AUTHOR

TITLE

INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE

JOURNAL CIT

EDRS PRICE DESCRIPTORS

IDENTIFIERS
Sutterlin, Rebecca; Komınski, Robert A.

Dollars for Scholars: Postsecondary Costs and Financing, 1990-1991. Current Population Reports, Household Economic Studies. Bureau of the Census (DOC), Washington, DC. Economics and Statistics Administration. Sep 94 $71 p$.
Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Statistical Data (110) -- Reports Research/Technical (143)
Current Population Reports; series P-70 n39 Sep 1994

MF01/PC03 Plus Postage.
Business Education; Colleges; Enrollment; Ethnicity; Family Income; *Paying for College; *Postsecondary Education; Race; Sex; *Student Characteristics; *Student Costs; *Student Financial Aid; Tables (Data) ; Technical Institutes; Vocational Schools *Survey of Income and Program Participation

## ABSTRACT

This report looks at the individuals who were enrolled in postsecondary school during the 1990-1991 school year and the costs and financing of their education. Using data from the Wave 5 component of the 1990 Survey of Income and Program Participation (SIPP), the report examines patterns of school enrollment, education costs, financial aid, and the associated characteristics of postsecondary students in the U.S. The report includes those enrolled in two-year and four-year colleges as well as vocational, technical, and business schools. The tabulations show the numbers of high school graduates enrolled in postsecondary institutions by a variety of demographic, social, and economic characteristics. Other tabulations show the average costs, financial aid received, net costs, and numbers of aid recipients by level of enrollment. These tabulations are crossed by gender, family income, race/ethnicity, and student dependency status. Appendices provide tabulations referring to the school year 1987-1988, an overview of the SIPP program, definitions and explanations, an analysis of the source and accuracy of the estimates and the data quality, and a copy of the questionnaire. The report's highlights indicate that the average totel cost of schooling was $\$ 2,653$ per student, and that among those students who received some kind of financial aid, about 75 percent of their costis were covered. (JDD)

[^0]
## Dollars for Scholars: Postsecondary Costs and Financing, 1990-1991


by Rebecca Sutterlin Robert A. Kominski
U.S. Department of Commerce Economics and Statistics Administration bureau of the census

## Acknowledgments

This report was prepared in Population Division, under the general direction of Suzanne Blanchi, Assistant Division Chief for Social and Demographic Statistics. Content review was provided by Jay Noell, of the Congressional Budget Office, and Andrew Malizio, of the National Center for Education Statistics. Andrea Adams, Population Division, assisted with table and manuscript preparation.

Survey design and data operations were coordinated by Don Fischer, formerly Chief of Inceme Surveys Branch, Demographic Surveys Division. Data processing activities were directed by Donna Riccini, Chief, Income Surveys Programming Branch, Demographic Surveys Division.

Data collection was conducted by Bureau of the Census field representatives, under the overall direction of Paula J. Schneider, formerly Chief of Field Division.

Sampling review was conducted by Derrick Butler, under the supervision of Vicki Huggins, Chief, Survey of Income and Program Participation Branch, Demographic Statistical Methods Division.

The staff of the Administrative and Publications Services Division, Walter C. Odom, Chief, provided publication planning, editorial review, design, composition, and printing, planning, and procurement. Frances B. Scott provided publication coordination and editing.

Dear user：
In an effort to improve the quality of this report，the following questionnaire has been included for your comments so we may direct our efforts to providing the information most needed by you，the user． Please take a few moments to fill out this form，fold $A$ to $A$ and fold $B$ to $B$ ，then tape and drop it in the mail，postage paid．Thank you for your suggestions and cooperation．

## Current Population Reports，P70－39

Dollars for Scholars：Postsecondary Costs and Financing，1990－1991
1．What is your organizational affiliation？

| －Federal Government | $\square$ Educational institution Mark $(X)$ one |
| :--- | :---: |
| －State／local government | $\square$ Student |
|  | Faculy |
|  | Administration |

БPrivate organization Mark（X）one


三Media information service
＝Trade association —Marketing research二Other－Please specify $Z$

$\square$ Professional association
Research institution

2．Are you a frequent user of reports issued in this series？
－First time user ■Infrequent EFrequent／routine user

3．Are you a user of similar data from：
Mark（X）all that apply．
三Other Census Bureau reports
$=$ Reports issued by other government agencies－Please specify organization and report title 7
二Reports issued by private，nongovernmental organizations
Please specify organization and report title $Z$

4．The following asks two questions about specific sections of the report．
Was the section useful to you？（Did it contain information you were looking for？）
Was the section easy to understand and use？
Please answer each question using the scale provided．Four（4）indicates useful or easy to understand；one（1）indicates not useful or hard to understand．



Please turn form over for user comments．

USER COMMENTS：
How could we improve this publication to meet your needs？

Other comments？


L809－LLZOZ 30 NOLDNIHS甘M HON $\forall 49$ NOIL $\forall$ O $\cap \exists /$ NOISINIO dOd S $\cap$ SNヨコ ヨH $\ddagger 0 \cap \forall \exists y \cap G$

 7IVN 人7dヨy SS3NISna

by Rebecca Sutterlin Robert A. Kominski

U.S. Department of Commerce

Ronald H. Brown, Secretary
David J. Barram, Deputy Secretary
Economics and Statistics Administration
Everett M. Ehrlich, Under Secretary
for Economic Affairs
bureau of the census
Harry A. Scarr, Acting Director


Economics and Statistics Administration
Everett M. Ehrlich, Under Secretary for Economic Affairs

bureau of the census
Harry A. Scarr, Acting Director
Paula J. Schneider, Principal Associate Director for Programs
William P. Butz, Associate Director for Demographic Programs

POPULATION DIVISION
Arthur J. Norton, Chief

## SUGGESTED CITATION

Sutterlin, Rebecca and Robert A. Kominski, Dollars for Scholars: Postsecondary Costs and Financing, 1990-1991.
U.S. Bureau of the Census, Current Populatior, Reports, P70-39.
U.S. Government Printıng Office, Washington, DC, 1994.

## Contents

## Page

Highlights ..... 1
Introduction ..... 1
Characteristics of Postsecondary Students ..... 2
Postsecondary Costs ..... 4
Financial Aid ..... 5
Costs Covered by Aid ..... 8
Multivariate Analyses ..... 11
Summary ..... 13

## TEXT TABLES

A. Persons Enrolled by Average Monthly Family Income and Aid Recipiency for Persons 18-24 Years of Age With Less Than 4 Years of College Completed: 1990-1991 ..... 4
B. Percentage of Persons With Multiple Types of Financial Assistance by Sex, Race/Ethnicity, Dependency Status, Level of Enrollment, and Family Income: 1990-1991 ..... 9
C. Logistic Regression for Odds of a Student to Receive Financial Aid by Dependency Status: 19901991 ..... 11
D. Multiple Regression Coefficients for the Log of Total Aid (in Dollars) Received by Dependency Status: 1990-1991 ..... 12
FIGURES

1. Family Income by Enrollment and Aid Received for 18-24 Year Olds: 1990-1991 ..... 4
2. Average Postsecondary Schooling Costs: 1990-1991 ..... 6
3. Recipients of Financial Aid and Mean Amount Received 1990-1991 ..... 7
4. Proportion of Students Receiving Aid and Proportion of Costs Covered: 1990-1991 ..... 10
DETAILED TABLES
5. Level of Enroilment by Sex, Race/Ethnicity, Age, Marital Status, Veteran Status, Family Income, and Other Selected Characteristics for High School Graduates 17 Years and Older: 1990-1991 ..... 15
6. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income, and Dependency Status: 1990-1991 ..... 17
7. Number of Recipients and Average Amount Received by Level of Enrollment and Aid Type: 1990-1991 ..... 20
8. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1990-1991 ..... 22
9. Average Cost, Aid, and Net Cost by Level of Enrollment and Other Social and Demographic Variables: 1990-1991 ..... 24
10. Persons Receiving Aid and the Percent of Total Costs Covered by Level of Enrollment and Other Social and Demographic Variables: 1990-1991 ..... 25

## APPENDIXES

A. Supplementary Tables ..... A-1
B. Overview of the SIPP Program ..... B-1
Background ..... B-1
Survey Content ..... B-1
Sample Design ..... B-2
Survey Operations ..... B-2
C. Definitions and Explanations ..... C-1
D. Source and Accuracy of the Estimates ..... D-1
Source of Data ..... D-1
Weighting Procedure ..... D-2
Accuracy of Estimates ..... D-2
Uses and Computation of Standard Errors. ..... D-3
E. Data Quality ..... E-1
Imputation Rates ..... E-1
Reasonableness of Data ..... E-2
Data from the National Postsecondary Student Aid Study. ..... E-4
Summary ..... E-5
F. Facsimile of Questionnaire ..... F-1
APPENDIX TABLES
A-1. Level of Enrollment by Sex, Race/Ethnicity, Age, Marital Status, Veteran Status, Family Income, and Other Se;ected Characteristics for High School Graduates 17 Years and Older: 1987-1988 ..... A-1
A-2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income, and Dependency Status: 1987-1988 ..... A-3
A-3. Number of Recipients and Average Amount Received by Level of Enrollment and Aid Type: 1987-1988 ..... A-6
A-4. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1987-1988 ..... A-8
A-5. Average Cost, Aid, and Net Cost by Level of Enrollment and Other Social and Demographic Variables: 1987-1988 ..... A-10
A-6. Persons Receiving Aid and the Percent of Total Costs Covered by Level of Enrollment and Other Social and Demographic Variables: 1987-1988 ..... A-11
B-1. Interview and Reference Periods for the Fifth Wave of the 1990 SIPP Panel ..... B-2
D-1. Household Sample Size by Month and Interview Status ..... D-1
D-2 1992 CPS Coverage Ratios ..... D.3
D-3. SIPP Topical Module Generalized Variance Parameters ..... D-6
D-4. Standard Errors of Estimated Numbers of Persons. ..... D-6
D-5. Standard Errors of Estimated Percentage of Persons ..... D-6
E-1. Imputation and Edit Rates for Selected School Enrollment and Financing Items ..... E-1
E-2. Comparison of Postsecondary Schooling Costs for Undergraduates Between SIPP and Administrative Estimates ..... E-2
E-3. Comparison of Aid Recipients and Amount of Aid Received Between SIPP and Administrative Estimates ..... E-3
E-4. Number of Students Enrolled by Level of Enrollment ..... E-4

# Dollars for Scholars: Postsecondary Costs and Financing, 1990-1991 

## HIGHLIGHTS

- During school year 1990-1991 an estimated 20.6 $( \pm .5)$ million high school graduates ages 17 or above were enroiled in postsecondary school for at least some time, approximately $14( \pm .4)$ percent of that population.
- In 1990-1991 the average total costs of schooling for all postsecondary students, irrespective of type of school, level of enroilment, or amount of time spent in school, was $\$ 2,653( \pm 98)$ per student.
- Of the estimated 20.6 ( $\pm .5$ ) million students who were enrolled in the past year, $51( \pm 1.4)$ percent received some kind of financial assistance from at least one source.
- The average overall aid package among persons who received any financial aid at all was $\$ 2,919( \pm 152)$.
- While the most common source of aid was employer assistance with $3,617,000( \pm 232,000)$ recipients, this was also the lowest average aid source at $\$ 979$ $( \pm 106)$.
- The single largest aid amount was that based on loans, at $\$ 3,155( \pm 168)$, while the smallest number of people served by any source was the $416,000( \pm 79,000)$ reporting aid from one of the many veterans' programs.
- Half of both men and women receive some type of aid and both receive comparable amounts, but there is variation in the sources of this aid. Women were more likely than men to have received aid from a Pell Grant or from a loan, while men were more likely to have gotten aid from a veterans' program or their employer.
- For Black students, Pell Grants were the sirigle largest source of aid (in terms of proportions sorved); for White students the largest source of aid was in the form of emoloyer assistance.
- Generaliy. the proportion of students receiving aid decreased as their family income increased, going from $59.5( \pm 2.4)$ percent of students in the low income category to $43.7( \pm 2.2)$ percent in the highest income category.
- Over three and a half million students were receiving financial aid from more than one source; this is about one-third of all students who received aid.
- The single most common multiple aid package was a loan and a Pell Grant, held by $6( \pm .9)$ percent of aid recipients, with another $3( \pm .6)$ percent receiving a loan, a Pell Grant, and something else.
- Among those students who received some kind of financial aid, on average $75( \pm 1.6)$ percent of their costs were covered.
- About $60( \pm 2.4)$ percent of students from the lowest income category received aid, and on average, about 80 ( $\pm 1.6$ ) percent of their costs were covered. By contrast, $44( \pm 2.2)$ percent of the students from the highest family income category received some kind of aid, and $69( \pm 3.2)$ percent of their costs were covered.


## INTRODUCTION

Each year, millions of persons throughout the nation attend colleges and other postsecondary institutions in pursuit of knowledge, skills, and training that will make them better equipped citizens and workers. While a wide array of educational opportunities beyond high school are available to most adults, they are not without financial cost. Indeed, there is much current debate about how best to provide access to higher education to as many people as desire it. In this report we look at thes individuals who were enrolled in postsecondary schiool at any time during the 1990-1991 school year and the costs and financing of their education.

Using data from the Survey of Income and Program Participation (SIPP), this report examines patterns of school enrollment, education costs, financial aid, aıs the associated social, demographic, and economic characteristics of postsecondary students in the United States. Often, the collection of postsecondary enrollment data includes only those enrolled in 2- or 4-year colleges; that is, undergraduate and graduate/professional degree programs. This report also includes persons in vocational, technical, and business schools. The tabulations show the numbers of high school graduates (17 years and older) enrolled in postsecondary institutions by a variety of demographic, social, and economic characteristics. Other tabulations show the average
costs, financial aid received, net costs, and numbers of aid recipients by level of enrollment. These tabulations are crossed by gender, family income, race/ethnicity, and student dependency status.

The analysis is based on data collected as part of the Wave 5 (interview) of the 1990 SIPP panel. These data were gathered in the 4-month period from June through September of 1991. The fifth wave includes a section of questions regarding school enrollment and financing for the past year (see appendix $F$ for a copy of the questionnaire). Thus, the period of enrollment under examination basically reflects the 1990-1991 school year. Analysis of enrollment is restricted to persons 17 years and oider with at least a high schooi diploma or the equivalent. Tabulations of the financing data focus on those high school graduates age 17 and over who were enrolled in a postsecondary institution.

Other tabulations included in this report refer to the school year 1987-1988 and are found in appendix A, tables A-1 through A-6. These data were collected in Wave 5 of the 1987 SIPP panel during the 4 -month period from June through September of 1988. Tables A-1 to A-6 are laid out in the same format as tables 1 to 6 for comparison purposes. The analysis in this report, however, is restricted to data from the 1990 SIPP panel.

A note of caution should be issued to users of this report who are also familiar with other sources of postsecondary school financing data. The SIPP estimates differ from those found in the 1989-1990 National Postsecondary Student Aid Study (NPSAS) administered by the Department of Education. While these two surveys reflect two different academic years (NPSAS collected data for the 1989-1990 school year while SIPP data reflects 1990-1991), there should be some correspondence. However, SIPP and NPSAS may differ due to differences in the populations studied. This is most likely due to the ability of SIPP to collect data for those students of the shortest enrollment durations - usually in non-traditional postsecondary institutions. Why would there be more short-term students captured in SIPP? Institutions are ineligible in NPSAS if they offer only correspondence courses; offer only courses or seminars of less than G months duration; or provide only avocational, recreational, or remedial courses. ${ }^{1}$ However, students in courses of less than 3 months duration and the other types of courses mentioned are very likely to have reported $\mathrm{t}_{\mathrm{i}}$ emselves as enrolled in the SIPP survey since the SIPP enrollment question is so broad. Table E-4 in appendix $E$ shows weighted estimates of enrollment level for both surveys. SIPP shows a substantially higher number of persons enrolied in vocational, technical, and business schools or other types of noncollegiate postsecondary institutions. For a more detailed discussion on data quality, see appendix E .

[^1]
## CHARACTERISTICS OF POSTSECONDARY STUDENTS

Table 1 shows some of the basic characteristics of persons who were enrolled in postsecondary schuol at any time during the 1990-1991 school year. Enrollment as measured in this report is not necessarily continuous throughout the entire school year. Respondents were asked whether or not they were enrolled at any time in the past 12 months. This includes not only year-r. ound enrollees, but also those who were enrolled for one term/semester and those who may have dropped out before completing the term. Enrollment is not confined to full-time students, but also includes those who were enrolled part-time, as well as persons who were taking only one course or were not working towards a degree. Consequently, the enrollment estimates presented in this report are higher than those from suiveys using a "snapshot" or one point in time approach in collecting the data (e.g., college enrollment numbers estimated from the October Current Population Survey). At levels beyond high school, enrollment is not necessarily a year-long activity; people move in and out of the system much more rapidly than at lower levels. In this regard, SIPP provides a more realistic picture of the total number of persons enrolled in a given year than does a simple one-time cross-sectional survey.

Table 1 shows that in 1990-1091 an estimated 20.6 million high school graduates ages 17 and above had been enrolled in postsecondary school, approximately 14 percent of the eligible population. ${ }^{2} \mathrm{~A}$ sizable segment of these students ( 35 percent) were enrolled in the first 2 years of college (this includes both 2 -year and 4 -year institutions). About 25 percent were enrolled in the third and fourth years of college, 19 percent in the fifth year or higher, and 20 percent in some type of noncollegiate postsecondary school. ${ }^{3}$

Some variation in the patterns of enrollment by level can be observed in various demographic subgroups. For example, a higher proportion of women than men are enrolled in the first 2 years of college ( 37 percent versus 32 percent), and a larger proportion of men than women are in a vocational, technical, business, or other school ( 23 percent versus 18 percent). This does not necessarily mean men are less likely to attend 4 -year institutions; the higher college enrollment of women in years one and two may reflect a higher enrollment by women in 2 -year associate degree programs. Although the type of degree sought cannot be determined from the data (associate versus bachelor's), it is clear that similar proportions of each sex are enrolled in the third

[^2]and fourth years of college. Men may be more likely to attend vocational, technical, or b:ssiness schools whereas women may enroll in asseciate degree programs in junior or 2-year colleges.

Level of enroilnient also differs auross race/ethnicity groups. While Whites have greater proportions enrolled at the graduate level ( 21 percent in the fifth year of college or inore ) than either Hispanics or Blacks (both at 9 percent), ${ }^{4}$ a greater proportion of both Black and Hispanic students are enrolled in noncollegiate schooling ( 26 percent and 28 percent, respectively) than are Whites ( 20 percent). ${ }^{5}$

Variation across other dimensions such as age and marital status show what may be considered typical life course patterns. Many students enroll in college shortly following high school graduation. A traditional life course pattern would incluaie school completion followed by employment and family formation. As might be expected, the proportion of persons enrolled decreases with increases in age. Half of all persons ages 17 to 24 are enrolled in some type of schooling, compared to only 16 percent of those ages 25 to 34. Similarly, persons who have never married are more likely to have been enrolled in the past year than were any other marital status group.

Not only do persons in different stages of the life course differ in the overall proportion enrolled, but there are also differences in the level of enrollment. For example, the vast majority of the youngest age group is enrolled in the first 4 years of college. Relatively high proportions of persons 25 and over enroll in the graduate level (5th year of college or more) ${ }^{6}$ and in other schooling such as vocational or technical schools in comparison to the younger students. A similar pattern is seen when comparing never marsied persons to married persons, where the enrollment patterns of never married persons follow those of the youngest age group. Veterans, who tend to be older because of their time in the military, also have higher proportions enrolled in noncollegiate postsecondary schools than do non-veterans.

