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Abstract

A subset of a real data set is used to illustrate an ad hoc
analysis with missing data on multiple response variables. This

strategy is initiated with a complete-case analysis to determine some
variable(s) that may be deleted with no loss in effects of interest.

By such a deletion, the number of complete observation vectors may very

well increase. Also illustrated are two straightforward imputed means

analyses. All illustrations are given in the context of predictive

discriminant analysis.
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An Ad Hoc Analysis Strategy
with Missing Data

The purpose of this paper is to present an ad hoc analysis

strategy with missing data for use in a predictive discriminant

analysis context, and to illustrate the strategy using a subset of a

real data set. Following the illustration, the same subset is

subjected to two imputed means analyses, again for illustrative

purposes.

Before presenting and illustrating the proposed analysis strategy,

the missing data problem is briefly reviewed. Consider a'data matrix

of N (total number of experimental units) rows and p+1 (number of

response variables plus one grouping variable) columns. Sometimes with

real data sets there are fewer than the total possible Np response

variable measures'; this is an example of a missing data problem. If

there is a row with more than, say, p/2 missing measures, then this row

(i.e., sampling unit) might be deleted outright; The same goes for a

column (i.e., variable) with more than N/2 missing measures. Even

subsequent to such deletions there may be additional missing measures,

and the researcher needs to utilize the "working" data matrix (of N

rows) in some analysis. One possible analysis is an available-case

analysis. With this analysis, parameter estimates are determined using,

all available data; this involves using partially complete data matrix

rows and columns. Such an analysis is very complicated and is outside

the domain of most readily available computer software (see Hand, 1981,

pp. 191-193).

Two analysis strategies often considered by practicing researchers

with the final data set of interest are: (1) conduct a complete-case

analysis; and (2) impute the missing data values and then conduct the

analysis of choice. The complete-case analysis involves
only those

rows--say N* (< N) rows--in which there are no missing data. This

strategy may be appropriate when the percent of rows with missing

values is "low." It is the default analysis for most data analysis

computer software (e.g., SAS and SPSS). [The percent of missing values

may be calculated for the total data matrix (Np variable measures), or

for each group of units.]

Data imputation can be fairly simple or fairly complex. Four

methods of imputation in a predictive discriminant analysis (PDA)

context that have been studied are:

(1) Use the mean of all available scores in the respective

groups or use the total-group means (see Hufnagel, 1988;

Jackson, 1968);

(2) Standardize the scores (with zero means) for each variable;

substitute zeros for missing values and conduct a principal

component analysis of the pooled covariance matrix;

coordinates of the point nearest the first principal

component are substituted for missing coordinates (Chan,

Gilman, & Dunn, 1976);

(3) Use the expectation-maximization (EM) algorithm, as

described by Johnson and Wichern (1992, pp. 202-207) and

Twedt and Gill (1992); and
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(4) Let the missing value of the ith predictor, Xi , be

determined as in (1) and similarly replace missing values

for all other X's; then using Xi as a criterion variable,

conduct a multiple regression with the other X's as

predictors and use Xi as an imputed value; as described

by Hufnagel (1988), extensive iterations may be

incorporated.

Over the past 25 years or so, a number of data simulation studies

have been reported that compare methods of handling missing data in a

PDA context. Most of these studies focused on the two-group PDA

situation. Four two-group studies spanning the last four decades are

now briefly reviewed. Jackson (1968) compared the complete-case method

and methods (1) and (4) mentioned above, and concluded that method (4)

was best (in the sense of predictive accuracy), but not appreciably

better than method (1) -- it was not clear as to which mean was used.

Chan et al (1976) found that the complete-case method was "surprisingly

good" (p. 844) for p = 2 and p = 4, and "it is comforting to find that

[method (1) with separate-group means] performs reasonably well" (p.

