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Visualization as an Aid to Problem-Solving: Examples from History

Lloyd P. Rieber
The University of Georgia

This paper presents an historical overview of visualization as a human problem-solving tool. Visualization
strategies, such as mental imagery, pervade historical accounts of scientific discovery and invention. A selected
number of historical examples are presented and discussed on a wide range of topics such as physics, aviation,
and the science of chaos. Everyday examples are also discussed to show the value of visualization as a problem-
so lying tool for all people. Several counter examples are also di sc4ssed showing that visualization can sometimes
lead to erroneous conclusions. Many educational implications are discussed, such as reconsidering the dominant
role and value schools place on verbal, abstract thinking. These issues are also considered in light of emerging
computer-based technologies, such as virtual reality.

The increased availability of multimedia tools in educa-
tion permit the design of instructional systems that incorporate
unlimited variations and forms of textual, visual, aural infor-
mation for both presentation and feedback. However, our
sense of vision arguably represents our most di \ erse source of
information of the world around us (Sekular & Blake, 1985).
Society, including education, transmits tremendous amounts
of information in visual form. Visualization is most frequently
used in instruction in the presentation of information. How-
ever, visualization techniques are also powerful problem-
solving tools, though they are rarely promoted as such in
learning and instruction. This is unfortunate, as history is full
of fascinating examples where visualization has been one of
our most important arsenals of problem-solving tools
(Koestler, 1964).

The purpose of this paper is provide a historical context for
current efforts by instructional technologists to exploit the full
potential of visualization techniques, especially those that tap
the computational and graphical power of the computer. This
paper will present a variety of cases where people have used
visualization techniques throughout history to solve a wide
range of problems. The term visualization is used broadly here
to include all nonverbal cognitive strategies, including mental
imagery. In addition, some counter examples will be discussed
to show how visualization can sometimes lead us astray. The
paper will conclude by discussing the implications of visual-
ization in education and instructional design. These issues will
surely increase in importance and complexity as highly-visual
computer-based systems continue to evolve, such as in the case
of virtual reality. This paper suggests that history might he able
to help us as we struggle for the most appropriate applications
of visualization in education both now and in the future. This
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paper begins with a few general examples that illustrate the role
of visualization in human problem-solving at the everyday
level.

Visualization as a General Problem-Solving
Strategy

Although historical examples of famous people using
visualization to solve complex problems are often the roost
dramatic, everyday people using the same visual skills to solve
everyday problems are the most poignant. Some problems, of
course, are inherently spatial. Consider giving or getting
directions to an infamiliar part of town. It is interesting how
often the "dire:don giver" usually starts with a pure verbal
description, but then quickly reverts to visualization "tricks"
extemporaneously (such as pointing in the air to illustrate the
many turns and distances). It is almost as if the person is going
on a brief, imaginary trip to the final destination on behalf of
the lost individual in the hope to show, by example, how to get
there. The "direction getter" is at the same time trying to
mentally form a visual imprint of the trip while memorizing
key verbal labels (such as landmarks and street names).

Researchers who study the problem-solving process have
long recognized visualization as a problem-solving tool
(Finke, 1990; Finke, Ward, Smith, 1992). People often times
forget to use such inherent capabilities, perhaps because
schools tend to emphasize verbal skills over visual skills and
abstract reasoning over concrete reasoning. Unfortunately, the
idea of using simple visualization as a cognitive strategy to
help ourselves solve a problem is often times either overlooked
or discouraged. For example, consider the following problem
(from Bransford & Stein, 1984):

A man had four chains, each three links long. He wanted to
join the four chains into a single, closed chain. Having a link
opened cost 2 cents and having a link closed cost 3 cents.
The man had his chains joined into a closed chain for 15
cents. How did he do it?

Take a few moments to try to solve the problem before
reading ahead for the solution. As you do so, reflect on the
strategies that you are using to solve the problem.
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Most people find the problem very difficult to solve
mentally. The first possible solution of four links opened and
closed would cost twenty cents. For most people, a good first
step is to draw the four chains on paper to construct a visual
representation of the problem's entry conditions. After work-
ing through opening and closing links with a visual model, one
discovers that the solution rests in opening all three links of one
of the chains. These three links can then be used to join the
other three chains. When the problem is converted into visual
form, the solution is easy to derive.