One might expect economic circumstances to be related to enrollment, but the data in table 1 show some surprising findings. The highest overall enrollment level is reported by those persons from the lowest family income category. This may be due to the fact that many of these persons are "independent" students who are reporting only their own income, as opposed to "dependent" students who may still be living with or be

[^3]supported by their parents. Across income categories, the proportion enrolled in noncollegiate schools - that is vocational, technical, or business, schools - drops substantially for persons with higher family incomes (only 11.9 percent of students in the highest income category are enrolled in noncollegiate institutions compared to 23.4 percent of students with average monthly family income below $\$ 1,250$ ). Conversely, the proportion enrolled at the graduate level is quite high for those in the highest income group.

It is important to remember when examining the relationship between income and enrollment that not all students are "traditiorial" students who attend college immediately after high school and who are supported by their parents; table 1 includes all students, the traditional and the non-traditional. Another way to look at the relationship between income and enrollment is to examine only the traditional-aged college students. Typically, the "traditional" postsecondary student is a young adult between the ages of 18 and 24 often still economically dependent on a parent or parents. Thus, one pool of potential students consists of unenrolled young adults who have yet to complete 4 years of college. ${ }^{7}$ Table A and figure 1 show enrollment status by income for young adults who have not completed 4 years of college. The data indicate that those young adults with higher family incomes are more likely to be enrolled and those in the lowest family income category are the least likely to be enrolled. It cannot be determined here whether or not these unenrolled young adults have the financial means to attend a postsecondary institution. Some of the young adults are likely to be in the lowest income group because they are already in the labor force and economically independent of their family of origin; these persons would likely have lower incomes since they are often in entry-level jobs. A substantial proportion, however, are reported as living with at least one parent. ${ }^{8}$

Table 1 also shows enrollment by dependency status. Dependency status is defined in terms similar to those used by federal aid programs such as the Pell Grant, although the definitions are not exactly comparable due to restrictions of the SIPP data (see appendix $B$ for the definition). Not unexpectedly, a clear majority of students are classified as independent (70 percent), since we are looking at all adults, not just traditional-age students. Half of the dependent students reported living at home. The majority of dependent students were

[^4]Table A. Persons Enrolled by Average Monthly Family Income and Ald Recipiency for Persons 18-24 Years of Age With Less Than 4 Years of College Completed: 1990-1991
(In thousands)

| Persons | Total | Average monthly family income |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Less than \$2,100 |  | \$2,100 to \$4,099 |  | \$4,100 or more |  |
|  |  | Number | Percent | Number | Percent | Number | Percent |
| Total | 17,968 | 6.743 | 100 | 5,327 | 100 | 5,898 | 100 |
| Not enrolled. | 8,888 | 4,012 | 59 | 2,801 | 53 | 2,075 | 35 |
| Enrolled. | 9.080 | 2,730 | 40 | 2,527 | 47 | 3,833 | 65 |
| Receives aid | 4,515 | 1,616 | 24 | 1,369 | 26 | 1531 | 26 |
| No aid. | 4,565 | 1.115 | 17 | 1,158 | 22 | 2,292 | 39 |

Figure 1.
Family income by Enrollment and Aid
Received for 18-24 Year Olds: 1990-1991

enrolled in the first or second year of college (55 percent). Independent students, however, are distributed fairly evenly across the four levels of enrollment. ${ }^{9}$ Most of the students in year five or higher are classified as independent ( 96 percent). Many of these students are likely to be in a graduate or professional degree program. They are generally a group of students who are older and consequently more likely to be independent of their parents. The majority of noncollegiate school enrollees are also independent students ( 87 percent). Persons may be more likely to attend this type of school after being employed and discovering vocational opportunities. These students also tend to be at a different stage in the life course. For example, half of vocational/technical/business students are married this factor alone qualifies them as independent.

The last panel of table 1 shows the proportion of students who reported receiving aid of any type. Although the largest number of students receiving aid were in their early college years, the proportion of students receiving financial aid in some form does not differ significantly across levels of enrollmeri. One half of all postsecondary students reported receiving financial assistance of some kind in the 1990-1991 school year.

## POSTSECONDARY COSTS

Enrollment in higher education is not without real financial costs for most students. Generally, these costs have three basic components: actual tuition and fees that are assessed; books and educational supplies; and for students living away from home, the cost of room and board. In this section we examine these three cost components as well as their sum. In the analysis that follows costs are reported for all types of students in the past year, including full-time and part-time, as well as those attending one or more terms/semesters. Table 2

[^5]shows average total costs, as well as tuition and fees, books and supplies, and room and board, for different levels of enroliment. Average total cost is the total value of the three components of tuition and fees, books, and room and board, and is computed before financial aid is taken into account. ${ }^{10}$ In 1990-1991 the average total costs of schooling for all postsecondary students, irrespective of type of school, level of enrollment or amount of time spent in school, was $\$ 2,653$.

While we might expect average costs to be higher for private institutions than for public, this information was not collected in the SIPP data. We might also expect variation in costs by the level of enrollment, and this is generally borne out. Table 2 and figure 2 show that on average, noncollegiate (that is, vocational, technical, or business) schools are the least costly to attend ( $\$ 1,066$ ), ${ }^{11}$ while students in the third and fourth year of college have the highest average total costs $(\$ 3,825)$. This pattern holds for tuition and for books, with significantly lower costs in noncollegiate institutions. Room and board costs across the different college levels are relatively similar; ${ }^{12}$ however, those for students in other postsecondary schools were significantly lower at $\$ 1,874$.

Examination of the differences in costs between men and women indicate that there is no significant difference in the total average costs or in any of the individual cost components. One sizable difference in cost is seen across race and ethnic groups, where Hispanics have lower total costs $(\$ 1,882)$ than any other group, as well as the lowest average tuition and fees ( $\$ 1,275$ ). Overall costs, as well as those of the three individual components, do not differ between White and Black students. ${ }^{13}$

Differences in costs by family income are somewhat counter-intuitive. Although students from the lowest income group have lower total costs than those from the highest group (\$2,627 versus \$2,982 respectively), the middle income group has the lowest average total costs at $\$ 2,302$. This is somewhat unexpected since one might assume that higher income families might be more disposed to choose more select colleges, and thus, incur higher costs, while students from less weil-to-do families would choose more economical options.

[^6]The inconsistency may be explained in part by who is in the lowest income group and who is eligible for financial aid. For example, graduate students tend to have little or no income while in school, while younger undergraduates are often supported by their families, having larger family incomes than the independent graduate students. This notion is supported by the higher total costs reported by low income students in the graduate school category in comparison to the total costs of the other two income groups.

A different way of looking at this phenomenon is by examining the data for students classified by their dependency status. Simply put, "dependent" students are assumed to still be a part of their family of origin that is, the family in which they grew up. For the most part, dependent students tend to be young undergraduates. Independent students, by comparison, are not as economically bound to their original family. They have struck out on their own, perhaps as a single individual, or have created a family ot their own. Many independent students are gracidate students. Obviously, the dependency concept relates strongly to "who pays the bills" as far as collegee financing is concerned. We use a series of variables, described in appendix $B$, to define dependent and independent status of students.

On average, the total cost for dependent students is much higher at $\$ 4,387$ than those of independent students ( $\$ 1,923$ ). This holds true for average tuition and fees, books and supplies, and room and board. Dependent students, being somewhat more "traditional," may very well include some of the persons attending higher cost colleges and universities. Dependent students may also be more likely to go to school full-time, driving up average costs. Independent students on the other hand are supporting themselves and may also be supporting a family, and are probably more likely to look for low-cost educational sources. Independent students are probably also more likely to be part-time as they may not have the luxury to attend full-time if they are in the labor force supporting themselves or their family, which would also indicate lower costs.

## FINANCIAL AID

For many students, finding a way to finance postsecondary education may be as much of a challenge as the academic training they will have to master. In general, the costs of higher education are not as prohibitive if financial aid is available. A wide variety of sources of financial aid are available to students and their families. Some of these are competitive; some are based on financial need; others are direct grants; still others are loans requiring repayment. In the SIPP, students were asked about 12 possible sources of educational financing they might have received; these are shown in appendix F. Our analysis of these 12 sources indicates

Figure 2.
Average-Postsecondary
Schooling Costs: 1990-1991


that some have very few recipients and cannot be reliably disaggregated given the small number of sample. cases in the SIPP for these sources. For this reason, we have collapsed the sources into seven categories to provide more detail about the recipients.

Table 3 shows data for the seven collapsed sources of financial assistance. This table provides information on the number and percentage of students receiving each source, the average amount received, and the percentage of total aid received that is due to this source, by enrollment levels. Note that the sum of recipients across all sources does not equal the total number of recipients of aid, since students may receive more than one source of financial assistance.

Of the estimated 20.6 million students who were enrolled in the previous year, 51 percent received some kind of financial assistance from at least one source. This level of aid receipt was remarkably consistent across the different enrollment levels, with no category exceeding 54 percent or below 49 percent.

Overall, the average aid package (which may include multiple sources of assistance) among persons who received any aid, was $\$ 2,919$. Unilike the proportion receiving aid, however, the average amount of aid varies significantly by level of enroliment. For ex:mple, persons enrolled in the fifth year or higher of college reported average aid packages of $\$ 4,223$, while those enrolled in noncollegiate institutions reported significantly smaller packages of $\$ 1,673$. Aid packages were also higher for students in the third and fourth year of college ( $\$ 3,312$ ) than for those in the first or second year $(\$ 2,573)$.

As one might expect, the actual amount of aid received from different sources varies greatly, as shown in figure 3. At least part of this is due to limits placed on some aid programs, loans, and grants. ${ }^{14}$ While the most common source of aid was employer assistance or Job Training Partnership Act (JTPA) programs (most of

[^7]Figure 3.

which was employer assistance) with 3,617,000 recipients, this was also the lowest average amount of aid at $\$ 979$. One can imagine many situations where an employer will have paid for a course or two, thus requiring a relatively small financial expenditure. The single largest aid amount was that based on loans, at $\$ 3,155$, while the smaliest number of people served by any source was the 416,000 reporting aid from one of the many veterans' programs.

Table 4 shows the kinds and amounts of aid received by students of different demographic and econonic backgrounds. Half of both men and women receive some form of assistance and both receive comparable amounts, but there is variation in the sources of aid received. For example, women were more likely than men to have received aid from a Pell Grant or a loan, while men were more likely to have gotten aid from veterans' programs or from their employer. The largest aid components for men were given in the form of loans, veterans' benefits, and fellowships and scholarsinips (at $\$ 2979, \$ 2761$, and $\$ 2971$, respectively). For women, the largest single source was in the form of loans ( $\$ 3,280$ ). Men were awarded a substantially higher amount in terms of scholarships, fellowships, and tuition reductions than were women ( $\$ 2,971$ versus $\$ 2,068$ ) which is money that does not have to be repaid.

Differences in sources and amounts of aid are also apparent across race and ethnic groups. While 58.3 percent of Black students reported some kind of aid, only about half of all Hispanic students had received some kind of assistance. Overall, average amounts ranged from $\$ 2,527$ for Black students to $\$ 4,032$ for students of "other" races. There was also variation in the kinds of aid received: for example, White students were less likely than either Black or Hispanic students to have been given a Pell Grant. ${ }^{15}$ Of course, many of the White students may have come from families with sufficient economic resources which would rule out this need-based source of aid. Nearly one-fifth (19.5 percent) of all Black students had a loan of some kind, giving them a level of use of this source that was higher than that of Whites. For Blacks, Pell Grants were the single largest source of aid (in terms of proportions served), while for Whites the largest source was employer assistance. One of the most common sources of aid for Hispanic studenis was the Pell Grant. ${ }^{16}$

[^8]Acrc $=$ ievels of family income, it can be seen that the proportion of students receiving aid decreases as family income increases, gcing from 59.7 percent of students in the low income-category to 43.7 percent in the highest category. The average amount varies substantially as well, going from $\$ 2,427$ for the high-income group to $\$ 3,622$ for the low-income group. Specific types of aid vary as well. Since Pell Grants are needbased, it is not surprising that most of the recipients have family incomes of less than $\$ 2,100$ per month. Pell Grants were the most common form of aid for students from the lowest family income group, received by 26.0 percent of them, as contrasted with just 4.3 percent of the students from the highest income group. While Pell Grants and loans are primary sources of funding for many low-income students, ${ }^{17}$ employer assistance was the main source for students from middle and highincome families.

Similar patterns are observed across the dependent/ independent student classification. Slightly more independent students receive financial aid ( 53 vs. 46 percent), but the average aid amount is substantially higher for the dependent students ( $\$ 3,729$ vs. $\$ 2,619$ ). Dependent students are more likely than independents to have received a Pell Grant, loan or fellowship, but independent students are much more likely to receive employer assistance ( 24 vs 2 percent).

For many students, financial aid does not come from a single source, but takes the form of an "assistance package" that consists of several different sources. Table $B$ shows the extent of these multiple aid packages by demographic sub-gro.!ps for the seven aid source categories we have established. ${ }^{18}$ Over three and a half million students were receiving tinancial aid from more than one source, about one third of all students who received aid. Dependent students were much more likely to have received multiple sources than were independent students, with 53 percent reporting more than one source ( 8 percent of dependent students had four or more sources). Multiple sources also became less common with increasing family income (with 45, 34, and 23 percent for the $a, ~ i$, middle, and high income groups, respectively).

Since Pell Grants have a fairly low limit on the grant amount, it would probably not be uncommon for many

[^9]students to have both a Pell Grant and something else. The data support this notion, with the single most common multiple aid package being a Pell Grant and a loan, held by 6 percent of aid recipients. Another 3 percent received a Pell Grant, a loan, and something else. The Pell Grant/loan combinations was more common for Black students (13 percent) than for any other race/ethnic group. The 11 percent of aid recipients from low-income families receiving the same combination was greater than the proportions receiving it in the other income groups.

## COSTS COVERED BY AID

By considering both the costs and financial assistance sources available to students we are able to determine how much of the overall costs of schooling are covered by some kind of financial aid. Table 5 presents costs for both those students with aid and those without. This is necessary because, as the data show, the gross costs students incur vary depending on whether or not aid is available to them. There was a difference of about $\$ 600$ less in the gross costs of schooling for persons who were not receiving any kind of aid, compared to those with aid of some sort. In virtually all comparisons, persons who have no aid also have lower çross costs. ${ }^{19}$ This is not too surprising, in that person: attending higher cost schools are often given some kind of financial inducement in the form of fellowships or loans to help them attend.

Only about half of all students received some form of financial aid. However, as can be seen in table 5, these students on average had significant proportions of their costs covered by their aid. For example, among all students who recei:?ed any kind of aid, the average gross costs were $\$ 2,955$, but the average amount of aid received was $\$ 2,919$, implying, by subtraction, net costs of about $\$ 36$ per student. Since these are average amounts, this is somewhat misleading because many students in fact received more aid than their total costs. For example, aid can take many forms, including loans, fellowships, grants, and direct payments from employers. In many cases, aid amounts are designed to cover not only tuition and fee costs, but other living expenses as well. Graduate students in particular are likely not to report room and board costs, but often receive stipends to cover these costs as well as tuition and fees. If

[^10]Table 8. Percentage of Persons With Multipie Types of Financial Assistance by Sex, Race/Ethnicity, Dependency Status, Level of Enrollment, and Family Income: 1990-1991


[^11]8
instead of computing net costs we consi ir the proportion of all costs that were covered for each student, then on average, about 75 percent of costs were taken care of by aid. ${ }^{20}$

In general, there was relatively little variation in the proportion of costs that were covered, as figure 4 shows, with most groups close to the overall level of 75 percent. Some differences are evident across different levels of school, with slightly higher cost proportions covered at the graduate and noncollegiate postsecondary levels (around 80 . percent). Independent students had a higher proportion of their costs covered on average th,an did dependent students. However, the major variation in cost coverage is seen along lines of family income. About 60 percent of the students from

[^12]the lowest income category received aid, and among these, about 80 percent of their costs were covered. By contrast, 44 percent of the students from the highest family income category received any kind of aid, and 69 percent of their costs were covered. Higher income families are usually better able to afford the costs of schooling, and much of the "financial aid" that lower income students receive comes in the form of loans which must be paid back at a later date.

Table 6 extends this discussion by showing the distribution in quartiles of the proportion of costs that are covered. As can be seen, a sizable group - 19 percent - of all students had more than 100 percent of their costs covered. This group ranged from a high of 29 percent of students from families with income of less than $\$ 2,100$ a month, to 13 percent of those from families with incomes of $\$ 4,100$ a month or more. Nevertheless, while many students who did receive aid had large proportions of their costs covered, it is important to remember that a substantial proportion of

Figure 4.
Proportion of Students Recelving Ald and Proportion of Costs Covered: 1990-1991

students had none of their costs covered (49 percent). An additional 13 percent of all students had up to half of their costs covered.

## MULTIVARIATE ANALYSES

Thus far, our examination of financial aid recipients and the amounts of aid received has concentrated on simple patterns of association with a variety of demographic and economic variables, considered one at a time. However, it is possible to examine the jcint effects of these variables by using multivariate mode:ing techniques such as regression. The multivariate egression techniques allow us to simultaneously assess the influence that multiple conditions have on the variables of interest - the likelihood of receiving financial aid and the amount of aid received.