844) relative to methods (2) and (4). The conclusion Hufnagel (1988)

drew were conditioned on predictor intercorrelations, number(p) of

predictors, and proportion of missing observations. It was concluded

that, "in the case of large correlations [the complete-case method and

method (4)] can be recommended best" but [method (2)]" could be used

... if small proportions of missing-observations are given" (p. 74).

Twedt and Gill (1992) concluded from their simulations that differences

among methods (1) (which mean used is not clear), (2), and (3) were

slight, and that it is "better to replace missing data than to delete

the observation vectors with missing data" (p. 1577).

Group membership prediction rules typically used are normal-based

rules. The effect of (random or nonrandom) missing data on

multivariate normality is a complicated issue that is not discussed

here (see Murty & Federer, 1991). In the ensuing discussion it is

assumed that multivariate normality is a condition that is reasonably

met.

An Ad Hoc Analysis
With the proposed ad hoc analysis, no data imputation is involved.

This strategy may be described in the context of predictive

discriminant analysis (PDA) as follows. Let there be N* (< N) units

for which there are complete p-dimensional observation vectors. With

an N
*-by-(p+1) data matrix, a complete-case PDA is conducted. From

this analysis, it may be reasonable to conclude that one of the p

predictor variables may be deleted with little loss, or in fact a gain,

in predictive accuracy. Moreover, there may be units with missing data

on the deleted predictor, but with complete data on the other p-1

predictors. One can then return to the original data matrix and

determine a new data matrix of N** rows and (p+1)-1 columns, where N* <

N** < N. Another PDA could then be conducted using the p-1 predictors

and the N** units, and determine if another predictor might be deleted

with little loss, or a gain, in predictive accuracy. If so, a new data

matrix with, presumably, a greater number of rows than N** may then be

analyzed. Again, a "weak" variable may be deleted; and so on. It is

6
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recognized that multiple decisions would need to be made on different

data matrices. Needless to say, judgment and reasonableness would need

to be exercised. [Sometimes it may be judged reasonable to delete more

than one predictor at a time. Suppose one considers deleting two

[

p

predictors. Then what might be done is to conduct analyses to

determine which pair of predictors could be advisably deleted.

Continuing to look for the next two predictors to drop, one would

-2
conduct

p analyses; and so on.]
2

An Example
Data. A data set was obtained via a national telephone survey in

Canada. The survey dealt with alcohol consumption and automobile

driving. Two types of drivers were determined: Group 1 consisted of

those who did drive after drinking; and Group 2 consisted of those who

did not drive after drinking. The purpose of one study that utilized

the data set (DeJoy, Hubeity, & Shewokis, 1993) was to develop a rule

to predict group membership and to assess the predictive accuracy of

the rule, particularly for Group 1. Thirteen predictor variables were

considered. The initial data matrix had 6816 rows and 14 columns; one

column was simply a group membership indicator. Four 13x13 correlation

matrices were determined, two (list-wise and pair-wise deletion of

units) for each group. Because no bivariate correlations were judged

to be so high as to conclude there was extensive variable redundancy,

all 13 predictor were retained for study. A total of 1705 drivers

comprised Group 1 whereas 5111 drivers were in Group 2.

There were 359 drivers (62 in Group 1 and 297 in Group 2) who had

missing score values on at least one of the 13 predictors. For the 359

drivers, 80 scores (9.9%) were missing in Group 1 and 568 scores

(14.7%) were missing in Group 2. There were five variables for which

there were no missing values. The variable with the largest number of

missing values had 34 missing values in Group 1 and 172 in Group 2.

Prior to selecting the additional drivers from each original

group, potential outliers were identified by using the SPSS

DISCRIMINANT program (Release 4.0). A quadratic classification rule

was used with respective group priors of .30 and .70 (see the next

subsection). If a driver assigned to a group isn't very likely to have

originated from that group as determined by a typicality probability of

less than .05, then that driver was considered a potential outlier.

