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Abstract: The mastery or ownership of mathematical language is one view of
obtaining competence in mathematics. This view defines a profitable
learning trajectory as one that continually exposes students to the rich
collection of mathematical expressions that are needed to verbalize and write
about mathematical situations and the quantitative relationships in those
situations. The paper describes new steps towards a computerized database of
addition and subtraction word problems that could provide teachers and
students with access to critical natural language terms of and expressions for
mathematical relationships. On the basis of new results from a computer
simulation that is sensitive to slight changes in problem wording, the
suggestion is that a database of word problems that reflects a relative order of
difficulty is not only feasible but essential if researchers in this area are to
increase the practical dissemination of research results. A collection of math
stories sensitive to children's text comprehension skills and mathematical
development is the foundation of an ongoing effort to implement a
knowledge-building environment that can facilitate childrens' discussions of
why one math story is more difficult than another as well as encourage
communities of students to build their own database of stories.
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Introduction

Relating natural language to mathematical language is an important
component of elementary mathematics education. The mediating role of
natural language in expressing everyday problem situations is increasingly
being recognized as a potential focus for both research on children's
mathematical problem solving and new classroom approaches which
encourage children to construct their own solutions (Steffe, Cobb & von
Glaserfeld, 1988). The NCTM Curriculum Standards (1989) empha;,ize the
pedagogical importance of representing and reading mathematics, and both
the Curriculum Standards and the Professional Standards (1991) focus on
encouraging children to write mathematics and particularly to talk about
mathematical aspects of situations. Observing how children make their
thinking about such situations explicit in terms of natural language also has
value for purposes of assessment (Carpenter & Fennema, 1988; Loef, Carey,
Carpenter, & Fennema, 1988). Some kind of verbalization of mathematical
problems enters into all of these activities.

Traditionally, the verbal aspect of mathematics at the elementary level has
been incorporated into curricula as "word problems," which have often
served as a source of children's continuing frustration with mathematics.
The recent emphasis on how children could or do make connections between
natural language and mathematical concepts in discourse, whether they
proceed from a given verbal representation or use a verbal representation to
make precise a problem situation, provides new motivations for a
consideration of why certain linguistic forms of mathematical problem
situations are difficult. Carpenter, Fennema, Peterson, and Carey (1988) note
that most teachers' knowledge of children's thinking is not organized into a
coherent network which distinguishes different types of problem difficulty.
In addressing this fact, the suggestion inherent in this paper is that teachers
would benefit from a computerized database of problems which reflects the
relative difficulty or facilitating effect of phrasing of those problems. In a
related manner, children's linguistic expression of problem situations might
reveal aspects of their compreh,nsion to a teacher who is sensitive to the
competence represented by certain means of expression. In attending to
different types of language and linguistic understanding, the proposed
approach to types of problem difficulty goes beyond the traditional problem
c- issification by semantic structure, considered by some researchers (e.g.,
Cobb, Yackel & Wood, 1988) to be an incomplete form of pedagogical
kncm edge.

The idea of focusing on various cognitive dimensions of word problem
solution rather than simply on problem classification has received support
from interdisciplinary research concerned with, e.g., the recognition of
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semantic relationships (Booth, 1989; Herscovics, 1989; Kaput, 1987; and many
others) and the use of problem-solving strategies (Thompson, 1988; Greeno,
1987) based on understanding as opposed, for example, to superficial "clue-
word" approaches. However, linguistic factors (Cummins, 1991; Lewis &
Mayer, 1987; Stern, 1993 and others) and presentational factors (Davis-Dorsey,
Ross & Morrison, 1991; De Corte, Verschaffel, & De Win, 1985; Staub &
Reusser, 1992) have only recently been recognized as a level of representation
at which misunderstandings can occur. These results give insights into
isolated sources of difficulty, as do informal classroom observations of
children's mathematical discourse. Such approaches highlight the
importance of understanding specific "cognitive bottlenecks" as a critical step
towards designing effective classroom intervention strategies (e.g., Carpenter
& Fennema, 1988; Resnick, 1992).

However, there is as yet no detailed model of children's complete solution
process (that is, beginning with a left-to-right reading of individual sentences)
for all problem types (e.g., Change, Combine, Compare), although there is
ongoing work which begins to address this (Fuson, 1994b; Reusser, 1990;
Weber-Russell, 1994). Most cognitive simulations of word problem solution
(Briars & Larkin, 1984; Cummins, Kintsch, Reusser, & Weimer, 1988; Kintsch
and Greeno, 1985; Okamoto, 1994; Riley & Greeno, 1988) start directly with
artificial propositions. The exception is Reusser's Situational Problem Solver
(SPS) (1990). SPS possesses an elaborate text-processing component to
distinguish the representation of the situation from the representation of the
text, as advocated by Kintsch (1986). SPS is thus the first attempt to simulate
the progressive and incremental process of transformation from text to
situation to equation. In particular, SPS stresses that from a problem solving
(and instructional!) point of view, arriving at a representation of the situation
in a problem should not be a superfluous, but a necessary process. SPS does
not however address static and/or relational language problems, e.g.,
Combine and Compare types. Thus, the role of situational representations in
statically-worded problems (i.e., problems which do not contain significant
action language) is not entirely clear (cf. Stern & Lehrndorfer, 1992).