Table $C$ shows the results of a multiple logistic regression which estimates the !ikelihood of receiving financial aid of any kind. Most of the variables that have been discussed in the univariate context are included in the model predicting the receipt of financial aid. These include: gender, race, family income, schooling costs, level of enrollment, dependency status, and household size. The results indicate statistically significant effects for several of the variables in the multivariate context. ${ }^{21}$ For example, persons from low-incorne households had

[^13]
## Table C. Logistic Regression for Odds of a Student to Receive Financial Aid by Dependency Status: 1990-1991

| Characteristic | All students |  | Dependency status |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Parameter | Standard error | Dependent students |  | Independent students |  |
|  |  |  | Parameter | Standard error | Parameter | Standard error |
| Demographic Chacteristics: |  |  |  |  |  |  |
| Sex |  |  |  |  |  |  |
|  | .... | . $\quad$. | ... | ... | .... | $\ldots$ |
| Male . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 0.014 | 0.630 | -0.138 | 0.150 | 0.073 | 0.096 |
| Race |  |  |  |  |  |  |
| (White) | -0... |  | * 0. |  | $\cdots$ | . $\quad .0$ |
| Black . | *0.256 | 0.141 | **0.641 | 0.239 | 0.005 | 0.176 |
| Hispanic. | -0.068 | 0.178 | **0.745 | 0.322 | *-0.466 | 0.220 |
| Other ... | -0.021 | 0.214 | 0.251 | 0.422 | -0.138 | 0.249 |
| Average monthly family income (\$2,100 to \$4,099). | $\cdots$ | $\ldots$ | ... | $\cdots$ | ... |  |
| Less than \$2.100............ . . . . . . . . . . . . | * 0.364 | 0.103 | 0.284 | 0.217 | **0.408 | 0.118 |
| \$4,100 or more . . . . . . . . . . . . . . . . . . . . . | **-0.306 | 0.097 | **-0.621 | 0.179 | -0.138 | 0.117 |
| Number of persons in households (Persons) | **0.065 | 0.030 | *0.101 | 0.057 | 0.045 | 0.035 |
| Educational Characteristics: |  |  |  |  |  |  |
| Dependency status |  |  |  |  |  |  |
| (Independent student) | **-0.391 | .... | (X) | $(X)$ $(X)$ | (X) | (X) |
| Dependent student | **-0.391 | 0.101 | (X) | (X) | (X) | (X) |
| Enrollment level <br> (College year 1 to 2) | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | . |  |
| College years 3 to 4 . | 0.003 | 0.105 | -0.126 | 0.167 | 0.085 | 0.138 |
| College years 5 or higher . . . . . . . . . . . . . | 0.078 | 0.121 | -0.010 | 0.454 | 0.054 | 0.133 |
| Vocational technical, business school, or other | 0.035 | 0.120 | 0.403 | 0.286 | -0.001 | 0.137 |
| Log of total cosi of schooling (doliars) . . . . . | **0.120 | 0.023 | **0.209 | 0.060 | **0.110 | 0.026 |
| Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | **-0.923 | 0.205 | *-2.004 | 0.549 | **-0.854 | 0231 |
| Likelihood $\chi^{2}$ | **152.42 |  | *94.70 |  | * 89.61 |  |
| Degrees of freedom | $12$ |  | 11 |  | 11 |  |
| Number of cases (unweighted). . . . . . . . . . . . . . | 4,502 |  | 1,342 |  | 3,160 |  |

Note: Individual categories listed in parentheses following factor headings indicate reference categories in the models.
$\times$ Not applicable.
Reference categories

* Statistically significant at the 90 -percent confidence level.
* Statistically significant at the 95-percent confidence level.
a much higher likelihood of receiving aid (compared to middle-income households, the excluded comparison category), while persons from high income households had lower than average chances of receiving aid. The receipt of aid was also positively related to schooling costs. Dependent students were somewhat less likely to receive aid, while Black students were slightly more likely to have received it. Finally, household size was positively related to the receipt of aid. The likelihood of receivin, aid does not vary across level of school or gender, once other factors are controlled.

Models for the receipt of aid were run separately for dependent and independent students, since they are viewed as two very different groups. The model for independent students indicates that higher costs and lower income were both significantly related to an increased likelihood of receiving aid, but that Hispanics had a significantly lower likelihood of getting financial aid. The model for dependent students shows that Hispanics and Blacks both had higher likelihoods of receiving aid, and that costs and household size were also positively related to aid receipt. While the chances
of getting aid did not increase for persons from low income families compared to those from middle income families, those from high income backgrounds were much less likely than the middle incume group to receive assistance.

Table D shows the results of a multiple regression model designed to predict the amount of total aid received by aid recipients. The results of this estimation indicate that the amuunt of aid received rises with increasing costs, for dependent students, and for higher levels of college. The amount decreases with rising family income, as well as for persons in vocational, technical or business schools (which generally have lower tuition than colleges).

By stratifying the estimation procedure by dependency status, a pattern of effects similar to the total is revealed for independent students, with the exception that persons of other races also have significantly higher expected amounts of financial aid, controlling for other factors. The model for dependent students is less involved, showing significant effects only for costs, and for the two higher categories of college (junior/senior,

Table D. Multiple Regression Coefficients for the Log of Total Aid (in Dollars) Received by Dependency Status: 1990-1991


Note: Individual categories listed in parentheses following factor headings indicate reference categories in the models.
(X) Not applicable.
... Reterence categories

* Statistically significant at the 90 -percent confidence level.
- " Statistically significant at the 95 -percent confidence level.
and graduate level). One of the encouraging aspects of these models is that for the most part they show relatively few significant effects for race or gender. While we might reasonably expect the receipt and amount of aid to vary with things like costs, level of schooling and family income, factors such as race and gender should have little or no indiependent effect on whether or not a student gets aid or how much they receive.


## SUMMARY

Over the past several decades, opportunities in higher education have been opened to millions of new students, but not without financial cost. The analysis of the

SIPP data shown in this report indicates that students continue to utilize a wide array of resources to finance their postsecondary education. Despite the availability and use of these sources, many students receive no assistance at all in paying for their schooling. On the other hand, a sizable minority of students manage to cover most or all of their costs, often by using a combination of aid sources. While there is some variability in who receives aid and how much they get, the distribution of financial aid appears reasonably distributed across demographic groups, as well as in regard to the degree of financial need of the student (or their family). In short, postsecondary financial aid, while not as pervasive as many students might wish, continues to make higher education possible for many persons.

Table 1. Level of Enrollment by Sex, Race/Ethnicity, Age, Marital Status, Veteran Status, Family Income, and Other Selected Characteristics for High School Graduates 17 Years and Older: 1990-1991
(In thousands)

| Characteristic | Total | Enrolled | Percent enrolled | $\begin{gathered} \text { College } \\ \text { years } \\ 1 \text { to } 2 \end{gathered}$ | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 142,710 | 20,560 | 14 | 7,232 | 5,148 | 3,977 | 4,203 |
| SEX |  |  |  |  |  |  | / |
| Nale. | 68,453 | 9,439 | 14 | 3,065 | 2,398 | 1,829 | 2,147 |
| Female | 74,257 | 11,121 | 15 | 4,167 | 2,749 | 2,148 | 2,056 |
| RACE/ETHNICITY ${ }^{1}$ |  |  |  |  |  |  |  |
| White. | 118,214 | 16,761 | 14 | 5,794 | 4,196 | 3,500 | 3,270 |
| Black. | 12,667 | 1,935 | 15 | 744 | 518 | 172 | 501 |
| Hispanic | 7,432 | 1,115 | 15 | 442 | 262 | 100 | 312 |
| Other. | 4,396 | 748 | 17 | 252 | 172 | 205 | 119 |
| AGE |  |  |  |  |  |  |  |
| 17 to 24 years. | 18,007 | 9,099 | 51 | 4,550 | 2,896 | 669 | 984 |
| 25 to 34 years. | 37,050 | 5,903 | 16 | 1,459 | 1,410 | 1,646 | 1,388 |
| 35 to 44 years. | 34,324 | 3,461 | 10 | 834 | 618 | 1,075 | 933 |
| 45 to 54 years. | 21,018 | 1,420 | 7 | 279 | 161 | 451 | 529 |
| 55 to 64 years. | 14,971 | 492 | 3 | 72 | 62 | 98 | 260 |
| 65 years and over. | 17,340 | 185 | 1 | 38 |  | 38 | 109 |
| MARITAL STATUS |  |  |  |  |  |  |  |
| Married | 87,161 | 7,698 | 9 | 1,969 | 1,423 | 2,131 | 2,175 |
| Widowed, separated, or divorced | 23,389 | 2,033 | 9 | 612 | 389 | 388 | 643 |
| Never married....................... | 32,160 | 10,829 | 34 | 4,651 | 3,335 | 1,458 | 1,385 |
| VETERAN STATUS |  |  |  |  |  |  |  |
| Veteran. | 23,899 | 1,851 | 8 | 550 | 314 | 348 | 638 |
| Non-veteran | 118,811 | 18,709 | 16 | 6,682 | 4,834 | 3,629 | 3,564 |
| AVERAGE MONTHLY FAMILY INCOME |  |  |  |  |  |  |  |
| Less than $\$ 800$. | 10,631 | 2,183 | 21 | 752 | 627 | 328 | 476 |
| \$800 to \$1,249 | 10,860 | 1,438 | 13 | 475 | 370 | 220 | 372 |
| \$1,250 to \$1,699. | 11,912 | 1,422 | 12 | 547 | 283 | 224 | 368 |
| \$1,700 to \$2,499. | 22,794 | 2,654 | 12 | 825 | 658 | 447 | 724 |
| \$2,500 to \$3,399. . . . . . . . . . . . . . . . . . | 24,023 | 3,031 | 13 | 1,129 | 568 | 651 | 684 |
| \$3,400 to \$4,199. | 17,434 | 2,537 | 15 | 888 | 627 | 469 | 554 |
|  | 17,663 | 2,748 | 16 | 1,001 | 704 | 556 | 487 |
| ¢E,4@n or more. | 27,392 | 4,547 | 17 | 1,615 | 1,310 | 1,082 | 539 |
| BENEFITS |  |  |  |  |  |  |  |
| Family does not receive benefits....... | 129,282 | 18,445 | 14 | 6,374 | 4,783 | 3,824 | 3,464 |
| Someone in family receives AFDC, Foodstamps, or unemployment. | 13,428 | 2,115 | 16 | 859 | 365 | 153 | 738 |
| RELATIONSHIP TO REFERENCE PERSON |  |  |  |  |  |  |  |
| Reference person living with relative(s) . | 52,415 | 4,777 | 9 | 1,195 | 893 | 1,183 | 1.506 |
| Reference person living alone or with non-relative(s) $\qquad$ | 20,584 | 2,606 | 13 | 599 | 671 | 779 | 557 |
| Spouse . . . . . . . . . . . . . . . . . . . . . . . . . . | 42,948 | 3,992 | 9 | 1,147 | 754 | 1,128 | 963 |
| Child ................. . . . . . . . . . . | 16,596 | 7,238 | 44 | 3,578 | 2,369 | 543 | 74 |
| Other relative. | 3,532 | 662 | 19 | 287 | 116 | 64 | 195 |
| Non-relative of reference person but other relatives in household | 480 | 70 | 15 | 17 | 13 | 12 | 27 |
| Other................................ | 6,156 | 1,217 | 20 | 408 | 332 | 269 | 207 |

Table 1. Level of Enrollment by Sex, Race/Ethnicity, Age, Marital Status, Veteran Status, Family Income, and Other Selected Characteristics for High School Graduates 17 Years and Older: 1990-1991-Continued
(In thousands)

| Characteristic | Total | Enrolled | Percent enrolled | $\begin{gathered} \text { College } \\ \text { years } \\ 1 \text { to } 2 \end{gathered}$ | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEPENDENCY STATUS ${ }^{2}$ | * |  |  |  |  |  |  |
| Dependent student | 6,094 | 6,094 | 100 | 3,382 | 2,002 | 168 | 540 |
| Lives away from home. | 2,965 | 2,965 | 100 | 1.469 | 1,310 | 110 | 75 |
| Lives at home. | 3,129 | 3,129 | 100 | 1,913 | 692 | 58 | 465 |
| Independent student | 14,466 | 14,466 | 100 | 3,850 | 3,146 | 3,808 | 3,663 |
| RECEIVES FINANCIAL AID ${ }^{2}$ |  |  |  |  |  |  |  |
| None received. | 10,095 | 10,099 | 100 | 3,632 | 2,495 | 1,842 | 2,131. |
| Aid received. | 10,461 | 10,461 | 100 | 3,601 | 2,652 | 2,136 | 2,072 ${ }^{\text { }}$ |

- Represents zero
'Race/ethnicity categories are mutually exclusive and exhaustive of the total population. For details of category construction see appendix $C$, Defintions and Explanations.
${ }^{2}$ Total is that of enrolled persons only.

Table 2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Fainily
Income and Dependency Status: 1990-1991

| Characteristic | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ALL POSTSECONDARY STUDENTS: |  |  |  |  |  |
| Total costs' |  |  |  |  |  |
| Mean.... | \$2,653 | \$2,730 | \$3,825 | \$2,672 | \$1,066 |
| Standard error. | 61 | 103 | 134 | 137 | 85 |
| Tuition and fees |  |  |  |  |  |
| Mean. . | \$1,651 | \$1,667 | \$2,179 | \$1,830 | \$807 |
| Standard error. | 40 | 68 | 88 | 95 | 64 |
| Books and supplies |  |  |  |  |  |
| Mean... | \$289 | \$308 | \$399 | \$291 | \$118 |
| Standard error.. | 8 | 11 | 17 | 20 | 14 |
| Room and board ${ }^{2}$ |  |  |  |  |  |
| Mean. . | \$3,172 | \$3,203 | \$3,465 | \$2,931 | \$1,874 |
| Standard error. . | 78 | 109 | 117 | 259 | 310 |
| SEX |  |  |  |  |  |
| Male |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. . | \$2,762 | \$2,871 | \$4,130 | \$2,812 | \$1.036 |
| Standard error. | 96 | 165 | 207 | 212 | 134 |
| Tuition and fees |  |  |  |  |  |
| Mean. . | \$1,686 | \$1,775 | \$2,290 | \$1,879 | \$720 |
| Standard error. | 62 | 107 | 133 | 143 | 94 |
| Books and supplies |  |  |  |  |  |
| Mean. ..... | \$296 | \$318 | \$416 | \$323 | \$107 |
| Standard error. | 12 | 19 | 26 | 36 | 16 |
| Room and board |  |  |  |  |  |
| Mean. . | \$3,125 | \$3,075 | \$3,481 | \$2,935 | \$2.043 |
| Standard error. | 110 | 151 | 169 | 353 | 378 |
| Female |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean... | \$2,560 | \$2,627 | \$3,559 | \$2,552 | \$1,098 |
| Standard error. | 79 | 132 | 174 | 177 | 106 |
| Tuition and fees |  |  |  |  |  |
| Mean....... | \$1,621 | \$1,587 | \$2,083 | \$1,788 | \$898 |
| Standard error. . | 53 | 87 | 117 | 127 | 88 |
| Books and supplies |  |  |  |  |  |
| Mean. . | \$283 | \$301 | \$385 | \$264 | \$128 |
| Standard error. | 10 | 12 | 23 | 22 | 22 |
| Room and board |  |  |  |  |  |
| Mean. | \$3,221 | \$3,309 | \$3,446 | \$2,927 | (B) |
| Standard error. | 112 | 155 | 162 | 381 | (B) |
| RACE/ETHNICITY |  |  |  |  |  |
| White |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Msan. . | \$2,691 | \$2,804 | \$3.988 | \$2,524 | \$1,006 |
| Standard error. | 68 | 118 | 152 | 135 | 91 |
| Tuition and fees |  |  |  |  |  |
| Mean........ | \$1,662 | \$1,691 | \$2,252 | \$1,749 | \$761 |
| Standard error. | 45 | 77 | 99 | 95 | 69 |
| Books and supplies |  |  |  |  |  |
| Mean........... | \$286 | \$316 | \$400 | \$265 | \$108 |
| Standard error. | 8 | 12 | 17 | 19 | 14 |
| Room and board |  |  |  |  |  |
| Mean.......... | \$3,207 | \$3,276 | \$3,536 | \$2,771 | \$1,823 |
| Standard error. | 84 | 118 | 126 | 255 | 35 |

Table 2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income and Dependency Status: 1990-1991—Continued

| Characteristic | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Black |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean... | \$2,552 | \$2,941 | \$3,222 | (B) | \$1,177 |
| Standard error. | 170 | 296 | 310 | (B) | 258 |
| Tuition and fees |  |  |  |  |  |
| Mean. | \$1,649 | \$1,922 | \$1,971 | (B) | \$814 |
| Standard error. | 115 | 201 | 202 | (B) | 182 |
| Books and supplies |  |  |  |  |  |
| Mean. | \$305 | \$251 | \$430 | (B) | \$188 |
| Standard error. | 31 | 20 | 78 | (B) | 59 |
| Room and board |  |  |  |  |  |
| Mean. . | \$2,834 | \$2,790 | (B) | (B) | (B) |
| Standard error. | 231 | 296 | (B) | (B) | (B) |
| Hispanic |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. . | \$1,882 | \$1,668 | \$2,802 | (B) | \$1,028 |
| Standard error. | 162 | 224 | 409 | (B) | 214 |
| Tuition and fees |  |  |  |  |  |
| Mean......... | \$1,275 | \$1,086 | \$1,648 | (B) | \$922 |
| Standard error. . | 125 | 165 | 293 | (B) | 210 |
| Books and supplies |  |  |  |  |  |
| Mean.... | \$252 | \$267 | \$390 | (B) | \$75 |
| Standard error. | 21 | 22 | 66 | (B) | 17 |
| Room and board |  |  |  |  |  |
| Mean. . | (B) | (B) | (B) | (B) | (B) |
| Standard error. | (B) | (B) | (B) | (B) | (B) |
| Other |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. . | \$3,203 | \$2,284 | (B) | \$4,828 | (B) |
| Standard error. | 353 | 439 | (B) | 966 | (B) |
| Tuition and fees |  |  |  |  |  |
| Mean...... | \$1,972 | \$1,384 | (B) | \$2,935 | (B) |
| Standard error. | 222 | 262 | (B) | 607 | (B) |
| Books and supplies |  |  |  |  |  |
| Mean...... | \$367 | \$367 | (B) | \$518 | (B) |
| Standard error. | 49 | 75 | (B) | 167 | (B) |
| Room and board |  |  |  |  |  |
| Mean...... | (8) | (B) | (B) | (B) | (B) |
| Standard error. | (8) | (B) | (B) | (B) | (B) |
| AVERAGE MONTHLY FAMILY INCOME |  |  |  |  |  |
| Less than \$2,100 |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean... | \$2,627 | \$2,385 | \$3,739 | \$3,442 | \$1,326 |
| Standard error. | 102 | 152 | 233 | 279 | 160 |
| Tuition and fees |  |  |  |  |  |
| Mean........ | \$1,599 | \$1,511 | \$2,051 | \$2,027 | \$996 |
| Standard error. | 67 | 106 | 147 | 178 | 116 |
| Books and supplies |  |  |  |  |  |
| Mean.... | \$309 | \$303 | \$434 | \$367 | \$154 |
| Standard error. | 14 | 21 | 35 | 35 | 24 |
| Room and board |  |  |  |  |  |
| Mean......... | \$3,268 | \$2.957 | \$3,546 | \$3,449 | (B) |
| Standard error. | 151 | 240 | 222 | 434 | (B) |

Table 2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income and Dependency Status: 1990-1991-Continued

| Characteristic | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational technical. business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \$2,100 to \$4,099 |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. . | \$2,302 | \$2,480 | \$3,405 | \$2,440 | \$830 |
| Standard error. | 102 | 178 | 231 | 237 | 111 |
| Tuition and fees |  |  |  |  |  |
| Mean.... | \$1,548 | \$1,586 | \$2,180 | \$1,810 | \$643 |
| Standard error. | 71 | 119 | 164 | 173 | 93 |
| Eooks and supplies |  |  |  |  |  |
| Mean......... | \$257 | \$276 | \$365 | \$282 | \$99 |
| Standard error. | 13 | 15 | 26 | 43 | 25 |
| Room and board |  |  |  |  |  |
| Mean. . | \$2,702 | \$3,054 | \$3,188 | \$2,146 | (B) |
| Standard error | 152 | 207 | 231 | 465 | (B) |
| \$4,100 or more |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. | \$2,982 | \$3,224 | \$4,193 | \$2,419 | \$1,033 |
| Standard error. | 111 | 193 | 226 | 204 | 166 |
| Tuition and fees |  |  |  |  |  |
| Miean. . | \$1,784 | \$1,863 | \$2,276 | \$1,734 | \$772 |
| Standard error. | 71 | 122 | 145 | $1{ }^{\sim}$ | 124 |
| Books and supplies |  |  |  |  |  |
| Mean. .......... | \$300 | \$340 | \$398 | \$256 | \$94 |
| Standard error. | 12 | 18 | 27 | 28 | 20 |
| Room and board |  |  |  |  |  |
| Mean......... | \$3,394 | \$3,418 | \$3,539 | \$3.010 | (B) |
| Standard error. | 111 | 148 | 170 | 413 | (B) |
| DEPENDENT STUDENTS |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. | \$4,387 | \$3,980 | \$5,579 | (B) | \$1,891 |
| Standard error. | 132 | 172 | 230 | (B) | 313 |
| Tuition and fees |  |  |  |  |  |
| Mean..... | \$2,330 | \$2,188 | \$2,755 | (B) | \$1,401 |
| Standard error. . | 84 | 110 | 157 | (B) | 213 |
| Eooks and supplies |  |  |  |  |  |
| Mean. . | \$395 | \$368 | \$499 | (B) | \$177 |
| Standard error. | 13 | 13 | 28 | (B) | 46 |
| Room and board |  |  |  |  |  |
| Mean. | \$3,416 | \$3,278 | \$3,554 | (B) | (B) |
| Standard error. | 91 | 120 | 139 | (B) | (B) |
| INDEPENDENT STUDENTS |  |  |  |  |  |
| Total cost |  |  |  |  |  |
| Mean. | \$1,923 | \$1,632 | \$2,708 | \$2,507 | \$945 |
| Standard error. | 59 | 99 | 138 | 134 | 84 |
| Tuition and fees |  |  |  |  |  |
| Mean........ | \$1,365 | \$1,209 | \$1,813 | \$1,774 | \$719 |
| Standard error. | 44 | 77 | 99 | 96 | 66 |
| Books and supplies |  |  |  |  |  |
| Mean........... | \$244 | \$255 | \$336 | \$386 | \$109 |
| Standard error. . | 9 | 16 | 21 | 21 | 14 |
| Room and board |  |  |  |  |  |
| Mean......... | \$2,737 | \$2,737 | \$3,247 | \$2,677 | \$1,757 |
| Standard error. | 142 | 244 | 214 | 277 | 348 |

[^14]Table 3. Number of Recipients and Average Amount Received by Level of Enrollment and Aid Type:
(Numbers in thousands)


Table 3. Number of Recipients and Average Amount Received by Level of Enrollment and Aid Type: 1990-1991-Continued
(Numbers in thousands)

| Types of aid | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Other ald |  |  |  |  |  |
| Number. | 2,788 | 964 | 849 | 536 | 439 |
| Percent. | . 14 | 13 | 16 | 13 | 10 |
| Mean. | \$1,829 | \$1,475 | \$1,517 | \$3,465 | \$1,213 |
| Standard error. | 121 | 152 | 167 | 454 | 208 |
| Percent of total aid |  |  |  |  |  |
| Mean. . | 54 | 48 | 48 | 61 | 72 |
| Standard error. | 2 | 3 | 4 | 5 | 5 |

$B$ Base is less than 200,000 persons.

