicated positive attitudes toward calculator use for increasing
understanding while disagreement on negatively scored items indicated a positive attitude toward calculator
use for increasing understanding. EMANCIPATORY items were scored positively or negatively depending
upon whether agreement or disagreement indicated a belief that calculator use is liberating, exciting,
motivational, or serves a social good. Several items suggested overlapping interests in understanding and
emancipation and were placed in both categories. Similar to the approach used by Schmidt and Callahan
in their research on teachers’ and principals’ beliefs regarding calculators (1992), strength of response was
summarized for the YES and NO groups according to the percentage of agreement (or disagreement) with
items in each Habermasian category (over 80% =1,60-79 % =2,40-59 % = 3,20-39 % = 4,under 20% =5). For
example, agreement on positively scored and disagreement on negatively scored CONTROL items, as
indicated by an average strength of response score of 1 or 2, indicated a control interest. YES and NO
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group differences with respect to CONTROL, HERMENEUTIC, and EMANCIPATORY human interest

categories were compared to determine whether differences existed in philosophical/contextual orientations
between the two mastery groups.

Results and Discussion

Questioa 1: Areclassroom teachers’ opinions divided on the mastery issue revealing differing perspectives
toward calculator use in the classroom?

Using a one factor ANOVA comparing the three mastery groups (YES, NO, MAYBE) to responses
to AIM-AT-II items, significant group differences were found on 21 of the 27 AIM-AT-II items (excluding
itemas 7 and 17 which were used to define the mastery groups) with three items revealing differences among
all three groups. Because so many items revealed group differences, the existence of distinct groups with
differing belief systems is indicated. Only three items revealed group differences among all mastery groups,
however, which suggests there are two distinct groups with a third group transitional or in flux between the
two extremes. This observation is consistent with Darling-Hammond’s assertion (1993) that mathematics
education reform efforts are guided by two very different and at times opposing theories.

Multiple comparisons analysis revealed differences among all three groups on items 6
(F(2,217)=23.86,p < .01),19 (F(2,218)=42.27,p<.01)and 26 (F(2,219)=22.24,p<.01). While 62% of the
MASTERY=YES group agreed with item 6 (Students understand math better if they solve problems using
paper and pencil), 87% of the MASTERY=NO and 62% of the MASTERY=MAYBE groups disagreed.
Similarly, 82% of the MASTERY=YES group agreed with item 19 (Calculators should not be used until
students know their arithmetic facts), while 81% of the MASTERY=NO group disagreed with that
statement. The MASTERY=MAYBE group was mixed as 51.5% agreed and 48.5% disagreed with
statement 19. On item 26, (Students should learn the paper and pencil long division algorithm before using
the calculator to divide), 88% of the MASTERY=YES group and 69.5% of the MASTERY=MAYBE
group agreed while 58.5% of the MASTERY=NO group disagreed with that statement. The
MASTERY=MAYBE group fell between the other two groups on each of these items supporting the
continuum hypothesis with the MAYBE group in transition between the YES and NO extremes.

On items where there was a statistically significant difference between the MASTERY=YES and
MASTERY=NO gioups, the MASTERY=MAYBE group fell in between the YES and NO group means
on every item except item 4, further suggesting the MAYBE group is a transitional group between the YES
and NO groups. The majority of all groups disagreed with item 4 (When solving problems with calculators,
students don’t need to show their work on paper), although the YES and MAYBE groups were more
polarized in their rejection of that statement with §1% and 84 % disagreeing, respectively, while only 67 %
of the NO group disagreed with item 4.

On every item where there was a statistically significant difference between YES and NO groups
but not between YES-MAYBE and NO-MAYBE comparisons, there was consensus (agreement or
disagreement) among the groups. Differences on items 3, 11, 12, 16, 20, 21, 22, and 24 indicate a strength
of commitment rather than differences of opinions. For example, on item 12 (Using calculators will cause
students to lose basic computational skills), 62% of the YES, 75% of the MAYBE, and 79% of the NO
groups disagreed with the statement. Similarly, on statement 24 (Students can gain understanding of
computational procedures by using calculators), 81% of the YES, 88% of the MAYBE, and 94 % of the NO
groups agreed.

Question 2: If different perspectives of calculator use exist, are these differences indicative of philosophical
orientations as expressed through Habermasian interests?

The results of the ANOVA show there were at least two distinct belief systems revealed by YES
and NO mastery groups. In order to determine philosophical differences among groups, categorization of
AIM-AT-1l items according to CONTROL, HERMENEUTIC, or EMANCIPATORY interests was used
to reveal patterns of systematic responses. (See Table 1.)

Both YES and NO mastery groups indicate some interest in control as seen in Table 1. On items
4 and 20, where both groups express strong controlling interests, statistical differences hetween YES and NO
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groups suggest these groups differ with regard to the intensity of their responses. On item 4, the mean score
of the YES group was 1.883indicating strong disagreement while the mean score of the NO group was 2.275,
a more moderate response. Likewise, responses to item 20 suggest the YES group more strongly agrees
with that statement with a mean response of 3.345while the NO group is less committed with a mean score
of 2.981. The NO group did not display a higher degree of control on any of the CONTROL items while
the YES group clearly indicated an interest in control on 8 of the 10 items (including items 4 and 20).

Table 1
AIM-AT-Il items by Habermasian categories
ITEM INTEREST SCORE INTENSITY PREDOMI- YES/NO EXTREME
(Positive/Negative) YES NO NANT CONTINUUM GROUP
GP GP GROUP {MEAN)

1 Control Negative 3 4 Neither (Y=2.51,N=3.226) M-YES
4 Control Negative 1 2 Both (Y=1.883,N=2.275) M-YES
7 Control Positive 1 5 M-YES (N=1.698,Y=3.379) M-YES
8 Control Negative 2 4 M-YES (Y=2.039,N=2.736) M-YES
10 Control Positive 4 5 Neither (N=1.654,Y=2.382) M-YES
11 Control Positive 4 5 Neither (N=1.736,Y=2.243) M-YES
17 Control Negative 1 5 M-YES (Y=1.718,N=3.226) M-YES
19 Control Positive 15 M-YES (N=1.981,Y=3.049) M-YES
20 Control Positive 15 M-YES (N=2.981,Y=3.345) M-YES
22 Control Positive 4 5 Neither (N=1.538,Y=2.01) M-YES
26 Control Positive 1 3 M-YES (N=2.415,Y=3.175) M-YES
2 Hermeneutic Negative 3 2 M-NO (N=1.925,Y=2.563) M-NO
6 Hermeneutic Negative 4 1 M-NO (N=1.981,Y=2.75) M-NO
12 Hermeneutic Negative 2 2 Both (N=1.906,Y=2.396) M-NO
14 Hermeneutic Positive 1 1 Both (Y=3.05,N=3.442) M-NO
15 Hermeneutic Negative 31 M-NO (N=1.885,Y=2.392) M-NO
16 Hermeneutic Positive 1 1 Both (Y=3.291,N=3.66) M-NO
21 Hermeneutic Positive 11 Both (Y=3.039,N=3.472) M-NO
24 Hermzneutic Positive 1 1 Both . (Y=2.835,N=3.302) M-NO
1 Emancipatory  Positive 3 2 M-NOC (Y=2.51,N=3.226) M-NO
3 Emancipatory  Positive 11 Both (Y=3.359,N=3.66) M-NO
4 Emancipatory  Positive 5 4 Neither (Y=1.883,N=2.275) M-NO
8 Emancipatory  Positive 4 2 M-NO (Y =2.039,N=2.736) M-NO
9 Emancipatory  Positive 1 i Both (Y=3.136,N=3.585) M-NO
10 Emancipatory  Negative 2 1 Both (N=1.654,Y=2.382) M-NO
14 Emancipatory  Positive 2 1 Both (Y=3.05N=3.442) M-NO
16 Emancipatory  Positive 1 1 Both (Y=3.291,N=3.66) M-NO
19 Emancipatory ~ Negative 51 M-NO (N=1.981,Y=3.049) M-NO
20 Emancipatory  Negative 55 Neither (N=2.981,Y=3.345) M-NO
22 Emancipatory  Negative 2 1 Both (N=1.538,Y=2.01) M-NO
29 Emancipatory  Negative 4 2 M-NO (N=2.075,Y=2.745) M-NO

Similarly, both YES and NO groups exhibited some degree of hermeneutic and emancipatory
interests. An examination of mean scores, however, indicates the NO group scored significantly higher on
positively scored items and lower on negatively scored items than did the YES group on all hermeneutic
items. (See Table 1.) Thus, although both groups show an interest in understanding on 5 of the 8
hermeneutic/understanding  items, the NO group scored significantly higher on positively scored items or
lower on negatively scored items than did the YES group as determined by results of ANOVAs. This
indicates the NO group expresses a stronger hermeneutical interest orientation than the YES group.

Similarly,the NO group exhibited a stronger emancipatory orientation than the YES group on every
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EMANCIPATORY item, even though both groups indicate interest in emancipation on 6 of the 12
EMANCIPATORY items. On no EMANCIPATORY item did the YES group have a mean score higher
(or lower for negatively scored items) than the NO group.

Therefore, YES and NO groups do differ in philosophical orientation as expressed through
fundamental human interests. The YES group exhibited a greater interest in control while the NO group
was more pragmatic. The predominance of the NO group on items from the HERMENEUTIC and
EMANCIPATORY categories suggests the NO group is more critical with regard to beliefs about calculator
use.

Significance

The relationship between philosophical orientation (or ways of knowing) and beliefs as they relate
to teacher change is lightly researched (Richardson, Anders, Tidwell, & Lloyd, 1991; Wood. Cobb, Yackel,
1991). “People’s interests in how technology should be used in schools often parallel their basic theory of
how learning best occurs” (Strudler, 1993, p. 8). Lieberman and McLaughlin {1992) noted traditional in-
service attempts often fail to affect permanent change. Many researchers discuss the central role prior
values, beliefs, attitudes, and knowledge play in reform efforts (Hord, Rutherford, Huling-Austin, & Hall,
1987) but do not consider teachers’ personal philosophies nor the contextual framework, including social
norms, of which belief structures form a part (Kay, 1992).

Understanding personal theory and the connection/relation between ideas, beliefs, knowledge, and
practice is important as Smyth (1992) contends:

we need to regard the views we hold about teaching aot as idiosyncratic
preferences, but rather as the product of deeply entrenched cultural
norms of which we may not even be aware. ... Teaching becomes less of
an isolated set of technical procedures and more of a historical expression
of shaped values about what is considered to be important about the
nature of the educative act (pp. 298-299). :

This study shows efforts to change teacher practice require critical examination of the teachers’
contextual frameworks as expressed through Habermasian interests. Incorporating technology in the
teaching of mathematics may require a reconstitution of beliefs about teaching and learning, and critical
examination of existing beliefs is especially important before teachers adopt calculators in mathematics
instruction. Complex systems of belief about using calculators delineate contextual frames for understanding
why teachers react differently to staff development opportunities. Inservice efforts must address these
fundamental differences as teachers struggle to make sense of the calculator reform movement.
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Al Based Tools in Teaching/Learning Arithmetic
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Abstract: Two approaches can be followed to develop Knowledge based Systems devoted to
arithmetic. On the one hand, systems can be designed to focus on arithmetic word problems,
thus concentrating on the cognitive problems underlying the comprehension of the text, the
organisation of information and the translation of the text into a formal language. On the
other hand, systems are centered on the acquisition of arithmetical ekills, thus focusing on
the cognitive analysis of students’ performance in doing computations and on the teaching
strategies employed to improve that performance.

In the following, we shall focus on the second approach. In particular, we shall discuss the
work we are carrying out and frame it in the context of the research in the field.

Introduction

Based on the authors’ cognitive views, KBS oriented to the teaching/learning of arithmetic have
been designed with different aims and approaches (Nwana, H.J., 1993) (Wenger, E., 1987). Some focus
on the analysis of students’ errors, in order to build a model of their behaviour, while others examine
teachers’ diagnosis of students’ performance and approach to remediation. Other authors use systems
as workbenches to analyse methods which adapt tutoring to students’ behaviour in order to increase the
accuracy in the employment of strategies (Beishuizen, J. & Felix, E., 1991). Finally, we find proposals -
aimed at endowing learning environments with a measure of teaching capability, on the basis of both
general hypotheses on learning and the diagnosis of students’ performance.

Two paradigmatic examples are BUGGY and WEST. BUGGY is a diagnostic system, applied to
arithmetical sums and substractions, working on the idea that, in problems requiring the application of
procedural skills, errors are due to correct applications of incorrect procedures. The diagnosis is directed
by & detailed hierarchy of abilities employed to perform operations. On the basis of the BUGGY model,
a system he been devised to train teachers in analyzing students’ errors.

WEST (Burton, R.R. 1982), a system aimed at being used in teaching/learning arithmetic ex-
pressions, is founded on the discovery based theory. According to it, the student co-operates with the
teacher in investigating the domain of instruction. The theory assumes a constructivist position, that
is new knowledge is built by the student out of a previous one. WEST is a coaching system centered
on a game. The intervention of the tutor aims at giving the student additional information in order to
Lransform non-constructive bugs into constructive ones. The hints of the tutor are shown in form of
examples; a mechanism aimed at ensuring that these hints are both "relevant” and "memorable” has
been implemented.

Among the most recent realisations we recall SUMIT (Nicolson, R. I., 1992), PCMATH (Al
Kaudurie, O. & Morgan, S., 1989), and the work of Beishuzein and Felix (Beishuizen, J. & Felix, E.
1991). SUMIT assists students in respect of the four operations, designed to meet the requirements of
classroom arithmetic teachers. The system gives adaptive help and diagnoees misconceptions. PCMATH,
which uses a bug catalog to diagnose errors, helps students improve arithmetic sxills by giving animated
representations of arithmetical processes. Moreover, different strategies of teaching are embedded in the
system. Beishuzein and Felix work towards the building of a learner-oriented model of expertise in order
to guide tutoring. They use the notion of genetic graph proposed by (Goldstein, L.P., 1982).

From the analysis of the systems so far developed it can be observed that their majority analyses
arithmetic skills only by taking into account problems involving numbers. In our opinion, such problems
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represent only one aspect of arithmetic knowledge, as they do not permit to establish if students possess
any declarative arithmetic knowledge. In order to overcome this difficulty, we built a system, called
ENIGMA, aimed at guiding students to perform arithmetic operations by using both a procedural and
a declarative approach. A prototype version of the system is running on McIntoshIl. The prototype has
been experimented on a limited number of pupils aged 9-10.

The pedagogical choices which guided the design of the system are briefly discussed below. For a
technical description we refer to (Forcheri, P. & Molfino, M.T., 1991).

The Enigma System

In accordance with the above ideas, our system aims at making students compute starting from
arithmetical expressions expressed in symbolic form. This activity, due to the age of the intended
user, is carried out in a game environment. More precisely, ENIGMA is centered on the following
cryptoarithmetical game: to find out what digits should be substituted to the symbols in a symbolic
relation, such as, for example, AA4+AB=DCA, so that the relation itself can be interpreted as an
arithmetic sum. Different symbols correspond to different digits. The relation is presented in a column.

The system is organised into two main components: a solution mechanism, which is able to play
the game according to a strategy similar to that employed by human beings, and a tutoring compouent,

aimed at guiding students to learn the mathematical knowledge and reasoning underlying the solution
of the game.

The solution mechanism

The mechanism integrates procedural and declarative reasoning, which alternate in a non deter-
ministic way, depending on the situation at hand. The first one, called ”domain oriented”, is based on
the idea of modelling the relation through a set of facts and rules. Facts represent the constraints on the
relation and rules represent the arithmetical knowledge which allows reasoning on symbols pertaining
to the same column and on the mutual relation between columns. Each rule models an arithmetic skill,
as a composition of subskills. Rules are applied to single columns. The second kind of reasoning, called
" general problem solving”, is used to hypothesize a correspondence between symbols and digits and to
verify, by substituting digits to symbols in the given relation, if arithmetical equality is satisfied. This
"attempt” strategy is employed when no rule can be applied to the situation at hand. The solution
mechanism constitutes the domain knowledge and skill of the tutoring component.