The simulation and results presented in this paper address the dual need for a
model which starts with the process of reading as well as one which
recognizes the critical role of situational representations in statically worded
texts. Centered around results from this "bottom-up" computer simulation
which is sensitive to changes both in problem wording and presentational
structure (LeBlanc & Russell, 1993), the case is presented that the time is right
to establish a computerized database of arithmetic and subtraction word
problems that includes a multiple number of rewordings for each
"traditional" problem wording. Predictor equations from regression analyses
are used to confirm previous research on the effects of problem wording and
to extend the traditional measures of why one problem is easier or harder
than another. The premise is that a synthesis of research results concerning
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(i) children's developing mathematical competence; (ii) developing
linguistical competence in conjunction with (iii) knowledge of the affects of
problem wording in the form of a database cart provide real-time
instructional suggestions as to the "next best problem to present."

Specific research questions of interest include:

What kinds of natural language used to convey a problem situation have
different effects on the ability to conceptualize the problem in terms of
correct mathematical relationships? and

Assuming that problem sequencing is important in order to encourage
progress without making jumps for which the student is not ready, does
sequencing word problems (for example, in the form of a database) suggest
a more profitably learning trajectory for students?

The paper proceeds as follows. After a brief introduction to the computer
simuiation, empirical results are presented which show how the simulation
defines word problem solving difficulty as a function of memory load and
text integration inferences. Three traditional word problem types are then
reviewed, including examples which show multiple ways to reword those
types of problems. Where possible, empirical studies, including results from
the computer simulation, confirm and/or suggest a relative order of difficulty
between multiple rewordings of problems.

The Computer Model

The current computer simulation comprehends arithmetic word problems
written in English in a word-by-word, sentence-by-sentence, "bottom-up"
fashion. The simulation is composed of Iwo components: EDUCE and
SELAH. EDUCE is an expectation-driven parser adapted from the work of
Schank and Riesbeck (1981) and developed according to principles found to be
distinct for word problem solving (Burns, 1993; LeBlanc and Russell, 1989).
EDUCE handles a number of language features inherent in word problems,
including: (i) quantities (e.g., 3, three); (ii) noun compounds (e.g., soda cans);
(iii) pronominal reference (e.g., she); (iv) time sequence (e.g., then, in the
beginning) (v) set partitions (e.g., [by ownership: "Dick and Jane have "], [by
type of object: "8 cats and dogs"]); (vi) ellipsis (e.g., "Ed has 3 cans. He found 2
more." That is, 2 more cans) and (vii) reference to previous sets (e.g., 4 of
them). SELAH is a text integration component which accepts EDUCE's
canonical representations of individual sentences and constructs a situational
interpretation of the problem based on explicit conceptual actions in the text
or direct or implicit references between sets (LeBlanc, 1991). While building a
"situation model," SELAH instantiates an arithmetic action and later a
counting strategy to solve the problem.

5
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The simulation is currently implemented as a "bottom-up" problem solver.
SELAH completely determines the role of each sentence after it is read by
EDUCE and then the entire reading and text integration process continues to
the next sentence. Bottom-up processing is opposed to a more global, expert-
like, "top-down" strategy that potentially involves an instantiated schema in
memory for each particular type of problem and/or an associated plan to look
for quantities which can fill slots in that schema. Although SELAH has been
designed so that it could function in a more expert-like top-down fashion, the
focus of the current implementation is a model of the young reader or, at
least, a novice word problem solver. At this stage, the simulation is not a
developmental model in the sense of Briars and Larkin (1984), Riley et al.
(1988) and Okamoto (1994). That is, in the current implementation, SELAH
does not alternate between varying levels of expertise. More specifically, the
focus is to model the necessary text comprehension and logico-mathematical
requirements of problem solution. Because SELAH solves all of the problems
in the Riley et al. (1988) benchmark set, it must exhibit expert-like capabilities
(e.g., performing a relatively large number of inferences) on some problems
but only rudimentary capabilities on the easiest problems. For example, some
problems involve higher memory loads than other problems. While it is
possible to set a limit on the number of concepts which can be stored in
working memory (cf. Fletcher, 1986), th.a simulation currently solves each
problem with an unlimited memory capacity. One theoretical interest is the
total demand on memory that each problem requires when read in a bottom-
up fashion. In short, EDUCE and SELAH simulate a problem solver who
reads each sentence only once and attempts to maintain the sets and their
relationships in memory until deciding on an appropriate arithmetic action
which can lead to a solution.1

A unique feature of the simulation is that it keeps track of (i) the number of
text integration inferences that are required and (ii) the load on working
memory while performing text integration across sentences. The
fundamental hypothesis of the simulation is that children's ability to follow-
up on explicit set references (or infer such references) is a crucial step towards
recognizing the conditions that make an arithmetic operation appropriate for
a given situation. The empirical results present new measures of text
comprehension which determine why a particular word problem ...'ay be
difficult, especially for young readers.

1 The current implementation of SELAH does not simulate solutions which use manipulatives
such as blocks on the table (cf. the CHIPS model of Briars & Larkin, 1984). In a sense, children
who use manipulatives are closer to a strict definition of bottom-up problem solving; that is, for
each sentence that is read the blocks are moved. The focus of SELAH is to model the total text
comprehension requirements that novices experience as they solve these problems, including the
cognitive demands of remembering previous sets rather than off-loading those requirements by
depending on physical aids.
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Example of the Simulation Reading and Solving a Problem (see Appendix)

A detailed example of how the parser, EDUCE, is sensitive to changes in
problem wording and how SELAH builds a situational representation and
solves a problem is given in the Appendix.

Summary of Experimental Results

In a series of exploratory regression analyses, children's probability of solution
on a benchmark set of problems from Riley et al. (1983, 1988) were correlated
with the monitored performance of the simulation on those same problems.
Global measures of text integration and local sentence-level variables which
account for a significance proportion of the variance in children's probability
of solution were isolated. (A thorough presentation of the experimental
method and results are beyond the scope of this paper and would detract from
the focus on problem rewording. The interested reader is directed to LeBlanc
and Russell (1993) for an abbreviated view and/or LeBlanc (1993) for a
complete discussion).

