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Abstract

The purpose of this study is to compare the accuracy of three estimation procedures in item
response theory: the joint maximum likelihood as implemented in the computer program LOGIST;
the marginal maximum likelihood; and the marginal Bayesian procedures as implemented in the
computer program BILOG. The comparisons were conducted using data generated by a Monte
Carlo simulation based on the three-parameter logistic model. The number of items, the number of
subjects, and the distribution of ability parameters varied in each simulation. The ability parameter
distribution was the variable of most concern.

Normal ability distributions provided more accurate item parameter estimates for the
Marginal Bayesian estimation procedure, especially when number of items and number of
examinees were small. The Marginal Bayesian estimation procedure was generally more accurate
than the other two procedures in estimating a, b, and c parameters. When the ability distribution
was beta, the Joint Maximum Likelihood estimates of the c parameters were the most accurate or as
accurate as the corresponding Maarginal Bayesian estimates depending on sample size and test
length.

Guidelines were provided for obtaining accurate estimation using real data and sample
sizes, test lengths, and ability parameter 1istributions investigated in this study. For example, the
Marginal Bayesian procedure is recommended with short tests and small samples for estimating a,
b, and c parameters when the ability distribution is normal or truncated normal. The Joint
Maximum Likelihood is preferred with large samples when guessing is a concern and the ability
distribution is truncated normal.



Comparing BILOG and LOGIST Estimates for Normal,
Truncated Normal, and Beta Ability Distributions

Item response theory. (IRT) is used in equating, scoring, investigating item bias, and
establishing item banks. Consequently, comparing the accuracy of parameter estimates provided
by BILOG and LOGIST, the most common IRT programs, is critical to the use of IRT. One
feasible way tr compare the two programs fairly is to broaden the range of generated values ;,`
parameters (Mislevy and Stocking, 1987). This study compares the two programs for three ability
distributions using the three-parameter logistic model (3PLM). The 3PLM was chosen for this
study because the solution to any problem under this model also applies to the simpler one- and
two-parameter logistic models while some solutions for the one-parameter model do not generalize
to the two- or three-parameter models. The choice of the more complex model should not
undermine the use simpler models because in practice the criterion of choice is model fit not
complexity. The 3PLM has the mathematical form

= Ci
1 + expf,

(I)

where PA) = the probability of item i being answered correctly by examinee j, ci = the lower

asymptote of item response curve; fi.; = -1.702ai (0j bi) where (i = 1,2,3,...,K; j = 1,2,3,...,

N), ai = discrimination parameter for item i, bi = difficulty parameter for item i, ej = ability
parameter for examinee j, N = number of examinees, and K = number of items.

There are currently four well-founded estimation methods that can be used with all three
logistic models: the joint maximum likelihood (JML); the marginal maximum likelihood (MML);
the joint Bayesian (JB); and the marginal Bayesian (MB) methods. The JB is only presented for
completion and it will not be included in the study due to unavailability of the implementing
computer program. The likelihood function for N examinees is the product of N likelihood
functions given by the equation

N K uij 1- uij

1,(0;a,b,c) = II II [Pi (OA [Q.i(ei)] (2)

j=1 i=1

where N is the number of examinees, K is the number of items, Pi(0j) is defined by equation (1)

for the 3PLM, and Qi(0j) = 1 - Pi(0j).

Review
Estimation Methods

In this section, the four estimation procedures identified earlier are presented, the literature
comparing their accuracy as sample size and test length vary is reviewed, and the literature related
to distributional variations in IRT estimation is also reviewed. The JML procedure, the oldest of
the four, consists of finding IRT parameter estimates that maximize the likelihood function or its
logarithm:

N K

In [L(0,a,b,c)] = E [uij log Pi(ej) + (1-uij) log Qi(0j)] (3)
j=1 i=1
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First the initial values of ai, bi, and ci, are used in estimating Oi the unknown parameter. The

estimated ei is used in the second stage treating ai, bi, and ci as unknowns to be estimated. This
two-stage process is repeated until the ability and item values converge to the final estimates when
the difference between estimates of successive stages is negligible. The most commonly known
implementation of JML is the program LOGIST developed by Lord (1974). LOGIST has been
available since 1973 (Wingersky & Lord, 1973) and has undergone major revision (Wingersky,
1983: Wingersky, Barton & Lord, 1982). The main problem with JML is that item and ability
parameters are estimated simultaneously, therefore these estimates may not be consistent. Both
item and ability parameter estimates can be consistent for the one-parameter model (Haberman,
1975) and the two- and the three-parameter models (Lord, 1975; Swaminathan & Gifford, 1983)
when sample size and test length are large enough. JML ability estimates do not exist for
examinees with either perfect or zero scores and JML item parameter estimates for items answered
either correctly or incorrectly by all examinees. In LOGIST, the a and c estimates may drift out of
bound unless limits are placed on them. For example, Swaminathan and Gifford (1987) placed an
upper limit of 2.0 and a lower limit of .06 on the a estimates. However, true JML estimates are
not obtained when using restrictions or prior distributions which is the key to Bayesian estimation
procedure.

In the joint Bayesian (JB) method ( Swaminathan & Gifford, 1982, 1985, & 1986) the
likelihood in equation (2) is multiplied by a prior distribution for each of the item and ability
parameters to obtain the JB function

f(0;a,b,c) = L(0;a,b,c)g(0)g(a)g(b)g(c) (4)

The resulting expression is proportional to the joint posterior distribution of these parameters. For
example, Swaminathan and Gifford used a normal/gamma/normal/beta prior distribution for the

Off, ai, bi, and ci parameters. The use of these or other suitable priors tends to prevent estimates

from drifting to intuitively unreasonable values. The authors implemented JB procedure in a
computer program that is not currently available for general distribution. A modified JB was
implemented in the microcomputer-based program ASCAL (Vale & Gialluca, 1985). The
likelihood equations modified for omitted items used in LOGIST were combined with the
beta/beta/normal Bayesian prior distributions on a, c, and 0 parameters.