The tutoring component

In order to allow students to follow different learning paths, the tutoring component is subdivided
into two modules, called respectively SIMULATOR. and GUIDE. As regards the educational aspects,
the modules share the teaching goal and differ with respect to teaching strategy. In both cases, the
main teaching goal is that of making students learning arithmetic rules and their use in solving a given
problem. As regards teaching strategy, SIMULATOR. makes students learn through the eyes of an expert
who solves problems by giving detailed explanations of the solution process. GUIDE aims at helping
students learn by leaving them to solve problems on their own and giving advice on the action to be
taken.

As regards the interface, the modules share the external representation of the problem and of the
results, but they differ as to the external representation of the solution process and the dialogue with
the user. At every moment during the solution process, the student is shown: the initial and the current
relation; the sets of admissible values for the symbols. The initial and current relations are presented in
a column, and the carriers are explicitly indicated. The solution process is displayed in a window at the
bottom of the screen (see Figures 1 and Figure 2). Figure 1 refers to the application of the concept of
the double of a number regarding the unit column of the relation DA4+ECA=EDB in the SIMULATOR
module; Figure 2 refers to the same situation in the GUIDE module.

In the following sections we shall briefly describe the behaviour of both modules; in particular, we will
focus on the features they are endowed with in order to help students learn rules.
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Simulator

As stated, SIMULATOR furnishes examples of solution processes, together with a step by step
explanation. The student chooses the relation to be handled by the system; he may interrupt the
gsolution process at every moment, ask for further explanation, explore freely the rules at disposal or
end the process, but he does not taka an active part in the solution. The student is supposed to learn
rules and their use through the description of how the system uses them. Generally speaking, the use
of an arithmetical concept to determine the values (or sets of values) associated with the symbols of a
relation (i.e. the application of a rule to a column) can be viewed as the combination of a double-level
reasoning: 1) a general observation, referring to some arithmetical concept which can be employed to
reason on the column; 2) a particularisation of that observation, regarding the application of the concept
to the situation at hand (i.e. taking into account the limitation of the values which can be substituted
for symbols). Explanations given by SIMULATOR whenever a rule is applied are organised accordingly.

An example is shown at the bottom window of Figure 1. The column to which the rule is applied
is displayed in the form of equation. The description of the rule is organised into two parts: the first one
refers to the concept involved; the second refers to the use of the concept within the context. Finally,
the resulting admissible values for symbols are indicated, and the current state is modified according to
the reasoning followed.

Guide

GUIDE cooperates with a student who has to solve a problem. The student chooses which relation
to deal with; he indicates the operation to be performed (i.e. an attempt or the application of a rule),
and its parameters (a symbol and a corresponding value in case of attempt, a column and a rule in
case of application of a rule). The system intervenes in the process by: 1) preventing the student from
performing an attempt when a rule can be applied; 2) giving hints to the student in choosing a rule
correctly, whenever a rule can be applied.

The student is supposed to learn rules through their use. The system guides the student in such use on
the principle that the capability of using arithmetic concepts for solving symbolic problems (i.e. using
rules), is a two-step process: at first, we have to recognise the general arithmetic rule which model the
situation at hand; secondly, we have compare the sclution deriving from the model with the constraints
of the context, i order to discard the results which do not fit the situation. At the age in question, the
above process can be better acquired by figuring out possible consequences of a given situation on the
basis of some intuitive reasoning and trying to confirm, by examples, the validity of such consequences;
repeated experiments of the use of a concept lead to its formalisation.

We, accordingly. based the tutoring activity on examples. Examples are numerical sums which represent
applications of a rule to the situation at hand. Examples can refer to correct or incorrect applications,
To this end, several examples are shown for each rule. In particular, the tutor shows a series of one-
column relations, constituting examples of admissible and non-admissible deductions from the column.
Each non-admissible deduction represents an arithmetic misconception or it is a generalisation of the
column.

The pupil is required to choose one or more relations. The pupil’s answer is used to update the
system’s hypotheses with reference to the level of learning of the concepts involved in the reasoning. In
turn, these hypciheses guide the choice of the analogies and counter-examples presented in the following
steps of the dialogue (see Figure 2).

Concluding remarks

In our opinion, computer based educational tools can effectively be employed in didactic practice
if they: focus on a central topic; make pupils work on relevant problems; allow results which, from a
pedagogical point of view, are rather difficult to obtain without using the computer.

Thus, the system we propose focuses on arithmetic: the game it is based on regards sums of two
addenda in the domain of natural numbers. Moreover, the problems handled by the system must be
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Sets Definition
Intersection
Bijective correspondence

Ordering Ordering relation

Partial ordering

Total ordering

Natural numbers Positional notation

Basis of representation
Even and odd numbers
Arithmetic operations Neuter element

Carrier

Computation

Equations Solution of simple equations
General solution
Constraints on the solution
Mathematical reasoning | Hypothesis

Deductive reasoning

Proof

Table 1: Topics involved in the game

solved using concepts which are fundamental in the primary school curriculum: for example, a relation
of the type A+B=A is solved by observing that the sum has a neuter element, and this neuter element
is 0. Thus, by assigning to B the value 0 and to A whatever value of the set {1,2,3,4,5,6,7,8,9}, the given
relation represents an arithmetic sum. Table 1 shows the arithmetic topics on which pupils are made to
work within our system.

Finally, the kind of activity we propose cannot be carried out without help by the computer: it
must be noted, in fact, that the solving of a problem of a symbolic nature requires the explicit modelling
of the problem as a set of assertions; the solution process is a sequence of transformations from the initial
assertions to the solution. Transformations are obtained by applying symbolic rules. The set of rules is
established at the beginning and depends on the topic at hand. This process, even at an informal level,
is too long and tedious to be carried out by hand; the computer keeps track of the transformations and
assures us that the set of data and rules is stated once and for all, thus constituting a strong help in
analysing the solution process.
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Cognitive Constraints on Graph Interpretation
Determine the Success of Graphical Software

MERIDETH GATTIS
Department of Psychology
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Abstract: College students in an atmosphcric scicnces course studied atmospheric
stability and related graphs of temperature and altitude either in a lecture and discussion
format or in a interactive software environment. The software prescnted problem solving
tasks using experts' graphs of the interaction of several variables influencing stability.
Students in thc computer lab made more errors in reasoning about atmospheric stability
and its causes than students in the discussion section. Follow-up experiments outside of
the classroom (Gattis & Holyoak, 1994) demonstrate that several factors constrain graph
interpretation, and that the graphs used in the course violated some of these rules for
graph construction and interpretation. Three factors that influence graph interpretation are
identified: the fact that by definition siope equals the rate of change of the variable on the
¥ axis, causal relations, and pictorial consistency with visuospatial relations in the world.

Graphs are more than just a device by which national newspapers cope with low literacy levels. Their ubiquity in
popular media, however, is one sign that a graph can be easicr to comprehend than even the most basic sentence. A
variety of studies demonstrate that many graphing tasks can be performed earlier in life and more easily than decoding
many other representations. Developmental studies with four to nine-year-old children show that even the yor:ngest
group can cxtrapolate a line to estimatc a predicted value (Bryant & Somerville, 1986; Somerville & Bryant, 1985).
Perccptual and psychophysicnl experiments with graphs demonstrate that meaning can be extracted from graphs more
quickly and accurately than from other types of displays. Legge, Gu, and Lucbker (1989) compared adult subjects'
efficiency at extracting information from numerical tabies, scatterplots, and luminance-coded displays. Subjects were
most efficient at detecting means and variances in scatterplots and lcast cfficient at detecting that information in
numerical tables. Legge ct al. (1989) concluded that graphs are superior to tables for representing quantitative
information because they utilize parallel, spatial cognitive processes. More generally, the ease with which children
and adults detect trends in data displayed in graphs is due to correspondences between graphing conventions and hard-
wired pattern recognition processes. Graphs represent conceptual information, but employ hard-wired perceptual
constraints to do so with minimal processing demands (Kosslyn, 1989; Pinker, 1990; Wainer, 1992).

Cognitive Constraints Simplify Graph Interpretation

Identifying Concepts and Causes

Regardless of whether they arc used in a classroom or a scientific laboratory, the purpose of most graphs is to
communicate high-level conceptual information and to support recasoning about the relations between two or more
variables. Despite the fact that concepts and causes organize mental representation (or perhaps becausc of that fact),
the difficulty of developing and articulating conceptual knowledge and especially « ausal relations is well documented
in developmental and cognitive studies.

Graphs and diagrams arc a unique representational form created by a mapping of perceptual and conceptual
information. By utilizing hard-wired perceptual abilitics, particularly processes for dealing with spatial relations and
visual patterns, graphs provide a representational medium in which it is possible to present both concrete and
abstract information. The concrete representation of an abstract relation allows graphs to play a fundamental role in
representing conceptual knowledge for reasoning and communication. Values, variables, and relations lie along a
continuum of abstraction. A valuc is concrete, a variable is an abstracted common dimension across scveral values,
and a rclation is an abstracted common dimension across two or more variables. The graphed relation is a conceptual
mapping that often represents a cause and effect relationship between variables. To ensure shared interpretation of

67

[TV




Q

ERIC

Aruitoxt provided by Eic:

the causal relations represented in a graph, some conventions for mapping perceptual relations to conceptual relations
are necessary. Some of these mappings are closely matched to the physical representation (i.e. more area denotes
greater quantity; Pinker, 1990) and are rarely violated in graph construction. Others, however, require some training
or experience to comprehend. In addition, some of the mappings are more implicit than others. Graph interpretation
requires only an implicit understanding of the mappings, but graph coustruction frequently requires an explicit
understanding, especially when two or more constraints on mapping conflict.

Reducing Cognitive Load

The difficulty of graphing concepts and tasks is also a consequence of the complexity of the mapping process
required to establish correspondences between the perceptual input and a meaningful mental model. Mapping is the
process by which two cognitive structures are placed into systematic correspondence on the basis of parallels between
the relations in each. The number of elements that must be represented and manipulated in relation to one another at
one time, often called cognitive load, is constrained by cognitive processing limitations. Halford (1993) and nany
other theorists estimate that humans can process no more than four elements at once.

Graph interpretation involves three tasks of increasing complexity and cognitive load: extracting data, detecting
trends, and comparing trends and groupings (Wainer, 1992). Even the lowest level task, extracting data, requires
ideatifying for a particular point the value(s) on one or more axes. This task requires identification and coordination
of at least two picces of information. As the number of variables, number of relations, or level of the interpretation
task increases, the load increases. Halford (1993) explains that people manage to cope with tasks that appear to
require attention to more than four factors by combining or chunking elements. Graphs are designed to overcome
limitations on cognitive processing by building chunked representations: values compose variables which compose
relations, and the information in a graph can be considered at one level while ignoring other levels.

The evidence for the ease of graphing contrasts sharply with educational studies reporting that graph
comprehension is a particularly troublesome task for students (Clement, 1989; Leinhardt, Zaslavsky, & Stein,
1990). Clement observed that students tended to view a graph as a picture and to confuse slope and height (1989).
Leinhardt et al. (1990) reviewed many educational studies documenting students' misconceptions, including iconic
confusion, difficulty recognizing functions, and difficulties with abstracting from the graph. Collectively these and
other studies indicate that the natural design of graphical representation does not make graph interpretation effortless.

Poor Graph Construction Causes Poor Graph Interpretation

While graphs comprehension invokes built-in perceptual processes, it is not itself not hard-wired. Tversky and
Schiano (1989) and Schiano and Tversky (1992) found evidence that the rules used for encoding graphs are not
simply properties of the * (sual system, but rather result from interpreting a figure as a graph. They demonstrated t*.at
the label given to a diagrammatic representation invokes a particular set of rules or biases for encoding. Calling the
representation a "graph” created a particular perceptual bias (the interpretation of a line orientation was biased toward
45 degrees), whereas calling it a "map” or a "figure” either did not create any bias or biased the interpretation away
from all orienting angles (including 45 degrees). These results indicate that graphs constitute a symbol system that
is associated with a specialized set of rules connecting the perceptual to the conceptual.

The two previous sources of difficulty in graphs are intrinsic to the tasks of graph interpretation and reasoning
with graphs, and graphs have been developed to help the user overcome these obstacles. The final source of
difficulty is perhaps the most frequent and yet also the most unnecessary. Most difficulties with graphing
interpretation result from graphs that do not conform to cognitive and perceptual constraints (Wainer, 1992). Graph
designers are often cither unaware of essential graphing conventions or underestimate their importance in allowing a
reader to correctly interpret a graph. Many books have been written to mitigate unwitting graphical violations
(Bertin, 1983; Tufte, 1990), but graphs are constructed not by designers but by domain specialists who simply wish
to convey some finding or develop a tool for data analysis. Experts in a domain often become accustomed to a graph
that violates graphing conventions and are able to reason rapidly even with a less than optimal representation. This
development is a testimonial the powerful effects of expertise, both with a concept and a representation, but blinds
specialists in a field to cognitive limitations on the flexibility of our representational abilities. One example of this
problem is presented in the following assessment of a software program developed by atmospheric scientists for use
in teaching the concept of stability to college students.
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The Sounding Software Lab

Atmospheric stability is the {orce that influences the move...ent of air and thereby crecates weather patterns
{Ahrens, 1988). Stability is governed by the reiationship between air temperature, altitude, and moisture. The
temperature difference between an air parcel and the surrounding air determines its movement. Specifically, a parcel
that is warmer than the surrounding air will rise until the two temperatures are equal. This relationship is complex
because the temperature of the rising air parcel is also changing: as warm air rises, it expands and cools. A third
variable, moisture, influences the rate of cooling because moist air cools more quickly than dry air. Differences in
moisture can cause two parcels with the same temperature difference from the environment to have different stability
levels. This interaction of three variables makes stability a fairly complex concept for students to grasp. The
difficulty of threc-variable interactions has been well documented as a frequent source of trouble for science education,
in part due to information processing constraints (Halford, 1993). Graphical displays can assist students in
overcoming these limitations by providing a visual representation of an interaction. Providing a perceptually
chunked representation of an interaction utilizes parallel spatial processes to reduce cognitive load.

The sounding software lab emphasizes a graphical representation of stability and asks students to usc data
presented in sounding graphs in scveral problem solving tasks. Atmospheric scientists collect data on temperature
and moisture of a particular slice of air, or air parcel, from a balloon as it moves through the atmosphere. The
resulting data provides a profile of an ai1 parcel and is called a sounding graph (see Figure 1). The sounding softwarc
lab presents several data sets displayed as sounding graphs. Students use the sounding graphs and their data for
several tasks, such as calculating the lapse rate (the rate of cooling for an air parcel), and comparing the lapse rates of
a parcel and the surrounding air to assess its stability.

Iy
~ Well-mixed, neutrally-stable
@ atmosphere
3
< | Air and balloon é
temperature
A >
TO Temperature, T

Figure 1. A typical sounding graph used in atmospheric science.
Assessment

The effectiveness of the sounding software was tested with respect to developing a deep understanding of stability
in students taking an introdnctory-level atmospheric sciences course. Because this class fulfills a gencral education
requircment for non-science majors only, the vast majority of the students were non-science majors. 158 students
participated in an in-class assessment composed of four classes. Two of the classes participated in the lecture and
discussion format and two used the sounding software. Two teaching assistants cach taught onc control (lecture and
discussion) and onec experimental (sounding software) class. The control and experimental groups were similar in
content, differing only in the source and extent of their exposure to sounding graphs.

Assessment consisted of 13 items. A varicty of question types assessed varying levels of conceptual
understanding. Scveral open-ended questions asked for basic definitions and rules for identification of a stable
atmosphere, lapse rates, and fronts as well as deeper knowledge about the processes and forces involved in stability.
Muitiple choice and mapping tasks all focused on causal relations.

Results

On 3 of the 13 items, the control group answered more accurately than the lab group (p < .05). There were no
significant differences between the groups on the other 10 items.

When asked to explain how 1o calculate the lapse rate of an air parcel, the control group gave a complete and
accurate answer significantly more often. Answers to the open-cnded questions were categorized as true, true but hot
sufficient, and false. Only truc answers were scored as correct. A correct answer to the question about lapsc rate
cot:ld include cither a propositional description of the change in temperature with respect to the change in altitude or
an cquivalent mathematical formula. The most frequent true but not sufficient answer given consisted of the lapse
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rates for saturated and dry air parcels. Reporting the lapse rates amounts only to recall of one outcome of the
procedure, not an explanation of the procedure (which contains important clues to the causal structure of stability).
Students in the experimental group gave true but not sufficient answers, or else false answers, significantly more
often than students in the control group.