Table 4. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1990-1991
(Numbers in thousands)


Table 4. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1990-1991-Continued
(Numbers in thousands)

| Types of aid | Male | Female | White | Black | Hispanic | Other | Average monthly family income |  |  | Dependent students | Independent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{array}{r} \text { Less } \\ \text { than } \\ \$ 2,100 \end{array}$ | $\begin{array}{r} \$ 2,100 \\ \text { to } \\ \$ 4,099 \end{array}$ | \$4,100 or more |  |  |
| Mean. | \$2,971 | \$2,068 | \$2,441 | \$2,112 | (B) | (B) | \$3,031 | \$1,865 | \$2,453 | \$2,396 | \$2,545 |
| Standard error. | 369 | 190 | 206 | 518 | (B) | (B) | 410 | 239 | 288 | 228 | 308 |
| Percent of total aid Mean. Standard error. | 60 3 | 58 3 | 59 2 | 61 7 | (B) | (B) | 53 3 | 48 4 | 73 3 | 64 3 | 54 3 |
| Other aid |  |  |  |  |  |  |  |  |  |  |  |
| Number. | 1,195 | 1,593 | 2,252 | 273 | 103 | 160 | 1,202 | 935 | 651 | 972 | 1,816 |
| Percent. | 13 | 14 | + 3 | 14 | 9 | 21 | 19 | 14 | 9 | 16 | 13 |
| Mean.. | \$1,886 | \$1,787 | \$1,767 | \$1,731 | (B) | (B) | \$1,985 | \$1,713 | \$1,711 | \$1,748 | \$1,873 |
| Standard error. . | 180 | 162 | 128 | 304 | (B) | (B) | 205 | 192 | 214 | 193 | 155 |
| Percent of total aid Mean. | 53 | 55 | 52 | 60 | (B) | (B) | 53 | 53 | 59 | 46 | 59 |
| Standard error.. | 3 | 2 | 2 | 5 | (B) | (B) | 3 | 4 | 4 | 3 | 2 |

[^15]B Base is less than 200,000 persons.
Orable 5. Average Cost, Aid, and Net Cost by Level of Enrollment and Other Social and Demographic Variables: 1990-1991


[^16]| Item | Total | Level of enrollment |  |  |  | Sex |  | Race/Ethnicity |  |  |  | Average monthly family income |  |  | pendent students | Inde pendent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | College years 1 to 2 | $\begin{gathered} \text { College } \\ \text { years } \\ 3 \text { to } 4 \end{gathered}$ | College years 5 or higher | Vocational, technical, business school, or other | Male | Female | White | Black | Hispanic | Other | $\begin{array}{r} \text { Less } \\ \text { than } \\ \$ 2,100 \end{array}$ | $\begin{array}{r} \$ 2,100 \\ \text { to } \\ \$ 4,099 \end{array}$ | $\begin{gathered} \$ 4,100 \\ \text { or } \\ \text { more } \end{gathered}$ |  |  |
| All students' | 20,560 | 7,232 | 5.148 | 3,977 | 4,203 | 9,439 | 11,120 | 16,761 | 1,935 | 1,115 | 749 | 6,247 | 6,694 | 7.619 | 6,094 | 14,466 |
| Students receiving aid ${ }^{1}$. | 10,461 | 3,601 | 2,652 | 2,136 | 2,072 | 4,773 | 5,687 | 8,381 | 1,128 | 551 | 401 | 3,717 | 3,410 | 3,333 | 2,825 | 7,635 |
| Percent of all students with: <br> No costs covered | 49 | 50 | 48 | 46 | 51 | 49 | 49 | 50 | 42 | 50 | 46 | 40 | 49 | 56 | 54 | 47 |
| Up to 25 percent of total costs covered | 7 | 8 | 7 | 4 | 6 | 7 | 7 | 7 | 9 | 4 | 3 | 5 | 7 | 8 | 7 | 7 |
| 26 to 50 percent of total costs covered | 6 | 6 | 10 | 5 | 4 | 6 | 7 | 7 | 6 | 7 | 1 | 6 | 6 | 7 | 8 |  |
| 51 to 75 percent of total costs covered | 6 | 7 | 8 | 7 | 4 | 7 | 6 | 7 | 6 | 6 | 7 | 7 | 7 | 6 | 7 |  |
| 76 to 100 percent of total costs covered | 12 | 11 | 8 | 13 | 19 | 12 | 12 | 12 | 12 | 9 | 16 | 13 | 13 | 11 | 8 | 14 |
| More than 100 percent of total costs covered. | 19 | 18 | 20 | 25 | 16 | 19 | 20 | 18 | 25 | 23 | 26 | 29 | 18 | 13 | 16 | 21 |

[^17]Table 6. Persons Receiving Aid and the Percent of Total Costs Covered by Level of Enrollment and Other Social and Demograhic Variables: 1990-1991

## Appendix A. Supplementary Tables

Table A-1. Level of Enroliment by Sex, Race/Ethnicity, Age, Marital Status, Veteran Status, Family Income, and Other Selected Characteristics for High School Graduates 17 Years and Older: 1987-1988
(In thousands)

| Characteristic | Total | Enrolled | Percent enrolled | $\begin{gathered} \text { College } \\ \text { years } \\ 1 \text { to } 2 \end{gathered}$ | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 134,270 | 20,140 | 15 | 7,011 | 4,966 | 3,925 | 4,238 |
| SEX | ' |  |  |  |  |  |  |
| Male. | 63,538 | 9,223 | 15 | 2,987 | 2,264 | 1,906 | 2,067 |
| Female | 70,732 | 10,917 | 15 | 4,024 | 2,702 | 2,020 | 2,171 |
| RACE/ETHNICITY ${ }^{1}$ |  |  |  |  |  |  |  |
| White. . | 112,003 | 16,320 | 15 | 5,632 | 4,021 | 3,279 | 3,389 |
| Black. | 11,692 | 1,827 | 16 | 657 | 498 | 266 | 408 |
| Hispanic | 7,019 | 1,198 | 17 | 416 | 274 | 242 | 266 |
| Other... | 3,556 | 794 | 22 | 306 | 173 | 139 | 175 |
| AGE |  |  |  |  |  |  |  |
| 17 to 24 years. | 18,711 | 8,940 | 48 | 4,438 | 2,810 | 647 | 1,044 |
| 25 to 34 years. | 37,313 | 6,036 | 16 | 1,510 | 1,348 | 1,944 | 1,234 |
| 35 to 44 years. | 30,242 | 3,184 | 11 | 717 | 529 | 912 | 1,025 |
| 45 to 54 years. | 18,304 | 1,298 | 7 | 232 | 205 | 280 | 581 |
| 55 to 64 years. | 14,732 | 521 | 4 | 86 | 73 | 81 | 282 |
| 65 years and over. | 14,968 | 161 | 1 | 27 |  | 61 | 73 |
| MARITAL Status |  |  |  |  |  |  |  |
| Married | 83,022 | 7,229 | 9 | 1,732 | 1,270 | 2,100 | 2,127 |
| Widowed, separated, or divorced | 21,529 | 2,057 | 10 | 621 | 433 | 332 | 670 |
| Never married. | 29,719 | 10,855 | 37 | 4,658 | 3,262 | 1,493 | 1,441 |
| VETERAN Status |  |  |  |  |  |  |  |
| Veteran. | 23,928 | 1,899 | 8 | 480 | 379 | 397 | 642 |
| Non-veteran. | 110,342 | 18,241 | 17 | 6,530 | 4,587 | 3,528 | 3,596 |
| AVERAGE MONTHLY FAMILY INCOME |  |  |  |  |  |  |  |
| Less than \$800.. | 11,016 | 2,075 | 19 | 709 | 565 | 457 | 344 |
| \$800 to \$1,249. | 10,744 | 1,457 | 14 | 584 | 266 | 265 | 342 |
| \$1,250 to \$1,699. | 13,196 | 1,600 | 12 | 602 | 345 | 180 | 473 |
| \$1,700 to \$2,499. | 24,350 | 3,420 | 14 | 927 | 1,026 | 686 | 780 |
| \$2,500 to \$3,399. | 24.809 | 3,386 | 14 | 1,206 | 641 | 681 | 857 |
| \$3,400 to \$4,199. | 16,072 | 2,358 | 15 | 697 | 640 | 455 | 566 |
| \$4,200 to \$5,399. | 15,023 | 2,421 | 16 | 875 | 594 | 511 | 441 |
| \$5,400 or more . . . . . . . . . . . . . . | 19,060 | 3,423 | 18 | 1,410 | 889 | 690 | 434 |
| BENEFITS |  |  |  |  |  |  |  |
| Family does not receive benefits.. | 125,711 | 18,514 | 15 | 6,310 | 4,599 | 3,839 | 3,766 |
| Someone in tamily receives AFDC Foodstamps, or unemployment. | 8,559 | 1,626 | 19 | 701 | 366 | 86 | 472 |

Table A-1. Level of Enroliment by Sex, Race/Ethnicity, Age, Marital Stzias, Veteran Status, Family Income, and Other Selected Characteristics for High Schocl Graduates 17 Years and Older: 1987-1988—Continued
(In thousands)

| Characteristic | Total | Enrolled | Percent enrolled | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RELATIONSHIP TO REFERENCE PERSON |  |  |  |  |  |  |  |
| Reference person living with relative(s). | 48,894 | 4,624 | 9 | 1,028 | 806 | 1,233 | 1,557 |
| Reference person living alone or with non-relative(s) | 19,519 | 2,822 | 14 | 689 | 607 | 874 | 652 |
| Spouse . . . . . . . . . . . . . . . . . . . . . . . . . . . | 41,375 | 3,550 | 9 | 1,Güz | 703 | 955 | 890 |
| Child | 16,402 | 7,338 | 45 | 3,599 | 2,405 | 551 | 783 |
| Other relative. . . . . . . . . . . . . . . . | 3,090 | 604 | 20 | 303 | 119 | 40 | 142 |
| Non-relative of reference person but other relatives in household | 246 | 97 | 39 | 36 | 52 | - | 9 |
| Other. | 4,744 | 1,105 | 23 | 354 | 273 | 272 | 205 |
| DEPENDENCY STATUS ${ }^{2}$ |  |  |  |  |  |  |  |
| Dependent student. . . . . . . . . . . . . . . . | 5,953 | 5,953 | 100 | 3,374 | 1,921 | 213 | 444 |
| Lives away from home. . . . . . . . . . . . . . | 3,215 | 3,215 | 100 | 1,678 | 1,291 | 148 | 98 |
| Lives at home . . . . . | 2,738 | 2,738 | 100 | 1,696 | 630 | 65 | 346 |
| Independent student | 14,187 | 14,187 | 100 | 3,636 | 3,045 | 3,712 | 3,794 |
| RECEIVES FINANCIAL AID ${ }^{2}$ |  |  |  |  |  |  |  |
| None received. | 10,098 | 10,098 | 100 | 3,488 | 2,508 | 1,878 | 2,224 |
| Aid received. | 10,041 | 10,041 | 100 | 3,522 | 2,458 | 2,047 | 2,014 |

## - Represents zero.

'Race/ethnicity categories are mutually exclusive and exhaustive of the total populatien. For details of category construction see appendix C , Defintions and Explanations.
${ }^{2}$ Total is that of enrolled persons only.

Table A-2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income, and Dependency Status: 1987-1988

|  |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| Characteristic |  |  |  |

Table A-2. Average Postsecondary Schooling Costs by Level of Enrollment, Sex, Race/Ethnicity, Family Income, and Dependency Status: 1987-1988-Continued

| Characteristic | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocationa technica busines schoo or other |
| :---: | :---: | :---: | :---: | :---: | :---: |

Black
Total cost
Standard error
Tuition and fees
Mean.
Standard error
Books and supplie Mean.
Standard error.
Room and board
Mean.
Standard error.
Hispanic
Total cost
Mean.
Standard error
Tuition and fees
Mean.
Standard error.
Books and supplies
Mean.
Standard error.
Room and board
Mean. ........
Standard error
Other
Total cost
Mean.
Standard error.
Tuition and fees
Mean.
Standard error.
Books and supplies
Mean
Standard error
Room and board Mean.
Standard error
AVERAGE MONTHLY FAMILY INCOME

| Less than \$2,100Total cost |
| :---: |
|  |  |
|  |
| Standard error. |
| Tuition and fees |
| Mean. |
| Standard error. |
| Books and supplies |
| Mean. |
| Standard error. |
| Room and board |
| Mean. |
| Standard error |
| \$2,100 to \$4 999 |
| Total cost |
| Mean. |
| Standard error. |

Table A-2. Average Postsecondary Schooling Costs by Level of Enroliment, Sex, Race/Ethnicity, Family Income, and Dependency Status: 1987-1988-Continued

|  |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| Characteristic |  |  |  |

[^18]Table A-3. Number of Recipients and Average Amount Received by Level of Enrollment and Aid Type: 1987-1988
(Numbers in thousands)


Table A-3. Number of Recipients and Average Amount Received by Level of Enroliment and Aid Type: 1987-1988-Continued
(Numbers in thousands)

| Types of aid | Total | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school or other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Percent of total aid Mean. Standard error. | 62 3 | 61 4 | 55 5 | 71 5 | (B) |
| Other ald |  |  |  |  |  |
| Number. | 2,416 | 1,043 | 669 | 441 | 262 |
| Percent. | 12 | 15 | 13 | 11 | 6 |
| Mean. . | \$1,855 | \$1,266 | \$1,395 | \$3,605 | \$2,424 |
| Standard error. . | 218 | 198 | 298 | 908 | 561 |
| Percent of total aid |  |  |  |  |  |
| Mean. | 53 | 51 | 44 | 54 | 83 |
| Standard error. | 3 | 4 | 5 | 7 | 6 |

B Base is less than 200.000 persons.

Table A-4. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1987-1988
(Numbers in thousands)

| Types of aid | Male | Female | White | Black | Hispanic | - her | Average monthly family income |  |  | Dependent students | Independent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{array}{r} \text { Less } \\ \text { than } \\ \$ 2,100 \end{array}$ | $\$ 2,100$ <br> $\$ 4,099$ | $\begin{array}{r} \$ 4,100 \\ \text { or more } \end{array}$ |  |  |
| All students All ald recipients | 9,223 | 10,917 | 16,320 | 1,828 | 1,198 | 794 | 6,860 | 7,203 | 6,077 | 5,953 | 14,186 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Number. | 4,709 | 5,332 | 7.917 | 1,194 | 600 | 331 | 3,860 | 3,768 | 2,414 | 3,084 | 6,957 |
| Percent | 51 | 49 | 49 | 65 | 50 | 42 | 56 | 52 | 40 | 52 | 49 |
| Mean | \$2,869 | \$2,588 | \$2,682 | \$2,772 | \$2,720 | \$3,425 | \$3,265 | \$2,418 | \$2,320 | \$3,493 | \$2,377 |
| Standard error , | 260 | 154 | 164 | 346 | 450 | 1,252 | 219 | 277 | 246 | 328 | +151 |
| Pell Grant |  |  |  |  |  |  |  |  |  |  |  |
| Number. | 972 | 1,700 | 1,780 | 625 | 195 | 72 | 1,727 | 687 | 258 | 1,170 | 1,502 |
| Percent . . . . . . . . . . . . . . . . . . . | 11 | 16 | 11 | 34 | 16 | 9 | 25 | 10 | 4 | 20 | 11 |
| Mean. | \$1,127 | \$1,308 | \$1,160 | \$1,352 | (B) | (B) | \$1,324 | \$1,103 | \$1,065 | \$1,315 | \$1,185 |
| Standard error . | 71 | 77 | 59 | 128 | (B) | (B) | 69 | 111 | 147 | 87 | 72 |
| Percent of total aid Mean | 47 | 54 | 46 | 62 | (B) | (B) | 52 | 48 | 58 | 52 | 51 |
| Standard error. . . . . . . . . . | 4 | 3 | 3 | 6 | (B) | (B) | 3 | 5 | 9 | 4 | 3 |
| GI BIII or VEAP |  |  |  |  |  |  |  |  |  |  |  |
| Number, | 423 | 98 | 406 | 56 | 38 | 21 | 220 | 196 | 105 | 70 | 451 |
| Percent | 5 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 3 |
| Mean. | \$2,673 | (B) | \$2,775 | (B) | (B) | (B) | \$2,239 | (B) | (B) | (B) | \$2,540 |
| Standard error. | 315 | (B) | 310 | (B) | (B) | (B) | 410 | (B) | (B) | (B) | 312 |
| Percent of total aid Mean | 81 | (B) | 76 | (B) | (B) | (B) | 75 | (B) | (B) | (B) | 81 |
| Standard error. | 4 | (B) | 5 | (B) | (B) | (B) | 7 | (B) | (B) | (B) | 5 |
| SEOG or college work study |  |  |  |  |  |  |  |  |  |  |  |
| Number | 433 | 621 | 743 | 165 | 113 | 33 | 550 | 340 | 164 | 556 | 498 |
| Percent | 5 | 6 | 5 | 9 | 9 | 4 | 8 | 5 | 3 | 9 | 4 |
| Mean. | \$964 | \$1,101 | \$977 | (B) | (B) | (B) | \$1,179 | $\$ 876$ | (B) | \$995 | \$1,101 |
| Standard error. | 119 | 137 | 104 | (B) | (B) | (B) | 167 | 114 | (B) | 108 | 166 |
| Percent of total aid |  |  |  |  |  |  |  |  |  |  |  |
| Mean..... . . . . | 37 | 27 | 30 | (B) | (B) | (B) | 27 | 36 | (B) | 31 | 31 |
| Standard error | 7 | 3 | 4 | (B) | (B) | (B) | 4 | 8 | (B) | 5 | 5 |
| Loan |  |  |  |  |  |  |  |  |  |  |  |
| Number. | 1,507 | 1,800 | 2,599 | 466 | 175 | 67 | 1,580 | 1,123 | 605 | 1,576 | 1,731 |
| Percent. | 16 | 16 | 16 | 25 | 15 | 8 | 23 | 16 | 10 | 26 | 12 |
| Mean. | \$2,619 | \$2,565 | \$2,642 | \$2,516 | (B) | (B) | \$2,665 | \$2,473 | \$2,608 | \$2,333 | \$2,823 |
| Standard error. | 198 | 169 | 140 | 418 | (B) | (B) | 204 | 161 | 328 | 145 | 204 |
| Percent of total aid Mean. | 67 | 63 | 66 | 65 | (B) | (B) | 60 | 69 | 69 | 64 | 66 |
| Standard error | 3 | 3 | 2 | 6 | (B) | (B) | 3 | 3 | 4 | 3 | 3 |
| Employer assistance or JTPA |  |  |  |  |  |  |  |  |  |  |  |
| Number. | 1,637 | 1.716 | 2,953 | 223 | 85 | 92 | 789 | 1,583 | 981 | 90 | 3,263 |
| Percent. | 18 | 16 | 18 | 12 | 7 | 12 | 12 | 22 | 16 | 2 | 23 |
| Mean. | \$833 | \$664 | \$744 | \$846 | (B) | (B) | \$701 | \$728 | \$812 | (B) | \$730 |
| Standard error . . . . . . . . . . . . | 109 | 85 | 73 | 367 | (B) | (B) | 145 | 109 | 108 | (B) | 68 |
| Percent of total aid Mean | 92 | 95 | 94 | 92 | (B) | (B) | 86 | 96 | 95 |  | 94 |
| Standard error | 2 | 2 | 1 | 8 | (B) | (B) | 4 | 2 | + 2 | (B) | 94 1 |
| Fellowship, scholarship or tultion reduction |  |  |  |  |  |  |  |  |  |  |  |
| Number. . . . . . . . . . . . . . . . . . . | 955 | 1,2.6 | 1,896 | 177 | 92 | 67 | 787 | 813 | 632 | 1,252 | 979 |
| Percent. . . . . . . . . . . . . . . . . . . | 10 | 12 | 12 | 10 | 8 | 8 | 11 | 11 | 10 | 21 | 7 |