One significant result emerging from the experiments deserves mention
here. A combined measure of the number of concepts to remember and the
number of inferences to make while remembering those concepts is a
consistent predictor of children's problem solving success (for all grades K
through 3, the variance accounted for (R2) is at least 50%, p<.001). If one
considers a child's total processing space as fixat (as suggested by Case, 1982), a
word problem that requires a relatively large number of concepts to be held in
memory also limits the resources that can be devoted to executing basic
operations, including the making of inferences. In the context of arithmetic
word problems, the inferences necessary for text integration are critical. An
ability to arrive at a correct arithmetic operator is directly dependent on
establishing the relationships between sets, which in turn is dependent on an
integrated representation of the text. Unlike narrative texts, word problems
tend to be very brief and consecutive sentences contain limited degrees of
overlap (cf. Haviland & Clark, 1974). Children who are unable to make the
inferences which lead to "mathematical connections" are confronted with
independent sets in memory and must resort to ad hoc strategies (e.g., a
keyword or first-number-given strategy) as confirmed in the literature
(Cummins et al., 1988; De Corte & Verschaffel, 1985; and others).

The empirical results suggest that children's difficulties with arithmetic word
problems are due in part to an inability to make text integration inferences,
especially when a relatively high number of concepts occupy memory. The
implications for instruction are two-fold. First, the processes of text
comprehension and mathematics are tightly couple:I in arithmetic word

"-
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problem solutions; however, there are fine-grained methods of altering a
problem's probability of solution in each area. Because making
"mathematical connections" is so critical, these results suggests that
rewording problems in ways which imply or even explicitly state the
relationships between sets is a critical step towards helping those students
who can not yet make the necessary inferences, as recently shown by Davis-
Dorsey et al. (1991) and others. Children are often expected to make complex
inferences required by sparsely worded problems while they are just
beginning to read. The second educational implication, related to the first, is
that a more fine-grained classification of word problems is emerging.

Toward a Database of Word Problems

In conjunction with developmental theories of children's addition and
subtraction competencies (Fuson, 1994b; Okamoto, 1992), a number of task
characteristics individually and in combination have been shown to affect the
solution probability of arithmetic word problems:

semantic structure; e.g., change problems are generally easier than compare
problems (Riley, Greeno & Heller, 1983; Carpenter, 1985; De Corte,
Verschaffel & Pauwels, 1990; and others)

misunderstandings of quantification or reference; e.g., "some" is an
adjective like "red", or "altogether" means each (Cummins, Kintsch,
Reusser, & Weimer, 1988)

complex relational phrases; e.g., "more than" and "less than" (Stern, 1993;
Hudson, 1983 and others)

"inconsistent" language; e.g., problem says "less" but requires addition
(Lewis & Mayer, 1987 and others)

qualifying dependencies; supersets are partitioned based on ownership (Jim,
Sally, Jim and Sally), adjectives (e.g., big, small, big and small), arguments
(e.g., boys, girls, children), and location (on the table, on the shelf, in the
room) (Nesher, 1982)

structural format; sequence of the given numbers: problems start with the
smaller vs. the larger number (Verschaffel & De Corte, 1990); extraneous
information (Searle, Lorton & Suppes, 1974); location of the unknown:
e.g., unknown is the initial set (Hiebert, 1982)

general context and affective factors; e.g., use of favorite objects and the
names of friends (Davis-Dorsey, Ross & Morrison, 1992; cf. McLeod, 1988)

7



AERA-94

presentational structure; time sequence: sentences are not in chronological
order; narrative focus: protagonist is not always in actor role; related co-
actors:, one person is referred to in terms of her family relationship to the
other person (Staub & Reusser, 1992)

text integration; absence of potentially helpful explicit set reference
language;: e.g., "of them", "more", "the rest" (De Corte, Verschaffel, &
DeWin, 1985; and others); integrated propositions in memory (O'Brien,
1987; Trabasso & Sperry, 1985; van den Broek, 1988); importance of short-
term memory as a bottleneck in the comprehension process (Cooney &
Swanson, 1990; Fletcher, 1986; LeBlanc, 1993).

The next sections introduce example problem types where the presence or
absence of specific task characteristics influence solution probability. Because
the simulation is sensitive to slight changes in problem wording, the
monitored performance of the simulation for a particular rewording can be
entered into the predictor equations that were derived from the regression
analyses. Other empirical studies are cited which show a relative order of
difficulty between two problems and the predictor equations are used to
confirm the empirical results and/or predict new effects of a task characteristic
on the probability of solution.

Making Static Non-Relational Problems Easier

The following problem is typical of a class of problems which do not contain
significant actions (thus the term, static) and do not involve relational
expressions such as "more than" (thus the term, non-relational). (Riley et al.
(1988) refer to this particular problem as Combine 5 - subset unknown and
Fuson (1994a) refers to it as Put Together - unknown part.)

a tans
many soda c

Problem 1- Traditional (Combine 5) Wording

David and Kath ca

. : . .

In this problem, the first sentence describes a superset with a known amount.
A subset with a known quantity is then described, followed by a question
requesting the amount of the other subset.

This problem has received considerable attention in the literature, mostly due
to its level of difficulty. Considering all eighteen problems in Riley's (1988)
benchmark set, this problem, on average, is the third most difficult problem.
Children's success rates across the first four grades in the Riley et al. (1983,
1988) studies reflect the difficulty: 22%-K, 33%-1st, 55%-2nd and 75%-3rd.