The control group also gave correct answers more frequently than the experimental group on two of the cause and
effect matching questions. Both of these questions required identification of causes of stability.

Discussion

Contrary to expectation, students in the computer lab made more errors in reasening about atmospheric stability
and its causes than did students who received a more traditional lecture presentation. All three significant differences
favored the control group. Students in the computer lab were not significantly poorer at performing the task of
identifying a parcel as stable or unstable (which can be done by memorizing prior examples or lapse rates), but they
showed an impoverished urderstanding of the underlying causal relationship. The present study tested the hypothesis
that sounding graphs emphasize the underlying relationship of air moisture, temperature and altitude in determining
stability, and would therefore yield a deeper understanding of the concept. The results indicate that this was not the
case.

It was hypothesized that the observed deficiencies in the computer lab arose because the graphs used ii. che
software violated cognitive constraints on graph interpretation. Follow-up experiments outside of the classroom
{Gattis & Holyoak, 1994) have demonstrated that several factors constrain graph interpretation, and that the graphs
used in the software violated some of these rules for graph construction and interpretation. Atmospheric science
textbooks and teachers invariably plot altitude on the y axis, because this preserves the low-level, pictorial
correspondence between up in the world and up in the graph. The resulting graph of the functional dependency
between altitude (the causal variable) and temperature (the effect) violates cognitive constraints derived from the
perceptual-to-conceptual mapping between the slope of a line and the rate of change in the effect (dependent variable).
Specifically, if the independent variable (IV) is mapped to the x axis, and the dependent variable (DV) to the y axis,
then ratc of change in DV with respect to IV maps to rate of change in y with respect to x (i.e., the slope of the
line). This assignment, a graphing convention that we term the Slope-Mapping Constraint, ensures that judgments
about rates can be based on the visually transparent mapping steeper = faster. However, the standard pictorial-based
assignment of altitude (IV) to the vertical axis in sounding graphs violates the Slope Mapping Constraint (since rate
of change in the DV will equal the reciprocal of the slope, instead of the slope).

1000 7 751
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Temperature (in degrees) Altitude (in feet)

Figure 2. Graphs that violate (Panel A) or conform with (Panel B) the Slope-Mapping Constraint.

Gattis & Holyoak (1994) manipulated factors influencing axes assignment in several experiments using a
simplificd version of the sounding graphs and the instructional task used in the atmospheric sciences software. We
varied the assignments of variables to axes, the perceived cause-effect relation between the variables, and the causal
status of the variable being queried. Subjects were given graphs representing the functional dependency between
atmospheric altitude and air temperature, along with a brief explanation of the relationship. The graphs cither
represented altitude on the x axis, in accordance with the graphing convention of mapping the IV to the x axis that
follows from the Slope-Mapping Constraint (Figure 2B), or on the y axis in accordance with the atmospheric-science
tradition of preserving verticality, but in violation of the Slope-Mapping Constraint (Figure 2A). In the first
cxperiment, only the description of a parcel profile, in which altitude loosely causes temperature, was given to
subjects. A second experiment manipulated the causal direction between altitude and temperature by giving half of
the subjects the parcel profile description and half of the subjects a cover story describing the movement of a hot air
balloon. In the latter story atmospheric air temperature (relative to a constant balloon air temperature) causes altitude
(of the balloon). We also varied axes assignment in non-causal conditions in which no cover story was used. In a
third experiment subjects were asked to rcason about a change in cause as a function of a change in effect, as well as
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the opposite case, to test whether people are especially sensitive to violations of graphing conventions in the context
of judging the rate at which a cause changes with its effect. All three experiments consistently found that accuracy
was greater when the Slope-Mapping Constraint was honored, in that the variable being queried is assigned to the
vertical axis. This constraint dominated when it conflicted with others, such as preserving the low-level mapping of
altitude onto the vertical axis.

Graph interpretation is constrained by perceptual processes and natural mappings between perceptual relations and
conceptual meaning, such as the analogical mapping “steeper equals faster”. Even though graph interpretation is an
implicit process utilizing hard-wired perceptual processes, graph construction is not. To ensure accurate and efficient
interpretation, designers of graphical software must conform to these cognitive constraints.
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Abstract: We propose a theory of algebra for Intelligent Learning Environments
(ILE) in particular in the APLUSIX project for the polyncmial factorization domai-.
The goal of this theory is to model the resolution process through transformations
of expressions and to establish some strategic results.

Our theory include cognitive aspects in order to analyse a student's resolution and to
present a student with a solution. Our theory has alse formal and computational
aspects to establish properties and to facilitate the implementation. These aspects are
coming from the rewriting rules domain.

1. Introduction

In this paper, we consider problems that are solved by applying transformations to algebraic expressions.
Examples of such problems given to high school students are factor (7x+2)2-(5x+2)(7x+2) and solve
{ 7x+2)2-(5x+2)( 7x+2)=0.

We particularly focus on the strategic knowledge that students are building up through the resolution process.
For reaching a solution, students have to apply transformations and to generate new expressions that form a
search tree. The strategic knowledge is guiding the development of that search tree by choosing at each step an
expression and the transformation to apply on.

When students are working in a paper-pencil context, the use of strategic knowledge is limited because
students nieed too much time to correct wrong calculations or to calculate branches of the search tree leading 10
dead ends. Interactive Leaming Environments (ILEs) can avoid wrong calculations and allow an easier
development of all necessary branches of the search tree. Conscquently, it is possible to give to students
problems with a more strategic content than usually given in class,

For high school students, the first domain having some strategic interest is the factorization domain. This
domain has two characteristics. Firstly, few strategic considerations are usually explicitly given to students who
have to build up their own strategic knowledge through factorization problem solvings (Tonnelle 91). Secondly,
usual algebraic concepts are not relevant for all contexts from a strategic point of view: for example, the
transformations 36x2-9 — (6x-3)(6x+3) and 36-9 — (6-3)(6+3) are usually considered both as factorizations
although they do not have the same strategic interest (the last one does not even include the indeterminate x).
The transformation S(x+2)-6(x-1) — -x+16 is usually considered as a development (because it involves distri-
butivity) although its strategic interest is not low (as the usual interest of developments in factorization pro-
blems) but good (as the usual intcrest of reductions) because the involved expressions have a degree equal to 1.

The APLUSIX project (Nicaud and al. 93) is well adapied to the learning of strategic knowledge. It aims at
designing ILEs in the domain of algebra for high school students and encompasses systems developed for
tcaching polynomial factorization. These sysiems were experimented with high school students. To factorize
polynomial expressions with APLUSIX, students have to dcvelop a search tree using transformations (e.g.,
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25x2-9 — (5x-3)(5x+3)) coming from rewriting rules (c.g., A2-BZ — (A+B)(A-B)). They have to choose an
expression node, a sub-expression of this expression and the rule they want to apply. Calculations are made by
the system which generates the sound transformation and the new expression node. Problems given to students
with the APLUSIX systems have a more stratcgic content than usually in class. For instance, the factorization
of (7x+2)2 (5x+2)(7x+2)+2(l3x -6) cannot be obtaincd by factonng out 7x+2 from (7x+2)2 (5x+2)(7x+2),
which Isads to 2x(7x+2)+2(13x -6) and then to the dead end 40x 2+4x-12 (the involved students do not know the
discriminant). A strateglc reasomng can lcad to the development of (5x+2)(7x+2)+2(13x2-6) in the first
expression, then to (7x+2) -(3x+4) and finally to the solution (4x-2)(10x+6).

When using ILEs for teaching, it is important to develop a theorical framework for the domain. In this paper,

we present such a theory including strategic considerations in the framework of the APLUSIX project and the
factorization domain.

2. The theoretical framework

Firstly, our theory refers to mathematics providing for cxample with the definition of polynomials. But
mathematics do not ecmphasise expressions, they only focus on mathematical objects that expressions are
representing. Conscquently mathematics lack in cognitive aspects. Secondly, our theory includes cognitive
aspects (Anderson 83, Wenger 87) to make our results well adapted for the student dialogue (helps, explanations,

solutions). Finally, our theory includes formal and computational aspects (Dershowitz et al. 90) to establish
properties and to facilitate implementation.

2.1. Expressions

We distinguish between cxpressions (c.g., (x-l)?') and the mathcmaticai objects they represent (e.g., the
polynomial X2-2X+1). We note X any countable sct of numnbers including the set of integers. Each number of
K is assumed to have a particular single representation called its canonical form. K. denotes the set of canonical
forms of K. We call expression any term built with canonical forms of K, the constants x and k (respectively
called indeterminate and parameter), the variadic (i.c., having any number of arguments) symbols "+" and "*",
the unary symbol "-* and the binary power symbol noted "T". The second argument of the power symbol is a
canonical form of a positive integer. We note x2 for x12 and x-2 for x+(-2). This cxpressions set is called Tgxp.
In our framework, (:(-4)2 and x2-8x+16 arc two different expressions.

2.2. Semic features and definition of transformation classes

We define semic features as mappings from the sct Tpxp of expressions to sets called domains. Scmic features

denote cognitive characteristics of expressions. They allow the definition of transformation classes having a
stratcgic interest. Below arc some examples.

The formal degree d=€§ has some analogy with the polynomial degree but is not the same concept. Formal

degrees are defined on expressions, not on polynomials. For example: (_1§_g_(2x3-2x3+7x)=3, although the

polynomial degree of the polynomial 7X associated to 2x3-2x347x is only 1. The formal degree allows the
discrimination of rclevant transformations at a slrdlcy(, level. For example, it expliciis the differcnce of siraicgic

interests between the transformations 36x2-9 —» (6x-3)(6x+3) and 36-9 — (6-3)(6+3): the latter is rot
interesting because it involves expressions having a null formal degree.

The formal degree allows the definition of an interesting transformation class: the collapsing transformations.
They are transformations u — v such that. d(_:g(u)>d5g(v), c.g., (5x-2)(x+3)-5x2 — 13x-6.

* )
Another semic feature, the factorization degree deg, is, in a scnse, the number of factors having a formal degree

Jifferent from Q. For cxample, the factorization dcgree of x(x3-9)(x+1)(x-l) is 4 because the four arguments have
a non-null formal degree; the factorization degree of 5(x3-9)(9+1)(x-1) is 2 and corresponds to the two factors
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x3-9 and x-1. The factorization degrees of the sums x2+6x-6 and 5+2 are respectively 1 and 0. The factorization
degree allows the definition of factorizations with a strong significance.

A factorization with a strong significance is a transformation v — v such that u is a sum, dé(u):dcé(v)m
* * ' - —
andg_g_g(ukdﬁ(v). For instance, 50(x-1)2-18—> 2(5x-8)(5x-2) is such a factorization because g_c___g_(u)=de___g(v)=2,
* L ]
g(ukl and deg(v)=2.

The next semic feature involves multisets. Unlike sets, multisets may contain several occurrences of the same
element. Consequently the multisets {1,1,2} et {1,2,2} are diffcrent. We note >> the usual ordering on multisets
of natural numbers. For instance {1,2,3,4)>>{1,2,2,2,4} because after discarding all the common occusrences of
elements in both multisets, we obtain respectively {3} and {2,2}, and because 3 is greater than 2.

The next semic feature, the additive multiset of formal degrees my, is, for a sum or an opposite of a sum, the
multiset of the {ormal degrees of the sum arguments. For examp!e-? ms(5x+6x2-18x(x+1)))={ 1,2,2} because the
argumenis’ degrees are 1, 2 and 2. In the other cases, the additive multiset only contains the formal degree of the
expression, e.g., &(5x(6x2-18))={3}. Additive multisets are involved in the definition of additive groupings.

An additive grouping is a transformation u — v such that dgg(u):'igg(v);to and mg(u)>>mg(v). For instance,

10x2-6x+4x2-2x+10 — 14x2-8x+10 and 15x(x+1)-6x(x+1) — 9x(x+1) are additive groupings because we have
respectively {2,1,2,1,0}>>{2,1,0} and {2,2}>>{2}. A réduction with a strong significance is either an additive
grouping or a collapsing transformation.

Semic features are required in the definition of constraint rewriting rules such as dEg(A);ﬁO v dEg(B);tO =
AZ.B2 (A+B)(A-B) allowing the gcncralion of only rclevant transformations. For example, the above rule is
applicable 1o the transformation (6x)%-32, and not to 62-32.

2.3. Models involved in algebra

We explicits now different models involved in algebra.
The formal model FMp includes all the different terms required in algebra: expressions (e.g., 3x2+8x-2),

* -
semic features (c.g., deg(S(x-1)(x+3))) and semantic constraints (¢.gz, deg(xz-l)atO).
A particelar semantic model SMp and a morphism E dcfined from FMp to SMp allow the evaluation of

%* %
formal terms except expressions. For example, E(deg(5(x-1)(x+3)) = ﬁ(S(x-l)(xH)) =2, E(ms(x2+l)) =

mg(x%1) = 2,0) and E(deg(x>-1)#0) = (deg(x2-1)#0) = Truc,
“Partial models include mathcmatical objects only associated to expressions. They dcfine sound
transformations. We prozpose the polynomial model, the function model and the number model where for

instance the expression x“-1 is respectively associated to the polynomial X2-1, the function x — x2-1 and the
number 99 if a substitution mapping x to 10 is chosen.

2.4. Concepts in expressions

A concept in expressions (Nicaud et al. 93) is a particular sct of expressions involved in the solving process.
Characteristics of concepts are called features.

For example, Tonnelle (79) established that the students recognize the applicability of the rule
A2, (A-B)(A+B) to 50x2-x(5x+3)-18 by means of clucs arising from the square forms 50xZ and 18 with a
cocfficicnt 2. We define the square concept around the two features square-root and coefficient. The expressions
50x% and -18 belong to this concept because 50x2 is the square of 5x with a coefficient 2 and because -18 is the
square of 3 with a cocfficient -2. As the two cocfficicnt values are opposite, the rule can be applicd and
50x2-x(5x+3)-18 can be rewritten to 2(5x+3)(5x-3)-x(5x+3).
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Another concept is the factor concept whose features are expression and degree. These two features are multi-
. valued, i.e., they may have several values. For example, in (2x-4)2(x+7) x(5x+2)+(x-2)(Sx+7), the sub-
expressions (2x-4) (x+7) and (x-2)(5x+7) belong to this concept. The expression x-2 is a common factor of both
expressions wuh the corresponding degree 1. This concept is useful for expliciting common factors and for
rewriting (2x-4) (X+T)-X(SX+2)+(x-2)(5x+7) 10 (X-2)[2(2%-4)(X+ N +(5x+D)]-x(5x+2).

2.5. The RM modelling of resolution

The expression t rewrites 10 ty by means of the transformation u; — u, iff uy is a sub-term of t; at an
occurrence p and t; is obtained from t; by replacing u; by u, at this occurrence. For example, x+x2*0 rewrites
to x+0 with the transformation x2*0 = 0. The expression ty rewrites to ty by means of the rule Uy— U, iff t;
rewrites to tp by means of a transformation generated from the rule. For example, x+10x[(3x)2-22] rewrites to

x+10x[(3x+2)(3x-2)] with the rule deg(A)>0 v deg(B)>0 => A2-B2 - (A-B)(A+B) because this rule generates
the transformauon (3x) 252, (3x+2)(3x-2). We use the same symbol as for transformation and write
x+10x[(3x) 2% 5 x+10x[(3x+2)(3x-2)].

Expenenccd students often use mental calculations. For example, they apply the rule AZ.p? — (A+B)(A B) to
90x2-40 in the expression x+90x2-40 and obtain directly x+10(3x+2)(3x-2) using presentation convenuons

Such a rewriting is impossible in a syntactical way because 40 cannot be matched with the square B2, We define
the RM model allowing such a rewriting.