Table A-4. Average Aid Received and Number of Recipients by Social and Demographic Characteristics: 1987-1988-Continued
(Numbers in thousands)

| Types of aid | Male | Female | White | Black | Hispanic | Other | Average monthly family income |  |  | Dependent students | Independent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Less than \$2,100 | \$2,100 to $\$ 4,099$ | $\begin{gathered} \$ 4,100 \\ \text { or more } \end{gathered}$ |  |  |
| Mean....................... . | \$3,176 | \$2,310 | \$2,696 | (B) | (B) | (B) | \$2,523 | \$2,921 | \$2,568 | \$2,580 | \$2,808 |
| Standard error. . . . . . . . . . . . | 846 | 329 | 458 | (B) | (B) | (B) | 463 | 978 | 466 | 619 | 459 |
| Percent of total aid Mean | 65 | 59 | 63 | (B) | (B) | (B) | 54 | 62 | 72 | 59 | 65 |
| Standard error. . . . . . . . . . . | 4 | 4 | 3 | (B) | (B) | (B) | 5 | 5 | 5 | 4 | 4 |
| Other aid |  |  |  |  |  |  |  |  |  |  |  |
| Number . . . . . . . . . . . . . . . . . . | 1,159 | 1,257 | 1,774 | 294 | 219 | 123 | 1,166 | 695 | 555 | 1,009 | 1,406 |
| Percent . . . . . . . . . . . . . . . . . . | 13 | 12 | 11 | 16 | 18 | !6 | 17 | 10 | 9 | 17 | 10 |
| Mean. . . . . . . . . . . . . . . . . . . | \$2,174 | \$1,561 | \$1,772 | \$1,024 | \$2,385 | (B) | \$2,079 | \$1,696 | \$1,582 | \$1,422 | \$2,166 |
| Standard error . . . . . . . . . . . . . | 406 | 203 | 211 | 242 | 850 | (B) | 363 | 317 | 410 | 240 | 330 |
| Percent of total aid |  |  |  |  |  |  |  |  |  |  |  |
| Mean. . . . . . | 53 | 52 | 51 | 40 | 73 | (B) | 52 | 52 | 56 | 45 | 58 |
| Standard error . . . . . . . . . . . | 4 | 4 | 3 | 9 | 11 | (B) | 4 | 5 | 6 | 4 | 4 |

- Represents zero.

B Base is less than 200,000 persons.
Table A-5. Average Cost, Aid, and Net Cost by Level of Enrollment and Other Social and Demographic Variables: 1987-1988

| Cost |  | Level of enrollment |  |  |  | Sex |  | Race/Ethnicity |  |  |  | Average monthly family income |  |  | Dependent students | Independent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | $\begin{array}{r} \text { College } \\ \text { years } \\ 1 \text { to } 2 \end{array}$ | $\begin{array}{r} \text { College } \\ \text { years } \\ 3 \text { to } 4 \end{array}$ | College years 5 or higher | Voca- <br> tional, technical, business school, or other | Male | Female | White | Black | Hispanic | Other | $\begin{array}{r} \text { Less } \\ \text { than } \\ \$ 2,100 \end{array}$ | $\begin{array}{r} \$ 2,100 \\ \text { to } \\ \$ 4,099 \end{array}$ | $\$ 4,100$ or over |  |  |
| All students Total cost |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | \$2,414 | \$2,607 | \$3,408 | \$2,327 | \$1,009 | \$2,608 | \$2,250 | \$2,448 | \$2,719 | \$2,097 | . 1,476 | \$2,389 | \$2,032 | \$2,894 | \$4,158 | \$1,682 |
| Standard error | 77 | 130 | 170 | 172 | 106 | 120 | 99 | 84 | 310 | 332 | 246 | 130 | 118. | 149 | 163 | 74 |
| Total aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean. | \$1,356 | 1,364 | 1,459 | 1,962 | 661 | 1,465 | 1,264 | 1,301 | 1,812 | 1,361 | 1,428 | 1,837 | 1,265 | 921 | 1,810 | 1,166 |
| Standard error | 80 | 152 | 128 | 240 | 84 | 145 | 86 | 87 | 266 | 278 | 568 | 143 | 151 | 110 | 187 | 82 |
| Net cost |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean. | \$1,058 | 1,243 | 1,948 | 365 | 348 | 1,143 | 985 | 1,147 | 908 | 736 | 48 | 552 | 767 | 1,973 | 2,348 | 516 |
| Standard error | 90 | 168 | 178 | 227 | 110 | 160 | 99 | 99 | 319 | 305 | 496 | 149 | 150 | 162 | 220 | 83 |
| Percent of total cost covered by aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean . . . . . . . . . . . | 37 | 35 | 34 | 40 | 41 | 38 | 36 | 36 | . 50 | 38 | 33 | 45 | 39 | 26 | 34 | 38 |
| Standard error. | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 5 | 5 | 6 | 2 | 2 | 2 | 2 | 1 |
| Students not receiving aid Total cost |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | \$1,949 | \$2,204 | \$2,915 | \$1,473 | \$861 | \$2,247 | \$1,708 | \$2,038 | \$2,052 | \$1,272 | \$1,055 | \$1,681 | \$1,466 | \$2,620 | \$3,763 | \$1,229 |
| Standard error | 95 | 171 | 216 | 175 | 138 | 159 | 115 | 104 | 498 | 367 | 239 | 166 | 130 | 181 | 223 | 80 |
| Total aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean. | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Standard error | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Net cost |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean. | \$1,949 | \$2,204 | \$2,915 | \$1,473 | \$861 | \$2.247 | \$1,708 | \$2,038 | \$2,052 | \$1,272 | \$1,055 | \$1,681 | \$1,466 | \$2,620 | \$3,763 | \$1,229 |
| Standard error | 95 | 171 | 216 | 175 | 138 | 159 | 115 | 1.74 | 498 | 367 | 239 | 166 | 130 | 181 | 223 | 80 |
| Percent of total cost covered by aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean. . . . . . . . . . | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Standard error | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Students receiving aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean.. | \$2,881 | \$3,006 | \$3,911 | \$3,110 | \$1,173 | \$2,954 | \$2,817 | \$2,883 | \$3,073 | \$2,920 | \$2,065 | \$2,938 | \$2,548 | \$3,310 | \$4,524 | \$2,153 |
| Standard error | 118 | 194 | 259 | 278 | 162 | 175 | 160 | 132 | 388 | 522 | 461 | 186 | 189 | 255 | 235 | 123 |
| Total ard |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | \$2,720 | 2,714 | 2,949 | 3,762 | 1,390 | 2,869 | 2,588 | 2,682 | 2,772 | 2,720 | 3,425 | 3,265 | 2,418 | 2,320 | 3,493 | 2,377 |
| Standard error. | 146 | 283 | 206 | 417 | 158 | 260 | 154 | 164 | 346 | 450 | 1252 | 219 | 277 | 246 | 328 | 151 |
| Net cost |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | \$161 | 291 | 962 | -651 | -217 | 85 | 229 | 201 | 301 | 200 | -1360 | -327 | 130 | 991 | 1032 | -225 |
| Standard error.. | 147 | 277 | 266 | 393 | 163 | 260 | 156 | 165 | 389 | 474 | 1,081 | 217 | 261 | 288 | 352 | 142 |
| Percent of total cost covered by aid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean | 74 | 70 | 69 | 76 | 85 | 74 | 74 | 73 | 76 | 76 | 79 | 80 | 74 | 66 | 65 | 78 |
| Standard error... | 1 | 2 | 3 | 3 | 2 | 2 | 2 | 1 | 4 | 5 | 6 | 2 | 2 | 3 | 2 | $1$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table A-6. Persons Receiving Aid and the Percent of Total Costs Covered by Level of Enroliment and Other Social and Demograhic Variables:

| Item | Total | Level of enroliment |  |  |  | Sex |  | Race/Ethnicity |  |  |  | Average monthly family income |  |  | pendent students | Independent students |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | College years 1 to 2 | College years 3 to 4 | College years 5 or higher | Vocational, technical, business school. or other | Male | Female | White | Black | Hispanic | Other | $\begin{array}{r} \text { Less } \\ \text { than } \\ \$ 2,100 \\ \hline \end{array}$ | $\begin{array}{r} \$ 2,100 \\ \text { to } \\ \$ 4,099 \end{array}$ | $\begin{array}{r} \$ 4,100 \\ \text { or more } \end{array}$ |  |  |
|  | 20,140 10,041 | 7,011 3,522 | 4,966 2.458 | 3,925 2,047 | 4,238 2,014 | 9,223 4,709 | 10,917 5,332 | 16,320 7,917 | $\begin{aligned} & 1,828 \\ & 1,194 \end{aligned}$ | 1,198 600 | 794 331 | 6,860 3,860 | 7,203 3,768 | 6,077 2,414 | 5,953 3,084 | 14,186 6,957 |
| Percent of all students with: No costs covered........ | 50 | 50 | 51 | 48 | 52 | 49 | 51 | 51 | 35 | 50 | 58 | 44 | 48 | 60 | 48 | 51 |
| Up to 25 percent of total costs covered | 6 | 7 | 9 | 5 | 2 | 6 | 6 | 6 | 8 | 5 | 3 | 5 | 6 | 8 | 10 | 5 |
| 25 to 50 percent of total costs covered | 8 | 9 | 7 | 8 | 6 | 7 | 8 | 7 | 8 | 8 | 8 | 7 | 8 | 7 | 9 | 7 |
| 51 to 75 percent of total costs covered | 6 | 7 | 9 | 5 | 4 | 7 | 6 | 6 | 7 | 7 | 4 | 6 | 7 | 5 | 9 | - 5 |
| 76 to 100 percent of total costs covered | 12 | 8 | 8 | 14 | 20 | 13 | 11 | 12 | 12 | 10 | 6 | 11 | 14 | 9 | 5 | 15 |
| More than 100 percent of total costs | 18 | 18 | 17 | 20 | 16 | 18 | 18 | 17 | 29 | 20 | 21 | 27 | 16 | 11 | 19 | 18 |

# Appendix B. Overview of the SIPP Program 

## BACKGROUND

The Survey of Income and Program Participation (SIPP) provides a major expansion in the kind and amount of information available to analyze ine economic situation of households and persons in the United States. The informaticn supplied by this survey is expected to provide a better understanding of the level and changes in the level of well-being of the population and of how economic situations are related to the demographic and social characteristics of individuals. The data collected in SIPP will be especially useful in studying Federal transfer programs, estimating program cost and effectiveness, and assessing the effect of proposed changes in program regulations and benefit levels. Analysis of other important national issues such as tax reform, Social Security program costs, and national health insurance can be expanded and refined, based on the information from this survey.

The first interviews in the SIPP took place in October 1983, nearly 8 years after the research and developmental phase, the Income Survey Development Program (ISDP), was initiated by the Department of Health, Education, and Welfare in 1975. Between 1975 and 1980 extensive research was undertaken to design and test new procedures for collecting income and related socioeconomic data on a subannual basis and in a longitudinal framework. Much of the work centered around four experimental field tests that were conducted in collaboration with the Bureau of the Census to examine different concepts, procedures, questionnaires, and recall periods. Two of the tests were restricted to a small number of geographic sites; the other two were nationwide. In the first nationwide test, the 1978 Research Panel, approximately 2,000 households were interviewed. Because of the relatively small number of interviews, controlled experimental comparisons of alternatives were not possible; however, the panel did demonstrate that many new ideas and methods were feasible. It also laid a foundation for the largest and most complex test: the 1979 Research Panel. This panel consisted of a nationally representative sample of 8,200 households and provided a vehicle for feasibility tests and controlled experiments of alternative design features.

In the fall of 1981, virtually all funding for ISDP research and planning of the continuing SIPP program was deleted from the budget of the Social Security Administration. The loss of funding for fiscal year 1982
brought all work on the new survey to a halt. In fiscal year 1983, however, money for initiation of the new survey was allotted in the budget of the Bureau of the Census. Work began almost imm.ediately in preparation for the survey start in October 1983. The design of the questionnaire for the first interview was similar in structure to that used in the 1979 ISDP panel study with two important exceptions. First, the reference period for the questions was extended from 3 months to 4 months in order to reduce the number of interviews and, therefore, lower costs. Second, the questions covering labor force activity were expanded in order to provide estimates that were closer, on a conceptual basis, to those derived from the Current Population Survey (CPS). The design also incorporated a number of other modifications resulting from experience with the 1979 pilot study.

## SURVEY CONTENT

There are three basic elements contained in the overall design of the survey content. The first is a control card that serves several important functions. The control card is used to record basic social and demographic characteristics for each person in the household at the time of the initial interview. Because households are interviewed a total of 8 or 9 times, the card is also used to record changes in characteristics such as age, educational attainment, and marital status and to record the dates when persons enter or leave the household. Finally, during each interview, information on each source of income received and the name of each job or business is transcribed to the card so that this information can be used in the updating process in subsequent interviews.

The second major element of the survey content is the core portion of the questionnaire. The core questions are repeated at each interview and cover labor force activity, the types and amounts of income received during the 4 -month reference period, and participation status in various programs. Some of the important elements of labor force activity are recorded separately for each week of the period. Income recipiency and amounts are recorded on a monthly basis with the exception of amounts of property income (interest, dividends, rent, etc.). Data for these types are recorded as totals for the 4 -month period. The core also contrins questions covering attendance in postsecondary schools,
private health insurance coverage, public or subsidized rental housing, low-income energy assistance, and school breakfast and lunch participation.

The third major element is the various supplements or topical modules that are included during selected household visits. The topical modules cover areas that need not be examined every 4 months. Certain of these topical modules are considered to be so important that they are viewed as an integral part of the overall survey. Other topical modules have more specific and nore limited purposes. The reference periods of the topical modules may vary as well.

Questions on enrollment and related costs and financing were first asked in the ninth wave (interview) of the 1984 panel as part of the School Enrollment and Financing Module. Beginning with the 1985 panel, this module has been administered as part of the fifth wave of each SIPP panel (except for 1989 when only 3 waves of data were collected). In 1986, the School Enrollment and Financing module was asked in the eighth wave as well; the module was not administered in the eighth wave until the 1990 panel. Appendix F shows the School Enrollment and Financing Topical Module as it appeared in the 1990 panel, Wave 5 interview.

## SAMPLE DESIGN

The SIPP sample design for the 1990 panel consists of about 29,000 housing units selected to represent the noninstitutional population of the United States. (See appendix $D$ for more details on the procedures used to select the sample.) About 23,300 of these were occupied and eligible for interview. Each household in the sample was scheduled to be interviewed at 4-month intervals over a period of 2.5 years beginning in February 1990. The reference period for the questions is the 4 -month period preceding the interview. For example, households interviewed in February 1990 were asked questions for the moriths October, November, December, and January. This household was interviewed again in June 1990 for the February through May period. The sample households within a given panel are divided into four subsamples of nearly equal size. These subsamples are called rotation groups and one rotation group is interviewed each month. In general, one cycle of four interviews coverirg the entire sample, using the same questionnaire, is called a wave. This design was chosen because it provides a smooth and steady work load for data collection and processing.

Interviews for the second wave of the 1990 panel were conducted during June, July, August, and September of 1991. In each case, the reference period was the 4 months prior to the interview. Table B-1 shows the reference and interview months for the fifth wave data used in this report. As is seen, most of the reference period covers the spring of 1991.

Table B-1. Interview and Reference Periods for the Fifth Wave of the 1990 SIPP Panel

| Rotation | Interview months | Reference months |
| :--- | :--- | :--- |
| 2 | June1991 | Feb. - May |
| 3 | July1991 | March - June |
| 4 | August1991 | April - July |
| 1 | September 1991 | May - August |

## SURVEY OPERATIONS

Data collection operations are managed through the Census Bureau's 12 permanent regional offices. A staff of interviewers assigned to SIPP conduct interviews by personal visit each month with most interviewing completed during the first 2 weeks of that month. Completed questionnaires are transmitted to the regional offices where they undergo an extensive clerical edit before being entered into the Bureau's SIPP data processing system. Upon entering this processing system the data are subjected to a detailed computer edit. Errors identified in this phase are corrected and computer processing continues.