J
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These relatively low probabilities in even the higher grades are confirmed
elsewhere (Davis-Dorsey et al., 1991; De Corte, Verschaffel et al., 1985).

There are two potential Le.wordings which might help those students who are
not able to solve this type of problem: (i) the use of language to facilitate text
integration between sentences and thereby highlighting the relationship
between quantities (e.g., of them, the rest), see Problem 2 and (ii) the same
changes in (i) along with the removal of the conjunction (and) and the
removal of the word altogether , see Problem 3.

The first potential alternative (Problem 2) to the "traditional" wording
(Problem 1) is to include words which facilitate the process of text integration
by highlighting the relationship between quantities.

altogether. David has 5 of them.David and Kathy have
The rest of them are Kat i sodaicans does Kathy have?

Problem 2 - "altogether" & "of them" Rewording of Combine 5

When EDUCE parses the second sentence of Problem 2, the phrase "of them"
in the second sentence generates an explicit reference to a previously
mentioned set, i.e., an explicit reference to David and Kathy's set of 8 (see the
Appendix for a complete discussion of how the simulation handles this
problem). This explicit reference identifies that David's 5 are part of the
previously mentioned set of eight. In other words, EDUCE is sensitive to the
"Mathematics embedded in the natural language." On the other hand, in the
second sentence of Problem l's traditional wording ("David has 5 soda cans"),
no reference to the previous set of eight is made in the text. Thus, EDUCE's
representation of the second sentence of Problem 1. does not contain an
explicit link back to the first sentence. When performing text integration,
SELAH must make an inference to establish that David's five cans are part-of
David and Kathy's original set of eight cans, as opposed to five totally
unrelated cans.

In addition, the phrase, "The rest of them" in the third sentence of Problem 2
marks Kathy's set as part of th:: eight soda cans that are left as the result of a
previous separation. In the traditional (Problem 1) wording, no reference is
made to Kathy's set so SELAH must infer that Kathy's cans are part of the set
of eight as well as those remainin after se aratin out the cans belon in to
David.

De Corte, Verschaffel et al. (1985) and others have provided empirical support
that the reworded version significantly increases children's solution
probability. In line with these results, the simulation predicts that including
the phrases "of them" and "the rest" wil! increase solution probability. The
average memory loads for these two problems are quite similar although the
simulation performs three fewer inferences on the reworded version.
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Table 1 compares first and second grade childrens' success on both the
traditional and reworded versions as reported by De Corte, Verschaffel et al.
(1985) and predicted by the simulation. As might be expected, the simulation's
predictor equation for first grade is more sensitive to a change in the number
of inferences than a later grade, although for both grades (1st and 2nd), the
simulation predicts a greater increase in solution probability (from the
traditional to the reworded version) than found by De Corte et al.

Table 1

Predicted and observed 1st and 2nd grade probabilities
for versions Problem I & 2

Problem
Wording (grade)

Simulation's
Prediction

De Corte
Data

Traditional (1st)
Problem 1

0.28 0.43

"altogether" &
"of them" (1st)

Problem 2
0.59 0.57

Traditional (2nd)
Problem 1

0.55 0.71

"altogether"" &
"of them" (2nd)

Problem 2
0.81 0.83

Another potential rewording (see Problem 3) involves the use of the phrases
"of them" and "the rest" like Problem 2, yet the conjunction ("and") and the
word "altogether" in the first sentence have been removed.

.1:On

Problem 3 - No "and/altogether" Rewording of Combine 5

Cummins (1991) used this version in her studies of the factors that influence
childrens' interpretations of arithmetic word problems. According to
Cummins, the critical difference between this rewording and the other
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rewording (Problem 2) is the absence of the conjunction in the first sentence
(the removal of "altogether" is considered secondary). A conjunction of
owners (David and Kathy) is often misinterpreted by young children as
meaning each. Thus, in a sentence such as:

David and Kathy have 8 soda cans altogether.

Many children misinterpret this to mean: "David has 8 and Kathy has 8."
Such a misunderstanding would lead children to answer "8" when asked
how many Kathy has. Cummins validates her hypothesis with results from a
computer simulation, childrens' recall protocols (Cummins et al., 1988) and
the classification of solution error types (Cummins, 1991). In the latter study,
children were found to commit given-number errors (i.e., the answer to the
traditional wording is "8," a number given in the problem) on 46% of the
incorrect response (see De Corte, Verschaffel et al., (1985) for similar results).

Table 2 compares first grade children's success on both the traditional and
reworded versions as reported by Cummins (1991) and De Corte, Verschaffel
et al. (1985) and predicted by the simulation.

Table 2
Predicted and observed 1st grade probabilities

for reworded versions of Problem 1 (Combine 5)

Problem
Wording

Simulation's
Prediction

De Corte
Data

Cummins
Data

Traditional
Problem 1

0.28 0.43 0.30

"altogether" &
"of them"
Problem 2

0.59 0.57 --

no "and"
no "altogether"

Problem 3
0.75 0.85

The simulation offers an information processing perspective as to why many
children use the wrong operation in their solution (i.e., they add 8 and 3
rather than subtracting 3 from 8). According to the simulation, the critical
advantage of Problem 3 is the removal of the word "altogether." In the
simulation, the parser performs three tasks upon reading the word altogether:
(i) partition the current set, although the qualifier which causes the partition
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(e.g., different owners, different colors) is currently unknown; (ii) attempt to
determine the qualifying dependency that partitions the set; and (iii)
instantiate the arithmetic action Join.2 In the traditional wording, after the
first sentence is read, the simulation has the following representation in
memory: (David & Kathy's 8 soda cans, JOIN). While the "sets to join" are
still unknown, the critical point is that the Join action has been activated.
Upon reading the second sentence, the simulation infers that David's 5 are
part of the previous set of 8. In order to construct David's 5 from the set of 8
the arithmetic action of Separating-From is needed. Thus, as the simulation
reads the traditional wording of Problem 1, the Join action must be
suppressed in favor of the Separating-From action. The simulation suggests
that young children may not be able to suppress previously activated
information, thus they remain with the initial Join activation. Given the
Cummins (1991) reworded version without the presence of altogether in the
initial sentence, the simulation is not required to suppress an initial
activation of Join.