Such drivers (65 in Group 1 and 6 in Group 2) were excluded from

consideration in the selection process. To complete the data subset

used for the current report, 100 drivers were randomly selected from

the 1578 (nonoutliers) .in Group 1 with complete observation vectors,

sand 200 were randomly selected from the 4808 (nonoutliers) in Group 2.

This gives a final count of 162 Group 1 drivers and 497 Group 2

drivers. [These counts easily satisfy a rule-of-thumb sample-size

guide of having at least 5 times the number of predictors in the

smaller group, and the counts retain the approximate proportional

sampling for the original 6816 drivers.] With these final group sizes,

about 3.8% of the 162(13) Group 1 values are missing and about 8.8% of

the 497(13) Group 2 values are missing; across the two groups of

659(13) values, about 7.6% are missing. Counts for the original sample

and for the subset selected for this study are summarized in Table 1.



Table 1
Group Counts

Original Units
Complete vectors

(Outliers

Group 1

1643

65

Group 2

4814

6)

Incomplete vectors 62 297

1705 5111

Selected Units
Complete vectors 100 200

Incomplete vectors 62 297

162 497

5

6457

359

6816

300

359

659

Analysis. It was necessary to make some decisions about the

specifics of the PDA techniques to be used. For the group sizes

involved and the two group covariance matrices (with outliers deleted

the Box test yielded P = .0000), it was decided that a quadratic

classification rule was to be used (see Huberty, in press, Section

IV-3). On the basis of familiar previous research data, prior

probabilities of .30 for Group 1 and .70 for Group 2 were judged to be

reasonable. In estimating proportions of correct classification (i.e.,

hit rates), in-doubt drivers -- those who are not clearly predicted to

be one type of driver or the other -- were to be deleted from

consideration. A threshold posterior probability of .60 was utilized;

a driver had to "yield" a posterior probability of group membership of

at least .60 to be assigned to one group or the other. Finally, an

external analysis -- crossvalidation or leave-one-out (L-0-0) -- was

used in estimating group hit rates. In sum, what was used is an

externally assessed two-group quadratic classification rule with

respective priors of .30 and .70 and a threshold value of .60. The hit

rate of interest for the current study is that for Group 1. [See

Huberty (in press, Section VI-3) for details of hit rate estimation.]

The DISCRIM procedure in the SAS package (Release 6.07) was used.

A quadratic L-0-0 rule was employed to order the predictors with

respect to their relative contribution to classification accuracy for

each group. To start, 13 12-variable analyses were run and the

separate-group hit rates were noted with each predictor deleted. [Each

of the 13 analyses was conducted using the drivers for whom there were

complete observation vectors. Thus, the number of drivers considered

may vary across the 13 analyses.] If a large hit rate for Group 1.

(relative to the 13-variable hit rate) is associated with a deleted

predictor, then that predictor is judged to be relatively unimportant.

Then, after one predictor is deleted, 12 11-variable analyses were

completed; and so on. Judgment must be exercised when hit rates

associated with two or more deleted variables are "close."

8
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Results. A summary of all steps in the analysis process is given

in Table 2. The 13 12-variable analyses indicated that deleting V10

would actually increase the Group 1 L-0-0 hit rate (from .460 to .512).

As is obvious, by deleting the least important variable, V10, the

number of rows in the complete-case matrix increases from 300 to 420.

It turns out that by deleting three of the 13 predictors (one at a

time), the number of drivers for whom complete score vectors were
available increased from 300 to 461 while the Group 1 hit rate

"stabilized" at about .53. By deleting a fourth variable, no

appreciable increase in the number of complete vectors resulted without

a drop in the Group 1 hit rate. So, with this data set, one could

reasonably utilize a complete-case data set having 461 rows out of a

total of 659 rows with the ad hoc analysis strategy. In utilizing this

data set there would be a 28% increase in the number of Group 1

drivers, a 66.5% increase in the number of Group 2 drivers, and a 53.7%

increase in the total number of drivers.