The MML procedure was introduced by Bock and Lieberman (1970). The use of the
marginal rather than the likelihood function eliminated the problem of inconsistent item parameter

estimates. Multiplying equation (1) by g(0), the probability density function for the ability

parameters, and integrating with respect to 0 we obtain the marginal probabilities of the response
pattern jl

Pao = J p(u le) g(0) de
00

(5)

Once the data are observed this probability can be interpreted as the marginal likelihood function
for a given examinee. The product of these likelihoods for all examinees is the marginal likelihood
function for the entire data set which can be written as



L(a,b,c) =

e

L(0 ;a,b,c)g(0) dO (6)

The MML estimates are the values of a, b, and c that maximize the likelihood function.

Bock and Lieberman (1970) gave a numerical solution to the likelihood equations. The
solution was computationally burdensome and only applicable to tests with 10 or fewer items.
Bock and Aitken (1981) refined this solution to avoidcomputational problems. Mislevy and Bock
1984) implemented this procedure in the program BILOG. In the MML the item parameters are

estimated without reference to ability parameters by considering examinees as a random sample
from a population and integrating them out of the likelihood function using an approximate ability
distribution. For a good approximation of this distribution, a sufficiently large number of
exarninees is required. Because of this requirement and the integration process, MML involves
more computation than does JML. However, MML estimates are more consistent than JML,
especially for short tests. Unlike JML, MML has no ability estimates of its own. The maximum
likelihood (ML) estimates of abilities can be obtained using MML item parameter estimates and can
be abbreviated as ML-MML. The larger the number of items, the better are the ML-MML
estimators. As with JML, MML a and c estimates may drift to extreme values. Poor c estimates
degrade estimation of other item and ability parameters (Swaminathan & Gifford, 1985). Limits
and prior distributions can be used to prevent this drifting. However, these limits and priors
produce estimates that are not purely MML. The.use of prior distributions introduces the concept
of MB estimation.

In the marginal Bayesian (MB) procedure, the likelihood given by equation (6) is multiplied
by prior distributions for a, b, and c. The resulting expression is proportional to the posterior
density of a, b, and c and can be written as

L(a,b,c) = L(a,b,c)g(a)g(b)g(c) (7)

MB tends to prevent item parameter estimates from drifting to extreme values. Instead,
values are pulled towards the center of the prior distribution for item parameters. That center
differs slightly from where it would have been without the priors (Mislevy & Bock, 1984).
Therefore, in favorable data, it is preferred to avoid priors entirely and use MML. For
unfavorable data, MB of BILOG allows the use of updated or fixed prior means at each iteration.
When samples are large relative to the number of items, updated prior means should be used, while
for small samples, the fixed prior means are preferred. The default priors in BILOG are
lognormal, normal, and beta for a, b, and c; respectively.

Related work on the MB procedure can be found in Dempster, Rubin, and Tsutakawa
(1981), Rigdon and Tsutakawa (1983, 1987), and Tsutakawa (1984, 1986). The iterative solution
introduced by Dempster et al. (1981) was more general than the similar solution by Bock and

Aitken (1981). The latter was limited to random variables with exponential distributions but the
former was extended to random variables belonging to non-exponential family distributions.
Rigdon and Tsutakawa (1983) derived a marginal maximum likelihood with a fixed b parameter

and a random 0 parameter for the one-parameter logistic model by integrating over O. This is
called the maximum likelihood fixed (MLF) procedure. From the MLF, the conditional maximum

likelihood fixed (CMLF) was developed by using the posterior mean of each 0 in the estimation
process of the priors to approximate the unknown Bayesian priors conditioned upon their posterior

4



means. This approximation reduces the computation required by the conventional MML procedure
when used in estimating priors. From CMLF, Rigdon and Tsutakawa (1987) derived two more
MB procedures under the one-parameter logistic model. These are called the conditional maximum
likelihood random (CMLR) and conditional maximum likelihood uniform (CMLU). The prior
distribution of b parameter was random in the CMLR procedure and uniform in the CMLU
procedure. The ability parameters were assumed random with normal prior distribution. The
authors implemented these procedures for the one- and two-parameter logistic models in a
computer program unavailable for general distribution.

Sample Size, Test Length, and Estimation Procedure
The JML procedure was found superior to Urry's procedure2 (e.g., Ree, 1979;

Swaminathan & Gifford, 1983). The JML was also found to be superior to the heuristic
approximation as implemented in ANCILLES-X (Vale & Gialluca, 1988). Comparing BILOG and
LOGIST, Swaminathan and Gifford (1987) concluded that MMLfor item parameters (or the ML

for ability parameters) is generally superior to the JML procedure in estimating a, b, and 0
parameters of the one- and two-parameter logistic models, particularly when small sample size
and/or short test lengths were used. For the three-parameter model, LOGIST was superior in

estimating b, c, and ability parameters, whereas BILOG was superior in estimating the a
parameters. LOGIST estimates of ability parameters were superior because in LOGIST the a
parameters were constrained to a reasonable range, the inestimable c parameters were set to a

common value, and the program works better with the uniform 0 used in the study. The ML of
ability parameters are based on the unconstrained item parameter estimated by MML. The a
estimates greater than 4.0 were excluded upon the calculation of the mean squared deviations
(MSDs) for both the LOGIST and BILOG estimates; however, these excluded values were greater
in number for LOGIST than they were for BILOG.