Lave (1.988) has described the ways everyday people
solve problems by exploiting all of the resources present in the
problem situation. For example, people were presented with
an everyday problem of fixing food for three people when the
recipe listed amounts for four people. One recipe called for two
thirds cup of cottage cheese. One person quickly solved the
abSt.CUCt oblem of finding "three fourths of two thirds" by first
measuring out two thirds cups onto the table, patting it into a
circle, and marking a cross on it. The person then removed the
one excess quarter and was left with the correct portion!
Lave's work is often cited by proponents of situated cognition
(e.g. Brown, Col! ns, & Duguid, 1989), though these examples
also show how everyday people use spatial and concrete
reasoning abilities to grapple with problems often expressed in
abstract form in traditional mathematics. The concrete solu-
tions are just as sophisticated and complex as those expressed
abstractly, yet such a visualization strategy would probably not
be allowed by most math teachers.

Here is another example that aptly demonstrates the power
of visualization in problem-solving (Norman, 1988). Even
more so, it reveals the power of the human perceptual system
to deal with problems efficiently and effectively when pre-
sented in visual form. The problem is a simple math strategy
game for two players. The game starts by writing the numbers
one to nine on index cards one number per card. The nine
cards are laid nut on a table with the numbers facing up. The
players then take turns choosing a number. Each number can
only be chosen o.ice in a game. The first player who gets any
combination of three numbers that add up to 15 is the winner.
The game is quite a challenge even for adults. One must
anticipate appropriate combinations of three numbers sum-
ming to 15, while also anticipating possible winning combina-
tions by their opponent. Numbers are chosen either to advance
one's own hand or to block an approaching win by the oppo-
nent. Try playing this game a few times with a friend before
reading further.

Playing this game in the pure mathematical form de-
scribed above is quite difficult. Many adults do not remember
ever playing this game, though most find it strangely familiar.
The reason for this is that the game has another, more familiar
form tic-tac-toe. The commonalty of the games can be
recognized by carefully arranging the nine numbers so that all
vertical, horizontal, and diagonal combinations of three
squares add up to 15, as illustrated in Figure 1 (this special
combination is also known as a "magic square.") Strategies
from one version of the game quickly transfer to the other. For
example, capturing the middle square or the number "5" gives
the player a distinctive advantage. Most adults consider tic -
tac -toe to be a simple child's game not worth playing anymore
because the game will inevitably end up in a draw once both

players understand the "secret" to successfully blocking the
opponent at every move. Interestingly, the pure math version
of the game remains a challenge even knowing that it is a
"disguised" version of tic-tac-toe. The point is that the game
becomes "childish" only when the perceptual ability of pattern
recognition is used. The game itself has not changed, only tht
cognitive tools used by the individual to play it.

Visualization by Scientists and Inventors

Some of the most fascinating accounts of human problem-
solving show remarkably simple examples of how visualiza-
tion coupled with imagination led to brilliant discoveries and
flashes of insight (Burke, 1985; Shepard, 1988). It is interest-
ing that we often refer to these people as "visionaries," some-
how being able to see what others cannot. The use of this
description may not be as metaphorical as one might first think.
It is stunning how many scientists and inventors placed a great
deal of importance on the nonverbal in the act of creative
imagination. Many describe the phenomena of sudden "illu-
mination" where solutions just "showed themselves" or came
to them in sudden bursts of insight. Indeed, many famous
scientists describe grasping a solution instantaneously and as
a whole, and then having to face the arduous task of putting the
idea already completely conceived into an appropriate verbal
form to share with others. Although this section does not
pretend to present an exhaustive and comprehensive account
of visualization by scientists and inventors, the few examples
that follow make a convincing point about the value of visual-
ization in cognition.

Albert Einstein's unique methods of wrestling with the
most puzzling problems of physics, such as light taking on
characteristics of both particles and waves simultaneously, are
among the most well-known. Einstein was known for using
"thought experiments" to work out problems in a uniquely
nonverbal manner. Perhaps his most famous thought experi-
ment was imagining what it would be like to ride on a beam of
light. This allowed him to make the conceptual leap of
"seeing" light as though it were in static form. This helped him
to resolve the paradoxes underlying what was to become his
Special Theory of Relativity. In another example, he imagined
how two people would describe the behavior of a light flashing
inside a moving truck if one peison was riding in the truck and
the other was standing on the street to help understand the
absolute nature of the speed of light.