The RM model first includes the equivalence rclation = as the transitive, reflexive, symmetric and monotonic
by context closure of the binary relation R, defined on Tgxp by uR v iff:
* u is equal to v, up to associativity and commutativity of addition and multiplication; or

+ u and v are numerical, u is a power and E(u)=E(v) (e.g., 72R 49); or

* uand v are numerical, u is a product and E(u)=E(v) (e.g., 5*(7+2) R 45); or

+ u=(a™™ and v=aP with E(n*m)=E(p) (e.g., 32 R x1%; or

» u=a"a™ and v=aP with E(n+m)=E(p) (e.g.. x3x2 R x'); or

« u=a"b" and v=(ab)" (e.g., [x(5x+8)}3 R x3(5x+8)3); or

* u=cah, dEg(c)-—-O and v=c(a+b) ) (c.g., 3(x2+1) R 3x243* 1); or
su=lv;or su=v!;or » u=-w and v=(-1)w.

The inference mode of the RM model is rewriting modulo an equivalence relation. The expresssion sq rewri-

tes modulo = 1o s; iff there exist two expressions 1] and ty and a rewrite rule R such that: sy =t - ty =5,

For example the rulc R: dcg(A)>0 v dcg(B)>0 = A2.B2 (A-B)(A+B) can be applied to x+x(90x2-40) in this
way: x+x(90x -40) = x+10x{(3x} -22] - x+10x[(3x+2)(3x-2)] = x+10x(3x+2)(3x-2).

Concepts of expressions associated to rewriting rules are used 1o find 7, rclevam and equivalent expression. In
our example, the concept of square includes the two expressions 90x2 and -40 whose square-roots arc
respectively 3x and 2 and whose coefficients are 10 and -10. The square concept allows the direct deduction of the
expression x+10x[(3x)2-2 ] equivalent to x+x(90x -40) and which can be rewriten with the rule R.

The RM model includes transformations, consiraint rewriting rules, concepts of expressions, the equivalence
reiation = in the set Tgxp of expressions and the inference mode of rewriting modulo the equivalence relation =.

Production rules can be used for implementing the RM model. For example, in the systems of the APLUSIX

pro;cct (Nlcaud and al. 93), the application modulo = of the rule; (dcg(C)-O) A (dcg(A)>0 v dcg(B)>0) =
CAZ.CB2 5 C(A-B)(A+B) is implemented by the production rule;
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if € is a sum and U is an argument of E and V is an argument of E
and U belongs-to square with A as square-root and C as coefficient
and V belongs-to square with B as square-root and - as coefficient

and [ d;g(A)>0 ox dc_ag(B)>0 ]
then replace U + V in E by C(A+B) (A-B)

2.6. A strategic principle

Using theorems of the rewriting rules theory (Dershowitz 90), we proved that the factorization in a strong
significance, additive grouping in a strong significance, collapsing transformation and rule set is terminating
over the set Tpyp of expressions. This means that there exists no infinits rewriting sequence 11— 13 = ... with
such transformations or rules for any expression t;.

_ As we observe that the solution paths of factorization problems include a very high rate of factorlzauons and
reductions, the above termination result leads to the following strategic principle SP:

To solve a factorization problem, use mainly factorizations and reductions with a strong significance.

Applying the SP principle leads to the development of a finite search tree with a high probability of reaching
the solution. On the contrary if developments are used, the potential search tree is infinite because factorizations
and developments are inverse transformations and thercfore loops may appear.

The APLUSIX solver includes heuristics defined in harmony with the SP principle (Nicaud and al. 93). These
heuristics facilitate the efficient exploration of the finitc scarch tree obtained according to the SP principle. They
take into account the context such as: do not factorize an expression if the only expression left is a constant.
They can involve some calculus steps such as: prefer a factorization generating a factor which is already a factor

of another term (¢.g.. in x2-4+(x-2)(x+6)+x(x+6) the factorization of x2-4 in (x-2)(x+2) generates the factor x-2
which is already a factor of (x-2)(x+6)).

3. Conclusion

In this paper, we have described a theory of algebra for ILEs having cognitive, formal and computational
aspects. This theory includes semic features and concepts of expressions, formal and semantic models involved
in algebra. Factorizations, reductions and devclopments with a strong significance are defined using scmic
featurcs. The RM model includes the inference mode of rewriting modulo an equivalence relation. The
termination of factorizations and reductions with a strong significance allows the justification of a strategic
principle SP giving priority to factorizations and rcductions.

This theory provides 2 theoritical framework for the APLUSIX systems. We think that this theory can help
to address some major issucs in ITS such as the modclisation of the student, the gencration of relevant exercises,
the managcement of explanations or helps and the determination of relevant pedagogic interactions.
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Abstract: A discussion of the Eisenhower National Clearinghouse’s Coalition of
Automated Mathematics and Science Education Databases (CAMSED). Paper focuses
on the long-term vision which is for a user of CAMSED resources to gain seamless
access to all the databases maintained by the Coalition and institute parallel searches
for items with a single query. Progress to date and various technical and non-technical
issues that are being, addressed. Tools for conducting research on the Internet both
present and future a:e presented as examples.

The information supérhighway is nothing more than slick pavement. More important to travelers on this
highway will be the types of vehicles traveling on that highway. The Coalition of Automated Mathematics and
Science Education Databases (CAMSED) is like a high speed monorai! with special tours and stops for the
mathematics and science education communities. Imagine a tour along the information highway where you have
one ticket (a free ticket) which includes stops at the world's largest education related bibliographic database
(ERIC} as well as the first comprehensive multimedia mathematics and science education database for educators
K-12 (Eisenhower National Clearinghouse), and the vast resources of NASA and the U.S. Department of
Energy. Want to know where you can get your ticket? Who is the travel agent?

The Travel Agent

Booking your ticket for this journey will be the Eisenhower National Clearinghouse for Mathematics and
Science Education (ENC). ENC is funded by the U.S. Department of Education and is located at The Ohio State
University. Included in the broad scope and mission of ENC is the effort to continually improve science and
mathematics education in the United States. To do this, our nation’s teachers nzed better access to the best
instructional materials and programs. ENC’s vision for this effort is to provide a central source through which
teachers can locate the instructional materials for teaching science and mathematics. ENC’s participation in
CAMSED has two components. First, ENC will create and maintain a comprehensive multimedia collection of
materials and programs. Second, ENC will deliver access to this collection using both traditional and advanced
computing and telecommunications technologiss.

What is in the ENC Collection?

The Clearinghouse will collect and create the most up-to-date and comprehensive listing of mathematics
and science curriculum materials in the nation. The list or catalog of materials, the text of some of the
materials, and evaluations of them will be made available in a database in a variety of formats, including print,
CD-ROM, and electronically online. From ENC you will be able to receive an easy-to-use catalog of
mathcmatics and science curriculum materials, including materials available in print, video, audio, software,
other graphics, and CD-ROM. For cach item, there will be an abstract of the material in the catalog and
information about availability.




Q

ERIC

Aruitoxt provided by Eic:

How can I access the ENC Collection?

ENC provides free information about mathematics and science curriculum materials. If you have a
computer, a modem, or access to the Internet, and a printer, many of the materials that the Clearinghouse
collects will be available free online. So far, this seems like a traditional database available on the Internet.
What is unique about the ENC collection is that you are not going to be limited to the resources of one
clearinghouse. The focus of the ENC effort is to combine the existing Internet resources so that teachers can
have a starting point that will guide them to the information that they most desire. Access to the Clearinghouse
and Coalition collections will be facilitated through a Macintosh, Windows, and VT-100 connection. There will
be a client-server architecture designed to respond to user actions.

Many schools do not have the technology available right now to use the online technologies. For those
users, ENC will produce mini-catalogs and information about the Clearinghouse collection in print. As schools
acquire the technology, the Clearinghouse will make extensive information available about using the catalog and

using the online system. In addition, the Clearinghouse is establishing regional demonstration sites to provide
help to users through workshops and walk-in assistance.

The Transit Authority

So, who decides what travels along this information highway and what traffic rules will apply? The
Coalition will be a voluntary organization of information providers, with member groups working
collaboratively to fashion standards, protocols, and operating policies. The goal is to establish interoperability
among an array of database providers who maintain or are developing elcctronic resources useful to science and
mathematics teachers. By forming a federated database, CAMSED will provide users the benefit of single-point
access to scattered resources without having to create redundant collections of materials or physically
consolidating resources. From a single point of access, users will be able to construct a search of linked
databases with a single search strategy.

Since the Eisenhower National Clearinghouse has the major responsibility for making instructional
materials accessible to mathematics and science teachers in the nation, the Clearinghouse will take the lead in
bringing the Coalition together and facilitating agreements on standards and operating procedures. It is the
intent, however, to leave all database building activities in the hands of those who have created cxisting
resources or are developing new resources. In this way, resources will be developed by groups having special
expertise. interests, or resources, but access to the electronic resources will become a shared and mutually
beneficial endeavor that makes the greatest possible use of emerging information technologies and practices.

Along with standards and protocols regarding the ways in which databases are linked and accessed, there
will be standards relating to the search vocabulary, the core components of database records, and the means of
linking similar fields across disparate databases and database types. Given the diverse resources that will be
linked. developing standards that apply to text as well as non-text resources will be a major challenge to
interoperability and the development of a urified search procedure. In addition to scarching a variety of databases
with one search procedure, it is intended that users will be able to seek additional related materials once a
particularly useful resources has been located. That is, if an initial search leads to a database record of particular
interest, there will be a mechanism for finding items within the federation of databases that are strongly related.
This is similar to the relevance feedback information provided by WAIS.

A High Speed Monorail

Though still in the early planning stages, CAMSED is viewed as a major step forward toward
consolidating electronic resources and providing a federated database of resource materials for mathematics and
science educators. This evolving Coalition will include the resources of various federal agencies and other
cducational organizations that have developed and maintain continuously updated clectronic databases. Coalition
members will likely include the ERIC system, NASA, the U.S. Department of Energy, Scholastic, and others.
The long term vision is for a user of CAMSED resources to gain seamless access to all the databases maintained
by the Coalition and institute parallel searches for items with a single query. Where possible, the resources
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obtained from a search will be available to the user in as many forms as possible. Some formats might include
full-text of the item, scanned images of pages, video clips, or still images of slides.

The Nuts and Bolts Fastening the Rails

The ENC collection of databases can serve as a model for databases in the Coalition. The primary
resource of the clearinghouse is a bibliographic database. This database is deployed on a Unix-based platform
with a search engine. Several other databases contain information to supplement the core bibliographic database.
Some of these databases include (a) standard text in machine readable form, (b) i image data, (c) evaluation data
from orline submitted evaluations, and (d) other multimedia data types.

The databases will be accessed by the end user through a state-of-the-art client server architecture which
allows individual users to utilize their existing personal computing systems to access the Coalition resources in
a highly interactive fashion. The clients are being developed by ENC to have built-in support for multimedia
data types. Fully functional clients will be available on the Macintosh and Windows platforms. Access to the
text-based information will be made available to VT-100 clients. To make the client as dependable as possible,
ENC will be using national and international standards for delivery of data. Standards include Transmission
Control Protocol/Internet Protocol (TCP/IP) and Z39.50. Z39.50 is a protocol which is commonly used
synonymously with Wide Area Information Servers (WAIS). While not entirely accurate, the two terms are
merging to combine their functionality. Essentially, using the Z39.50 protocol, the barrier for accessing
information in multiple databases with one search query is eliminated. However, 7739.50 is not an interface, nor
is WAIS. They are tools which are used to find information contained in databases. The databases can be located
on zhe same machine/server, or they can be located thousands of miles apart. There exists many tools for
retricving information on the Internet. Each have been developed because of a need for finding information. This
same basic need for access propels our monorail on the information highway.

On a Parallel Track

As part of the National Information Infrastructure (NII), the U.S. Federal government is proposing a
Government Information Locator Service (GILS) to help the public locate and access information. GILS would
identify public information resources throughout the Federal Government, describe the information available in
those resources, and provide assistance in obtaining the information. As currently planned, GILS would use thg
network technology and the American National Standards Institute Z39.50 standard for information search and
retrieval so that information can be retricved in a variety of ways, and so that GILS direct users can ultimately
gain access to many other major Federal and non-Federal information resources. GILS would also include
automated linkages that facilitate electronic delivery of off-the-shelf information products, as well as guide users
to data systems that support analysis and synthesis of information. GILS is designed to be a cooperative effort
with the Information Infrastructure Task Force (IITF).

For CAMSED, the GILS effort is significant. Current efforts are attempting to link the GILS record with
the CAMSED intelligence. Imagine this scenario, a user of the CAMSED resources enters a search query. The
query is analyzed and compared with the GILS records to find appropriate resources to institute parallel searches
across. A user might enter a query for star-clusters. The server would look through the known information about

resources belonging to the Coalition and run the search against databases containing information about stars but
not against those that don’t.

Road Maps... Internet Discovery Tools

The Internet was born about 20 years ago, out of an effort to connect together a U.S. Defense Department
network called ARPAnet and various other radio and satellite networks. The ARPAnet was an
experimental network designed to support military research—in particular, research about how to build
networks that could withstand partial outages (like bomb attacks) and still function...It was designed to
require the minimum of information from the computer clients. To send a message on the network, a

computer simply had to put its data in an envelope, called an Internet Protocol [1P] packet, and “address”
the packets correctly. (Krol, 1994, p. 13)
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ERIC

Aruitoxt provided by Eic:

Basically, all that the Internet does is facilitate the moving of 1°s and 0’s from one place to another. To
send these bits of information, the Internet has a two part process that is typically spoken in the same breath...
TCP/IP. To understand TCP/IP, it can be broken down as IP is the addressing portion with a small amount of
data attached to it. TCP is the process for sending lots of packets and check for errors in the process. Granted,
this is a very over-simplified view of TCP/IP. TCP/IP is what happens underneath the surface. Applications
like electronic mail, remote login, and file transfer use the low-level routines of TCP/IP to make sure that the
data it is sending has integrity. If you read a book on how the Internet routes information with bit streams and
so forth, you will be ready to pull off on the information super highway road side rest!

Telnet, FTP, Mail, and News

There are four basic categories of applications available to Internet users. Certainly, these are not the only
types of applications but usually found on most sites. Telnet is one method for logging into other computers on
the Internet. The computer you connect to may be located on your campus or halfway around the world. FTP
stands for File Transfer Protocol. FTP is the command set that allows two sites to transfer files. Many people
are familiar with anonymous ftp which simply means that logins are not required to access information on a
site. Electronic Mail is what many people associate with the Internet itself. Electronic mail lets users on the
Internet send and receive messages to or from other users on the Internet. USENET News is like a community
bulletin board where users on the network can read messages and post public messages for others to view. To
put it simply, USENET News is the world’s largest bulletin board service. These basic applications are
command driven. Many users who think that the Internet is “hard” have the picture of the ftp commands in their
mind that they will have to learn before they can use the Internet.

As is often the case, the mother of invention is necessity. To remove the need for remembering all of the
Internct commands, another layer of software is used on top of the basic applications. These tools are considered
more user friendly. When users are exposed to the applications that allow them to use the basic applications
without remembering the commands, the typical response is... “Oh, that’s all there is to it?”

Internet Gopher

The Internet Gopher is 2 navigating tool that takes the features of the Internet and puts them all into one
handy little application. Things such as ftp and telnet are combined. Gopher allows users of the Internet to
burrow around from site to site without knowing the IP address or domain name of a machine. The user selects a
menu item which presents information to them. Gopher was developed by the University of Minnesota to allow
various departments on campus to provide information at different sites on campus and require no training for
the users of those sites. The idea quickly grew into an Internet navigation tool. Users were able to take the

pointers set up by Gopher servers and find vast resources on the Internet. The sites available to users of Gopher
are collectively known as Gopherspace.

NCSA Mosaic

Mosaic is a client application. The client connects to servers. Servers for information displayed by
Mosaic are part of the World Wide Web (WWW). The WWW is a hypermedia system originated by CERN, a
high energy physics laboratory in Switzerland. Initially envisioned as a means of easily sharing papers and data
between physicists, the Web has evolved to the next generation of Internet navigation tools.