Using a broader range of generated data , Yen (1987) employed the MB procedure for item
parameter estimation and the expected a posteriori (EAP) as well as the ML procedures (ML-MB)
for ability estimation using BILOG. She compared these estimates with the corresponding

estimates by LOGIST under the three-parameter logistic model. The 0 estimates of EAP were
found to be better than either the MB-ML or the JML estimates. Her study was limited to 20- and
40-item tests with 1,000 examinees. Convergence to the true values was investigated only over the
increase in test length from 20 to 40 items. In spite of these limitations, BILOG was not superior
to LOGIST for all cases. The superiority of LOGIST in some cases might be attributed to the
choice of generated values, or to the way the two programs handle extreme estimates. BILOG
pulls extreme values towards the center of the prior distribution so that the center differs a little
from where it would be if the priors were not used. In LOGIST, upper and lower limits are placed
on the a and c parameter estimates to prevent them from drifting to extreme values. Qualls and
Ansley (1985) used a limited range of generated data, with various levels of test lengths and

sample sizes, under the three-parameter logistic model. They indicated that with ML 0 estimates,
the biweight robustification3 eliminated the problem of assigning the lower-bound ability to high-

2. This is the heuristic approximation procedure as implemented in the early version of the computer

program ANCILLES.

3. A technique of robust data analysis that improves the accuracy of scale score estimation in the presence

of mixed omitting and guessing by scoring omits as incorrect and by giving reduced weight to unlikely correct

responses to suppress the effects of guessing.



scoring examinees who missed an easy item. Thus with ability robustification, ability estimation
was more accurate with BILOG than with LOGIST.

Swaminathan and Gifford (1982, 1985, & 1986), have shown that the JB estimates are
superior to the JML estimates because they do not drift out of range, and are more accurate, even
when the prior distributions differ from the distributions of the generated parameters. The JB
estimates of ASCAL were also found to be better than the corresponding estimates of LOGIST
(Vale & Gialluca, 1985, & 1988). The JB of ASCAL does not provide estimates of the ability
parameters, is only available for micro-computers, and takes a long time running large data sets.
The J-13 of Swaminathan and Gifford is not currently available for general distribution.

Consequently it can be concluded that the most important and available procedures for
comparisons were the JML of LOGIST and the MB and the MML of BILOG. Precautions were
taken so that data generated were reasonable for the two programs. For example, both small and
large sample sizes and test lengths were used in the comparison. The JML converges only as both
the number of items and the number of examinees increase. The MML and the MB item parameter
estimates converge to their true values as the number examinees increases. Thus the small and the
large sample-size and test-length combinations were found more important and more reasonable
than other combinations. The number of items and the number of examinees chosen in this study
were defined as small and large in accordance with some of the aforementioned studies (e.g.,
Swaminathan & Gifford, 1987).

IRT Parameter Distribution and Estimation Procedures
The JML procedure does not incorporate any assumptions about the distributions of item or

ability parameters. The MML procedure requires an assumption about the ability distribution. The
JB and MB procedures require assumptions about the priors of both item and ability parameter
distributions. There is a small body of literature about the impact of different IRT parameter
distributions on the efficiency of various estimations procedures. For example, Swaminathan and
Gifford (1983) varied the ability parameter distribution and found it had little effect on JML
estimation of the ability and b parameters but did affect estimation of a and c parameters. The a and
c estimates were less accurate with negatively skewed ability than with the uniform or normal
ability distribution. The uniform ability distribution produced more accurate a and c estimates than
the normal ability distribution did. Ree (1979) also found the poorest item parameter estimates
with the positively skewed ability parameter distribution and the best item parameter estimates with
the uniform ability distribution. The two studies did not include the MML or the MB procedures in
the comparison. They both reported differences in accuracy of estimation due to the ability
parameter distribution and provided some insight about the importance of varying the ability
parameter distribution. The JB procedures were also found to be superior to the JML of LOGIST
(Swaminathan & Gifford, 1982, 1985, & 1986) because their estimates do not drift out of range.
They were more accurate even when the prior distributions were different from the generated
values.

The preceding studies used only the correlations of estimates with the true values except for
Yen who used the mean squared deviations (MSDs) as well. The MSD and its component variance
and bias provide a means for examining estimates at various levels, while correlations do not.
None of the preceding studies provided such comparative measures at several levels of estimates.
Swaminathan an Gifford (1987) reported differences ofpractical interest at several estimate levels
but they used only uniform distributions, which worked well with LOGIST, in the three-parameter
model. Thus it is important to investigate differences in estimation accuracy across several
distributions and to include ability distributions that do not favor one program over another. It is
also important to vary the sample size and test length to show convergence across the ability



distributions. The two studies that used large and small numbers of items and numbers of
'examinees were that by Swaminathan and Gifford (1983) and that of Wingersky and Lord (1985).
The two studies did not investigate the BILOG procedures. In the latter study LOGIST estimates
were used as the true values.

With the exception of Yen's, none of the preceding studies compared the effect of ability
distributions on the estimation accuracy of MB, MML, and JML. Yen (1987) varied the ability
parameter distributions and included the JML, MB, ML, and EAP procedures. She held the a and
c parameters and the number of examinees constant. The ability parameter distributions used were
slightly kurtic and slightly skewed. Therefore, varying the distribution of ability parameters had
only a slight effect on the accuracy of the procedures investigated by Yen. The distributions of the
b parameters were also varied by Yen (1987) and by Rigdon and Tsutakawa (1987). Rigdon and
Tsutakawa recommended the CMLR for small sample size and non-normal b parameter
distributions. Because the CMLR program is not available publicly and is restricted to the one- and
two-parameter models, the CMLR was not used in this study. The MB procedure of BILOG was
used instead.