Making Significant Action Language Problems Harder

In addition to being sensitive to wording changes which make problems
easier, the simulation also confirms empirical results for rewordings which
cause problems to be more difficult, for example, altering the time sequence of
problems containing significant action language. (Riley et al. (1988) refer to
significant action ?roblems as Change Join and Change Separate problems
and Fuson (1994a) refers to them as Change Add To and Change Take From.)

As shown by Staub and Reusser (1992), altering the time sequence of a Change
problem such that the sentences are not in s',..rict chronological order makes
the problem more difficult. Problem 4 uses the traditional wording of a
Change 1 (Change Add Tc:' problem:

As shown in Problem 5, a change to the presentational structure causes the
first sentence to refer to the transfer of possession action and the second
sentence to refer to the initial set that existed prior to the action:

ayeAle*lap.arbles. Yesterday Alexhay

Problem 5 - Altered Time Sequence of Change 1

2 In the simulation, instantiating an arithmetic action of Join is not analogous to picking the
arithmetic operator of addition. The Join action simply means that the current set is
partitioned and can be formed by joining two other (perhaps as yet unmentioned) sets.

12



A critical difference between the traditional wording and the time-altered
version is explained through the simulation when it solves these two
problems. In the first sentence of the traditional wording (Problem 4), Alex is
understood to possess five marbles and the simulation creates a set of five for
Alex. The second sentence is understood to be a transfer to Alex, thus the
three that are transferred are JOINed to his previous five as described by the
"transfer-in" situation in the first two sentences. The JOIN action is explicit in
the text and subsequent situational representation and need not be inferred.

In the time-altered version (Problem 5), the transfer of three to Alex occurs in
the first sentence. Because Alex does not previously have any in his
possession, the program simulates the transfer as resulting in Alex's set of 3
today. The second sentence indicates that Alex had 5 yesterday and the
simulation makes another set for Alex with this amount. Since the program
is simulating bottom-up, sentence-by-sentence reading, it does not "rerun"
the first two sentences over in a chronological fashion. After interpreting the
third sentence to mean a request for the number of marbles that Alex has
now, the simulation infers that a difference in time differentiates the three
sets so it can JOIN Alex's marbles-today and Alex's marbles-yesterday. In
short, when the simulation comprehends the time-altered problem, the
transfer of 3 from Bethany to Alex in the first sentence does not instantiate a
JOIN action. That action must be inferred based on the qualifying dependency
of time (today, yesterday, now) at the end of the problem.

Staub and Reusser (1992) have clearly shown that the time-altered vert;ion of
Change 1 is more difficult to solve than the traditional version. Because the
simulation is sensitive to the number of inferences that are required in each
of these versions, the predictor equations verify their results. Table 3 presents
children's solution probability with the traditional wording (Riley & Greeno,
1988), children's solution probability with the time-altered wording (Staub &
Reusser, 1992) and the simulation's predicted solution probabilities.

Table 3
Predicted and observed 1st grade

probability of solutions for Change 1

Problem
Wording

Simulation's
Prediction

Staub
Data

Riley
Data

Traditional
Problem 4

0.90 1.00

Time-Altered
Problem 5

0.70 0.63 --
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As expected, the simulation closely predicts the solution probability for the
traditional wording.2 In addition, the simulation does predict a decrease in
solution probability (70% success rate) but not as much of a decrease as Staub
and Reusser found (63%). One possible reason may be that some children in
the Staub study are confused by the difference between today and now,
whereas the simulation is not. If this were the case, a number of children
would be expected to give the answer of three (the number Alex had today).
Staub reports, however, that only a small percentage of children who get it
wrong give this answer (personal communication). Another possible reason
from the cognitive simulation perspective is that one or both of the
inferences required in the time-alteration version may be very difficult
inferences for children to make. For example, the inference that marks the
set [Alex has ? now] as the superset would appear to be a complex one; i.e., the
word "now" is the primary clue that the sets should be distinguished by time.
Distinguishing superset and subsets by time is in fact a more abstract type of
the more difficult Combine (Put Together) problems, where sets are typically
distinguished by ownership (John has, Mary has, John and Mary have) or
other features such as color (red marbles, blue marbles, red and blue marbles).
Because the simulation counts all inferences with the same weight (i.e., +1),
the simulation may be underestimating the difficulty of certain types of
inferences, such as those due to semantic character (e.g., modality, degree of
abstraction of objects and relationships). This is one indication that the types
of inferences may be at least as important as, if not more important than the
number of inferences.

Making Static Relational Problems Easier

Static (no significant actions) relational (comparative language) problems are
the most difficult addition and subtraction problems, as convincingly
confirmed in empirical tests of childrens' solutions and recall protocols
(Cummins, 1991; Fuson, 1992; Lewis & Mayer, 1987; Stern, 1993), eye-
movement experiments (Hegarty, Mayer & Green, 1992; Verschaffel, De Corte
& Pauwels, 1992) and studies of childrens' use of relational terms in the home
(Walkerdine, 1990). Problem 6 is typical of this class of problems, commonly
referred to as Compare problems.