The German chemist August Kelcule is another scientist
famous for his reports of imagery. He often described how
atoms appeared to "dance before his eyes." He is said to have
discovered the ring-like molecular structure of benzene by
gazing into a fire and seeing in the flames a ring of atoms
looking like a snake eating its own tail. His accounts of
problem-solving through dreamlike visual : magery are echoed
in the case stories of many other scientists, including Isaac
Newton.

Roger Shepard (1988) offers one of the most interesting
and detailed discussions of how famous scientists and inven-
tors have been predisposed to visualization in their acts of
creative imagination and discovery. Beyond those of Einstein
and Kekuld, Shepard describes the creative inventiveness of
dozens of famous scientists, such as: Michael Faraday's
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Figure 1. A "magic square:" All number across, down, and diagonal
sum to 15.

visualization of the lines of magnetism; Nikola Tesla's inven-
tion of the self-starting induction motor; Omar Snyder's solu-
tion to the containment problem of uranium in the Manhattan
project; James Watson's conception of the double-helix shape
of DNA; and Richard Feynman's invention of "Feynman's
di. grams" for use in quantum electrodynamics. A curious
..,:milarity of many of these famous thinkers is that they were
often able to grasp their solutions instantly as a whole.

Based on his investigations, Shepard described a "com-
posite caricature" of individuals who have reported extraordi-
nary instances of visual-spatial creative imagery. Three com-
monalties be found in these people's early formative years.
Many were kept home from school in their first years and had
limited contact with peers of their own age. Many were below
average in verbal ability, such as language development.
Finally, most were fond of engaging in play with concrete
physical objects, such as blocks, cubes, and mechanical mod-
els. Most of these skills, abilities, and strategies were devel-
oped apart from the educational systems of their day.

Shepard goes on to suggest some provocative implica-
tions of this composite profile of a highly creative, nonverbal
thinker. Working in private without much contact with formal
educational institutions (such as schools), these people are
likely to engage in unorthodox and nontraditional thinking
which, unfortunately, may be met with disapproval or punish-
ment in a traditional classroom. These individuals are more
likely to engage in concrete visual imagery, instead of the more
abstract, verbal strategies commonly promoted in the schools.
Consequently, these people are likely to bring the unique
human competency of spatial intuition and manipulation to
bear on a problem. Finally, the dominance of visual imagery
in problem-solving is more likely to trigger the motivational
and affective forces thought to be more aligned with visual
elements of the human psyche.

Shepard also discusses some of the educational implica-
tions of his research on the creative imagery of famous scien-
tists. Not surprisingly, he criticizes traditional education for
failing to promote visually-based creative tendencies in chil-
dren. As children, the scientists he studied equated learning
with becoming "engrossed in a direct, interactive exploration
of such objects and events..." and were "unconstrained by
conventional. verbalized, and rigidly compartmentalized in-
terpretations..." (p. 181). He suggests education must find a
way to nurture creative imagination without sacrificing formal
education, though the two often appear to be in direct conflict
with one another.

Other Examples

This section briefly considers the historical value of visu-
alization as an aid to problem-solving from very diverse areas
of inquiry. These examples are presented in chronological
order beginning with the Cholera epidemic in the mid-1800's
and ending with the new science of Chaos, an emerging field
of study in which people and computers work together in
partnership through scientific visualization.

The Cholera Epidemic of London in the mid-1800's. One
of the classic examples of how visualization aided human
problem-solving was Dr. John Snow's plotting of cholera
deaths in the mid- 1800's on a map of London. The obvious
clustering of deaths around the Broadstreet water pump, as
shown in Figure 2, sufficiently convinced authorities to re-
move the pump's handle even though a direct link had not been
made between the disease and a contaminated water supply.
Within days, the epidemic in the London neighborhood ended
(Tufte, 1983).