Among the non-normal ability distributions used in the literature are the uniform and the
beta distribution used by Swaminathan and Gifford (1983); the truncated normal distribution used
by Ree (1979); and the skewed and the platykurtic distributionsused by Yen (1987). The beta and
the truncated normal distributions were selected for the present study because these are realistic
distributions that showed a negative impact on estimation in previous studies. The uniform
distribution is unrealistic and Yen's distribution apparently did not deviate sufficiently from
normality to have an effect on estimation accuracy.

Methodology

Design
The conditions varied in this study were the ability parameter distribution (normal,

truncated normal, and beta), the test length (20, 60), and the sample size (250, 1000). For each
combination of this design the data were replicated 10 times and items of each replication were
calibrated by three procedures: JML, MML, and MB. The JML ability estimates of LOGIST were
compared to the by-product ML ability estimates from MML (ML-MML) and MB (ML-MB)
estimates of BILOG. The total number of data subsets is 120 (2 test lengths x 2 sample sizes x 3
estimation procedures x 10 replications).

Data Generation and Calibration
The data generator used is similar to DATAGEN (Hambleton & Rovinelli, 1973) but is

capable of manipulating the IRT parameter distributions as required by this study. The generation
process starts with specifying the number of items, the number of examinees, and a suitable seed
which produces reasonable ranges of parameter interval. Then, the normal, the beta, and the
truncated normal ability parameter distributions are generated; and the beta and truncated normal
distributions are standardized4. The normal, truncated normal, and beta ability distributions are in

4. The mean and standard deviation of the beta distribution were taken from Table II of incomplete beta

distributions by Pearson and Hart ly (1956, p. 436). The mean and standard deviation of truncated distributions were
calculated using the formulae: p. = 1.5 (2705 (e)-5c and a = (3/4 [1 + IG(c/2; a = 1.5, 13 = 1)] - µ 2) -.5 ,
where c is the square of the cut off score (.053), and IG is the integral of the incomplete gamma function with
parameters c/2, a , and p. The integral with parameters c12, a, and 13 was obtained from Table I of the incomplete
r-function by Pearson and Hartly (1956, p. 2.).
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the ranges (-3.142, 3.020), -1.534, 4.210), and (-3.635, 1.484) respectively. The ai, bi, and ci
parameters are generated from lognormal, normal, and beta distributions. The a, b, and c
parameters are generated to fall in the ranges (0.363, 2.478), (-2.19, 2.23), and (0.009, 0.343)

respectively. Using ai, bi, ci, and standardized ®, the probabilities Pi(0i) are computed with
equation (1). The random numbers Xii are generated from a uniform distribution on the closed

interval zero to one. The item responses U are generated by comparing Xii with Pi(®). If Xii

5:- NO) then Ujj =1 otherwise lib = 0. Previous steps are repeated to obtain 10 replications for
more accurate and stable results.

The generated data are then used as the input for LOGIST and BILOG. The options used
in the two programs are they default options. For example, for MB procedure the default priors of
BILOG are used. The default number of iteration cycles was fixed in BILOG at 30 for the EM-
step and at 6 for the Newton-step. The 60 item test and 1000 examinees (60X1000) was calibrated
first. Other subsets (i.e., 60X250, 20X250, and 20X1000) are then calibrated by selecting the
specified number of items and number of examinees and running each of the two programs.

Common Metrics for Estimates and True Values
The a, b, and 0 estimates from 120 various BILOG and LOGIST runs were resealed to be

comparable to the corresponding generated true values using the chi-square scaling method
described by Divgi (1985). Rescaling is necessary to put the a's, the b's, and the ability estimates
of the two programs on the same scale as the corresponding true values (Swaminathan & Gifford,

1987). The equations of linear transformations are ail* = ai2JA, b12,* = A bit + B, and 0;2* =

A Op + B , where A is the slope and B is the intercept.

Comparison Indices
The true parameters were compared to the resealed estimated parameters using the

following four criteria of accuracy. These are, the correlation of the estimates with the true
parameters, the bias, the variance, and the mean square deviation (MSD) of the estimators. The
first order product moment correlation was used to represent relationship between each estimate its
corresponding to .e value. These correlations reflect only linear relationship and they do not reflect
the accuracy over replications, therefore the 25th, 50th, and 75th correlation percentiles of the 10
replications were calculated. In addition, the MSD of each estimator from its true value was
calculated using the formula

N

MSD = (Ti - Ei)2 N (7)
i=1

where Ti is the true parameter value for item (or examinee) i, Ei is the estimated parameter for item
(or examinee) i, and N is the number of estimated parameters. MSD is the total variance attributed
to random and measurement errors. Random cr sampling errors relate to the stability of estimation
over replications. This component of MSD is called the variance and it can be computed as follows

N

Variance = (E - Ei)2 (8)
1=1

where E is the mean of estimated parameters. The remaining component of the total variance is
attributed to errors other than those of sampling fluctuation. This component is called the bias and
it can be obtained using the following equation: Bias = MSD - Variance.

8
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Because of the different nature of correlations and MSDs, we will find that conclusions
based on correlations sometimes contradicts those based on MSDs. A possible reason for this
contradiction is that correlations assume linearity and can be attenuated by nonlinearrelationships,
but MSDs do not assume linearity. Another reason is that the correlations are reported for only
three (median, upper quartile, and lower quartile) out of ten replications, excluding very high or
very low correlations while the MSDs is the average deviation for the ten replications including
extreme estimates. MSDs get smaller when these estimates are removed or truncated as in JML
estimates of the a parameters. For example, JML estimates of a parameters (at least with the 20
items and 250 examinees) had lower correlations than the corresponding MML estimates in spite of
the smaller MSDs for the former, Therefore, the best comparison approach is to examine plots
together with values of MSDs and to consider correlations more appropriate in the absence of
extreme estimates and/or nonlinearity. In other words, for favorable data with no extreme
estimates, correlation results are more appropriate because they do not reflectexistence of extreme
estimates, while for unfavorable data, MSD results are more appropriate. As mentioned earlier,
MSD reflect differences at various levels of the estimate scale while correlation does not.
Therefore, our discussion and conclusion will focus mainly on the MSD and its components.