NCSA Mosaic, developed at the National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign is a network information browser. Mosaic allows you to retrieve text, graphics,
sound, and cven video clips. Mosaic uses Universal Resource Locators (URLs). The locators combine
infurmation from several Internet tools such as ftp, Gopher, WAIS, and others.
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ENHANCE

The Eisenhower National Clearinghouse Handy Academic Network Tool (ENCHANT) is a client
application being developed at ENC to provide access to the clearinghouse databases and limited Internet
resources. ENCHANT is divided into roughly four parts (a) the integration layer, (b) the database tool, (c) the
communications tool, and (d) the evaluation tool. The integration layer vill handle iogins and user verification.
The database tool will allow users to search across CAMSED compliant databases. The database tool will
conform to Z39.50 version 3 on the back end, but have an easy to use interface for the user. The
communications tool will combine the two network applications mail and news. The evaluation tool will be
used to allow users to send evaluations of materials back to ENC staff. This is a facility whereby a teacher can
try out one of the items cataloged in the resource database and then provide an evaluation so that other teachers
can see it before they buy or try an‘itém.

Client applications are being developed for Macintosh, Windows, and VT-100 terminal emulation. The
graphical interfaces of the Macintosh and Windows platforms will have full functionality while the terminal
emulations will be lirited to text based information on screen with download capability where appropriate.
ENHANCE users will be able to use the connectivity they have to access resources. If the machine has an
Ethernet connection to the Internet it will be used. A bank of modems and a toli-free 800 number will be
available for SLIP-type (limited form of SLIP) connection for non-networked schools and home users.

Travelers on the CAMSED Highway

CAMSED users will be educators at all levels who are seeking resources to support instruction in science
or mathematics. The resources may include instructional plans, media, datasets, images, or background
information. If .he highway and transportation system are well constructed, a user will only have to find one
door into the system and put together one search strategy, or itinerary, to seek out needed information. The
infrastructure will be nearly invisible, and several databases will be searchable simultaneously using natural
language. To the extent possible, the system itself will be multi-lingual, allowing users to interact with the
system in their preferred language. The system will also accommodate a variety of computer platforms and
resource formats so that users need not be particularly concerned about using the “right” hardware, software, or
command procedures. In short, CAMSED is intending to provide an electronic transportation system for
accessing widely scattered resources for science and mathematics students, teachers, and parents without requiring
special equipment, technical skills, specialized vocabularies, or complicated procedures.
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Abstract: Mathcad in the Windows environment is used to support a discovery
based learning format for linear algebra. The course is taught as a laboratory
with no formal lectures. Students actively participate in the mathematics to
develop a concept, connect it to preceding ideas, experiment with its properties,
and use it with applications. This format emphasizes reading, collaborative
learning, writing, and connection of topics. Guals include the improvement of
both long range retention of the subject matter and problem solving skills.

Background

‘In recent years, demand for linear algebra training has risen in client disciplines such as engineering,
compuler science, operations research, economics and statistics. At the same time, hardware and software
improvements in computer science have raised the power of linear algebra to solve problems that are orders
of magnitude greater than dreamed possible a few decades ago. Yet it appears that in mc ; courses, the
importance of linear algebra in applied fields is not communicated to students and the influence of the
compuler is not felt in the classroom, in the selection of topics covered or in the mode of presentation.
Furthermore, a worthwhile but sometimes overemphasis on abstraction may overwhellrteginning students
to the point where they leave the course with little understanding or mastery of the Rasic concepts they
will actually use in thesr carcers.’ :

We believe that student use of computers ... can reinforce concepts from lectures, contribute to the
discovery of new concepts and make feasible the solution of realistic applied problems (Carlson, Johnson,
Lay, & Porter, 1993).

The Report of the Linear Algebra Curriculum Study Group (Carlson, et. al.) has come at a time of
great national interest in the improvement of mathematics education at all levels. At the collegiate level
two documents from the National Research Council have played a central role. Everybody Counts: A
Report to the Nation on the Future of Mathematics Education, reviewed the way we teach mathematics
and outlined a plan for action while Moving Beyond Myths, presents an action plan for revitalizing
undergraduate mathematics. Common to these documents is wide agreement that the traditional lecture
approach to teaching mathematics is not working. Students are not achieving mastery of the subject
matter and retention of the material that is learned rarely lasts beyond the final exam. This is particularly
distressing in linear algebra with the increased demands from client disciplines who use computational
tools that depend on linear algebra. It is widely known that mathematics is not a passive activity and that
lasting knowledge comes from active involvement with ideas on a variety of levels. An active approach
in which students learn by doing provides more opportunities for mastery and retention. Implicit in this
change is the empowerment of the student to control his or her learning environment.
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Lynn Steen describes this phenomenon clearly. ‘Learning takes place when students construct their
own representation of knowledge. Facts and formulas will not become part of deep intuition if they
are only commitled to memory. They must be ezxplored, used, revised, tested, modified, and finally ac-
cepled through a process of active investigation, argument and participation. Science (and mathematics)
instruction that does not provide these types of activities rarely achieves its objectives.’ (Steen, 1991)

The ever increasing power of desktop computers and software provide the opportunity to change
mathematics instruction from a teacher centered lecture approach to a learner centered interactive en-
vironment. One form of change is an interactive text as described by Brown, Porta, and Uhl (1990).
Tmagine a mathematics text in which each ezample is infinitely many ezamples because each ezample can
be redone immediately by the student with new numbers and functions. Imagine a symbolic or numerical
computer routine into which fully word-processed descriptions can be inserted at will between lines of
active code. Imagine a text that has betler graphics and plots than any available in any standard mathe-
matics book and imagine that the amount of graphics is limited only by the computer memory instead of
the cost and weight of printed pages. Imagine that ... all three-dimensional graphics are perfectly shaded
and can easily be viewed from any desired viewpoint. Imagine a tezt in which a student can launch his or
her own graphic and calculational ezplorations with graphics and calculations appearing as the student
desires.’

Such an approach was pioneered by Uhl, Porta, and Davis at the University of Illinois with their
Calculus and Mathematica series (1994). Our initiative focuses on linear algebra and has a similar vision
for a student oriented learning environment supported by technology.

Goals and Instructional Tools

The broad goals of our interactive text project are student understanding and mastery of major
linear .algebra concepts, recognition of the interplay between concepts, retention of the fundamental
principles and capabilities of the subject, experience with individual or small group projects, emphasis
on reél‘;)onsibility for learning, and the development of problem solving skills.

Many of these goals are consistent with those of a traditional lecture based linear algebra course.
However, with an interactive text format the tools available for shaping the learning environment are
more varied and offer more flexibility. The primary tools for a standard course are the text materials,
verbal delivery to the group (lectures), limited question and discussion sessions, and possibly the re-
sponse to student homework exercises. With the exception of verbal delivery, we use no formal lectures,
all of these tools are available with an interactive text format and so are many others. Naturally the
software platform provides expanded instructional opportunities with symbolic and numerical computa-
tion capabilities as weil as graphics. In addition the textual material can contain instructional formats
which include observe (something happens in real time), alter and ezplore, design an experiment 1o in-
vestigate, leading questions aimed at discovery, guess or conjecture followed by verify, and write about it
(explain). The classroom itself supports alternative stzategies through collaborative opportunities with
peers as well as with the instructor. Much more one-on-one discussion or explanation between student
and instructor is common place. In fact, the instructor becomes a daily resource for consultation about
mathematical ideas.

In our implementation of interactive text we also set weekly goals for material which arc followed by
detailea checking of student work. The work not only includes exercises, but also imbedded questions
using instructional strategies listed above. G- articular importance are those that require writing about
the mathematics and the ‘summarize’ question that is included in each section. Prompt feedback for
this student work is provided on a regular basis. In addition at Temple University the course meets
an additional period each week for a discussion of the week’s work. The discussion is student oriented,
highly part1 ipatory, and often reveals connections between concepts through student interaction ( and
probing by the instructor). Such a forum has been well received by the students and provides an oppor-
tunity to connect the current ideas to those to be encountered in the next assignment.
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Our Interactive Text

Our interactive text for linear algebra uses the Mathcad computer algebra system in the Windowe
envirorment. Mathcad is a commercially available mathematics-engineering computational platform
that has a variety of specialized ‘handbooks’ available for topics in both the high school and the college
curriculum. (Our development is the only interactive text implementation of a topic at this time.) We
view Mathcad as a smart electronic blackboard; that is, it displ2ys mathematical expressions the way
they would appear in a ‘standard’ mathematics text or as an instructor might write as part of a lecture.
Text and graphics can appear on the same screen and the student can respond with text, mathematical
expressions, or additional graphics on the screen. In effect the screen becomes a notebook which a
student personalizes by their interaction with the topic under study. What started as an instructional
tool becomes the student’s integrated learning environment. (At the inception of this project the only
other similar presentation environment was Mathematica. Now other products are emerging which
support the integrated capabilities we have incorporated.)

Mathcad has .ix important tools that we have used to develop our interactive materials. These soft-
ware capabilities reflect some of the alternative instructional formats that are used in the our laboratory
approach to linear algebra.

1. Mathematical expressions are displayed in mathematical format.

2. Expressions can be evaluated numerically.

(2]

. Expressions can be evaluated symbolically.

.8

. Graphs can easily be drawn and altered.
5. Text can be presented in document form which is easily extended or modified by a user.

6. Materials generated in other Windows programs can be pasted into our documents.

No previous experience either with Mathcad or Windows is assumed. Mathcad is easy to learn without
formal instruction since it is icon based, has built-in help, and a consultant (namely the instructor)
is available at all class sessions. We introduce both the Windows environment and Mathcad through
hands-on interactive units that involve prerequisite notions from calculus. We also use this opportunity
to open a discussion about several basic linear algebra models that wiil reapgear throughout the course.
These models reflect the majur topics of systems of linear equations, iterative predictioa, and eigenvalues
and eigenvectors. This introduction of models establishes the theme of an applications oriented course
where new mathematical tools provide increased opportunities for understanding the basic nature of
problems.

Our basic instructional format is ‘discovery based’ learning. In this format we design learning tasks,
not presentation lectures. The emphasis is on student learning through guided discovery tasks, not
teaching in the traditional ‘telling’ mode. Hence it is important to attempt to use the student’s point
of view rather than the mathematician’s point of view. As such we have incorporated geometric con-
nections to linear algebra to stimulate a visual aspect to topics whenever possible. This dual approach
often develops better mental images of mathematical processes than that supplied by purely algebraic
manipulation of expressions.

In a discovery based approach our students actively participate in the mathematics to develop a
concept, connect it to preceding ideas, experiment with its properties, and use it with applications. In
this form we emphasize reading, talking, writing, and the connection of concepts.

Reading: The students must read, interpret, and understand the interactive text. In doing so
they participate in its development. Rather than present material in a ‘telling fashion’ (there
are no lectures) we use an informal style of interaction that exposes structural foundations of
concepts. Questions are asked without the answers having been presented previously. (This
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provides a conceptual form of problem solving.) Students are encouraged to guess, conjecture,

relate, and to just “Try it!’. Formal definitions or theorems appear as a summary of a concept
or activity.

Talking: We encourage collaborative learning by asking the students to work in pairs. Since
all class work is lab work we want students to talk about the mathematics and bounce ideas off
one another. Joint homework (which is really lab work) is encouraged. The instructor responds
to questions more with guided return questions than an exposition on the topic. (It takes self
restraint to stifle the urge to lecture.) Many questions deal with the writing issues described
below. Often a student seeks guidance on formulating a written response.

Writing: Many of our discovery activities require a. written response (a sentence or two; a short
paragraph) to complement a numeric or symbolic manipulation. Writing promotes clarification
to enable communication of thoughts. It is also an opportunity to synthesize current concepts
with previous ideas. Every section in our text concludes with an individual exercise to summarize
the mathematics learned in their own words. This helps both the student and the instructor,
who can point out misconceptions and get a feel for class patterns of comprehension. (We have

found that the summary responses get better in mathematical content and overall style as the
course progresses.)

Changes

The role of the student has changed from passive receptor as an attendee to a lecture to an active
combatant with mathematical ideas, concepts, and articulation of ideas. Thus there is an increased
level of participation and responsibility. Students quickly find that they need to develop a steady pace
for learning in this active mode. There is an increased time commitment and available of computing
resources outside of scheduled class time is a high priority. Such changes may initially cause some
students to feel undirected. Thus it is important to establish early on a cooperative climate in the lab.

The role of the instructor has changed from direct presenter, when lecturing, to guide and consultant.
The instructor must keep students from getting caught in ‘local traps’ which can lead them too far astray,
but must resist temptations for lecturing when student discovery is close at hand and preferable. Of
course there will be times where the instructor must provide more guidance and information to those
having extreme difficulties. We have found that the instructor actually expends more effort and devotes
more time to discussions with students in this instructional mode.

The topics in our interactive text look very much like those in a traditional linear algebra course in
the United States. However, we often introduce concepts in a different order. For instance, dot products
in R® are introduced early in order to easily formulate the matrix multiplication scheme, introduce
orthogonality, and discuss projections. The notion of a linear combination is used long before we talk
about span and subspace. Iterative concepts are introduced via a Markov model in the first class. We
then return to give further development to this important area as new linear algebra is developed. In
our interactive mode we have found that the course may not ‘cover’ as much but will provide a better
personal knowledge of concepts for students. We have used more applications than when we have taught
in the standard format. Discovery through the guise of an application has an appeal to students and
often seems less intimidating.

Assessment of student performance has been done by testing individuals, not learning groups. Hill
has used a combination of in-lab exams and individual take-home problems, while Porter uses take-home
exams exclusively. No significant advantages or disadvantages io either of these testing styles has been
observed 8o far. The measurement of retention of material for future use is elusive. During the second
year of this project some of our first year students are taking other courses that require linear algebra.
We currently have little information as to their performance.

Reactions

Student attitudes toward the active learning style have been quite positive. We have results of
midterm and end-of-term surveys which are encouraging and helpful. Several excerpts follow.
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‘The way the course is given is very good because while we are learning math, we don’t realize
we're learning math, because we're so distracted by the computer. This is very good because it
takes the boredom away from the classroom which is almost always there.’

‘1 was able to take part actively in the learning process rather than just reading some material
and then hoping later to decipher its meaning.’

‘... this course took a great deal of time.’

‘I began to look forward to working on the labs and coming to class.’

From the linear algebra community there has been interest in this approach. We have been contacted
by several instructors expressing interest in testing our materials. Several external reviews are in progress.
We hope to have several other sites using this material in the near future.

Summary

Our project has completed two years of development. We feel that the text materials are in a stable
state that can accommodate a number of types of beginning linear algebra courses. Naturally as we
continue to use the materials the contents evolve to accommodate the needs of our students. So what
is interactive for the student is true of the text itself. Another user could tailor our materials to their
situation.

So far our interactive text has been used with small groups. Students are generally enthusiastic about
the active format although the required time for students and the instructor is more than in a standard
course. The benefits seem to be worth the extra efforts, and Hill and Porter have learned more about
teaching linear algebra than they expected.
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Abstract: Achieving the goals we aspire to for all K-12 students requires, among
other things, new roles and practices for teachers. The following conditions are
important for teachers to learn to teach in new ways: access to images of learning
theories in action, a community of colleagues, a learning community of support, in-
classroom support, and both time and mental space. Can technology help create these
conditions for teachers? Videotapes, teleconferences, interactive television, and other
resources are helping teachers form professional networks and obtain images of
change in action, but it is essential that technology be used to help "create the
conditions” for teachers to learn rather than as an end unto itself. Two collaborative
projects, Tune in Math and Science and Michigan Gateways, are. examples of
programs with the potential to help math and science teachers learn to teach in new
ways if they are used appropriately by local teachers and administraiurs.

“Scientific literacy.” "Mathematical power.” "Higher order thinking skills.” Such terms characterize
the ambitious goals we aspire to, for all of America’s students (NCTM, 1989; MSEB, 1988; AAAS, 1990).
Most educators recognize that achieving these ambitious goals for all students requires equally ambitious
changes in school organization and management and in home/school/community linkages, as well as in new
roles and practices for teachers. Simply “improving” teaching isn’t enough, if all children are to achieve what
some children currently achieve.

What is required of teachers is truly challenging. Teachers must respond to major transformations not -
only in what we want students to know and be able to do but also in how we think students learn these things.
Although Michigan’s teachers are as dedicated and talented as teachers anywhere, for the most part they--like
teachers everywhere--have had few opportunities to develop the full range of knowledge and skills required.