Wilbur Wright's Wing-Warping System. The story of the
invention of the airplane contains many interesting insights to
design and technology. One simple example aptly illustrates
the role of everyday visualization and imagination. Control-
ling an airplane in its three-dimensional environment (i.e.
pitch, roll, and yaw) was one of the most difficult problems the
Wright Brothers and others faced. The Wrights had already
successfully used a rudder to control yaw and an elevator to
control pitch, but were having much difficulty controlling the
plane's yaw (i.e. the motion along the axis going through the
fuselage from the plane's nose to tail). Wilbur Wright solved
this problem of human-controlled powered flight by seeing the
remarkable "wing-warping" system used by the Wright Broth-
ers' Flyer I at Kitty Hawk while holding and twisting an inner
tube box in his bicycle shop in Dayton, Ohio. Moolman (1980)
writes:

Then one day in the latter part of July 1899, while Wilbur
was alone in the bicycle shop. a customer came into buy a
new inner tube. Wilbur chatted with the customer awhile,
idly toying with the empty inner tube box before throwing
it away; as he talked he realized that he had absently twisted
the ends of the narrow cardboard box in opposite directions.
When the customer left, Wilbur tore off the ends of the box
and saw in his mind's eye a pair of biplane wings, vertically
rigid yet twisted into opposing angles at their tips (p. 112).

Plate Tectonics. It was long believed that the earth's
continents had remained in their general positions immedi-
ately after the surface of the earth cooled, even though the
vertical shape of the land masses had been subjected to dra-
matic changes, as evidenced by finding dried-up sea beds in the
mountains. However, some peculiar facts puzzled scientists.
For example, identical fossil evidence was found on the east
coast of South America and the west cost of Africa. These were
explained in various ways such as migratory animals who used
now submerged land bridges. Other evidence, such as striking
geological similarities, were much more difficult to explain
away.

In 1915, Alfred Wegener, a German meteorologist, pro-
posed 4 different solution (Burke, 1985). He noticed how
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Figure 2. The famous dot map of Dr. John Snow plotting the
cholera deaths in London in relation to neighborhood water pumps.
This map provided strong evidence that the water in the Broad
Street pump was contaminated.

many of the outlines of the continents seem to fit together like
a giant jigsaw puzzle, the most dramatic example being how
the east coast of South America seemed to fit the west coast of
Africa. Perhaps, he suggested, at one time there was one large
land mass which eventually broke apart. At the time,
Wegener's proposal was ridiculed by geologists. The idea of
continents drifting through solid rock seemed ludicrous. It was
not until about 50 years later that Wegener's visual solution
was accepted based on the discovery of mid-ocean ridges and
evidence of sea floor spreading. Rock samples increase in age
proportionally to the distance in which they are taken away
from the mid-ocean ridges. Also, evidence indicates that the
earth's magnetic field apparently changes direction every few
hundred million years or so. Since rocks maintain their
magnetic "finger print" it is possible to correlate the ages of
rock with their inherent magnetic direction. When sections of
the sea floor are mapped using this magnetic evidence, mag-
netic "stripes" appear on each side of mid-ocean ridge showing
that sections of the sea floor alternate in their magnetic direc-
tion. As molten rock emerged from the mid-ocean ridges and
cooled, it captured the earth's magnetic direction at that geo-
logical period of time. Current theories now accept that the
earth's crust is made up of distinct plates that "float" on the
earth's mantle. Wegener elegant solution was based on the
most visual of available evidence.

Armor Plating of World War II Aircraft. A very practical
example of visualization's role in problem-solving comes
from World War U. A novel strategy was used to better armor
combat planes. The bullet holes on returning aircraft were
plotted on crude pictures of the planes. Using this information,

it was determined to add armor to planes in places other than
those indicated by the bullet holes. The idea was that since it
was assumed that the planes were all hit more or less at random,
the planes that did not return must have been hit in vital places
not marked on the picture (Wainer, 1992).

The Science of Chaos. Some consider computers as the
tool by which the world will be turned into a mechanized and
inhuman place to live, but a contrasting view considers the
computer as our liberator by performing the tedious, routine
tasks poorly suited to humans and freeing us to more fully
realize our potential. This collaboration between people and
computers is perhaps best illustrated in the flunding of the new
science of Chaos, which is the study of nonlinear systems
(Gleick, 1987). Such systems, though seemingly random and
haphazard on the surface, actually have a hidden order lurking
below. The universe is inundated with such systems, though
some of the best examples are from the everyday world,
including the weather, flags waving in the breeze, ribbons of
smoke, and dripping water faucets. Even human problem-
solving is believed to be a nonlinear system. The study of
nonlinear systems has only been made more accessible with
the advent of computers. The patterns of complex, nonlinear
systems often only show themselves when the raw data is
converted into visual form. The innate human ability of pattern
recognition in combination with the computer's forte of work-
ing through millions of iterations with complex data structures
have allowed many of the mysteries of chaotic systems to be
explored and better understood.