Results, Discussion, and Conclusion

The focus of this study is the comparison of LOGIST and BILOG estimates for the normal,
truncated normal, and beta ability distributions. Before we examine this comparison, we will
briefly compare LOGIST and BILOG estimates within each ability distribution. Within each of the
normal and truncated normal ability distribution, MB estimates of a and b parameters were more
accurate than the corresponding MML or JML estimates for all sample sizes and test lengths (see
corresponding MSDs in Tables 1 and 2). Superiority of MB estimates was more obvious with
small sample size and/or short tests. Within the beta ability distribution, the JML estimates of the
c parameters were the most accurate or as accurate as the corresponding MB and MML estimates
(see MSDs in Table 3). Differences in accuracy between MML and JML depended on the
parameter estimated, sample size, and test length. For example, in the 20X250 subset of Table 1
and within each ability distribution, JML had smaller MSDs than those of MML, however bias for
MML was smaller and its median correlation was higher than for JML.

Within each ability distribution either ML-MB or ML-MML estimates of ability parameters
was more accurate than the corresponding JML estimates for the 20X250 subset. For the other
three subsets, ML-MML and ML-MB were more accurate than JML estimates only for some
distribution by subset combinations with no obvious pattern (see MSDs Table 4). In addition to
differences between estimation procedures within each ability distribution (e.g., MML, MB, and
JML for the normal ability distribution), there were differences within each estimation procedure
for the three ability distributions (e.g., MML for normal, truncated normal, and beta ability
distributions). In the following paragraphs, we will examine differences within estimation
procedures for the three ability distributions and we will focus only on large differences in MSDs.

Table 1 shows that the MB estimates of the a parameters did not converge to the true
values only for one condition when sample size or test length increased. JML estimates did not
converge for two conditions while MML estimates did not converge for three conditions. For
example, the MSDs of MML estimates increased (from 0.599 to 0.816) for the normal ability
distribution when the number of items increased to 60 for the 250 e-.aminees. Nonconvergence for
JML estimates occurred with non-normal ability distribution while for MML it occurred with
normal ability distribution as well. A possible reason for nonconvergence of MML is the small
number of the default iteration cycles in BILOG. The default number of iteration in LOGIST is
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larger than in BILOG. Another possible reason is that LOGIST places limits on the a estimate to
prevent it from drifting out of range whileBILOG does not place any limits on MML estimates.

Within each estimation procedure, MSDs differed for the three ability distributions in three
data subsets of Table 1 (notice the underlined MSDs). In the 20X1000 subset, MB estimates had
higher MSDs for the beta ability distribution than for other distributions (compare scatterplots in
Figure 1). In the 60X250 subset, the MML estimates had lower MSDs for the beta ability
distributions than for other distributions (compare scatterplots in Figure 2). In the 60X1000
subset, the MB estimates had lower MSDs for normal distribution than for non-normal
distributions (compare scatterplots in Figure 3). While examining the figures, notice that a
scatterplot with points scattered av, ay from the agreement (45°) line at part or all of the estimate
scale indicate larger MSD than for a scatterplot with points not scattered away from the agreement
line.

Table 2 shows that MB estimates of the b parameters did not converge to the true values
only for two conditions when sample size or test length increased. The JML estimates did not
converge for three conditions and MML for five conditions. For example, the MSDs of MML
estimates increased (from 0.254 to 0.395) for the normal ability distribution when the number of
items increased to 60 for the 250 examinees. Nonconvergence for JML occurred in the non-
normal ability distribution while for MML it occurred for normal and truncated normal ability
distributions.

Within each estimation procedure, MSDs differed for the three ability distributions in the
four data subsets of Table 2 (see the underlined MSDs). In the 20X250 subset, the three
procedures had lower MSDs with the beta ability distribution than with other distributions
(compare scatterplots in each of the Figures 4-6). In the 20X1000 subset, the MML and MB
estimates had lower MSDs with the truncated ability distribution than with other distribution
(compare scatterplots in each of the Figures 7 and 8). In the 60X250 subset the results are the
same as in the 20X250 subset (compare scatterplots in each of the Figures 9-11). In the 60X1000
subset, MML and MB estimates had lower MSDs with the normal than with the non-normal ability
distributions while JML estimates had higher MSDs with the beta than with other. ability
distributions (compare scatterplots in each of the Figures 12 and 13).

Table 3 shows that the MB estimates for the c parameters did not converge to the true
values only for three conditions. The MML and the JML estimates did not converge in five
conditions each. For example, MSDs increased (from 0.013 to 0.019) for the MML estimates with
normal ability distribution when the number of examinees increased to 1000 for the 20-item test.

Within each estimation procedure, MSDs differed for the three ability distributions in the
four data subsets of Table 3 (see the underlined MSDs). In the 20X25,0 subset, MB estimates had
higher MSDs with beta than with Gther ability distributions (compare gt, atterplots in Figure 14). In
the 20X1000 subset, MML estimates had lower MSDs with the normal than with non-normal
ability distributions (compare scatterplots in Figure 15) while MB had lower MSDs with beta than
with other ability distributions (compare scatterplots in Figure 16). In the 60X250 subset, MB had
lower MSDs with normal than with non-normal ability distributions (compare scatterplots in
Figure 17) while MML had higher MSDs with truncated normal than with other ability
distributions (compare scatterplots in Figure 18). In the 60X1000 subset, MML and MB
estimates had higher MSDs for truncated normal than for other ability distributions (compare
scatterplots in each of the Figures 19 and 20).
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Table 4 shows that the JML estimates of the ability parameters converged to the true

values. The ML-MML estimates did not converge in four conditions and the ML-MB estimates in

six conditions. For example, the MSDs for ML-MML estimates increased (from 0.740 to 1.048)

for the normal ability distribution when the number of examinees increased to 1000 for the 20-item

test. Possible reasons for this high nonconvergence rate in ML estimates is the limited number of

default iterations in BILOG and that the MT, estimates are not the best ability estimates in BILOG.