Given the magnitude of the changes required, and the urgency of the need for opportunities for
professional development. what does technology offer to help teachers learn to teach in new ways? Before we
can answer that question, we must understand that transforming one’s practice and roles requires considerable
new knowledge, understanding, time, and effort. Moreover, many are convinced that certain conditions seem
essential for teachers to learn to teach in new ways (McDiarmid, 1994):

® Images of what the new ways of teaching and new roles in school could look like. Information
about theories of learning, for example, must be accompanied by examples of the theories in action.
While prescriptions are not helpful (even if they were possible), teachers are helped to envision
their new strategies by seeing others teaching in ways that illuminate and underscore the new goals
and conceptions of learning.

® A community of colleagues, and occasions and opportunities to discuss with them the meaning of
these images for their own roles and practice. A community of colleagues working together to make
changes in their own teaching provides both encouragement and a safety net for teachers trying out
new approaches. Opportunities to work and deliberate together are essential as teachers test ideas
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and refine strategies.

¢ Residence in a larger learning community that includes sdministrators, students, parents and
community members, school boards, and business people. As teaching and leaming is transformed,
classrooms and schools look less and less like parents and community members remember them.

To address the in- and out-of-school learning needs of children, schools and communities must
work and leam together. _ :

¢ Support in the classroom for changing their practice. Good coaching improves the performance of
both athletes and teachers--and in both areas the top performers continue to seek out and benefit
from other experts’ analyses of the performance and assistance in improvement. The classroom is
the arena of performance for teachers, and their coaches must be on-site.

® Time and mental space. Changes of the complexity and magnitude that teachers are now called
upon to make don’t happen overnight. If fact, these changes don’t "happen" at all, but rather occur
by dint of hard work and over long (multiple year) periods of time. Teachers who are actively
engaged in rethinking and redesigning their practice report that a significant obstacle is number of
demands on their attention. -

Can technology help create these conditions for teachers? Certainly the potential seems there.

Images are increasingly provided by videotapes and in periodic teleconferences and occasional television
programs--images of "new" teaching that can be replayed and discussed in depth by a school or department
faculty. In some places, distant colleagues meet face-to-face via 2-wav interactive TV to discuss and debate such
images; soon, videophones will make such interactions even more accessible. Moreover, electronic networks
are changing our understanding of professional communities: "virtual communities" are forming, both nationally
and in Michigan, as teachers discuss problems of practice on computer bulletin boards and electronic "chats".
Increasingly, satellite-based interactive teleconferences allow teachers in multiple sites to obtain information,
exchange views, and discuss issues in community with other experts. "Partnership™ projects--linking schools
and communities in collaborative support for student learning--are proliferating, encouraged by the requirements
of federal, state and private funders. While in-classroom support for changing practice is harder to imagine via
technology, 2-way fiber-optical linkages. or satellite-broadcast programs such as Michigan’s Tune In
Mathematics and Science (described below) suggest some possibilities.

Although technology seems to offer educators a rich venue for professional development, we will not
help schools realize the potential of technology unless we keep sharply focussed on "creating the conditions”
rather than on "utilizing the technology.” Two Michigan-based programs illustrate both the promise of
technology-based professional development and its limitations.

Promise and Limitations: Two Michigan Examples

Tune In Math and Science (TIMS) and Michigan Gateways ' are two complementary multi-technology
programs designed to help math and science teachers learn to teach in new ways. Tune In Math and Science
(TIMS) is a program of professional development for teachers organized around courses for middle mathematics
and science students. TIMS originates from studios at GMI Engineering and Management Institute in Flint and
at Michigan State University in East Lansing. In 1993-94 TIMS offered five courses for students in grades 6-9:
Math I, Math II, Algebra, Science I, ard Science III, featuring nationally validated curricula delivered by
award-winning teachers and modelling instruction in the spirit of the national reforms. Each course broadcast
three free, live, half-hour classes per week, via satellite. In the studio, the broadcast teacher instructs both the
students from a local school and students in receiving classrooms--and their teachers; the receiving sites interact
via telephone with the on-air class and teacher. The staff development programming includes weekly hour-long
staff development broadcasts for each course, as well as quarterly day-long drive-in sessions and a week-long
summer institute for teachers.

TIMS provides teachers with images of "this kind of teaching;" receiving teachers can analyze the
approaches to teaching that are being modelled and make sense of them through their own students’ experience.

88

(G
C




Through the interactive staff development broadcasts and through the periodic face-to-face staff development
sessions, participating teachers can discuss aspects of their own classrooms, using the broadcast teacher for
individual assistance and becoming a part of a growing community of colleagues discussing their own practice.
To strengthen local learning communities of colleagues, receiving teachers can organize discussions and
analyses of the images of teaching and curriculum that TIMS projects--discussions that involve both other
program participants and non-participants. Because 7TMS is carried into some schools via local cable, in these
areas teachers can even encourage parents and community membess to share in the experience and learn
together with them about advancing students’ mathematical and scientific literacy.

Consonant with the goals of TIMS, Michigan Gateways is a 30-minute, magazine-format, news and
information program for math and science teachers. Broadcast via satellite and public television approximately
monthly throughout the school year (and available free), each Michigan Gateways program features a classroom
that illustrates an interesting approach to teaching; in-depth exploration of an issue facing mathematics or
science teachers in Michigan; reviews of resources that might be useful to teachers who are exploring
curriculum, instruction and assessment alternatives; and updates on events of broad interest to teachers. A Guide
(available free) is prepared for each program, offering additional resources to help teachers develop local
communities of colleagues through activities and discussions based on the program. Electronic bulletin boards
sponsored by the program offer teachers opportunities to share discussions with colleagues in other schools.

These two programs--Tune In Math and Science (TIMS) and Michigan Gareways--suggest some of the
possibilities offered by technolcgy. The programs’ experiences and external evaluators agree, however, that
the effectiveness of the programs as professional development depends on the attitude and determination of locai
teachers and administrators. The message is clear: technologies provide us with access to images, information,

even other learners--but we must focus our efforts on helping to create the collegial conditions teachers need
for leamning.

'Tune In Math and Science is a collaborative project of GMI Engineering and Management Institute, Inc,
Michigan State University, and the Michigan Partnership for New Education with funding from federal and state
agencies, private foundations and not-for-profit organizations, and business and industry. Michigan Gateways
is offered by Michigan State University in cooperation with the Michigan Partnership for New Education and
GMI Engineering and Management Institute; funding for the program is provided by a grant from the
Annenberg Foundation/Corporation for Public Broadcasting Elementary and High School Project for
Mathematics and Science. For further information on the two programs, contact either of the authors.
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In 1961, the Education Policies Commission defined the central purpose of American education as “the
development of the ability to think” (EPC, 1961). This central purpose has been reaffirmed several times since the
original document. While not precluding other goals the EPC made it quite clear that all other goals are, to some
extens, dependent upon the accomplishment of this “central purpose.”

Elaborating on how this “central purpose” is to be accomplished the EPC indicated that the only techniques that

"were likely to be successful were those that involved active acquisition of information and utilization of that same

information. In essence the active development of the rational powers, recalling and imaging, classifying and
gencralizing, comparing and evaluating, analyzing and synthesizing, and deducing and inferring, will ultmately
produce the thinking individual.

If the EPC set a purpose for education, the field of developmental psychology has given us ways to understand
what stimulates learning and bow cognitive development takes place. Piaget vicwed cognitive development as an
incremental process driven by the learner’s effort to accommodate new input into their existing cognitive structure.
(Phillips, 1969) His model envisioned the leammer progressing from thought bound by perceptions and concrete
experiences to high level abstract thought.

In an attempt to build a pedagogical model blending both the EPC purpose of education and developmental
learning theory, physicist Robert Karplus, later to become dean of the graduate school at the University of California
at Berkeley, developed a “learning cycie” approach to teaching science (Karplus, 1978). He applied this approach to
his major elementary science curriculum development effort, The Science Curriculum Improvement Study. The
lcaming cycles approach, still in use in science education, has also been applied to a variety of other subjects.

This learning cycle approach involved three phases: exploration, invention, and application (Meyers, 1982, In
exploration the learner is introduced to a concept, phenomenon, or system through concrete experiences in wh.ch the
leamer manipulates, probes, questions, and generally exerciscs his/her natural curiosity. The teacher assumes the role
of catalyst or facilitator, subtly moving the learner in the dircction of abstractions to be learned later. The teacher's
tools are primarily leading and probing questions. :

In the invention phase, concepts are developed making use of the Icarner's experiences from the exploration
phase. The teacher serves not as a dispenser of knowledge but rather as a coach assisting the student in
accommodation, to usc a Piagetian term, or in the constructivist scnse, to synthesize understandings within the
content of their existing knowledge. Indeed to soine extent each learner “reinvents the wheel.” The job of the teacher
is to ensure that the student’s “wheel” is congruent with “whecls” as they are currently understood. This critical phase
of the leaming cycle is often the most difficult due to the predisposition of many teachers to see that the learner gets
the “right answer” as quickly as possible. It is at this phase that the learning cycle approach often breaks down and
the teacher returns to a more didactic approach.

Indeed what happens in a large number of cases is that a modified version of invention makes up the entire
teaching/learning experience. The pressures to "cover material” result in no time for the exploration phase and the
application phase being limited to working a few written problems from the textbook. Applying Bloom's taxonomy
(Bloom, 1956) and being rather generous it would appear that the highest level cognitive activity taking place in
such a class is comprehension. To develop higher order thinking skills the lcarner must be involved in activities
which present the opportunity to solve real problems using more than a recipe. The application phase of the learning
cycle provides such an opportunity.

To initiate the application phasc a problem is posed which can be solved through use of the concepts “invented”
in the previous phase. In solving the problem the learner, especially those at lower developmental levels, m. ¢ use a
concrete materials centered approach. Through this process of inquiry rclationships between concepts can be
discovered. Not only does this process reeinforce concepts invented earlier it also involves the application of higher
order thinking skills and enhances the learner's abilitics to deal with abstract thought.

Just as important is the fact that during this problem solving, as in most problem solving, the unexpected is
likely to be encountered. The skilled teacher turns these unexpected experiences into new explorations and the
learning cycle has returned to its origin. 90
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Aruitoxt provided by Eic:

Mary tools have been and are being employed in the implementation of the learning cycles approach to teaching
and lcarning but perhaps nene hold more promise in scicnce and mathematics teaching than spreadsheet software.
Let's cxamine the learning cycle approach as applied to a common science topic, electrical circuits, and see what role
spreadsheets might play.

The ciass of students is first grouped into groups of four and each group is given a flashlight battery and bulb
and a 20 cm length of insulated hell wire. The instructions are simply “See what you can do with these items.”
Battery holders or bulb helders are not used as they make the end result almost cbvious.

Most students know that there is a relationship between battery and bulb that produces light but are unaware of
the nature of that relationship. At first, the wire seems to be of little consequence and initial efforts involve placing
the bulb in contact with the battery in a variety of ways. The fact that the bulb does not light is always a source of
frustration.

After numerous unsuccessful attempts to light the bulb the students will finally decide to try to use the wire in
some manner. Again they try more unsuccessful combinations of contacts but finally, and usually more by chance
than by design, the bulb lights. This always results in great excitement and waving of hands to get the teacker to
come sece what they have done. Ultimately all groups, either by continuing their random efforts or by getting
assistance from other groups, will light the bulbs, and more importantly will be able to repeat the process. They
have now discovered a closed circuit.

This closed circuit that has been discovered is concrete. It can be seen and manipulated. But to be of real value,
the abstract concept of closed circuits must be invented. At this point the teacher becomes more prominent and
through the use of models, drawings, and perhaps film or video, leads leamers to the conclusion that for any bulb to
light a complete conducting path must exist from one pole of the battery, through the filament of the bulb, and then
to the other pole of the battery. The abstract concepts of current, voltage, and resistance must be invented by the
teachers and integrated into their concepts of closed circuits. These activities constitute the invention phase of the
learning cycle.

Unfortunately, invention is often unsuccessful due to the belicf, on the part of the teacher, that the learners
simply have to be told the concept. Nothing.is fartaer from the truth. Receiving inforrnation can in no way be
equated to comprehending and internalizing that information. In fact the invention phase of the learning cycle is
usually lengthy and often requires frequent use of concrete materials.

It is important to note that no mathematical relationships have been mentioned to this point. The reason is that
in scicnce the mathematical relationships developed are abstract representatives of concrete phenomenon and must be
developed stowly by the student. This is when the spreadsheet becomes a valuable tool.

Using today’s powerful spreadsheet software, which have integrated graphics capabilities, it is possible to
simulate experiences which might not normally be provided in middle or high school and in many cases higher
education. Because of lack of equipment, or time, or just a feeling that it really isa’t important, in most school
experiences the learner rarely has the opportunity to collect, organize, and interpret data. Spreadsheets can counter the
lack of equipment by simulating situations, can reduce the time factor with powerful analysis tools, but can do little
about the attitude that it's just not important to provide this broad range of experience.

One must remember that using spreadshect simulations should not supplant actual experiences, when those
experiences art possible, but rather supplement and support them. For almost all learners, higher level concepts and
abstractions are best formed when associated with some concrete phenomenon within the learners experiential
framework. This is the reason that actual manipulation of concrete objects and not simulations are used in the
exploration phasc of the learning cycle.

Figure 1 is a template developed with Microsoft Excel (Kellogg, 1993). It represents the simplest of scries
circuits, having one battery, one resistor, and connecting wires. For data collection purposes meters have been placed
in the circuit to simulate the measurement of currents, voltages, and resistances. All cells are locked except the cells
in which the voltage of the battery can be entered by the learner and the value of the resistor which can also be
changed by the lcarner. As the battery voltage and/or the value of the resistor is changed the appropriate voltage and
current will be indicated on the meters.

The groups of students, now at compulers, are simply told to *“s¢e what you can do with the computer
template.” Thus begins another exploration. The students’ quickly leamn, usually by trying to change everything on
the template, that only the battery voltage and the value of the resistor can be changed. They also discover that a
change in the battery voltage produces change in the current and volt meters while a change in the value of the
resistor produces a change in the current meter.

Now is the time for the teacher 10 provide some structure to the process. The groups are asked to de.ign an
experiment to determine if any relationship(s) exists among the variables, vollage, current, and resistance, and to
perform the experiment using the spreadsheet template. In order for this part of the activity to be successful the
students must have studicd and understand design of experiments including identification and control of variables.
They should also be accustomed to keeping careful written record of data.
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Figure 1 Simple Circuit Template

Once data have been collected the groups are ready to analyze those data and synthesize generalizations about
existing relationships. Making the transition from raw data to graphs and then to a generalization about the
phcnomenon is a process mastered by few students in either K-12 or higher education. Interpreting graphs and
developing generalization based on thosc graphs represents a venture into the highest levels of thinking. At the same
time it represents a level f abstraction that can confound the average student unless accompanied by concrete ties to
real-world experiences. The design of the experiment and the collection of real or simulated data provides such a tie.

Not only are data obtained from the simulations but the analysis of those data is greatly enhanced through the
use of spreadsheets. The laborious process of paper and pencil construction of graphs that most of us experienced in
the not-to-distant past is no longer a factor inhibiting meaningful data analysis. Production of high quality and
accurate graphs becomes alimost automatic when using a spreadsheet.

By using the spreadshcet to graph the data obtained from the simulated experiment the learner will discover a
direct relationship between voltage and current and resistance and current. Usually this is not accomplished
spontaneously by the learner but rather in conjunction with 2 good deal of skillful questioning and guiding on the
part of the teacher. Learners often have to return to the batteries and bulbs to fully develop their understandings. This
blend of concrete manipulatives and simulated experiments combined with the rapid data analysis capabilities
provided by the spreadsheets offer the learner a much better opportunity to use higher level thinking skills and to deal
with abstractions.

Of course it would have been much faster for the teacher to have told the learner that V=IR, worked a few
problems on the board, assigned the odd numbered problem for homework, and left the classroom with a feeling of
accomplishment. But this low level approach has beer vsed for years and has failed to produce students who retained,
used, or cxpanded on what they “learned.”