One of the most interesting examples is fractal geometry,
where a pattern repeats itself to infinity, such as the figure
known as the "Sierpinski gasket" shown in Figure 3. This
figure is created through an astonishingly simple set of rules
(Michael Barnsley, as cited in Gleick, 1987, referred to this as
"The Chaos Game"). The game starts by drawing three "game
dots" on a piece of paper (such as those at the three corners of
an equilateral triangle). Another dot, call this the starting dot.
is drawn at random on the piece of paper. Then, randomly
choose one of the three game dots (such as by throwing a die).
Next, carefully draw another dot at the midpoint between the
randomly chosen game dot and the starting dot. This midpoint
now becomes the next starting dot. Finally, repeat this proce-
dure for thousands of trials. Although the rules of the Chaos
game might lead one to expect a random collection of dots on
the paper, a "hidden order" emerges when the numeric infor-
mation is converted into a visual form the Sierpinski gasket.

Of course, few people are willing to invest the time or
energy necessary to the play the Chaos game (and its many
variations). That is where the computer comes in. Computers
are wonderfully equipped to handle the tremendous number of
accurate calculations necessary in the chaos game whereas
people are wonderfully equipped to interpret the visual pat-
terns that emerge. The science of chaos represents a powerful
partnership between people and machines by letting each do
what they do best.

Visualization Gone Awry: Some Counter
Examples

It seems only fair to consider some examples of where the
powers.of visualization actually worked against some people.
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Figure 3. The Sierpinski Gasket: This fractal geometric figure
repeats itself to infinity.

Visualization, like perception, is not like a camera objectively
capturing images on film. Interpretation and understanding are
continually filtered through one's entire knowledge, values,
and beliefs. People often see and imagine what they want to see
and imagine. Visualization, like any cognitive process, is
greatly influenced by prior knowledge. Two examples are
presented here where visualization led to erroneous conclu-
sions. The result of one example led, however briefly, to wide
pandemonium, excitement, and fantastic stretches of the
imagination Percival Lowell's report of seeing artificially
constructed canals on Mars. -The repercussions of the other
example, in contrast, dramatically changed the world forever

Columbus' voyage to find a westward route to China and
India.

Percival Lowell was a prominent astronomer at the turn of
the century (he founded the Lowell Observatory in Arizona).
Lowell became interested in the planet Mars based on early
observations in 1877 by Giovanni Schiaparelli that showed
some interesting fine lines on the Martian surface (Ronan,
1983). Lowell subsequently studied the planet in the early
1900's using the most sophisticated telescopic equipment
available at that time.- Lowell. like Schiaparelli, also observed
the peculiar long crossing lines on the Martian landscape.
Lowell became convinced that these were the remnants of
canals constructed by some ancient civilization. The purpose
of the canals, Lowell inferred, was a desperate attempt to bring
water down from the polar caps to the desert-like continental
areas. Unfortunately, the "canals" turned out to be an optical
illusion. This example is a classic case of jumping to conclu-
sions based on initial and ambiguous evidence, known by
cognitive psychologists as "top-down processing" initial
information triggers an early interpretation against which all
subsequent information is judged. This is an important psy-
chological mechanism that helps us to find order and
organization in an otherwise chaotic environment. Of course,
sometimes it works against us. This same phenomena pro-
duces people's tendency to see dead presidents in fluffy white
clouds.

The story of Columbus is not as amusing or innocent, if
only because his adventures changed forever the global view
of the world. The intent here is not to discuss the details of his
trip or its ramifications, but simply why Columbus chose to

make it in the first place. It seems that the most compelling
reason Columbus dared to risk such an expedition is simply
that he greatly underestimated the size of the earth coupled
with a dramatic misconception of what proportion of the earth
consisted of water and land (of course, we should not forget
how important the potential wealth and fame figured in his
decision-making as well) (Dor-Ner, 1991). Had he accepted an
accurate account of these two facts, it is almost certain he and
his sponsors would have felt the trip impractical and foolhardy
at best and impossible at: worst.