One might ask: "Why not use an analysis that utilizes all of the

drivers on whom you have partial or complete observation vectors?" To

do so, one could use some method of data imputation. We discuss such

an approach next.

Imputed Means Analyses
As mentioned earlier, two types of means may be used for

imputation purposes: total-group means and separate-group means. We

judge the latter to better approximate the "real" observations (that

are missing) and, therefore, focus on them. As indicated in the brief

review in the introduction of this paper, the simple imputation method

of replacing missing observations with means fares pretty well when

compared with more complicated imputation methods (at least for the

two-group context).

Imputed means may be utilized in a predictive discriminant

analysis in two ways: (i) Impute all missing observations using means

to complete the data matrix, determine a rule using this completed data

matrix, and assess the rule using a L-0-0 analysis; and (ii) Determine

a classification rule using only the complete observation vectors, and

then apply the rule to the data matrix with all missing observations

imputed with means so as to arrive at hit rate estimates.

Both imputed means analyses were conducted on the data set

described above, using the SAS package (Release to 6.07).

Imputed Means Analysis CLL. Separate-group means were calculated

using available data for each response variable for which there were

some missing scores. This was accomplished using the MEANS procedure

from SAS. In the original N *(p+l) data matrix, ear.:h
missing data point

for a predictor was supplanted by the corresponding group mean of the

predictor. The resulting augmented matrix data matrix (N=659) was used

for the following analyses. First, a 13-predictor PDA was conducted (N

= 659) using a quadratic L-0-0 analysis. Second, 13 12-predictor

analyses were conducted to determine if, by deleting a predictor,

9
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Table 2
Results of Ad Hoc Classification Analyses

No. Predictors
Predictor
Deleted

Group 1 L-0-0
Hit Rate

Complete Case Nos.
G G Total

13 (none) .460

1

100

2

200 300

12 V10 .512 125 295 420

11 V4 .52b 127 327 454

10 V7 .531 128 333 461

an increase in the Group 1 hit rate (relative to the 13-predictor hit

rate) would result. It turned out that by deleting V7 the Group 1

L-0-0 hit rate increased from .506 to .518. Third, 12 11-predictor

analyses were conducted. It turned out that by deleting V2 or V4 or

V9, the Group 1 L-0-0 hit rate remained at .518. Thus, three sets of

11 10-predictor analyses were conducted, one set with V7 and V2

deleted, one with V7 and V4 deleted, and one with V7 and V9 deleted.

It turned out that by deleting that last pair along with V1, the Group

1 L-0-0 hit rate increased to .525 -- this was a greater increase than

those resulting from the sets of analyses with the other two pairs .

deleted. A summary of the analyses is presented in Table 3.

Imputed Means Analysis (ii). with this method, a classification

rule is built using the 300 complete observation vectors. Then this

rule is applied to the data matrix with 659 rows wherein separate-group

means replace the respective missing variable values. This type of

analysis may be carried out using the SPSS DISCRIMINANT

Table 3

Results of Imputed Means Analysis (i)

Predictor Group 1'L -0 -0

No. Predictors Deleted Hit Rate

13 (none) .506

12 V7 .518

11 V9 .518

10 V1 .525

10
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program (with the keyword MEANSUBSTITUTION), except that total-group

instead of separate-group means would be used as imputed values.

Furthermore, SPSS is unfortunately limited to a linear internal or

resubstitution classification analysis which would be inappropriate for

this particular set of data. Using the "TESTDATA" option in SAS

DISCRIM it is straightforward to develop a classification rule based on

complete observations and subsequently apply the rule to the data

matrix augmented by separate-group means. Notwithstanding, it is not

possible to obtain L-0-0 results via SAS DISCRIM in this context.

Despite this shortcoming, the quadratic internal analysis approach was

considered as an alternative. Of course, the obtained hit rates should

not be compared with those obtained via the two previous analysis

approaches.