2 The simulation is expected to closely predict the solution probabilities on the traditional
wordings because the predictor equations were derived from childrens' solution probabilities
when they solved problems with the traditional wordings. Note, however, that the equations
are the result of an analysis using all three types of semantic structure, not just Change
problems.

;5
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Jatob has 8 soda cats. Chtissy has 2 soda cans
y soda cans does > .acol i sr as ss. ?

Problem 6 - Traditional Wording of Compare 1

In Problem 6 (a difference set unknown problem), the cardinalities of two
disjoint sets are compared. The question requests the difference between the
sets with a focus on the larger set, i.e., "how many more?" One possibility for
making the traditional wording of Problem 6 easier is to replace the static
relational language (e.g., "more than") with action language which describes a
hypothetical act of making two sets equal (Carpenter, Hiebert & Moser, 1981
and others). With this "equalize" language, the static relational language (e.g.,
"how many more than") in the traditional wording of Problem 6 can be
replaced with action language which describes a hypothetical act of making
the two sets equal (e.g., "how many does one need to find to have as many as
the other"), as shown in Problem 7.

Jacob has 2 soda cans. Chrissy has 8 soda pans.
How many soda cans does Jacob need to find

to have as many asChrissy?
Problem 7 - Equalize Rewording for Compare I

For all grade levels,. the simulation predicts that the Equalize version will
improve solution probability, especially for the youngest grades, due largely to
the fact that the Equalize version provides an explicit action to Join ("need to
find") and an explicit reference to the result of that Join ("as many as
Chrissy") On the other hand, the simulation must make these two inferences
when solving the situationally void traditional wording. Table 4 compares
the solution probabilities of the traditional Problem 6 as found by Riley et id.
(1988), the Equalize probabilities as found by Carpenter et al. (1981), as well as
the simulation's predicted solution probabilities of the traditional and
Equalize rewording (Problem 7).

Table 4
Comparison of predicted and observed Compare 1
probabilities and the Equalize version for 1st Grade

Problem
Wording

Simulation's
Prediction

Carpenter
Data

Riley
Data

Traditional
Problem 6

0.48 -- 0.28

Equalize
Problem 7

0.90 0.91 --
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Future Work

At the beginning of this paper, the question was asked:

D::.,:::g1::0:::iiiikiiiitiiiiiiiit ti6:bl6iigixfii:,:.::f,::.:, :: :.i :.; N

suggest a more profitably learning.trajectory for students?

Answer #1: No, if the sequencing leads students toward easier problems and
allows them to avoid the difficult problems. In fact, if sequencing in the form
of a database is to have any merit, it must expose students to problems that
are more difficult than those found in standard textbooks in the United
States, as argued by Fuson (1994a). Sequencing must specifically challenge
students to deal with complexity in situational descriptions in text of the kind
emphasized in algebra instruction (Thompson, 1993).

Answer #2: Yes, if the sequencing leads students to participate in community
discussions about why some problems are more difficult than others.

Answer #2 is the motivation of our current work.3 While sequencing
problems at levels of detail beyond semantic structure has advantages for the
development of questions for text books and achievement tests, the
immediate concern is to combine the wealth of linguistical, mathematical,
and developmental knowledge with tools which both consolidate research
results for classroom teachers and encourage student discussions abut and
ownership of mathematical language. We believe this is the type of software
support that can "foster efficient inquiry" in the classroom (Kaput, 1992). For
example, students (and teachers!) could benefit from an environment which
encourages them to:

(1) rank order a set of problems according to predicted levels of difficulty
(2) empirically verify within their own classroom the rank order of difficulty
(3) compare the predictions in (1) with the results of (2) and discuss
(4) compare the results of (2) with an "expert" database and discuss
(5) write their own math stories which include the "difficult" language
(6) create their own publicly available "math text" to share on the network

3 In a second grade class at Merrymount Elementary School in Quincy, Massachusetts, we are
engaging students in mathematical discourse by allowing them to rank-order word problems
according to both their own predicted and in-class-verified orders of difficulty.
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From a software engineering perspective, the construction of a working
database of problems is not dependent on the continued development of the
simulation (no small task!), although an "expert" reader will be a necessary
component for an environment which allows teachers and students to add
their own problems to a database, as hinted at in (5) and (6) above.

If the mastery or ownership of mathematical language is a valid view of
target competence (and obviously from the above, I believe it then a
profitable learning trajectory is getting students to a point where they can
verbalize and write about mathematical situations and the relationships in
those situations. A database of problems would appear to be the next logical
(perhaps essential?) step. What do you think?4

4 If you don't catch me in New Orleans, I'm always on-line: Mark_LeBlanc@wheatonMA.edu

17
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Appendix

Example Simulation of EDUCE and SELAH
Solving a Static-NonRelational (Combine 5) Problem

The aim of this computer simulation is not to translate directly from the
problem statement into mathematical notation (commonly referred to as a
problem model), but rather to make precise the tacit steps and processes
which mediate a translation. Starting from the beginning, that is, the input to
the simulation is identical to that which children see, the simulation "reads"
and represents each word and sentence in the problem. Arithmetic actions
are selected on the basis of the explicit or implied situational relationship
between integrated sets, and final solution processes simulate the tasks of
arriving at and carrying out an appropriate counting strategy. Reading
comprehension overlaps with mathematical comprehension.