Historians believe that Columbus' views were heavily
influenced by the writings &Marco Polo, Pierre d'Ailly, Pope
Pius II, Pliny, and Ptolemy. Both Polo and d'Ailly overesti-
mated the size of Asia considerably. The question of the
earth's circumference had been a source of scientific debate for
centuries, going back at least to the Greeks. The t-ue figure is
60 nautical miles per degree of longitude at the equator.
Though Eratosthenes had come close to estimating the rue
circumference of the earth (about 59.5 nautical miles per
degree), Columbus chose figures closer to that estimated by
Ptolemy (50 nautical miles). Columbus also and inexplicably
downsized the figure even further, to about 45 nautical miles
per degree of longitude. Therefore, Columbus envisioned a
globe that was only about two thirds its true size and most of
that, he thought, was covered by land. Columbus estimated a
journey from the Canary Islands to Japan to be only about
2,400 miles instead of the 11,000 miles it actually is. Using this
information, Columbus successfully argued his case for such
a ourney. The result of his journey was, of course, the
accidental discovery of a new continent, though he died believ-
ing instead that he hi.hd reached islands near the coast of Asia.
Of course, one could argue that Columbus used these miscon-
ceptions on purpose to persuade King Ferdinand and Queen
Isabella of Spain to fund the trip as well as to find a crew even
partly willing to join him. For example, Columbus admitted to
falsifying information kept in the log to alleviate the crew's
fears (Fuson, 1987). Even if this were to be true, Columbus'
use of visualization for deception deserves equal attention.

Conclusions and Implications

The purpose of this paper has been to present some simple
examples of how visualization has served as an important
problem-solving tool for people throughout history. An his-
torical context not only provides the most dramatic examples
of visualization in problem-solving, but also helps to promote
reflection on one of our most distinctly human abilities.
Though we may never adequately understand the psychology
of visualization, it will and should continue to serve as one of
our most versatile problem-solving tools. Instructional de-
signers, teachers, and all educators are therefore encouraged to
consider innovative visualization strategies to nurture the
creative problem-solving process. Concrete, visual solutions
should not be considered inferior to those that are abstract. Of
course, the two counter examples also serve to-caution against
unwarranted and inappropriate applications.

Despite the relatively small number of examples pre-
sented here, one soon discovers the pervasive nature of visual-
ization in scientific discovery and invention. The examples
presented here were meant only to suggest the case for the
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continued value of visualization strategies and should not be
mistaken for an exhaustive survey. The list of examples not
accounted for is, of course, large. Some domains, like geom-
etry, are inherently spatial in nature and have their own
visualization histories to tell. Some other notable examples
missing from this paper include the following: Kepler's
formulation of the laws of planetary motion; the discovery of
chemical "fingerprints" of elements as lines in a spectrum
(another good example of pattern recognition); and the spatial
arrangement of the periodic table of elements. In contrast,
some concepts seem impossible to visualize, such as the idea
of curved space or a physical universe consisting of more than
three dimensions, concepts suggested by Einstein and modern
day physicists. Similarly, other historical problems, such as
accurately describing the motion of a projective through space
(such as cannon balls), provide interesting insights to people's
attempts to visualize phenomena that have few visual clues.

There are many important implications that one can draw
from this review. The trends in multimedia learning environ-
ments, especially those that are computer-based, are slowly
moving from verbal to visual, from analog to digital, and from
passive to interactive. The implications for the learning
process are more far reaching than media dominance, how-
ever, especially when the computer's processing and graphical
abilities are considered. The computer has the potential to
become one of our most important cognitive tools, similar to
the way paper and pencil reduced demands on human memory.
Highly visual computer-based learning environments, such as
Geometer's Sketchpad and Interactive Physics, allow indi-
viduals to grapple with sophisticated ideas from math and
science in visual ways that are all at once concrete and intuitive.
Computers and people working closely as "partners in cogni-
tion" have the potential for fundamental qualitative changes to
how we view human cognition (Salomon, Perkins, &
Globerson, 1991).