' The preceding example demonstrates how sprcadsheet simulations can play a role in a learning cycle approach
which places lcamers in a situation in which they must collect and analyze data to arrive at some gencralization
about relationships among variables. The activities are the essence of science and indeed represent solid applications
of higher level thinking. The powerful tools of todays spreadsheets and the lcaming cycles approach to teaching
science and mathematics form an efficient partnership for assisting the learner to develop the ability to think.
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Abstract: The potential and current use of compressed video networks to deliver
science and mathematics instruction is discussed. This newly affordable technol-
ogy is being used in several ways in Tennessce. Courses and special programs
are being taught using this technology to all ages of people throughout Tennes-
see. This technology enables fully interactive high quality instruction where in-
structors and students se¢ each other, hear each other, and can interact in a vari-
ety of ways. Unlike satellite programming, where two-way audio is the only
interaction possible, with compressed video body language signals are available
to the instructor as well as audio. Currently, there are over twenty-five
videoconferencing classrooms implemented in Tennessee.

Throughout the US and other countries of the world, educational institutions are beginning to seriously
reexamine current instructional techniques and are looking for the most cost-effective means of delivering
instruction. Some of the things driving this reexamination are declining student populations, new graduation
requirements, changes in the required skills for entering today’s workforce, and governmental regulations
related to student safety. This reexamination comes at a time when the nation as a whole is ‘discovering’
telecommunications and the “infermation highway” is being touted as the revolution of the future.
Consequently, schools are taking a hard look at telecommunications technology as a possible restructuring tool.

Previous Constraints

Schools have long been aware of the advantages of using telecommunications solutions for some
educational purposes but have considered videoconferencing technology far too expensive for day-to-day use.
Additionally, regardless of whether they are higher education institutions or K-12 institutions, most classrooms
are without that critical linkage for telecommmunications —- a telephone line. Without access to a phone line
there can be no telecommunications! A recent quote in the New York Times by Reed E. Hundt, FCC Chair
really brings this point home,

“There are thousands of buildings in this country with mllions of people in them who
have no telephones, no cable television, and no reasorable prospect of broadband services.
They’re called schools.”

Another major constraint inhibiting the implementation of telecommunications solutions has been the
cost factor. This factor has been the biggest deterrent o implementing phone lines into classrooms. Regardiess
of whether you were talking about simply using audioconferencing or electronic mail solutions, telephone
access and long distance charges have been major barriers to implementation for cost-conscious schools. The
idea of letting instructors and students loose in a room equipped with a phone that is capable of ‘dialing’ long
distance numbers is one that gives school administrators nightmares. In all fairness to these administrators, line
item budgets must be considered in setting vp such systems. Because of the new demands being put on the
telephone service providers for new services, this situation can be bhandled through a varicty of programs
offered. These programs enable schools to pay a set fee for a certain amount of usage as opposed to being
charged on a per call basis.
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The misconception that you have to have fiber optic cabling if you are going to be able to have what
everyone really wants — a system that enables instructors to not only see their students but to have full interaction
with them regardless of whether they are located in the same room or many miles away has been a constraint in
the past. With the new systems and software available now, fully interactive systems are available using the
POTS (plain old telephone system) that currently serves the schools. One of the advantages to using the installed
copper based network is that regardless of what building you might want to connect to, you can count on being
able to do s0. An additional advantage to using compressed video on copper is the reduced cost. Even where fiber
is available, many schools have chosen to use compressed video on copper due to the high transmission charges
assessed for transmission on fiber by their telephone service providers.

An additional constraint is the cost and performance issue related to videoconference equipment. As
recently as three years ago, videoconferencing systems that used compressed technology were really unaccept-
able for use by schools. Jerky movements, the lack of satisfactory lip synching, and the smearing and tiling that
existed in compressed video systems resulted in educators saying, “thanks, but no thanks.” On top of all these
problems, the cost to outfit a typical classroom could run as much as $250,000 — not an amount that was any-
where close to affordable. These problems have virtually disappeared in today’s technology enabling schools to
take a new look at the use of these systems.

Uses of Compressed Video in Tennessee

In Tennessee, the use of compressed video for delivering math courses started in the fall of 1990. A pilot
project funded by South Central Bell Telephone Company through assistance from the Tennessee Public Service
Commission provided five high schools in Gibson County, Tennessee, with videoconferencing equipment. That
first year, Calculus was one of three courses taught using the network. The schools had looked at their current
class offerings, and determined that Calculus instruction was a major need. Like other rural communities in other
states, qualified higher level mathematics instructors were difficult to find. This provided the other schools with
a course they had not been able to offer previously.

That same year, 1990, the University of Tennessee at Memphis medical school purchased their own equip-
ment to deliver nursing programs between Meinphis and Jackson, a community fifty miles away (see Tennessee
Telecommunications Map). In this case, the remote location selected was within the UT Family Practice Clinic
in Jackson. The driving force for the implementation of this program was the need for training coupled with the
lack of available time for students to travel to Memphis to attend classes. The advantages to this arrangement
were numerous — students could do their laboratory work and field experiences in the facility where they were
obtaining their training, qualified medical personnel were on site to provide assistance when necessary, and
students could quickly see how what they were learning applied in the ‘real world.’

Even with the problems of smearing and tiling, these two uses of videoconferencing provided an oppostu-
nity for educators throughout Tennessee to see the impact this type of technology could have on the delivery of
science and mathematics related subjects. As a result of the lessons leamned in these two programs, proposals for
implementing videoconferencing systems in educational institutions were developed throughout the state. Many
systems were purchased, and point-to-point conferences began to be common between main campuses and off-
site locations. In a point-to-point configuration, only two locations can participate in a videoconference. While
this can be very satisfactory, the educational institutions in Tennessee wanted access (o more than just one other
point. Consequently, an additional piece of hardware was required if they were to be able to connect to multiple
points — a multi-point control unit (MCU). Fortunately, South Central Bell Telephone Company was interested
in installing an MCU as a trial and did so with the cooperation of the educational institutions.

Today, there are over twenty-five compressed video videoconference classrooms in Tennessce tied to-
gether by multi-point control units on loan from South Centrai Bell Telephone Company. Each weck, over 50
hours of classroom instruction is delivered using these systems. The types of training varies from continuing
education programs to assist currently employed professienals to keep current, to upper division classes leading
1o doctoral degrees.
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The Tennessee Telecommunications Network

The videoconference classrooms have provided these educational institutions the opportunity to deliver
high quality fully interactive courses across a wide geographic region to all kmds of people. Some of the
advantages of this type of delivery are:

» sophisticated equipment can be used to deliver courses to locations without this sophisticated equip-

ment
- One professor does a laser show for students located miles away
- An astronomy professor can do presentations and teach courses to students at remote locations

» experiments now banned by federal regulations can be demonstrated at a remote location providing

students the feeling of actually being ia the room with the professor

» computer software and interfaces can be used and all students can see what’s happening without the

need for each student to have their own computer

+ students can interact with the professor in real time with the professor watching students and seeing

their reactions to instruction

* instructors are able to use a variety of technologies to teach subjects lhat are difficult to teach in a

lecture-only classroom

The videoconference equipment currently being used in all the classrooms in Tennessee includes the
following:

* VideoTelecom codec

* 2 Video Cameras

* 4 Monitors (2 in the front of the room and 2 in the back of the room)

+ 1 Microphone for each set of two students (most often table microphones)

* 1 Lapel Microphone for the instructor

* 1 Elmo Light Table (serves as an overhead, slide projector, and whiteboard)

The Tennessee Telecommunications Network at this time runs on the regular copper based telephone
network at 384 kb. The machines are all capable of running at 768 kb or even 1.5 kb according to the necds of
the particular institution. Additionally, when the Tennessee network transitions to a fiber based network, these
machines will be able to make the transition without having to be replaced (a key consideration in the selection
of hardware).

As the use of the network by medical personnel increases, specialized equipment will need to be pur-
chased to enable full diagnostic capabilities. There are now two medical schools using the network, one in
Knoxville, and one in Memphis some 365 miles apart. They have submitted requests for this equipment, and
once a source of funding is identified, this equipment ‘will be purchased. Once that purchase is made, not only
will they be able to use the network for instruction, but they will also be able to actually train students on
diagnostic procedures from remote locations.

The use of the videoconference equipment in Tennessee is growing exponentially not only by educa-
tional institutions, but by communities throughout the state who are now installing Network Resource Centers.
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These centers are designed to provide access points to the Tennessee Telecommunications Network in all areas
of the state. The idea of having to quit your job and move to a particular town to obtain a particular degree will

eventually be replaced by being able to stay where you are and simply drive downtown, or a few miles to geta
degree.

A recent article in Network Tennessee, states, “... At the University of Tennessee at Martin, they are
using 'Reaching out to TEACH Someone' as their masthead for their expanded distance learning program.”
This really does sum up the way everyone feels about the use of videoconferencing equipment in Tennessee.
The participants in outlying regions no longer feel so isolated as they can now develop a real relationship with
remote instructors because of the high level of interaction provided by this technology. In the K-12 schools,
students have even had romances blossom between students located in other locations on the network.

For more complete information on this technology and what it takes to get started, there are many
publications available. The Telecommunications Technology Planning Manual produced by South Central
Bell Telephone Company of Tennessee has a section on Videoconferencing that details the various options
available, explains what each option would include, discusses the capabilities of the various systems, lists what
it takes to equip a classroom, and explains anticipated costs. Additionally, the resource section includes refer-
ences to many other publications with information on equipping videoconferencing classrcoms.
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Science, computers and children in the elementary school
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Abstract: In Australia, the use of computers within the home is becoming
widespread and the number of computzrs in elementary schools is steadily increasing.
Children are familiar with playing adventure games that often include a component of
problem sclving. This type of software can become the focus of learning science
using a thematic approach. Computer utilities including word processors and
databases support children thinking and working scientifically on projects. LEGO TC
L.OGO enabies the exploration of the use of a computer for remote control through
the construction of models and associated programming. Software packages in
classroom programs foster the development of skills and understandings in
interesting and relevant ways. Some strategies being used by ieachers to integrate the
use of computers within their elementary science programs is discussed in this paper.

Scieace educstion programs

In Victoria, science education programs for childsen have been develcped autonomously within the elementary
school. Government publications have been prepared periodically tc inform curriculum development by teachers.
Science in the Primary School (1980), emphasised the development of attitudes and skills within defined concept
areas. The Science Curriculum Frameworks (1988), overlaid a science, technology, society and personal
development approach inclusive of local issues and coastructivist learning. Currently, National Science
Curriculum Profiles which define specific learning cutcomes are being modified to suit the Victorian situation.
The priorities of school communities for the education of children, combined with the autonomy of these
communities has led to great diversity among science programs.

Access to computer resources to support science education also varies greatly. Some children have limited
opportunities to use a computer because it is shared with another class. More fortunate children have access to
computers permanently located within their classrooms as well as having lessons in a dedicated computer room.
Each situation has its own challenges for teachers and these require different strategies, for example, teacher
demonstration, the use of work contracts and time schedules.

The use of computer software in science education is gradually becoming more common. Software enables the
computer to be used in different ways, including the exploration of remote control systems, for the development
of problem solving and inquiry skills, or as the focus for integrated curriculum (Fyfe, 1985). Learning is
enhanced by the exchange of children's ideas that occurs in cooperative working groups. Examples of some
approaches developed by teachers are discussed in the remainder of the paper.

1. A thematic approach

Often the first type of software package used in the classroom is an adventurc game. A teacher's interest is
captured, and familiarity with the program establishes the necessary confidence to use the computer with children.
Imagination and the planning of activities in a range of different curriculum areas can lead to months of thematic
work woven around the experiences at the computer (Willing & Girard,1993). Children become very committed
and willing to spend time during lunch hour and out of school to complete set tasks.

Dragon World (1986) and Flowers of Crystal (1984) are two well used packages related to the popular topics
dinosaurs and protecting the environment. The usual curriculum can easily be abandoned to the excitement of
solving the challenges presented. Groups of children work together. Tasks are clarified and experienced by
different children in different sessions at the computer. Lots of communication occurs as children record what

98 1 01

BEST COPY AVAILABLE




happencd while using the computer, search out relevant information and discuss what to do next. Classrooms
may be transformed into places where children are enjoying actively working together (Fox, 1986).

Science can be taught in a more holistic way using an integrated curriculum approach. For example, when using
the program Flowers of Crystal (1984) in which protecting the environment is an issue, exploration of the social
aspects of science can be inciuded.

Hands-on activities are often avoided in science. Therefore, it is important when planning a thematic unit to
clearly indicate appropriate science activities for children to do. Figure 1 shows some examples of activities
associated with the software Raft-Away River (1984). Leaming outcomes from each different curriculum area also
need to be carefully monitored and mapped onto expectations for the particular year level being taught.

Knowledge

Exploring:
« Displacement of water by objects
« Dissolving substances
* Minibeasts living in water
« The effects of water pollution

Technology

» Building bridges and rafts
» Testing different materials for cleaning up oil spills

Society

Investigating:
* how people change rivers and oceans
« the history of boating
« the role of rivers and oceans in the development of settlements

Figure 1. Science activities for Raft-Away River (Fotopoulos, 1994)

A next step would be the sclection of a science topic for the focus of a thematic unit. There are an incr g
number of software packages with a specific science focus including, Learn about animals (1989), Bu.a a
circuit (1992), Muppet Labs (1992) and A field trip to the rainforest. (1991). Science is brought out into the
open when it is linked to activities in other curriculum areas through use of the software. The excitement
generated by the thematic approach becomes associated with science and encourages more practical activities.
Science related software packages offer other advantages. Risk free environments are created in Build a circuit
(1992) and Muppet Labs (1992) where children quickly and easily undertake experiments without the fear of
making mistakes. Opportunities to make observations not easily accessible within the classroom are presented to
children in Learn about animals (1989) and A trip to the rainforest (1991). The latter package includes a database
to support research and inquiry learning.

2. Using computer utilities to support science learning

Word processing is commonly used in the classroom and can improve presentation of reports from science
experiments, enable articles to be included in school newsletters or to make classroom books. A language
approach has also been taken to introduce children to the features of databases including Microsoft Works (1989),
Claris Works (1991) and the Bank Street School Filer (1986). Big books are used as a source of data, for
example, fields can be set up to record observations of Jillian's pigs (Gilman, 1988) encouraging recall of aspects
of the story the children have heard and learning about information technology.

Unfortunately the use of datai ases as a part of science programs is less common. Science activities provide a
wealth of opportunities for database use. Hartson (1993), describes student projects where a database is used to
record observations of birds during field trips, plant growth experiments in the classroom and rock samples. An
inquiry approach to the learning of science is supported by asking questions that are to be answered from the data
base.

Swatton and Pratt (1992) describe an investigation into paper helicopters using a database to immediately record
measurement and observations of flight. Students are able to gain an understanding of what it is like to think and
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work scientifically, Variables that affect flight were systematically explored and search strategies are used to
identify factors contributing to a good flight.

Children's involvement in deciding upon the design of experiments, a framework for recording and questions for
investigation is important for developing thinking skills. Knowledge, comprchension, application and analysis
can all be developed as children learn to use databases independently to explore relationships, formulate
hypotheses and test them by planning and printing reports (Ministry of Education and Training Victoria, 1991).
The higher order thinking skills of synthesis and evaluation involve creating new perspectives and making
judgements. They are more difficult to teach and require the use of abstract thinking which usually develops in
secondary school (Watson, 1989).

Databases are also a useful way to organise information that is electronically exchanged between Austral:an and
English children. One local project involved a comparison of information about food in their school canteens and
plants in their school grounds.

3. Using a computer for remote control

A young child crouches, eyes glowing, mesmerised by a robot wandering around the room, eyes flashing and
playing a tune as it turns itself around after bumping into something. Determination and pride in the
construction of a sophisticated model of a car or happy exclamations as pushing a button at a door produce a
jaunty tune are all examples of the powerful respor.=es in children evoked by the use LEGO TC LOGO materials.
The use of LEGO TC LOGO materials to make models using the computer for control and/or sensing is a
logical extension of earlier experiences with construction activities and programming in Logo. Children work in
small groups on a model that contributes to a whole class project, for example a ride for a fun park.
Alternatively, projects are presented as design briefs as in Figure 2. Additional information isicluding hints and
sub procedures is provided to facilitate a solution

There have been problems raising and lowering the flag at Parliment House.