Two of the major steps of computer processing are the assignment of weights to each sample person and imputation for missing survey responses. The weighting procedures assure that SIPP estimates of the number of persons agree with independent estimates of the population within specified age, race, and sex categories. Tha procedures also assure close correspondence with monthly CPS estimates of households. In almost all cases, a survey nonresponse is assigned a value in the imputation phase of processing. The imputation for missing responses is based on procedures generally referred to as the "hot deck" approach. This approach assigns values for nonresponses from sample persons who did provide responses and who have characteristics similar to those of the nonrespondents.

The longitudinal design of SIPP dictates that all persons 15 years old and over present as household members at the time of the first interview be part of the survey throughout the entire 2.5 year period. To meet this goal, the survey collects information useful in locating persons who move. In addition, field procedures were established that allow for the transfer of sample cases between regional offices. Persons moving within a 100 -mile radius of an original sampling area (a county or group of counties) are followed and continue with the normal personal interviews at 4 -month intervals. Those moving to a new residence that falls outside the 100 -mile radius of any SIPP sampling area are interviewed by telephone. The geographic areas defined by these rules contain more than 95 percent of the U.S. population.

Because most types of analysis using SIPP data will be dependent not on data for individuals but on groups of individuals (households, families, etc.), provisions
were made to interview all "new" persons living with original sample persons (those interviewed in the first wave). These new sample persons entering the survey
through contact with original sample persons are considered as part of the sample only while residing with the original sample person.

## Appendix C. Definitions and Explanations

Population coverage. The estimates in this report are restricted to the civilian, noninstitutional population of the United States and members of the Armed Forces living off post or with their families on post. The estimates exclude group quariers.

Householder. Survey procedures call for listing first the person (or one of the persons) in whose name the home is owned or rented as of the interview date. If the house is owned jointly by a married couple, either the husband or the wife may be listed first, thereby becoming the reference person, or householder, to whom the relationship of other household members is recorded. One person in each household is designated as the "householder." The number of householders, therefore, is equal to the number of households.

Household. A household consists of all the persons who occupy a housing unit. A house, an apartment or other group of rooms, or a single room is regarded as a housing unit when it is occupied or intended for occupancy as separate living quarters; that is, when the occupants do not live and eat with any other persons in the structure and there is direct access from the outside or through a common hall.

For this report, the household composition was determined as of the interview date. A household includes the related family members and all the unrelated persons, if any, such as lodgers, foster children, wards, or employees who share the housing unit. A person living alone in a housing unit, or a group of unrelated persons sharing a housing unit as partners, is also counted as a household. The count of households excludes group quarters. Examples of group quarters include rooming and boarding houses, college dormitories, and convents and monasteries.

Family. A family is a group of two or more persons (one of whom is the householder) related by blood, marriage, or adoption and residing together; all such persons (including related subfamily members) are considered members of one family.

Family household. A family household is a household maintained by a family; any unrelated persons (unrelated subfamily members and/or secondary individuals) who may be residing there are included. The number of family households is equal to the number of families.

The count of family household members differs from the count of family members, however, in that the family household members include all persons living in the household, whereas family members include only the householder and his/her relatives.

Nonfamily household. A nonfamily household is a household maintained by a person living alone or with nonrelatives only.

Race/Ethnicity. The data are collected by race and by ethnicity. For this report, the population is divided into four groups on the basis of race and ethnicity: White, not Hispanic; Black, not Hispanic; "other races," not Hispanic; and Hisparic. The category of "other races" includes both Naiive Americans and Asian/Pacific Islanders who are not of Hispanic origin, as well as any other race except White and Black who are not of Hispanic origin. Hispanic origin was determined on the basis of a question that asked for self-identification of the person's origin or descent. Respondents were asked to select their origin (or the origin of some other household member) from a "flash card" listing ethnic origins. Persons of Hispanic origin, in particular, were those who indicated that their origin was Mexican, Puerto Rican, Cuban, Central or South American, or some other Spanish crigin.

Enrollment. Enrollment includes any postsecondary enrollment in the past 12 months. Enrollment includes both full-time and part-time enrollment.

Level of enrollment. The level of enrollment refers to enrollment in the past 12 months. If a person was enrolled at more than one level in the past year, then the level of enroliment is the grade or level in which the greatest amount of time was spent. "College years" refers to the level of enrollment and not the actual number of years spent in college. For example, college year 1 refers to the freshman year of college. A student who attended college part-time for two years may still be classified as a freshman. Vocational, technical, business, or other postsecondary school are postsecondary institutions which are sometimes referred to as "less than 2 year" institutions.

Dependency status. Students are classified as either dependent or independent students. Students are assigned
dependency status based on several demographic characteristics as opposed to institutional or selfidentification. The definition of independent students is intended to be as close to that of financial aid programs (such as the Pell Grant) as the data allow. However, due to limitations of the data, the definitions are not exact. In this report, students are classified as independent if they are either: married; 24 years of age or older; a veteran; the reference person of the household; or if they have health insurance under their own name.

Financial aid recipiency. The estimate is based on the number of persons who reported receiving any of the 12 categories of educational assistance listed on the questionnaire during the past 12 months. The 12 categories include: 1) GI Bill; 2) other Veterans' Educational Assistance Programs; 3) College Work Study Program; 4) Pell Grant; 5) Supplemental Educational Opportunity Grant; 6) National Direct Student Loan; 7) Guaranteed Student Loan; 8) JTPA training program; 9) employer assistance; 10) fellowship or scholarship; 11) tuition reduction; and 12) anything else other than assistance from relatives and friends.

Some of the financial aid sources had very few recipients. As a result, the 12 sources were collapsed into the following 7 categories for the tabulations in this report:

Pell Grant. This category includes only the Pell Grant; no other categories were combined here.

GI Bill or VEAP. The GI Bill was combined with other Veterans' Educational Assistance Programs. This would include programs such as Survivors and Dependents, Vocational Rehabilitation, and Post-Vietnam Veterans' Assistance.

SEOG or College Work Study. This category includes the Supplemental Educational Opportunity Grant (SEOG) and the College (or Federal) Work Study Program.

Loan. The two loans specified in the questionnaire included here are the National Direct Student Loan (NDSL or Perkins Loan) and the Guaranteed Student Loan (or Stafford Loan).

Employer Assistance or JTPA. Most persons in this category are recipients of financial aid from their employer. Only 8 percent of persons in this category reported receiving educational assistance through the Job Partnership Training Act (JTPA) programs. Employer assistance includes any educational assistance ranging from tuition payments to stipends for living expenses.

Fellowship, scholarship, or tuition reduction. This category combines the single category of fellowships and scholarships with aid from a tuition reduction (or tuition
remission). Fellowships and scholarships include those awarded from the institution attended, the government, or outside organizations such as private corporations, foundations, or community groups.

Other aid. This is a catchall category which includes any other type of educational assistance not previously mentioned EXCLUDING assistance from relatives and friends.

Total Aid. The estimate is the sum of the amounts received from each of the financial aid sources (see appendix $F$ for a copy of the questionnaire). The average total aid is calculated only for those students who have received educational assistance.

Total Cost. The total cost is the sum of three cost components: tuition and fees; books and supplies; and room and board. The cost of room and board is determined only for those students who reported living away from nome while attending school. The average total cost is calculated for all students and includes some students who report having no costs in any one or all of the components. The total cost is computed before financial aid is taken into account.

Net Cost. The net cost equals the total cost minus the total aid. The average net cost is calculated for all postsecondary students.

Percent of Costs Covered. The estimate is equal to the total aid received divided by the total cost. To calculate the mean, all students with more than 100 percent of their costs covered had the estimate topcoded to 100 percent so that the average would not be artificially inflated.

Average monthly family income. The estimate is based on the total amount of income received by all members of the individuals family during the 4 months prior to the interview month, divided by the number of months in which income was received. For persons without a family income (those persons who live alone or with nonrelatives), their personal income for the previous 4 months was used instead.

Symbols. A dash (-) represents zero or a number which rounds to zero; " $B$ " means that the base is too small to show the derived measure (less than 200,000 persons).

Rounding of estimates. Individual numbers are rounded to the nearest thousand without being adjusted to group totals, which are independently rounded. Derived measures are based on unrounded numbers when possible; otherwise, they are based on the rounded numbers.

# Appendix D. Source and Accuracy of the Estimates 

## SOURCE OF DATA

The SIPP universe is the noninstitutionalized resident population living in the United States. This population includes persons living in group quarters, such as dormitories, rooming houses, and religious group dwellings. Not eligible to be in the survey are crew members of merchant vessels, Armed Forces personnel living in military barracks, and institutionalized persons, such as correctional facility inmates and nursing home residents. Also not eligible are, United States citizens residing abroad. Foreign visitors who work or attend school in this country and their families are eligible; all others are not eligible. With the exceptions noted above, field representatives interview eligible persons who are at least 15 years of age at the time of the interview.

The 1990 panel SIPP sample is located in 230 Primary Sampling Units (PSUs) each consisting of a county or a group of contiguous counties. Within these PSUs, we systematically selected expected clusters of two living quarters (LQs) from lists of addresses prepared for the 1980 decennial census to form the bulk of the sample. To account for LQs built within each of the sample areas after the 1980 census, we selected a sample containing clusters of four LQs from permits issued for construction of residential LQs up until shortly before the beginning of the panel.

In jurisdictions that have incomplete addresses or don't issue building permits, we sarnpled small land areas, listed expected clusters of four LQs, and then subsampled. In addition, we selected a sample of LQs from a supplemental frame that included LQs identified as missed in the 1980 census.

The 1990 panel differs from other panels as a result of oversampling for low income households. The panel contains an oversample of Black headed households, Hispanic headed households and female headed family households with no spouse present and living with relatives.

The first interview occurred during February, March, April, or May of 1990. Interviews for approximately one-fourth of the sample took place in each of these months. For the remainder of the panel, interviews for each person occurred every four months. At each interview tife reference period was the 4 months preceding the interview month.

Occupants of about 93 percent of all eligible living quarters participated in the first interview of the panel.

For later interviews, field representatives interviewed only original sample persons (those in Wave 1 sample households and interviewed in Wave 1) and persons living with them. The Bureau automatically designated all first wave noninterviewed households as noninterviews for all subsequent interviews. Field representatives conducted personal interviews in the first, second, and sixth waves only. The remaining interviews were telephone interviews. For personal interviews we followed original sample persons if they moved to a new address, unless the new address was more than 100 miles from a SIPP sample area. If the original sample persons moved farther than 100 miles from a SIPP sample area, we attempted telephone interviews. When original sample persons moved to remote parts of the country and were unreachable by telephone, moved without leaving a forwarding address, or refused the interview, additional noninterviews resulted.

As a part of most waves, we cover subjects that are important to meet SIPP goals and don't require repeated measurement during the panel. The data on these subjects are of particular interest to data users and policy makers. We cover these subjects once during the panel or annually. By collecting data once for the panel or annually, we reduce respondent burden. We call a specific set of questions on a subject a topical module. For this report the topical modules analyzed include questions on Educational Attainment. We implemented them in Wave 5 of the 1990 panel.

Noninterviews. Tabulations in this report were drawn from interviews conducted from June through September 1991. Table D-1 summarizes information on nonresponse for the interview moriths in which we collected the data used to produce this report.

Table D-1. Household Sample Size by Month and Interview Status

| Month |  |  | Eligible <br> Inter- <br> viewed | Non- <br> Non- <br> inter- <br> viewed <br> response <br> rate |
| :---: | ---: | ---: | ---: | ---: |
| (percent) |  |  |  |  |

${ }^{1}$ Due to rounding of all numbers to the nearest 100. there are some inconsistencies. We calculated the percentage using unrounded numbers.

Some respondents do not respond to some of the questions. Therefore, the overall nonresponse rate for some items such as income and money related items is higher than the nonresponse rates in table D-1. For more discussion of nonresponse see the Quality Profile for the Survey of Income and Program Participation, May 1990, by T. Jabine, K. King, and R. Petroni, available from Customer Services, Data Users Services Division, of the U.S. Census Bureau (301-763-6100).

## WEIGHTING PROCEDURE

We derived SIPP person weights in each panel from several stages of weight adjustments. In the first wave, we gave each person a base weight equal to the inverse of his/her probability of selection. For each subsequent interview, the Bureau gave each person a base weight that accounted for following movers.

We applied a factor to each interviewed person's weight to account for the SIPP sample areas not having the same population distribution as the strata they are from.

We applied a noninterview adjustment factor to the weight of every occupant of interviewed households to account for persons in noninterviewed occupied households which were eligible for the sample. (The Bureau treated individual nonresponse within partially interviewed households with imputation. We made no special adjustment for noninterviews in group quarters.)

The Bureau used complex techniques to adjust the weights for nonresponse. For a further explanation of the techniques used, see the Nonresponse Adjustment Methods for Demographic Surveys at the U.S. Bureau of the Census, November 1988, Working paper 8823, by R. Singh and R. Petroni. The success of these techniques in avoiding bias is unknown. An example of successfully avoiding bias is in "Current Nonresponse Research for the Survey of Income and Participation" (paper by Petroni, presented at the Second International Workshop on Household Survey Nonresponse, October 1991).

We performed an additional stage of adjustment to persons' weights to reduce the mean square errors of the survey estimates. We accomplished this by ratio adjusting the sample estimates to agree with monthly Current Population Survey (CPS) type estimates of the civilian (and some military) noninstitutional population of the United States at the national level by demographic characteristics including age, sex, and rase as of the specified date. The Bureau brought CPS estimates by age, sex, and race into agreement with adjusted estimates from the 1980 decennial census. Adjustments to the 1980 decennial census estimates reflect births, deaths, immigration, emigration, and changes in the Armed Forces since 1980. In addition, we controlled SIPP estimates to independent Hispanic controls and
made an adjustment to assign equal weights to husbands and wives within the same household. We implemented all of the above adjustments for each reference month and the interview month.

## ACCURACY OF ESTIMATES

We base SIPP estimates on a sample. The sample estimates may differ somewhat from the values obtained from administering a complete census using the same questionnaire, instructions, and enumerators. The difference occurs because with an estimate based on a sample survey two types of errors are possible: nonsampling and sampling. We can provide estimates of the magnitude of the SIPP sampling error, but this is not true of nonsampling error. The next few sections describe SIPP nonsampling error sources, followed by a discussion of sampling error, its estimation, and its use in data analysis.

Nonsampling Variabillty. We attribute nonsampling errors to many sources, they include:

- inability to obtain information about all cases in the sample,
- definitional difficulties,
- differences in the interpretation of questions,
- inability or unwillingness on the part of the respondents to provide correct information,
- inability to recall information,
- errors made in collection (e.g. recording or coding the data),
- errors made in processing the data,
- errors made in estimating values for missing data,
- biases resulting from the differing recall periods caused by the interviewing pattern used,
- undercoverage.

We used quality control and edit procedures to reduce errors made by respondents, coders and interviewers. More detailed discussions of the existence and control of nonsampling errors in the SIPP are in the SIPP Quality Profile.

Undercoverage in SIPP resulted from missed living quarters and missed persons within sample households. It is known that undercoverage varies with age, race, and sex. Generally, undercoverage is larger for males than for females and larger for Blacks than for Nonblacks. Ratio estimation to independent age-racesex population controls partially corrects for the bias due to survey undercoverage. However, biases exist in the estimates when persons in missed households or
missed persons in interviewed households have characteristics different from those of interviewed persons in the same age-race-sex group. Further, we didn't adjust the independent population controls for undercoverage in the Census.

A common measure of survey coverage is the coverage ratio, the estimated population before ratio
adjustment divided by the independent population control. Table D-2 shows CPS coverage ratios for age-sexrace groups for 1992. The CPS coverage ratios can exhibit some variability from month to month, but these are a typical set of coverage ratios. Other Census Bureau household surveys like the SIPP experience similar coverage.

Table D-2. 1992 CPS Coverage Ratios

| Age | Non-Black |  | Black |  | All persons |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Males | Females | Males | Females | Males | Females |  |
| $0-14$ years. | 0.963 | 0.965 | 0.927 | 0.926 | 0.957 | 0.959 | 0.958 |
| 15 years.. | 0.962 | 0.949 | 0.899 | 0.919 | 0.952 | 0.944 | 0.948 |
| 16 years | 0.969 | 0.936 | 0.923 | 0.907 | 0.962 | 0.932 | 0.947 |
| 17 years | 0.981 | 0.975 | 0.945 | 0.862 | 0.975 | 0.957 | 0.966 |
| 18 years | 0.939 | 0.926 | 0.883 | 0.846 | 0.930 | 0.913 | 0.922 0.853 |
| 19 years | 0.860 | 0.872 | 0.754 | 0.801 | 0.844 0.889 | 0.861 | 0.853 0.901 |
| 20-24 years. | 0.913 | 0.927 | 0.734 | 0.832 | 0.889 | 0.931 | 0.901 0.914 |
| 25-26 years. | 0.927 | 0.940 | 0.688 | 0.877 | 0.897 | 0.941 | 0.914 0.914 |
| 27-29 years. | 0.910 | 0.954 | 0.707 | 0.864 | 0.885 | 0.939 | 0.914 0.905 |
| 30-34 years. . | 0.893 | 0.948 | 0.691 | 0.883 | 0.870 |  | 0.905 0.919 |
| 35-39 years. | 0.910 | 0.949 | 0.763 | 0.899 | 0.895 | 0.942 | 0.919 0.933 |
| 40-44 years. | 0.929 | 0.951 | 0.824 | 0.906 | 0.919 | 0.946 | 0.933 |
| 45-49 years. | 0.956 | 0.966 | 0.903 | 0.956 | 0.951 | 0.951 | 0.958 |
| 50-54 years. | 0.940 | 0.961 | 0.807 | 0.877 | 0.927 | 0.951 | 0.940 |
| 55-59 years. | 0.944 | 0.941 | 0.826 | 0.825 | 0.932 | 0.928 | 0.930 |
| 60-62 years. | 0.965 | 0.956 | 0.792 | 0.850 | 0.948 | 0.944 | 0.946 |
| $63-64$ years. | 0.905 | 0.907 | 0.669 | 0.872 | 0.884 | 0.903 | 0.894 |
| 65-67 years. | 0.935 | 0.979 | 0.783 | 0.875 | 0.921 | 0.969 | 0.947 |
| 68-69 years. | 0.925 | 0.942 | 0.789 | 0.831 | 0.913 | 0.931 | 0.923 |
| 70-74 years. | 0.926 | 0.993 | 0.856 | 1.014 | 0.920 | 0.995 | 0.962 |
| 75-99 years. | 0.977 | 0.989 | 0.764 | 0.912 | 0.961 | 0.983 | 0.975 |
| 15+.... | 0.928 | 0.953 | 0.782 | 0.883 | 0.912 | 0.944 | 0.929 |
| $0+$ | 0.936 | 0.955 | 0.827 | 0.895 | 0.923 | 0.947 | 0.935 |

Comparability with Other Estlmates. Exercise caution when comparing data from this report with data from other SIPP publications or with data from other surveys. Comparability problems are from varying seasonal patterns for many characteristics, different nonsampling errors, and different concepts and procedures. Refer to the SIPP Quality Profile for known differences with data from other sources and further discussion.

Sampling Varlability. Standard errors indicate the magnitude of the sampling error. They also partially measure the effect of some nonsampling errors in response and enumeration, but do not measure any systematic biases in the data. The standard errors mostly measure the variations that occurred by chance because we surveyed a sample rather than the entire population.