Therefore, in practice it is recommended to increase the numbi,r of iterations as needed and to use

ability estimates other than the ML estimates.

Within each estimation procedure, MSDs differed for the three ability distributions in the

four data subsets of Table 4 (see underlined MSDs). In the 20X250 subset, the ML-MB estimates

had lower MSDs with the truncated normal than with other ability distributions (compare

scatterplots in Figure 21). In the 20X1000 subset, ML-MB estimat_s had lower MSDs with the

normal than with non-normal ability distributions (compare scatterplots in Figure 22). In the

60X250 subset, ML-MML had higher MSDs with truncated normal than with other ability

distribution while JML had lower MSDs with the truncated normal than with other ability

distribution (compare scatterplots in each of the Figures 23 and 24). In the 60X1000 subset, ML-

MML and ML-MB had higher MSDs with the truncated normal than with other ability distribution

while JML had lower MSDs with the truncated normal than with other ability distributions

(compare scatterplots in each of the Figures 25-27).

Table 5 is a summary of the conditions for which each of the three ability distributions

produced more accurate results. As shown in the table, the accuracy of the JML estimation

procedure was less affected by varying the ability distribution than other estimation procedures.

This effect was expected because JML does not assume the form of the ability distribution while

MML assumes normality and MB requires placing prior distributions of a known shape. In

agreement with this expectation, it was found that the MML and to a greater extent than MB

estimates were more accurate with the normal than with the beta or the truncated normal ability

distributions (see the number of conditions for the normal ability distribution). The table also

shows that MML and ML-MML worked well with the beta ability distribution while the MB and

the ML-MB worked well for a fewer number of conditions with the beta and the truncated normal

ability distributions. The MB estimates and the MML estimates converged more often than JML

estimates did when the number of examinees (or the number of items) increased. The JML ability

estimates converged more often than the ML-MML and the ML-MB did. Convergence was found

related to the ability distribution when the a parameters are estimated. Thus estimation accuracy

was found to depend on ability distribution, sample size, test length, and estimation procedure. ,

Accuracy of the item calibration procedure was also found by Ree (1979) to be dependent

on the distribution of ability for certain sample sizes and test lengths. Ree's experiment was based

on the LOGIST program to calibrate data generated from normal and truncated normal ability

distributions. This experiment was extended in this study by including a beta ability distribution

and by including MB and ML procedures. In the current study, differences were found not only

among estimation procedures but also among the estimates produced with the three ability

distributions. These differences were greater with small sample size and/or test length. When both

sample size and test length increased, estimates became more accurate and they indicated, in some

cases, negligible differences across estimation procedures and across ability distributions. With

large samples and long tests, there were appreciable differences between the beta ability

distribution and the other two distributions. For example, the MB and the MML estimates of the a

and b parameters were more accurate with the normal ability distributions than they were with beta

ability distribution. Another example is the ML-MB and the ML-MML estimates which were more



accurate with the beta ability distribution than they were with the other distributions. For many
conditions not discussed above differences were negligible among ability distributions.

These negligible differences are in agreement with the results of the study by Yen (1987)
who indicated that ability distribution do not affect estimation accuracy. The reason for these
negligible differences are in the conditions she investigated as discussed earlier. The appreciable
differences can be attributed to the differences in the data generated in the two studies. The results
from either of the two studies can be generalized only to data sets with similar conditions. For
example, if the a and the c parameters were constant and the ability distribution deviated slightly
from normality then it is probable that estimation accuracy will not be affected by ability
distribution. On the other hand, if a and c parameters were varied and the deviation from normality
was not slight, then the estimation accuracy will be affected by the ability distribution as indicated
by Ree (1979) and confirmed in the current study. The less controlled the data were, the more
conditions became unfavorable for accurate estimation. Small sample, short tests, varied guessing
parameters, and varied discrimination parameters were some of these unfavorable but often
uncontrolled conditions. The contribution of this dissertation was to detect differences in accuracy
among estimation procedures upon using different ability distributions under these uncontrolled
conditions. These differences prevailed even with some favorable conditions. For example, with
large samples and long tests, the ML-MML and ML-MB estimates were less accurate at the lower
levels for the truncated normal ability distribution (see Figures 25 and 26) than for the normal or
the beta ability distributions. These results were based on the MSDs because correlations did not
include all replications and they were affected by nonlinear relationships.

The implications of finding differences in accuracy among estimation procedures and
among ability distributions are theoretical as well as practical. Theoretically, the effect of varying
ability distribution on accuracy of estimation has become evident. Practically, the results about this
effect may be used with real data if we know or at least can guess the shape of the true ability
distribution. It is true that we do not know the shape of the true ability distribution, however, we
may intuitively consider this distribution comparable to the total test scores. For example, after
selecting the top two-third from a group of examinees based on their total test cutoff score, the true
ability distribution can be thought of as truncated normal. Any cut off criterion believed to be
correlated with ability can also be used instead of the total test cut off score. Similarly, a normally
distributed total test score may be an indicative of a normally distributed true ability. Once we
develop a feeling of the shape of the true ability, then we may use the procedure that works best
with this distribution for the given sample size and test length as mentioned in Table 5. However,
intuition sometimes fail. Therefore, empirical research is needed to help identifying the shape of
the true ability distribution probably through a comparison between the distribution type of the
total test score or the estimated ability and that of the generated true ability after using an estimation
procedure that is least affected by ability distribution.
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Table 1. Accuracy Indices for a Parameter Estimates