T:sign a system to help the Prime Minister raise the flag in the morning by
pressing a button in his office, then lower it at night time.

Figure 2, Design brief

Many different creative solutions are developed by children. There are no right or wrong answers and individual
interests :an be pursued. The programming functions allow for the development of story lines and
embellishiments so that models respond in interesting ways to the commands of the computer. A solution to the
design brief above includes a sub procedure for part of the Australian national anthem to be played when the flag
reaches the top of the flag pole (Figure 3).

to playtune
tone 392 4
tone 523 4
Science ideas can easily be linked to the models constructed increasing the tone 392 4
relevance of the leamning, for example, pulleys, gears, circuits and electric tone 330 4
motors are commonly used. Worksheets guide the exploration of specific tone 392 4
ideas and increase the background knowledge available for the development tone 523 6
of solutions through designing, building and appraising. tone 523 2
Children work as practitioners of science translating scientific knowledge tone 523 4
of machines, structures and computer control into practical knowledge tone 659 4
(Layton, 1991). This needs to be supported by the teaching of a process tone 587 4
for solving problems and the necessary skills to implement it (Yates & tone 523 4
Moursund, 1988-9). In Figure 4 ‘WHAT PROBLEM is used as an tone 494 4
acronym to define a process for problem solving. tone 440 4
tone 392 4

end

Figure 3. Sub procedure for tune
(Povey & Vargo, 1993)
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What specifically is the problem?

How might you go about fixing it?
Assess the different options available
Talk to the other members in your group

Proceed with the chosen option

Review the situation, is it working now?

Other options - do you need to try something else?
Backtrack to "A" if you do

Look at what you have now, are you happy with it?
Evaluate it - does it do what you wanted it to?
Make further adjustments.

Figure 4. Problem solving process (Lamb & Suffern, 1993)

The skills in thinking, the ability to construct models and the knowledge of computer control gained through fun
projects in the elementary school establish a valuable foundation for further development. LEGO TC LOGO
materials can be used to explore control technology commonly used in commercial/industrial settings including,

robotic arms and assembly lines. The latter may be left more appropriately to high school years where vocational
links become more important.

Conclusion

Although the full poiential of computers in the science classroom still has to be realised, there already exist
many glimpses of how computers can be used to aid science teaching and learning. The increased numbers of
computers available for children to use, improved software packages and more teachers trained in the use of
computers will all contribute to a transformation in the classroom where teachers will more often facilitate
independent learning among their students
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Abstract: This study investigates the rclationship betwecn technology-mediated communication
and the development of metacognitive abilities in elementary school children. A questionnairc was
designed to assess students’ self-perceptions as lcarners and of their own knowledge. Based on a
sireilar methodology used in a previous study performed on an Italian sample, we compare two
groups: a control group in which student did not usz any technological communication versus an
experimental group using technology to communicate for one year of science curriculum. The
posttest performance of the younger children (3rd/4th grade) in the e¥—zrimental group shows that
they perceive themselves as morc actively involved in the process learning, but only within
specialized contexts.

Metacognition is vicwed as the ability to think about onc's own knowledge and expericnce of learning and it
has been recognized as an important factor supporting Icarning of new concepts (Brown, 1975; Baird & Mitchell,
1986; Pines & West, 1986; Brown, Bransford, Ferrara, & Campione, 1983), mcdiating conceptual change
(Gelman & Brown, 1986; Chi, 1992; Gunstone, Robin Gray, & Scarie, 1992; Roschelle, 1993) and monitoring of
cognitive process such as memory, language and perception (Metcalfe & Shimamura, in press; Nelson, 1992).
The present study was aimed at understanding what clementary school children consider to be important sources
of information, how they perceive themselves as learners, and whcther these perceptions can be affected after a
year’s curriculum of technological communication.

In a previous study performed on a large sclected sample of ltalian 3rd through 6th grade classcs, (Caravita,
Ligorio, & Palomba, 1993) we found that children’s mental models of knowledge and how they perceive the
process of knowledge acquisition were corrclated with cducational setting. In classes with directive teaching and
a “traditional” curriculum, children conceived knowledge as somcthing contained in encyclopedias, books, and
adults. The educational setting engenders the belief that in order to know something, it is nccessary to take it
from outside sources and include it in one’s own knowledge. In non-directive classrooms, technology provides
classroom environments with the possibility of accessing information through different media, sharing their work
products with peers, and widening the learner’s community (Kayc, 1993).

Experimental Design

Fifty 3rdj4th p:ade students as well as forty-seven sthyeth grade students participated in this study. The
sample was divided into two groups. The control group consisted of two classes, onc 3rd/4th grade and onc
sthygth grade neither of which had had any technological communication experiences. The experimental group
was composed of two classes, onc 3"d/4lh grade and onc sthygth gradc, each of which had been using two picces
of softwarc to communicate, QuickMail and CSILE, for onc¢ ycar. QuickMail is a child-friendly clectronic mail
package used to send clectronic messages to children and teachers in other classes and to the university staff and
clsewhere in the community (Campionc, Brown, & Jay, 1992). CSILE (Computer-Supported Intentional Learning
Cnvironment) is a nctworked hypermedia system in which the database is wholly created by the students
(Scardamalia & Bereiter, 1991). The aim of both systems is to promote higher level thinking, intentional lcarning

and mclacognilive ability. In the programs in which these systems were developed, children are viewed as able to
inquire, understand and use knowledge in an independent way and to act as rescarchers.

The schools in which the present investigation was conducted arc located in the inner uly of Oakland,
California. Most of the students can be described as academically at risk based on standardized scores.. All
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students were administered a questionnaire at the beginning of the scholastic year, as a pretest, and again at the
end of the scholastic year, as a posttest. ’

The Questionnaire

Children's awarencss about their roles and abilities can be considered as a good metric for assessing whether
the goals behind introducing electronic communication to the classrooms have been achieved in our technology
cxperimental classroom and if children’s perceptions of knowledge and themselves as learners are correlated with
the introduction of electronic communication. '

The questionnaire used in the present investigation was designed to probe this awareness, and was previously
administered to a large Italian sample (Caravita & Ligorio, Unpublished Manuscript). It wz: translated into
English and tested on a pilot classroom. We choose to use an open-ended questionnaire because writing is a
reflective practice and we take what children write as information about their conceptual development, individual
knowledge, and social modeling (Edwards, 1992).

We developed the questions using a method of "trial and error”. The final formulation of the questions,
reproduced in the Table 1, was achieved through testing and adjusting them during the pilot study.

Tablel
The Questionnaire

1 - What do you do when you wan: to know more about something?
2 - How do you know you really understand something?

3 - Imagine you are in a place where you have never been before and you find an animal that you have
never seen before.

a) What can you understand by watching at this animal?

b) What can you understand about that animal by looking at books?

c) If it were possible to keep this animal in your classroom, what would you do tc get more
information about that animal?

d) What would you ask experts to know more about that animai?

e) How can you use a computer to know more about the animal?

f) When do you think you know enough about that animal?

4 - a) Tell us about the most important things you learned in science last year.
b) What did you do to understand the things you learned in science last year?
c) Are you sure you understood everything you studied in science last year? Why?

The questionnaire was administrated in the classroom during the regular school hours. Children were
requested to write what they really thought and to take as much time as they needed. They were told that there
were neither right nor wrong answers to any of the questions.

Scoring Procedure

Responses to the questions were assessed with reference to two issues addressed by the present investigation:
children’s perception of knowledge sources and process and children’s self-perception as learners. The following
section will describe the procedure used to asses each of these dimens:ons.

Knowledge Sources and Process . Responses to Questions 1, 2, 4b and 4c were analyzed as relevant to
students’ understanding of knowledge sources and process. Three different kinds of answers were identificd:

* Type I - External. This type of answer emphasized the external world. Children perceive knowledge as
being outside of themselves. External sources quoted are media such as books, encyclopedias, TV, video,

magazings, newspapers and computers, and people such as teachers, parents, experts, relatives, other children with
more experience, and pecrs.

Example: “I look it up in a book in the library or | can ask a grown up”
» Type I1 - Internal & External. External and internal sources dialectically interact.
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Example: “I check what I did with one of my friends, if he does differently I ask igm why he did it in that

« Type III - Internal, This type of answer stresses that the internal world, one’s own mental activity is in

charge of learning and understanding.
Example: “1think you would know how to keep it in your mind and it will stay there".

way

Self-Perception as Learner. Students’ self-perceptions as learners were probed by Questions 1, 3 and 4a. We
identified two kinds of student responses: as student versus as scientist/researcher.

< As Student. No organizations of learning and understanding strategies were mentioned in Question 1. For
Question 3, students were not able to identify, for each source and tool, the appropriate type of information. The
criteria by which knowledge was evaluated were used on time and the quantity of information. Descriptions of
what they leammed in science (Question 4a) were either too general or too specific.

» As Scientist/Researcher, Strategies such as plans and topic differentiation were used to organize their own
learning processes. Children are able to differentiate among tools and sources, quoting for each of them the
appropriate information. Evaluation of their own knowledge is made by reporting relationships between causes
and consequences. As salient concepts that they learned in science they report higher level thinking.

Results

With reference to children’s views of their own knowledge sources, it was predicted that the experimental
group’s answers become less external on the cause of their participation in the program. It is also predicted that
this grouy's self-perceptions as learners would be closer to scientist/researcher than the control group.

Analysis of variance reveal significant differences between groups only for the younger students of the
experimental group and only for the answers referring to science learning. Responses to Question 4b reveal that
the experimental group provided more internal answers than the control group. This results is marginally
significan: (F(1,53)=3.65,p<.06).

External answers decreased significantly (F(1,53)=3.75p<.05) for the 3rdj4¢h grade experimental group in
Question 4c. The same class was able, in Question 3f, to provide more explanations in terms of relationships
between causes and consequences (F(1,53)=5.62,p<.02). In question 3e, this class provides more appropriate
descriptions (F(1,53)=7.1416,p<.01) of how to use electronic communication.

Another interesting results is that the number of no answers (“I don’t know" “I don't remember”) decreased
for all the questions (for example F(1,53)=7.26,p<.009, in Question 4b). It appears that children became more
aware of their own process of acquiring knowledge and of their role in that process, even if yet they are not able
point out their owns internal sources.

Children’s understanding of knowledge and themselves as learner can be considered high level thinking. For
this reason it is not easy to effect change in this area during one year curmriculum. We obtained a growth of type I
and III answers for content specified questions. Questions content was about science becaase electronic
communication was used in order to study this topic. We hypothesize that the metacognitive awarcness we
detected in the experimental group takes seed in a specific context and it may then grow to more general contexts.
To v rify this hypothesis it would be interesting to test classcs where the electronic communication has been used
for longer than a scholastic year.

Mastering the technology, such as that used by classes in this study, takes time in the part of teachers and
students. Also, often technical problems take some time to be resolved. In addition, the software introduced in our
experimental classes require deep reconstruction of the classroom (Scardamalia & Bereiter, in press) which could
takc more than a year to be really cffective.

Results obtained from the Italian study (Caravita & Ligorio, Unpublished Manuscript) pointed out that
clectronic communication is not an casy too} to be uscd cffectively and some preconditions have to be respected.
For example, the class must spend time “preparing” to use clectronic communication, understanding how it works
and why 1o use it. Without these preconditions, clectronic communication risks becoming another “external”
knowledge source rather than a tool to comparc and negotiate knowledge or a powerful tool with which reflect on
onc's own work and on the information obtained from other sources.
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How to make CAI fail

STEPHEN K. LOWER
Dept. of Chemistry
Simon Fraser University
Bumaby BC V5A 1BS Canada
E-Mail: lower@sfu.ca

Abstract: Long after it was first shown that computer-assisted instruction can be a
useful learning tool in a variety of areas including the sciences, CAI has received
only miniscule acceptance as a significant tool for mainstream academic instruction.
While there are many who are open to innovations in instruction, it would appear that
a majority of college-level instructors would just as soon carry on as they have in the
past. This paper is addressed to both groups: for the dinosaurs, it is a guide on how to
run CAl into the ground; others should read it as a caution on how CAI easily can fail
even with the best of intentions.

Computers have revolutionized nearly every endeavor to which they have been applied except for one: educa-
tion, at both the school and post-secondary academic levels, has largely managed to resist this innovation, as it
has so many others. Some of the more forward-looking academic chemistry departments provide their more
advanced students with a variety of software for spreadsheet calculations, plotting, NMR analysis, equation solv-
ing and molecular modeling, but seem almost purposefully to avoid applying computers to the task of mainstream
instruction. This is curious in the light of over twenty years of experience which has shown that CAI can be not
merely an adequate tool for delivering instruction in many areas, but in many cases a decidedly superior one. At
the same time, numerous studies have conctuded that one would be hard put to devise methods of instruction that
do a poorer job than conventional lecture-based instruction in helping students to assimilate information and learn
concepts.

It is worth noting that CAI seems to have gained wider acceptance in industrial and military training; it may be
significant that in these areas, the students are being paid a salary while learning, so the employer has a direct
interest in getting students to meet specified performance criteria in the shortest possible time. In academic educa-
tion, by contrast, our students pay us for their courses, so that the same efficiencies that make CAI attractive to
industry would be disincentives in academe if we were foolish enough to actually allow them to be realized.

Of course most schools have long used computers for the really imporiant functions such as administration and
scheduling, and to most researchers computers are an indispensable tool, if only for E-mail and database search-
ing. As technology marches on, however, there is increasing pressure to make better use of computers in the
instructional process. Although educators as a group have demonstrat=d a remarkable ability to resist innovation,
increasing numbers are beginning to weaken, and it is clear that the remainder will soon need some good argu-
ments to preserve their hallowed practices. What betier argument than to show that CAI simply does not work?
Although CAI definitely does work for my own classes, this could simply be the result of my having the wrong
attitude, in believing that it can work, and in taking steps to make it work. For those who hold different views (or
simply want to get on with other activities and not be bothered having to think much about teaching), I offer the
following suggestions which reflect about twenty years of personal experience.

* First, and most important, make sure you have a well-cquipped computer lab. The more commitied you are to
19th century instructional methods, the more important it is to deflect criticism by maintaining a year-2000
appearance. If you teach ir a public school, say that the computers are there for “enrichment”, which consigns
them to a limbo into which you and your students nced never enter. In a college chemistry department, install
word processors and spreadsheet programs; students will quickly sense the unpleasant associations with writ-
ing English prose and with physical chemistry, and will visit the computer room as litle as possible,
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At the beginning of the semester, announce that CAI lessons are available for students who wish to use them
or who need extra help. The students will interpret this as “CAI lessons are available for those who are dumb

and want to do extra work” (to many, the latter proves the former). No self-respecting student will go near the b
computer lab.

Treat CAl as an “instructional aid”, rather than as a part of the mainstream instructional process. This is best
accomplished by continuing to give lectures and assignments as if CAI did not exist. Guard against the temp-

tation to curtail lecture treatment of topics that are better conveyed by CAI stick to those venerable 1970s-era
lecture notes!

Continue to collect and mark homework problems in the traditional way, even if lack of TAs allows marking
of only two out of ten problems. By the time the marked papers are returned, the student will likely be preoc-
cupied with the next w.ek’s assignment and will not pay much attention to whatever feedback is provided, but
this is how things have always been anyway. Avoid exposing them to lessons that provide instant feedback and
actually try to get the students to think about what they are doing; they might start asking for similar tools in
the more advanced courses that you hope to give as soon as you can get out of freshman teaching.

Specify a textbook costing over $75 and weighing at least 2.5 kg; the particular title is of no importance, since
their design and editing is now controlled by the same MBA'’s in marketing anyway..The point is t¢ make the
text such a large investment both economically and in the physical effort of lugging it around, tha: students
will value it more than the CAI lessons which can’t be as useful because they are free.

If you employ TAs, keep them away from the lessons. Their ignorance of them will reinforce the impression

by students that the CAI material is unimportant, and will reduce the likelyhood that the TAs will themselves
look kindly on CAI when they go on to become instructors.

Select awkward, hard-