## USES AND COMPUTATION OF STANDARD ERRORS

Confidence Intervals. The sample estimate and its standard error enable one to construct confidence intervals, ranges that would include the average result
of all possible samples with a known probability. For example, if we selected all possible samples and surveyed each of these under essentiaily the same conditions and with the same sample design, and if we calculated an estimate and its standard error from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.645 standard errors below the estimate to 1.645 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from 1.960 standard errors below the estimate to 1.960 standard errors above the estimate would include the average result of all possible samples.

The average estimate derived from all possible samples is or is not contained in any particular computed interval.

However, for a particular sample, one can say with a specified confidence that the confidence interval includes the average estimate derived from all possible samples.

Hypothesis Testing. One may also use standard errors for hypothesis testing. Hypothesis testing is a procedure for distinguishing between popuiation characteristics using sample estimates. The most common type of hypothesis tested is 1) the population characteristics are identical versus 2) they are different. One can perform tests at various levels of significance, where a level of significance is the probability of concluding that the characteristics are different when, in fact, they are identical.

Unless noted otherwise, all statements of comparison in the report passed a hypothesis test at the 0.10 level of significance or better. This means that, for differences cited in the report, the estimated absolute difference between parameters is greater than 1.645 times the standard error of the difference.

To perform the most common test, compute the difference $X_{A}-X_{B}$, where $X_{A}$ and $X_{B}$ are sample estimates of the characteristics of interest. A later section explains how to derive an estimate of the standard error of the difference $X_{A}-X_{B}$. Let that standard error be sDIFF. If $X_{A}-X_{B}$ is between -1.645 times $s_{\text {DIFF }}$ and +1.645 times $s_{\text {DIFF }}$, no conclusion about the characteristics is justified at the 10 percent significance level. If, on the other hand, $X_{A}-X_{B}$ is smaller than -1.645 times $\mathrm{s}_{\text {DIFF }}$ or larger than +1.645 times $\mathrm{s}_{\text {DIFF }}$, the observed difference is significant at the 10 percent level. In this event, it is commonly accepted practice to say that the characteristics are different. Of course, sometimes this conclusion will be wrong. When the characteristics are, in fact, th 3 same, there is a 10 percent chance of concluding that they are different.

Note that as we perform more lests, more erroneous significant differences will occur. For example, at the 10-percent significance level, if we perform 100 independent hypothesis tests in which there are no real differences, it is likely that about 10 erroneous differences will occur. Therefore, interpret the significance of any single test cautiously.

## Note Concerning Small Estimates and Small Differ-

 ences. We show summary measures in the report only when the base is 200,000 or greater. Because of the large standard errors involved, there is little chance that estimates will reveal useful information when computed on a base smaller than 200,000 . Also, nonsampling error in one or more of the small number of cases providing ine estimate can cause large relative error in that particular estimate. We show estimated numbers, however, even though the relative standard errors of these numbers are larger than those for the corresponding percentages. We provide smaller estimates primarilyto permit such combinations of the categories as serve each user's needs. Therefore, be careful in the interpretation of small differences since even a small amount of nonsampling error can cause a borderline difference to appear significant or not, thus distorting a seemingly valid hypothesis test.

Standard Error Parameters and Tables and Their Use. Most SIPP estimates have greater standard errors than those obtained through a simple random sample because we sampled clusters of living quarters for the SIPP. To derive standard errors at a moderate cost and applicable to a wide variety of estimates, we made a number of approximations. We grouped estimates with similar standard error behavior and developed two parameters (denoted " $a$ " and " $b$ ") to approximate the standard error behavior of each group of estimates. Because the actual standard error behavior was not identical for all estimates within a group, the standard errors we computed from these parameters provide an indication of the order of magnitude of the standard error for any specific estimate. These " $a$ " and " $b$ " parameters vary by characteristic and by demographic subgroup to which the estimate applies. Use base "a" and " $b$ " parameters found in table D-3 for Wave 51990 panel estimates.

For users who wish further simplification, we also provide general standard errors in tables D-4 and D-5. Note that you need to adjust these standard errors by a factor from table D-3. The standard errors resulting from this simplified approach are less accurate. Methods for using these parameters and tables for computation of standard errors are given in the following sections.

Standard Errors of Estimated Numbers. There are two ways to compute the approximate standard error, sx, of an estimated number shown in this report. The first uses the formula

$$
\begin{equation*}
s_{x}=f s \tag{1}
\end{equation*}
$$

where $f$ is a factor from table $D-3$, and $s$ is the standard error of the estimate obtained by interpolation from table D-4. Alternatively, approximate sx using the formula,

$$
\begin{equation*}
s_{x}=\sqrt{a x^{2}+b x} \tag{2}
\end{equation*}
$$

from which we calculated the standard errors in table $\mathrm{D}-4$. Here x is the size of the estimate and a and b are the parameters in table D-3 associated with the particular type of characteristic. Use of formula 2 will provide more accurate results than the use of formula 1 . When calculating standard errors for numbers from crosstabulations involving different characteristics, use the factor or set of parameters for the characteristic which will give the largest standard error.

Illustration. Suppose the SIPP estimate of the number of students enrolled in postsecondary schools receiving some form of financial aid during the 1990-1991 school year is $10,000,000$. The appropriate " $a$ " and " $b$ " parameters and the " f " factor to use for calculating the standard error for the estimate are found from table D-3 to be:

$$
a=-0.0000312, b=5913, f=0.95
$$

From table D-4,

$$
\mathrm{s}=264,000
$$

Using formula (1), the approximate standard error is

$$
s_{x}=0.95(264,000)=251,000
$$

The 90-percent confidence interval is from 9,587,000 to $10,413,000$. Therefore, a conclusion that the average estimate derived from all possible samples, lies within a range computed in this way would be correct for roughly 90 percent of all samples.
Using formula (2), the approximate standard error is

$$
s_{x}=\sqrt{(-0.0000312)(10,000,000)^{2}+(5913)(10,000,000)}=237000
$$

The 90 -percent confidence interval is from $9,610,000$ to $10,390,000$.

Standard Errors of Estimated Percentages. The reliability of an estimated percentage, computed using sample data for both numerator and denominator, depends on the size of the percentage and its base. When the numerator and denominator of the percentage have different parameters, use the parameter (or appropriate factor) from table D-3 indicated by the numerator.

Calculate the approximate standard error, $\mathrm{s}_{(\mathrm{x}, \mathrm{p})}$, of an estimated percentage $p$ using the formula

$$
\begin{equation*}
s_{(x, p)}=f s \tag{3}
\end{equation*}
$$

where $p$ is the percentage of persons/families/households with a particular characteristic such as the percent of persons owning their own homes.

In this formula, $f$ is the appropriate " $f$ " factor from table D-3, and $s$ is the standard error of the estimate obtained by interpolation from table D-5.
Alternatively, approximate it by the formula:

$$
\begin{equation*}
s_{(x, p)}=\sqrt{\frac{b}{\frac{1}{x}}(p)(100-p)} \tag{4}
\end{equation*}
$$

from which we calculated the standard errors in table D-5. Here x is the total number of persons, families, households, or unrelated individuals in the base of the percentage, $p$ is the percentage ( $0 \leq p \leq 100$ ), and $b$
is the " $b$ " parameter in tables D-3 associated with the characteristic in the numerator of the percentage. Use of this formula will give more accurate results than use of formula (3) above.

Illustration. Suppose the SIPP estimate of the number of high school graduates ages 17 and above enrolled in postsecondary school in 1990-1991 is $20,000,000$. Of these, 25 percent were enrolled in the 3rd and 4th years of college. Using formula (3) with the " $f$ " factor of 0.95 from table D-3, and s from table D-5, the approximate standard error is

$$
\begin{aligned}
\mathrm{s}_{(\mathrm{x}, \mathrm{p})} & =(0.95)(0.78) \\
& =0.74 \text { percent. }
\end{aligned}
$$

Using formula (4) and the " b " parameter of 5913 from table $D-3$, the approximate standard error is

$$
\begin{aligned}
s_{(s, p)} & =\sqrt{\frac{5913}{20,000,000}(25)(100-25)} \\
& =.74 \text { percent }
\end{aligned}
$$

Consequently, the 90 -percent confidence interval is from 23.8 to 26.2 percent.

Standard Error of a Difference. The standard error of a difference between two sample estimates, $x$ and $y$, is approximately equal to

$$
\begin{equation*}
s_{(x-y)}=\sqrt{s_{x}^{2}+s_{y}^{2}-2 r s_{x} s_{y}} \tag{5}
\end{equation*}
$$

where $s_{x}$ and $s_{y}$ are the standard errors of the estimates $x$ and $y$ and $r$ is the correlation coefficient between the characteristics estimated by x and y . The estimates can be numbers, averages, percents, ratios, etc. Underestimates or overestimates of standard error of differences result if the estimated correlation coefficient is overestimated or underestimated, respectively. In this report, we assume $r$ is zero.
Illustration. Suppose we need the difference in the percertage of females enrolled in the first 2 years of college and the percentage of males enrolled in the first 2 years of college. Of the $11,121,000$ females enrolled in post secondary schools, 37 percent were enrolled in the first 2 years of college. Of the $9,439,000$ males enrolled in post secondary schools, 32 percent were enrolied in the first 2 years of college.

Using the appropriate "b" parameter from table D-3 and formula (4), the standard errors of the percentages, for females and males entolled in the first 2 years of college are 1.12 and 1.17 percent respectively.

Assuming that there is no correlation between these two estimates, the standard error of the difference using formula (5) is

$$
s_{(x-y)}=\sqrt{(1.12)^{2}+(1.17)^{2}}=1.62
$$

To test whether the two percentages are significantly different at the 10 percent significance level, compare the difference of 5 percent to the product $1.62 \times 1.645$ $=2.66$ percent. Since the difference is larger than 1.645 times the standard error of the difference, the data shows that the estimates of 37 and 32 percent differ significantly at the 10 -percent level.

Table D-3. SIPP Topical Module Generalized Variance Parameters

| Characteristics | a | b | f |
| :---: | :---: | :---: | :---: |
| 1990 panel, wave 5 |  |  |  |
| All persons | -0.0000312 | 5,913 | 0.95 |
| White | -0.0000405 | 6,553 | 1.00 |
| Black | -0.0001972 | 4,273 | 0.81 |
| Hispanic. | -0.0003048 | 4,273 | 0.81 |
| 1987 panel, wave 5 |  |  |  |
| All persons | -0.0000806 | 10,393 | 1.26 |

## Table D-4. Standard Errors of Estimated Numbers of Persons

(In thousands)

| Size of estimate | Standard error | Size of estimate | Standard error |
| :---: | :---: | :---: | :---: |
| 200. | 36 | 25,000 | 435 |
| 300. | 44 | 30,000 | 483 |
| 500. | 57 | 35,000 | 528 |
| 600. | 63 | 40,000 | 572 |
| 1,000 | 81 | 45,000 | 614 |
| 2,000 | 115 | 50,000 | 655 |
| 3,000 | 142 | 75,000 | 848 |
| 5,000 | 184 | 80,000 | 885 |
| 8,000 | 235 | 90,000 | 958 |
| 10,000 | 264 | 100,000 | 1030 |
| 12,000 | 291 | 120,000 | 1070 |
| 15,000 | 328 | 125,000 | 1205 |
| 18,000 | 362 | 140,000 | 1308 |
| 20,000 | 384 | 150,000 | 1376 |

Table D-5. Standard Errors of Estimated Percentages of Persons

| Base of estimated percentage (thousands) | Estimated perrentages |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\leq 1$ or $\leq 99$ | 2 or 98 | 5 or 95 | 10 or 90 | 25 or 75 | 50 |
| 200............................. . | 1.80 | 2.53 | 3.95 | 5.43 | 7.84 | 9.05 |
|  | 1.47 | 2.07 | 3.22 | 4.43 | 6.40 | 7.39 |
| 500 | 1.14 | 1.60 | 2.50 | 3.43 | 4.96 | 5.72 |
| 600. | 1.04 | 1.46 | 2.28 | 3.14 | 4.53 | 5.23 |
| 1,000 | 0.81 | 1.13 | 1.76 | 2.43 | 3.51 | 4.05 |
| 2,000 | 0.57 | 0.80 | 1.25 | 1.72 | 2.48 | 2.86 |
| 3,000 | 0.47 | 0.65 | 1.02 | 1.40 | 2.02 | 2.34 |
| 5,000 | 0.36 | 0.51 | 0.79 | 1.09 | 1.57 | 1.81 |
| 8,000 | 0.28 | 0.40 | 0.62 | 0.86 | 1.24 | 1.43 |
| 10,000 . . . . . . . . . . . . . . . . . . . . . | 0.25 | 0.36 | 0.56 | 0.77 | 1.11 | 1.28 |
| 12,000 . . . . . . . . . . . . . . . . . . . . | 0.23 | 0.33 | 0.51 | 0.70 | 1.01 | 1.17 |
| 15,000 | 0.21 | 0.29 | 0.46 | 0.63 | 0.91 | 1.05 |
| 18,000 | 0.19 | 0.27 | 0.42 | 0.57 | 0.83 | 0.95 |
| 20,000 | 0.18 | 0.25 | 0.39 | 0.54 | 0.78 | 0.91 |
| 25,000 | 0.16 | 0.23 | 0.35 | 0.49 | 0.70 | 0.81 |
| 30,000 . . . . . . . . . . . . . . . . . . . . . | 0.15 | 0.21 | 0.32 | 0.44 | 0.64 | 0.74 |
| 35,000 . . . . . . . . . . . . . . . . . . . . . | 0.14 | 0.19 | 0.30 | 0.41 | 0.59 | 0.68 |
| 40,000 | 0.13 | 0.18 | 0.28 | 0.38 | 0.55 | 0.64 |
| 45,000. | 0.12 | 0.17 | 0.26 | 0.36 | 0.52 | 0.60 |
| 50.000 | 0.11 | 0.16 | 0.25 | 0.34 | 0.50 | 0.57 |
| 75,000 . . . . . . . . . . . . . . . . . . . . . | 0.09 | 0.13 | 0.20 | 0.28 | 0.40 | 0.47 |
| 80,000 | 0.09 | 0.13 | 0.20 | 0.27 | 0.39 | 0.45 |
| 90,000 . | 0.08 | 0.12 | 0.19 | 0.26 | 0.37 | 0.43 |
| 100,000 | 0.08 | 0.11 | 0.18 | 0.24 | 0.35 | 0.40 |
| 120,000 . . . . . . . . . . . . . . . . . . . . | 0.07 | 0.10 | 0.16 | 0.22 | 0.32 | 0.37 |
| 125,000. | 0.07 | 0.10 | 0.16 | 0.22 | 0.31 | 0.36 |
| 140,000 | 0.07 | 0.10 | 0.15 | 0.21 | 0.30 | 0.34 |
| 150,000 | 0.07 | 0.09 | 0.14 | 0.20 | 0.29 | 0.33 |

## Appendix E. Data Quality

Two principal indicators of the quality of data collected in household surveys are the magnitude of imputed and modified responses, and the accuracy of the responses that are provided. Another source for data quality is through comparisons to administrative estimates. This appendix provides a review of the data quality of the Wave 5 School Enrollment and Financing topical module from the Survey of Income and Program Participation (SIPP). The data are discussed in the context of imputation rates, comparisons to other sources, and overall reasonableness of the data, as well as some of the problems encountered in collecting the data.

## IMPUTATION RATES

Imputed responses refer either to missing responses for specific questions or "items" in the questionnaire, or to responses that were rejected in the editing procedure because they were improbable or inconsistent. Persons may not respond for a variety of reasons, and nonresponse may occur for the entire topical module or only for chosen items.

The estimates shown in this report are produced after all items have been edited and imputed wherever necessary. Missing or inconsistent responses to specific questions are assigned a value in the imputation phase of the data processing operation. The procedure used to assign or impute responses for missing or inconsistent data is referred to as the "hot deck" imputation method. This process assigns item values reported in the survey by respondents to those who do not respond. The respondent from whom the value is taken is called the "donor." Values from donors are assigned by controlling for demographic and labor force data available for both donors and nonrespondents.

Imputation rates for some of the major items in this ieport are shown in table E-1. The imputation rates are calculated by dividing the number of missing responses by the number of persons who should have responded to the item; since skip patterns modify the interview universe for any given question, rates calculated on the entire sample universe would be misleading.

Some items are imputed because a respondent did not respond to the entire module (or wave interview); about 7 percent of those persons eligible for the School Enrollment and Financing module did not respond to any question in the module. (More than half of these

Table E-1. Imputation and Edit Rates for Selected School Enrollment and Financing Items

| Item | Rate percent |
| :---: | :---: |
| Enrollment status ${ }^{1}$ | 7 |
| Level of enrollment | 4 |
| Aid Recipiency ${ }^{1}$ | 31 |
| Costs of schooling ${ }^{2}$ | 29-35 |
| Lived away from home. | 14 |
| Amount of aid received ${ }^{3}$. | 14-65 |

${ }^{1}$ These items have undergone extensive editing and allocation and have not been imputed.
${ }^{2}$ Includes rates for amount of tuition and fees, books and supplies, and room and board.
${ }^{3}$ Includes rates for amounts of each individual aid category.
were nonrespondents for the entire interview.) Despite the presence of the total module nonrespondents, most module questions are answered by most persons; of the 7,810 persons responding "yes" to the first item (the enrollment question), 66 percent had no imputed items in this section, and 87 percent had 2 or fewer imputations.

It should be noted that the basic item of enrollment and the actual yes/no items for recipiency (e.g., did ... receive a Pell Grant) are not part of the hot deck imputation scheme. Instead, these items undergo an extensive edit process which checks information in other places in the questionnaire and previous interviews. As table E-1 shows, about 4 percent of the enrollment level responses were imputed. In general, the rates for the educational financing section are somewhat high. This is because many aid recipients are not imputed, but edited based on information given in other parts of the questionnaire or in a prior interview. Consequently, for many respondents, we know from other data that aid had been received during the past year and what kind it was. This leaves only the actual amount to be imputed resulting in the high levels of imputation shown in table $\mathrm{E}-2$. The imputation rates for costs range from 29 to 35 percent. ${ }^{1}$ It is also important to note that only about 43 percent of all answers of "yes" to the enrollment question were given by a self-respondent. Since this answer determines the subuniverse for the remaining questions, over half of the amounts data is being provided by someone other than the actual subject.

[^19]
## 61

## Table E-2. Comparison of Postsecondary Schooling Costs for Undergraduates between SIPP and Administrative Estimates ${ }^{1}$

| Cost | Administrative estimate | SIPP 1990 wave 5estimates |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Self | Proxy |
| Tuition. | \$3,016 | \$1,876 | \$1,462 | \$2,295 |
| Room and board | 3,545 | 3,340 | 3,288 | 3,331 |
| Books |  | 344 | 303 | 390 |

Represents zero.
'SIPP estimates are only for students enrolled in college years 1 through 4 for comparability to administrative data sources.

## REASONABLENESS OF DATA

Another means of determining data quality is by comparison of the weighted survey estimates to other data, either from elsewhere in the questionnaire, a different survey, or administrative estimates. If editing, imputation and weighting procedures are properly applied, the final weighted data should compare favorably with other known estimates of the same phenomenon.