Estimated
Parameter
(K X N)

Ability
DistribUtion

Estimation
Procedure

Correlation Percentiles
25th 50th 75th MSD

Squared
Bias Variance

a (20X250) Normal() MML .51 .74 .84 0.599 0.104 0.495
MB .80 .86 .89 0.178 0.061 0.117
JML .33 .53 .56 0.375 0.125 0.250

Truncated O MML .45 .67 .77 0.470 0.120 0.350
MB .69 .77 .86 0.197 0.077 0.120
JML .48 .53 .59 0.350 0.126 0.224

Beta 0 MML .60 .73 .85 0.479 0.094 0.385
MB .83 .86 .90 0.317 0.143 0.174
JML .39 .54 .57 0.366 0.124 0.242

a(20X1000) Normal MM1, .89 .89 .90 0.161 0.031 0.130
MB .89 .90 .90 0.063 0.021 0.042
JML .45 .50 .56 0.371 0.153 0.218

Truncated 0 MMI, .86 .87 .87 0.156 0.040 0.116
MB .86 .88 .88 0.104 0.038 0.066
JML .47 .52 .57 0.449 0.201 0.248

Beta 0 MML .86 .87 .88 0.336 0.128 0.208
MB .87 .88 .88 Q.321), 0.154 0.166
JML .26 .29 .37 0.508 0.218 0.290

a(60X250) Normal 0 MML .42 .48 .54 0.816 0.193 0.623
MB .78 .81 .83 0.125 0.045 0.080
JML .57 .64 .69 0.163 0.038 0.201

Truncated () MML .39 .44 .53 1.167 0.351 0.816
MB .69 .73 .79 0.149 0.050 0.099
JML .67 .69 .73 0.150 0.030 0.120

Beta 0 MML .58 .64 .69 0,216. 0.059 0.217
MB .64 .68 .72 0.213 0.096 0.117
JML .55 .62 .66 0.225 0.069 0.156

a(60X1000) Normal 0 MML .86 .89 .90 0.095 0.090 0.086
MB .91 .92 .94 Q(Aa 0.015 0.030
JML .85 .87 .88 0.091 0.034 0.057

Truncated 0 MML .82 .84 .87 0.174 0.064 0.110
MB .82 .82 .89 0.184 0.078 0.106
JML .86 .8z .88 0.073 0.026 0.047

Beta 0 MML .81 .84 .88 0.125 0.050 0.075
MB .84 .86 .87 0.139 0.064 0.075
JML .82 .84 .88 0.122 0.046 0.076
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Table 2. Accuracy Indices for b Parameter Estimates

Estimated
Parameter
(K X N)

Ability
Distribution

Estimation
Procedure

Correlation Percentile
25th 50th 75th MSD

Squared
Bias Variance

b(20X250) Normal 8 MML .89 .93 .96 0.254 0.051 0.203
MB .93 .97 .98 0.217 0.065 0.152

JML .91 .92 .93 1.262 0.575 0.687

Truncated 0 MML .90 .92 .95 0.272 0.095 0.177
MB .96 .97 .97 0.262. 0.105 0.157
JML .89 .91 .92 1.448 0.678 0.770

Beta 8 MML .87 .91 .92 0.484 0.250 0.234
MB .93 .95 .95 0.484 0.202 0.282
JML .93 .93 .94 2.393 1.120 1.273

b(20X1000) Normal 0 MML .86 .88 .93 0.143 0.031 0.112
MB .92 .94 .95 0.120 0.050 0.070
JML .97 .97 .98 5.340 2.631 0.709

Truncated O MML .85 .86 .86 0.432 0.206 0.226
MB .97 .98 .99 0.430 0.205 0.225

JML .96 .96 .97 4.338 2.147 2.191

Beta e MML .64 .70 .79 0.249 0.076 0.173
MB .81 .85 .88 0.231 0.154 0.077
JML .97 .97 .97 5.475 2.694 2.781

b(60X250) Normal 0 MML .87 .90 .92 0.395 0.056 0.339

MB .96 .96 .97 0.197 0.072 0.125
JML .91 .93 .94 0.351 0.093 0.258

Truncated 0 MM.. .85 .88 .90 0.600 0.188 0.412
MB .93 .94 .96 0.354 0.134 0.220
JML .90 .92 .94 0.498 0.146 0.352

Beta 0 MML .80 .86 .90 1.180 0.280 0.900
MB .95 .96 .97 0.323 0.202 0.282
nva, .87 .93 .94 1.124 0.383 0.791

b(60X1000) Normal 0 MML .94 .95 .96 0.13.2 0.023 0.116
MB .98 .98 .98 0.093 0.035 0.058

JML .97 .97 .98 0.243 0.098 0.145

Truncated () MML .92 .94 .96 0.263 0.107 0.156
MB .95 .96 .96 0.256 0.118 0.138
JML .97 .98 .98 0.246 0.100 0.146

Beta O MML .92 .94 .95 0.291 0.095 0.196
MB .96 .97 .97 0.205 0.087 0.118
JML .96 .97 .97 9.441 0.179 0.262
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Table 3. Accuracy Indices for c Parameter Estimates

Estimated
Parameter
(K X N)

Ability
Distribution

Estimation
Procedure

Correlation Percentile
25th 50th 75th MSD

Squared
Bias Variance

c(20X250) Normal 0 MML .41 .50 .58 0.019 0.002 0.017
MB .65 .71 .78 0.012 0.004 0.008
JML .62 .66 .71 0.013 0.004 0.009

Truncated 0 MML .49 .59 .73 0.020 0.005 0.015
MB .67 .72 .84 0.013 0.004 0.009
JML .54 .59 .71 0.015 0.004 0.011