The implications for instructional designers are likewise
exciting and challenging. Highly visual and interactive com-
puter-based tools may allow the user to take on an unprec-
edented role in the design process. Rather than merely strive
for learner-centered instruction that takes into account indi-
vidual differences, instructional technology may be poised to
let the user become a true "co-designer" of our learning
environments. Similarly, some of the emerging technologies,
such as virtual reality, point to design considerations that have
never been asked before (Heim, 1993). Some of these are also
among the most exciting, though we should be quite cautious
early on. The nature of how people construct their own reality
may become muddled when immersed in visually overwhelm-
ing environments. The question of whether " telepresence," the
state of interacting in one location (even an imaginary one)
while physically located in another, will be an acceptable state
of "existence" in the future should not be casually considered.
Some feel that telephones already achieve a degree of
telepresence since people focus on their conversation with the
person on the other end and not on the distance which separates
them. Yet, when brought to the awareness level of an adult,
there is no mistaking one's physical reality while using phone
technology. This distinction may become blurred with the
advent of virtual reality technology. This is a particularly
important issue as our children begin to experience virtual

reality. There is the risk that their cognitive development of
reality may become confused, similar to very young children
who become angry that "grandma cannot come through the
phone receiver" to be with them at that very moment. Intellec-
tual development of space and time are important issues to
consider. The implications of these technologies demand
attention and guidance by instructional technologists today in
preparation for tomorrow.
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Appendix G

Find Engage Extract

Group n Tot . % 3 Mean Tot ; % Mean Tot 1 % ; Mean

Pr/Ch 43 819 29% 19.0 1375
1

; 49% 32.0 599 1 22% 1 13.9 * * **

Mm/Ch 46 2095 35% 455**** 3851 1 64% j 83.7**** 40 j 1% i 0.9

i

. p<.05
p<.01

*** p<.001
**** p<.0001

Table 1. Information Location and Use Activities (Find, Engage, Extract) by Children in Print and
Multimedia Treatment Groups

Group n

Find Engage Extract
Tot % Mean Tot % Mean Tot % ; Mean

Mm/Ch 46 2095 ; 35%

1

, 45.5 3851 ; 64% 83.7 40 1% 0.9

Mm/ Ad 35 2320 1 30% . 66.3** 5578 ! 70%
1

!157.6**** 23

.

i

0% . 0.003

p<.05
p<.01

*** p<.001
**** p<.0001

Table 2. Information Location and Use Activities (Find, Engage, Extract) by Children and Adult
Multimedia Treatment Groups
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Group n

Engage

Text Nontext

Tot 0/0 Mean Tot 0/0 Mean

Pr/Ch 43 758 55% 17.6 617 45% 14.4

Mm/Ch 46 978 25% 20.8 2873 75% 62.5***

* p<.05
** p<.01
*** p<.001
**** p<.0001

Table 3. Engaging Activities for Text and Nontext Information by Children in Print and
Multimedia Treatment Groups

Group

Engage

Text Nontext
Tot 0/0 Mean Tot 0/0 Mean

Mm/Ch 46 978 25% 20.8 2873 75% 62.5

Mm /Ad 35 1521 28% 43.5**** 3998 72% 114.2***

* p<.05
** p<.01
*** p<.001
**** p<.0001

Table 4. Engaging Activities for Text and Nontext Information by Children and Adult Treatment
Groups
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Group n Instr. Total Value Expectancy

Pr/Ch 43 Pretest 75.5 34.9 40.5

Pr/ Ch 43 Posttest 71.2 34.2 37.1

Pre + Post Mean 73.4 34.5 38.8

Pre- Post Change -4.3 -0.7 -3.4

Mm/Ch 46 Pretest 79.8 37.4 42.5

Mm/Ch 46 Posttest 83.4 40.9 42.3

Pre + Post Mean 81.6* 39.1* 42.4

Pre- Post Change 3.6 3.5 -0.2

p<.05
** p<.01
*** p<.001
**** p<.0001

Table 5. Total Motivation Scores, Value and Expectancy Subscale Post-Pre Mean, and Pre-Post
Change Scores for Children in Print and Multimedia Treatment Groups
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Group n Instr. Total Value Expectancy

Mm/Ch 46 Pretest 79.8 37.4 42.5

Mm/Ch 46 Posttest 83.4 40.9 42.3

Pre + Post Mean 81.6 39.1 42.4

Pre- Post Change 03.6 03.5 -00.2

Mm/Ad 36 Pretest 91.0 46.1 45.1

Mm/Ad 36 Posttest 88.7 46.8 41.9

Pre + Post Mean 89.9* 46.5** 435

Pre- Post Change -2.3 0.7 -3.2

p<.05
** p<.01
*** p<.001
**4-* p<.0001

Table 6. Total Motivation Scores, Value Expectancy Subscale Post-Pre Mean, and Pre-Post
Change Scores for Children and Adult Multimedia Treatment Groups
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