## Enrollment

The initial question asks persons if they were enrolled in school anytime during the past year. The parenthetical expression instructs the interviewer to tell the respondent to include any regular school such as elementary, high school or college, or any vocational, technical or business school. Clearly, this is a very general question, and should elicit a large number of responses. In fact it does, yielding a weighted estimate of about 34.7 million persons. There is no administrative number which can provide a good basis for comparison. School enrollment is generally determined in a "snapshot" context, that is, as of a certain date what numbers of people were and were not enrolled in school. The October Current Population Survey (CPS), for instance, is the other basic Census tool for measuring school enrollment. Here, the item concerning enrollment is referenced to the interview week. Other surveys conducted by the Department of Education and the National Center for Education Statistics also use a "snapshot" approach in collecting, data. At levels beyond high school, enrollment may not be a year-long activity; people move in and out of the system much more rapidly. Consequently, estimates obtained from the snapshot approach should be lower than those yielded by a question such as the one used in SIPP. The point of closest correspondence should occur at the elementary and high school level, where fall enrollment numbers probably accurately reflect how many persons will be in those levels at any time during the year.

At the combined elementary and secondary level, the 1990 Wave 5 SIPP estimate of 13.0 million persons is about the same as the October CPS estimate of 13.1
million persons. The SIPP estimate is based on the number of persons who were age 15 or above during the summer of 1991 who were enrolled at the elementary and secondary levels at some point during the previous year. The CPS estimate is based on the number of students age 14 and above enrolled at the elementary and secondary levels (in October 1990) and removing from that total the approximate number of students, i.e. about one fourth of 14 year olds, who would not have turned 15 (the age of SIPP eligibility) before the time of the SIPP interview in summer 1991. This adjustment makes the population more comparable between the two surveys.

At the college level, the SIPP estimate of 16.8 million persons is higher than the October 1990 CPS estimate of 13.6 million. Using the Integrated Postsecondary Education Data System (IPEDS), Fall Enrollment Survey, the Department of Education estimated fall 1990 postsecondary enrollment to be 13.9 million. The SIPP estimate is larger than both the CPS and IPEDS estimate which would be expected since SIPP asks about school enrollment for any time within the last year, while the CPS reference period is only the previous week, and IPEDS is referenced in the fall only. Since college enrollment and non-regular schooling is not as likely as elementary and secondary to be year-round, the IPEDS estimate is expected to be lower even though it includes enrollment figures for all post-secondary schooling. The estimate for post-secondary schools other than college is estimated at 4.8 million in Wave 5 of the 1990 panel.

## Educational Costs

The first amount items in the section ask questions regarding the costs of education, including tuition and fees, books and supplies and room and board for persons living away at school. Strictly comparable administrative figures are not available, but estimates for undergraduate college students from IPEDS probably provide the best administrative data. The IPEDS data come from the "Fall Enrollment" and the "Institutional Characteristics" surveys. Estimates of the mean tuition, room and board and books and supplies costs are shown in table E-2.

For the 1990-91 school year (the period most comparable to the SIPP period of reference for this module), the average tuition and fees were estimated to be $\$ 3,016$. The 1990 SIPP Wave 5 estimate for persons in college years 1 through 4 is $\$ 1,876$. The cost of room and board derived from the Department of Education data, was $\$ 3,545$ a year; in SIPP, the estimate is $\$ 3,340$. The estimate of the cost of books is $\$ 344$, and there is no corresponding independent estimate for comparison.

Three contributing factors to the "underestimation" may be: 1) the high proportion of cases requiring imputation; 2) the fact that for many of the cases for
which "direct" data is received, it is taken from a proxy; and 3) greater representation of very shori-term students (with lower costs) in the SIPP data. In fact, as table E2 shows, examination of tuition amounts by self/proxy status reveals that the average amounts reported by proxies (probably parents) is much closer to the derived administrative estimate than is the estimate taken as a self-report (that is, from the student themselves). In addition, the estimates are expected to be lower since Department of Education figures are estimated from institutions as year-round cosis. SIPP averages are the means for each student for the past year; for many students the costs of the past year may include only one semester of tuition, thus lowering the average. These administrative estimates of tuition and fees are also weighted by full-time students only. SIPP estimates do not distinguish between full-time and parttime students.

## Financial Aid Recipiency

The major data in this section are those concerning the receipt of educational financial aid and the amounts received from various sources. Respondents are able to report the receipt of 11 different types of financial aid as well as a twelfth residual "anything else" category. Some of the types of aid for which data is collected correspond closely to known financial aid programs, while others are of a more general nature. Table E-3 shows the comparison of some weighted SIPP estimates, both in terms of recipients and average amounts, to administrative data (where it is available).

With respect to the total number of recipients in specific programs, the general pattern of the data indicate that the SIPP estimates are close to some administrative and college board estimates. (As always, one should remember that these estimates may not be
directly comparable in all cases to the reference period for the SIPP data.) However, some point estimates fall below other estimates, indicating that there is room for improvement. Part of the problem in collecting detailed sources such as these is that respondents may not be able to recall the specific program from which their funds came, especially when the report is given by a proxy. In this regard, the estimate for any specific program may not be very precise, but the overall estimate of all educational financing sources is probably much more comprehensively measured than in any single administrative context. Of course, that is what SIPP is supposed to be able to do--measure the conjoint occurrence of different financial sources.

Examination of the dollar amounts reported by the recipients of these programs continues to show some discrepancies from the administrative and college board estimates (where available). While the mean amounts received for several programs correspond closely to the administrative numbers (note those for the Pell and GSL programs), some SIPP estimates are higher than the available administrative estimates. Unfortunately, for many sources of educational aid, comparative administrative data do not exist; thus it is not possible to determine if the estimates of sources such as "employer assistance" and "tuitior :eductions" are accurate.

The estimates of recipients and amounts for financial aid sources continue to show some variation from other available administrative estimates. The lack of exact knowledge and comparability of any and all external data sources we might find, however, should lead users to show caution in the detailed analysis of any specific kind of aid. Individuals using these data might instead draw their focus in termis of "total packages" of aid and costs; in this respect these data would seem to offer a high degree of reasonableness.

Table E-3. Comparison of Aid Recipients and Amount of Aid Received Between SIPP
and Administrative Estimates

| Source | Recipients ${ }^{1}$ |  |  | Average amount received ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SIPP | Collage board ${ }^{3}$ | Other administrative estimates ${ }^{4}$ | SIPP | College board | Other administrative estimates |
| Pell Grant | 3,047 | 3,300 | 3,405 | \$1,390 | \$1,489 | \$1,449 |
| College Work Study | 617 | 876 | 687 | 1,523 | 940 | 1.059 |
| SEOG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 420 | 678 | 761 | 1036 | 648 | 661 |
| National Direct <br> Student Loan | 868 | 804 | 660 | 2,000 | 1,070 | 1,318 |
| Guaranteed Student Loan | 2,838 | 3,633 | $4,187^{5}$ | 2,870 | 2,709 | 2,804 |

[^20]
## DATA FROM THE NATIONAL POSTSECONDARY STUDENT AID STUDY (NPSAS)

Users who are familiar with the Department of Education's NPSAS data may notice discrepancies between the NPSAS and SIPP estimates. Although these two surveys are both nationally representative samples, the universes differ and as a result estimates may also differ. Although these two surveys reflect two different academic years, 1989-90 for NPSAS and 1990-91 for SIPP, there should be some correspondence. Table E-4 provides an indication of how the populations differ between the two surveys. ${ }^{2}$

Table E-4. Number of Students Enrolled by Level Of Enrollment
(Numbers in thousands)

|  | Level of enrollment |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total | Undergraduate (2 and 4-year institutions) | $\begin{array}{r} \text { Other } \\ \text { under } \\ \text { graduate } \end{array}$ | Graduate |
| SIPP90 | 20,560 | 12,380 | 4,203 | 3,977 |
| Dependent | 6,149 | 5,412 | 560 | 176 |
| Percent. | 30 | 44 | 13 | 4 |
| Independent | 14.410 | 6,967 | 3,642 | 3,801 |
| Percent. | 70 | 56 | 87 | 96 |
| NPSAS89-90. | 18,590 | 14,879 | 1,391 | 2,318 |
| Dependent' | 7,846 | 7,367 | 391 | 87 |
| Percent. | 42 | 50 | 28 | 4 |
| Iridependent | 10,679 | 7,464 | 983 | 2,231 |
| Percent. | 57 | 50 | 71 | 96 |

[^21]In NPSAS, students are characterized by academic level, undergraduate and graduate (identified through institutional records), and by institutional type. For this table, undergraduates were divided into two groups, undergraduates in 2-year and 4-year colleges and those in "less than 2-year" institutions. In SIPP, students are self-identified by actual enrollment level (college years 1 through 6+ and vocational, technical, business, or other type of postsecondary school). These students were classified as follows: 1) college years 1 through 4 as undergraduates in 2-year and 4-year colleges; 2) vocational, business, technical, and other institutions as undergraduates in a less than 2-year institution; and 3) college years 5 and higher as graduate students. Although these categories are not exactly comparable, they do

[^22]provide interesting findings. The SIPP data clearly show a greater enroliment in the "other undergraduate" institutions than does NPSAS. This is most likely due to the ability of SIPP to collect data for those students of the shortest enrollment durations--usually in nontraditional postsecondary institutions. Why would there be more short-term students captured in SIPP? Institutions are ineligible in NPSAS if they offer only correspondence courses; offer only courses or seminars of less than three months duration; or provide only avocational, recreational, or remedial courses. Students in courses of less than 3 months duration and the other types of courses mentioned are very likely to have reported themselves as enrolled in the SIPP survey since the enrollment question is so broad. On a different level, the number of SIPP graduate students may be higher than in NPSAS since students are classified by enrollment level. Fitih-year undergraduates may be included in this rough categorization of graduate students in SIPP, while in NPSAS, students are identified by actual type of program.

Upon further examination, it is clear that the differences in the enrollment numbers may lead to different estimates in average costs for groups of students. For example, the SIPP estimate of tuition and fees for those in other undergraduate institutions is $\$ 759$, far below the NPSAS average of $\$ 4,123 .{ }^{3}$ Again, this underestimate points to the differences in counting students of the shortest enrollment periods. Enroliment in a course for 1 month is likely to be much less in cost t'man a student enrolled for 6 months. The inclusion of nearly 3 million more students may certainly drive down the cost average, if, as suspected, these students are those of very short enrollment durations. Furthermore, table E-4 indicates that these missing students are more likely to be independent students who tend to have lower costs than dependent students (see table 2 of report). These non-traditional students may also be more likely to be considered "less than half-time" students. Although SIPP, does not differentiate between full-time and parttime students, unpublished NPSAS data indicates that tuition and fees drop dramatically depending on attendance status (full-time students average \$3,332; at least half-time, but less than full-time students average $\$ 1,110$; and less than half-time students average $\$ 596$ in tuition and fees).

A comparison of undergraduates in 2-year and 4-year colleges is more difficult to make. The NPSAS data clearly indicate that students enrolled in 2-year colleges have substantially lower tuition and fees (only \$854) than do those undergraduate students in 4-year colleges (\$3,199 for non-PhD-granting schools and \$3,380 for PhD-granting schools). The SIPP estimate cannot reliably estimate the cost for students in 2-year versus

[^23]4 -year institutions as data for type of institution is not available. The SIPP estimates show that undergraduates enrolled in the first 2 years of college are have lower tuition and fees than those in the 3rd and 4th years ( $\$ 1,667 \mathrm{vs} . \$ 2,179$ ) indicating that the inclusion of 2 -year college undergraduates has driven down the number. However, it is impossible to disaggregate the groups to make a true comparison of this level of students.

## SUMMARY

While the educational financing data collected in the 5 th Wave of the 1990 panel of SIPP appears to have a high degree of reasonableness and utility, there are important differences from the other sources of financial aid data of which users should be aware. For example, estimates of the number of recipients and the amounts they receive for specific aid sources show some variability from the available administrative estimates. Caution should, therefore, be exercised in detailed analysis of specific aid sources; however, in terms of "overall" pictures of students, their costs and their sources of aid, the data as a whole appear reasonable. Variation from other data, such as the NPSAS survey, may be a function of the inclusion of a large component of very short-term students in the SIPP data. Without additional variables for disaggregation in the SIPP, however, analytic comparability of universes between the two surveys is not possible.

Several additional points should be kept in mind when using these data: 1) Edits/Imputations The
implementation (in the 1985 Panel) of a more rigorous edit procedure which checks data from both the core and three prior waves to look for the actual report of any of the aid sources identified in the topical module seems to have worked quite well. Nevertheless, this increase in the number of "inferred" recipiencies provides a large base for the number of cases which must then have an amount imputed. This explains imputation rates of around 50 percent for some specific amount sources; 2) Proxy Responses - Probably because of the nature of the subpopulation of concern (i.e., students away at school), proxy response is quite high for the enrollment and financial aid items. This in turn acts to drive up the nonresponse (and imputation) rate, particularly for items which do not have closed-ended response categories, and items which require an amount as a response. Additionally, for items such as tuition and room and board costs, proxy responses seem to be much closer to administrative estimates than those given as selfreports. One possibility is that the proxies (parents) have a better idea of the amounts they may be paying than do the students, many of whom are not responsible for paying the bills. Much of the financial aid, however, may go directly to the institution and thus is never really seen by the respondent, whether self- or proxy-interview; 3) Amounts - In general, the ability of an individual to return a reliable amount (or any amount), even for self-respondents, is less than the ability to return a yes-no or closed-ended response. The simple item non-response rates of amount items versus other types of items demonstrates this point.

## Appendix F. Facsimile of Questionnaire

See following pages for sample of questionnaire.



## ONLINE? or IN LINE

## for

 Census Data?

## STOP WAITING FOR FACTS NEEDED NOW.

Get news and numbers the DAY they're announced. In CENDATA, the Census
Bureau's online system. Keep up to the minute in fast changing fields--
construction and housing
manufactures and agriculture business and population

In an easy-to-use system, find data ranging from county estimates to foreign trade trends. Find indicators of the future before it's the past.

You can access CENDATA through--
DIALOG Information Services or CompuServe
(800)334-2564
(800)848-8199

Or call the Census Bureau on (301) 763-2074 or 763-4100 for more information.


[^0]:    

    * Reproductions supplied by EDRS are the best that can be made

    放

[^1]:    'See the "Methodology Report tor the 1990 National Postsecondary Student Ald Study" for more detail.

[^2]:    ${ }^{2}$ The Current Population Survey shows an estimated 13.6 million persons 17 years and over enrolled in college in October 1990.
    ${ }^{3}$ The proportion of students enrolled in the fifth year of college or higher and in a noncollegiate postsecondary institution are not significantly different.

[^3]:    ${ }^{4}$ The race/ethnicity categories used in this report are: Hispanic; White, not Hispanic; Black, not Hispanic; and, other races, not Hispanic. Thus, references to "White." "Black" sind "other races" throughout this report refer only to the non-Hispanic members of these groups.
    ${ }^{5}$ The proportions of Hispanic and Black students enrolled in noncollegiate schools are not significantly different.
    ${ }^{3}$ The year of college may not correspond directly to the level of enrollment. Although persons erirolled in the 5 th year of college are likely to be enrolled in graduate or professional school, they may also be 5 th year undergraduates.

[^4]:    ${ }^{7}$ It should be noted that this pool may have attained an associater: degree or a vocational or technical school license, diploma, or certificate. Of course, they are still eligible for undergraduate enrollment in a 4 -year college.
    ${ }^{8}$ Further analysis shows that 41.5 percent of not enrolled young adults are reported as child of the reference person; an additional 5.1 percent are some other relative (not spouse) of the reference person. Of the remainder, 42.2 percent are a ieference person or spouse of the reference person and the rest are nonrelatives of the reference person, but some may be related to other household members.

[^5]:    ${ }^{9}$ The proportion of independent students enrolled in college years 1 to 2, college years 5 or higher, and noncollegiate postsecondary schools are not significantly different; the proportion enrolled in college years 3 to 4 is slightly lower than each of the other levels.

[^6]:    ${ }^{10}$ The average value is for all students, including those who have no costs in any one or all of the components.
    ${ }^{11}$ The average cost for noncollegiate schools in SIPP is considerably lower than that reported in the NPSAS. See appendix E for a detailed discussion on the differences between SIPP and NPSAS data.
    ${ }^{12}$ For persons enrolled at the graduate level, room and board costs are significantly lower than those of students in the third and fourth year of college ( $\$ 2.931$ versus $\$ 3.465$ ); however. room and board costs for graduate students are not statistically different from those of students in the first and second year of college ( $\$ 2,931$ versus $\$ 3,203$ ). The cost of room and board does not differ significantly between students in the first 2 years of college and those in the third and fourth year.
    "'Total cost does not differ significantly between White students and students of "other" races; however, Black students have significantly lower total costs than do students of "other" races.

[^7]:    ${ }^{14}$ For example, the maximum Peli Grant award in 199 ! was $\$ 2,300$ according to the Department of Education.

[^8]:    ${ }^{15}$ The proportion of White students receiving a Pell Grant did not differ significantly from that of students of "other" races.
    ${ }^{19}$ The proportion of Hispanic students receiving a loan is not statistically different from the proportion receiving a Pell Grant.

[^9]:    ${ }^{17}$ The proportion of low-income students receiving loans does not differ significantly from those receiving "other" types of aid.
    ${ }^{18}$ Estimates in this analysis are an underestimate of all multiple recipients, since students might receive more than one loan or fellowship, and because we had previously collapsed some categories.

[^10]:    ${ }^{19}$ The groups in which the gross costs did not differ between those with aid and those not receiving aid include: persons enrolled in college years 3 to 4; students of "other" races; dependent students; and students from the highest family income groups.

[^11]:    - Fepresents

[^12]:    ${ }^{20}$ Note that this method assigns a coverage rate of 100 percent to all persons covered ai a level of 100 percent or more. Thus, proportions exceeding 100 percent are not allowed to artificially raise the overall rate of coverage.

[^13]:    ${ }^{21}$ Parameter effects are interpreted in the following way: a positive value indicates that the predicted phenomenon (receiving aid) is more likely when the condition is present, while a negative number means it is less likely. The "average" condition is determined based on the excluded categories from the model. For example, White is the excluded race category in these models. The effect of any other race is then the deviation from the White category.

[^14]:    B Base is less than 200,000 .
    'Based on all students, including those with zero costs in any component.
    ${ }^{2}$ Based only on students who report living away from home.

[^15]:    - Represents zaro.

[^16]:    Represents zero.

[^17]:    iNumbers in thousands.

[^18]:    B Base is less than 200,000 .
    'Based on all students, including those with zero costs in any component.
    ${ }^{2}$ Based only on students who report living away from home.

[^19]:    ${ }^{1}$ These levels are similar to those obtained in previous waves where this module was administered.

[^20]:    ${ }^{1}$ Numbers in thcusands.
    ${ }^{2}$ Reported in current 1990 dollars.
    ${ }^{3}$ Data from the College Board are from "Trends in Students Aid: 1981 to 1991".
    ${ }^{4}$ Data are from the Departnent of Education: "Pell Grant: End of the Year Report," "Updated Tables and Graphs for the FY1991 Guaranteed Student Loan Data Book," and unpublished data scurces.
    ${ }^{5}$ The number of Guaranteed Student Loan recipients is calculated as the number of guaranteed loans divided by 1.15 (the average number of loans per student, as reported by Department of Education).

[^21]:    'Since 65,500 weighted cases were unclassified, NPSAS numbers do not add to total.

[^22]:    ${ }^{3}$ The weighted NPSAS estimates can be found in a technical report from the National center for Education Statistics entitled "Methodology Report for the 1990 National Postsecondary Student Aid Study." The estimates are found in the executive surnmary of the report.

[^23]:    ${ }^{3}$ The NPSAS data on average costs are from unpublished data provided form the National Center for Education Statistics.