Beta 0 MML .45 .48 .54 0.022 0.004 0.018
MB .67 .70 .76 0A02Q 0.009 0.011

JML .67 .72 .79 0.012 0.003 0.009

c(20X1000) Normal 0 MML .76 .83 .92 0.010 0.001 0.009
MB .81 .88 .94 0.006 0.002 0.004
JML .54 .60 .61 0.019 0.008 0.011

Truncated 0 MML .95 .97 .98 0.020 0.008 0.012
MB .97 .97 .98 0.010 0.004 0.006
JML .47 .60 .70 0.020 0.009 0.011

Beta 0 MML .68 .78 .83 0.020 0.006 0.014
MB .73 .80 .85 0,011 0.008 0.009
AIL .63 .67 .70 0.014 0.006 0.008

c(60X250) Normal 0 MML .45 .52 .63 0.024 0.004 0.020
MB .64 .68 .72 0.009 0.004 0.005
JML .51 .56 .63 0.015 0.003 0.012

Truncated () MML .46 .57 .62 1.43.6. 0.011 0.025
MB .61 .64 .68 0.018 0.008 0.010
JML .47 .58 .58 0.016 0.003 0.013

Beta 0 MML .33 .42 .48 0.029 0.005 0.024
MB .60 .60 .67 0.016 0.007 0.009
JML .52 .55 .57 0.016 0.004 0.012

c(60X1000) Normal 0 MML .51 .61 .66 0.015 0.002 0.003

MB .74 .76 .78 0.007 0.003 0.004
JML .69 .71 .74 0.008 0.003 0.005

Truncated 0 MML .63 .67 .68 0.031 0.014 0.017
MB .69 .71 .73 0_,Q2Q 0.009 0.007
JML .68 .69 .75 0.008 0.003 0.005

Beta e MML .59 .61 .67 0.019 0.006 0.017
MB .73 .77 .80 0.012 0.005 0.011

JML .75 .76 .79 0.007 0.002 0.005
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Table 4. Accuracy Indices for ability Parameter Estimates

Estimated
Parameter'
(K X N)

Ability
Distribution

Estimation
Procedure

Correlation Percentile
25th 50th 75th MSD

Squared
Bias Variance

0(20X250) Normal ML-MML .88 .89 .89 0.740 0.232 0.508
ML4vB .90 .90 .90 0.748 0.170 0.578
JML .75 .76 .77 3.814 0.895 2.919

Truncated Co ML-MML .83 .84 .85 0.968 0.271 0.697
ML-MB .85 .86 .87 lifA8 0.238 0.810
JML .72 .74 .71 3.800 0.779 3.021

Beta ® ML -MML .85 .86 .86 0.899 0.301 0.598
ML-MB .86 .88 .89 0.867 0.207 0.660
JML .77 .79 .79 3.730 1.009 2.721

0(20X1000) Normal Co ML-MML .87 .90 .92 1.048 0.296 0.752
ML-MB .88 .91 .94 0.641 0.148 0.493
IML .80 .81 .83 1.156 0.244 0.912

Truncated O ML-MML .90 .95 .97 1.237 0.305 0.932
ML-MB .96 .97 .98 1.221 0.230 0.991
JML .77 .80 .80 1.066 0.191 0.875

Beta O ML-MML .50 .58 .72 1.061 0.298 0.763
ML-MB .76 .81 .84 1.035 0.288 0.747
JML .85 .86 .86 1.029 0.253 0.776

0(60X250) Normal ML-MML .85 .91 .92 0.541 0.106 0.435
ML-MB .94 .95 .95 0.327 0.082 0.245
JIVL .89 .91 .93 0.577 0.131 0.446

Truncated O ML-MNIL .50 .69 .89 1.323 0.282 1.041

ML-MB .89 .91 .93 0.468 0.108 0.360
.94 .96 .96 fLal 0.069 0.212

Beta O ML -MML .93 .94 .94 0.339 0.087 0.252
ML-MB .94 .95 .95 0.405 0.032 0.373
JML .93 .93 .94 0.610 0.199 0.411

0(60X1000) Normal 0 ML-MML .94 .94 .95 0.229 0.045 0.184
MI. MB .94 .94 .95 0.264 0.058 0.206
JNIL .91 .93 .94 0.422 0.100 0.322

Truncated 0 ML-MML .87 .88 .89 151Q 0.138 0.432
ML-MB .87 .88 .88 0.472 0.100 0.376
JML .92 .94 .95 0.347 0.083 0.264

Beta ID ML -MML .94 .94 .95 0.135 0.019 0.116
ML-MB .94 .95 .95 0.148 0.026 0.122
JML .91 .92 .92 0.618 0.183 0.435
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Table S. Distributions that Produced More Accurate Estimates

Estimated Parameter (K X N) Estimation Procedure

a MB MML JML

20X250 * *

20X1000 N,T * *

60X250 * *

60X1000 B

MB MML JML

20X250 B B

20X1000 T T

60X250

60X1000 N

MB MML JML

20X250 N,T * *

20X1000 B N

60X250 T

60X1000 N,B N,B

0 ML-MB ML -MML JML

20X250 * *

20X1000 N * *

60X250

60X 1000 N,B N$

* = negligible effect of ability distribution

B = Beta ability distribution

N = Normal ability distribution

T = Truncated normal ability distribution
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Figvre 22. Scatterplots of ML-MB estimates of 0 for 20 items and 1000 examinees.
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Figure 24. Scatterplots of JML Estimates of 8 for 60 items and 250 Examinees.
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Figure 25. Scatterplots of ML-MML Estimates of B for 60 items and 1000 examinees.
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Figure 26. Scatterplots of ML-MS estimates of B for 60 items and 1000 examinees.
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Figure 27. Scatterplots of JML estimates of B for 60 items and 1000 examinees.
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