The implementation of these steps in a computer model reflects a particular
text comprehension bias that deserves mention. Reading word problems
requires a set of domain specific text comprehension strategies that are not
utilized in the process of reading other types of texts, as pointed out by
Kintsch and Greeno (1985). For example, in natural language, numbers
function as predicates of objects whereas in word problems, quantified noun
groups must be abstracted to the point where the numbers are the objects of
interest (Nesher and Katriel, 1986). Researchers refer to this ability to
translate between and/or abstract from natural language and the formal
language of mathematics in a number of ways: playing the "word game"
(De Corte and Verschaffel, 1985), understanding "textual presuppositions"
(Kintsch and Greeno, 1985), and possessing the "mathematics register"
(Spanos, Rhodes, Dale and Crandall, 1988).

Implementation Details

The computer model software is written in Common Lisp. The EDUCE
component is implemented as an expectation-based system (somewhat
analogous to a traditional rule-based system) and totals approximately 23,000
lines of Lisp. The SELAH component is implemented in a procedural fashion
and comprises about 9,300 lines of Lisp. The user has the option to run the
model in interpretive fashion (i.e., load uncompiled code for development
purposes) or first compile the Lisp. The size of the model when compiled is:
EDUCE files (except external lexicon): 262K; SELAH files: 152K. Because the
implementation has strictly followed the Common Lisp standard, the model
executes on a number of platforms which support Common Lisp, including a
RISC mainframe (Lucid Common Lisp/DECsystem, v4.0), SUN workstations
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(Sun Common Lisp, v4.0.1) and a number of Macintosh computers
(Macintosh Common Lisp; requires at least 4.5 MB disk space and 2 MB

RAM).

An Example

Some of EDUCE's sentence-level reading capabilities and SELAH's text
integration processes are revealed below in the annotated script of the
simulation's output while solving the following word problem:

0iNfithylieStgritli:]tiii§. Jacob has 3 of them.
e rest of them are Kath 's. How man soda cans does Kath have?

As each sentence is parsed, EDUCE passes its conceptualization of that
sentence to SELAH. (I will defer a detailed discussion of how EDUCE parses
sentences until the more interesting second sentence). Because EDUCE has
not detected any pronominal or set reference in the first sentence, SELAH
knows that there is no explicit request for text integration. No (implicit)
integration is possible, since no other conceptualized sets currently reside in
long-term memory (LTM)4, so SELAH recognizes the conceptual possession
of a quantified object as a set and stores the new set in LTM:

LTM-(1)
STATE: possession

POSSESSOR: (Jacob Kathy)
SET:

OBJECT: (physical (-animate) (function: contain(object: soda)))
QUANTITY: 8

At this point, control returns to EDUCE and the second sentence is parsed.
Each word in the second sentence is read one at a time starting from left to
right. Upon reading the first word, "Jacob," EDUCE recognizes this word as a
name and performs a referential search to see if Jacob has been previously
mentioned. Since Jacob has been previously mentioned (in the first
sentence), the already existing concept for Jacob is accessed and its conceptual
meaning is loaded into short-term (working) memory (STM):

CONCEPTS: (1) PERSON -- (physical (+human) (reference: Jacob))

REQUESTS: nil

4 The convention of referring to long-term memory (LTM) as a "location" serves as a convenient
method of speaking of "level of activation." LTM represents those concepts which have
presumably "decayed" to a state whereby reactivation is necessary in order to reference them.
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There are no expectations or requests generated by the word Jacob, i.e., the
reading of this word does not expect (or request) any particular concepts to
follow. The word "has" is then read and the conceptual entry for the word has
is loaded into STM (2) along with its associated requests:

CONCEPTS: (1) PERSON (physical (+human) (reference: Jacob))
(2) STATE: possession

POSSESSOR: ?
OBJLCT: ?

REQUESTS: (i) Who possesses? [search for human earlier in sentence]
(ii) What is possessed? [search for an object later on]

Before reading the next word, each of the requests associated with the word
has is tested to see if it might be satisfied. The first request (i) is of course
successful since a search finds the conceptual representation of Jacob in STM
(i.e., Jacob's conceptualization is +human) and thus the (1) Jacob-concept is
merged into the POSSESSOR-slot of the (2) STATE-possession-concept. The
second request (ii) is unsatisfied since no conceptual-object currently resides
in STM. Having read and completed the processing for the first two words,
"Jacob has," EDUCE has one concept and one outstanding request in STM:

CONCEPTS: (2) STATE: possession
POSSESSOR: ((+human) (DEFINITEref: Jacob))
OBJECT: ?

REQUESTS: (i) What is possessed? [search for an object later on]

The next three words, "3 of them," form a noun group with an explicit
reference to a previous set. In short, the "3" causes EDUCE to (i) enter noun
group mode; (ii) instantiate a conceptual quantity; and (iii) generate a request
to find an object-concept in this noun group. In the context of a quantified
noun group, the word "of' is interpreted to mean that the conceptual referent
to follow (currently unknown) is the whole which possesses as a part the
conceptual object in this noun group. In terms of requests, the word "of"
expects a definite reference of a conceptual object to follow and if that object is
found, the quantified object in the current noun group is "part of" a
previously known set. The word "them" leads to a set reference of the
previous set of Jacob and Kathy's 8 soda cans. The noun group "3 of them" is
eventually merged into an "object-concept" with a quantity of three which is
PART-OF a previously known set. The outstanding request (i) from the word
"has" which is expecting an object is now satisfied. The can-object is merged
into the OBJECT slot of the (2) STATE-concept.
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A final conceptualization for the entire sentence resides in STM:

CONCEPTS: (2) STATE: possession
POSSESSOR: ((+human) (DEFINITEref: Jacob))
OBJECT: ((physical (-animate)

(function: contain(object: soda))
(quantity: 3)
(PART-OF: "previous set containing

this object")))

Of specific importance in this sentence is how EDUCE represents the explicit
"part of" reference generated by the "of them" wording. This sensitivity to
slight changes in problem wording highlights the importance of "starting
from the beginning." As discussed in this body of the paper, such explicit
wordings and their associated representations facilitate the processes of text
integration which lead to a coherent situational representation of the
relationship between sets. As a counter-example, a more traditional wording
of the second sentence in this type of problem is:

"Jacob has 3 soda cans."
In this case, EDUCE would encounter no explicit set reference and thus would
not be able to represent any connection between the two sentences.