Results of this imputed means analysis of the current data set are

given in Table 4. It is not too surprising that the internal

hit rates obtained for 13, 12, and 11 predictors were higher than the

corresponding L-00 hit rates using analysis (i) and using the ad hoc

analysis.

Discussion
The intent of presenting the three analysis strategies was not to

compare them in any empirical sense. These are simply three

strategies that are fairly easy to carry out with practically any

data set in the illustrated context of a predictive discriminant

analysis. Although the strategies were illustrated in a two-group

situation, they may be applied to a situation involving three or more

groups in a similar manner.

The ad hoc strategy in general may be applicable in other

multivariate contexts; for example, multivariate analysis of variance

(MANOVA), multiple regression analysis, and descriptive discriminant

analysis. If such a missing data analysis strategy were used in a

MANOVA context, two questions would need to be addressed: (1) What

interpretation of outcome variable relative importance is to be

considered?; and (2) What numerical index of relative importance,

consonant with the selected interpretation, is to be used? Answers

Table 4

Results of Im uted Means Anal sis ii

No. Predictors

13

12

11

Predictor
Deleted

(none)

V4

V9

11

Group 1
Hit Rate

.531

.543

.549
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to these questions would presumably determine the dimensions of the

data sets to be used in the analysis strategy. With the data set used

earlier in this paper, for example, it would have to be described if

the initial analyses should be based on a data matrix with 300 rows or

with varying number of rcws if multiple analyses are carried out in the

process. The above two questions would also have to be considered in

other analysis context -- see Huberty (1989) for a discussion on

variable ordering.

The general philosophy behind the proposed ad hoc analysis

strategy is: Do the best with what you have. Some might argue that

the available data may be utilized in estimating missing scores which

would result in a more acceptable analysis. Perhaps. Some data

imputation methods assume randomly missing data. In a given study, how

"good" imputed data are is virtually unknown. Another type of question

that may be asked in a context like that used herein is: What is to

say that a variable would be assessed as an unimportant predictor if

more measures on the variable were available? Of course, an ad hoc

analysis strategy such as that proposed here is expected to work with

varying proficiency across different data sets. It may very well be an

analysis strategy of choice for some real data sets.



'77.7777'

10

References

Chan,Chan, L. S., Gilman, J. A., & Dunn, 0. J. (1976). Alternative

.
approaches to missing values in discriminant analysis.

Journal of the American Statistical Association, 71, 842-

844.

DeJoy, D. M., Huberty, C. J, & Shewokis, P. A. (1993, May).

Attitudinal and behavioral predictors of drinking and

driving decisions:
Preliminary analyses of a large-scale

survey. Paper presented at the second World Injury Control

Conference, Atlanta.

Hand, D. J. (1981). Discrimination and classification. New York:

Wiley.

Huberty, C. J (1989). Problems with stepwise methods: Better

alternatives. In B. Thompson (Ed.), Advances in social science

methodology (vol. 1, pp. 43-70). Greenwich, CT: JAI Press.

Huberty, C. J (in press). Applied discriminant analysis. New York:

Wiley.

Hufnagel, G. (1988). 3n estimating missing values in linear

discriminant analysis - Part I. Biometrical Journal, 30,

69-75.

Jackson, E. C. (1968). Missing values in linear multiple

discriminant analysis.
Biometrics, 24, 835-844.

Johnson, R. A., & Wichern, D. W.. (1992). Applied multivariate .

statistical analysis. Englewood Cliffs, NJ: Prentice Hall.

Little, R. J. A., & Rubin, D. B. (1987). Statistical_
with missing data. New York: Wiley.

Murty, B. R., & Federer, W. T. (1991). Missing observations in

multivariate analysis. Journal of t'.,e Indian Society of

Agricultural Statistics, 43, 107-126.

Twedt, D. J., & Gill, D. S. (1992). Comparison of algorithms

for replacing missing data in discriminant analysis.

Communications in Statistics -- Theory and Methods, 21,

1567-1578.

13