As shown in the detailed parse of sentence two, EDUCE generates a PART-OF
slot from the "of them" phrase and thereby indicates an explicit connection
between the objects in the first sentence and the objects in the current
conceptualization (second sentence). SELAH performs the following steps in
order to integrate this new conceptualization from EDUCE with the previous
set in LTM-(1). First, SELAH notes that the source of the objects in the second
sentence is a previous concept, that is, the objects from the first sentence.
SELAH searches um for the set which includes the "soda-can" type object.5
Finding the previous set of eight specific "soda can" objects, SELAH knows
that the source of Jacob's three cans is a unique quantified set (as opposed to
the universal set of all soda cans). Given that the source of the three cans is
the set of eight cans, SELAH associates this qualitative relationship with the
mathematical relationship that the set of three is a "member of" or "part o?'
the set of eight. SELAH makes a new set of three in LTM-(2) and links the
two sets together, i.e., the set in LTM-(2) is PART-OF the set in LTM-(1).

5 In this example, the reference from the word "them" insures that the two sets being
integrated involve the same type of object. In general, when SELAH attempts to determine if
two sets are related, the objects in those sets need not exactly match. SELAH performs the
following constraint checks: do the objects match exactly (e.g., cans and cans) or are they "like-
types" (e.g., infer that cats are pets). If the objects are an exact match (e.g., cans and cans), is
one object more qualified than the other (e.g., pepsi cans and cans) or are they equally qualified
(e.g., big black cats and big black cats). 4
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LTM-(2)
STATE: possession

POSSESSOR: (same Jacob as above)
SET:

OBJECT: (physical (-animate) (function: contain(objecf: soda)))
QUANTITY: 3
PART-OF: the SET in LTM (1)

Having successfully integrated the two conceptualizations, SELAH infers that
this static PART-OF connection can be associated with a procedural situation
where one set is SEPARATED-FROM another set. More specifically, because
LTM-(1) is the source of objects in LTM-(2), the set in LTM-(2) can be
"constructed" in a manipulative sense by separating three cans from the
previous set of eight in LTM -(1). The transition from statically integrated text
to mental actions such as separating-from is a critical feature of SELAH's
novice problem solving process. The hypothesis is that novice problem
solvers who are working without the aid of manipulatives continue to think
of relationships between sets in terms of the actions upon those sets.
Theoretically, the model proposes that young children must first construct
procedural or action-oriented representations in order to arrive at an
arithmetic operator (For similar arguments, see Fuson (1994b); Reusser (1990);
Stern & Lehrndorfer (1992) and Weber-Russell (1994)). While some problems
include explicit actions (e.g., giving) which facilitate children's success (cf.
Briars & Larkin, 1984), many word problems do not contain action language
and require additional processing to infer a procedural interpretation of
statically expressed relationships. In the current example, SELAH infers a
separating-from interpretation of a static part-of relationship between two
sets.

The third sentence involves a similar link between the third sentence and the
first, i.e., Kathy's are PART-OF the set of eight. In addition, the word "rest"
implies that a separating-from action has already occurred, that is, the "rest"
are left behind. Thus, the SEPARATED-FROM action that was inferred in
the previous sentence is reinforced in this sentence and the objects remaining
from that action are explicitly marked as belonging to Kathy. In short,
SELAH's current representation is:

LTM-2 SEPARATED-FROM LTM-1 resulting in LTM-3.

In addition to making sets and performing text integration, SELAH monitors
some of its cognitive processing such as the number of sets to remember and
the number of inferences that must be made. Table 1 summarizes some of
SELAH's processing which led to this current representation.
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The question in the last sentence focuses SELAH's attention on the unknown
amount of Kathy's set. At this point, SELAH's representation has reached a
level of abstraction where only the quantities and arithmetic action are of
interest. For example, SELAH is no longer concerned with Kathy and Jacob as
participants or soda cans as the type of objects. Focusing on the quantities and
arithmetic action, SELAH selects an appropriate counting strategy, in this case,
Counting-Down-From (Carpenter, 1985) to arrive at an answer of 5, e.g.,

"Ok, start at 8: 7 that's 1, 6 that's 2, 5 that's 3; the answer is 5 ."

Table 1
Summary of SELAH's processing for

first three sentences of Combine 5

Jacob and Kathy have 8 soda cans.
Jacob has 3 of them. The rest are Kathy's.

Sentence
3 Average

Processing
Summary

make set explicit part-of;
infer SEP-FR

explicit part-of;
reinforce SEP-FR;
explicit result of

of SEP-FR

Concepts in
Memory

(J & K's 8] [SEP J's 3]
[FR J & K's 8]

[SEP J's 3]
[FR J & K's 8]
[REsult K's ?]

# of concepts 1 2 3 2.00

# of inferences 0 1 0 0.33
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