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Abstract

Working from a common d-ta base and hypothesized model, this

paper demonstrates and compares the EQS and LISREL strategies in

the analysis of a second-order factor model. Program similarities

and differences are noted with respect to: (a) preliminary

analyses of the data, (b) treatment of data that are not

multivariately normal, (c) assessment of overall model fit, (d)

identification of parameter misspecification, (e) post hoc model-

fitting, and (f) tests for multigroup invariance. Data comprise

scores on the Beck Depression Inventory for 658 (males, n=337;

females, n=321) nonclinical adolescents. Issues addressed should

be of substantial interest to those unfamiliar with the two

programs and/or the methodological procedures presented.
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A Comparison of EQS and LISREL Strategies in Testing for

an Invariant 2nd-order Factor Structure

This past decade has seen rapid growth in the application of

structural equation modeling (SEM) to data representing a wide

array of disciplines. (For reviews of applications and papers

related to medical and marketing research, for example, see

Bentler and Stein [1992] and Bagozzi [1991], respectively.)

Keeping pace with this research activity, however, has been the

ongoing development and improvement of related statistical

software packages. Although there are now several computer

programs designed for the analysis'of SEM, (e.g., CALIS [1991];

COSAN, [McDonald, 1978]; EZPATH, [Steiger, 1989]; LISCOMP

[Muthen, 1988], two stand apart from the rest in terms of their

popularity and widespread use. I refer, of course, to the EQS

(Bentler, 1992a) and LISREL (Joreskog & Sorbom, 1993a, 1993b)

programs.

Although EQS and LISREL both address the same issues related

to SEM, they do so in sometimes subtle, albeit sometimes

blatantly different ways. The purpose of this paper is to

demonstrate a few of the dual approaches to the analysis of

covariance structures as they relate to the same model and based

on the same data. More specifically, using both the EQS (Version

4) and LISREL 8 (including PRELIS 2) programs, I illustrate how

to (a) test for the validity of a 2nd-order factor analytic model

separately for each of two groups, (b) given findings of

inadequate fit, conduct post hoc model-fitting to pinpoint

sources of misfit, followed by respecification and reestimation
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of the model, and (c) test for its invariance across the groups.

Additionally, given the known kurtotic nature of the present

data, I also describe the two conceptually different approaches

taken by EQS and LISREL in addressing such nonnormality. Since

space limitations necessarily preclude elaboration of basic

principles and procedures associated with both SEM and the two

statistical packages, readers are referred to Byrne (1994, 1989)

for a nonmathematical approach to understanding these processes.

The Data

Data to be used in this paper are adapted from a study by

Byrne, Baron, and Campbell (1993), and comprise scores on the

Beck Depression Inventory (BDI; Beck, Ward, Mendelson, Mock, &

Erbaugh, 1961) for 730 adolescents (grades 9-12) attending the

same high school in Ottawa Canada. Listwise deletion of data that

were missing completely at random (Muthen, Kaplan, & Hollis,

1987) resulted in a final sample size of 658 (males, n=337;

females, n=321).

The BDI is a 21-item scale that measures symptoms related to

cognitive, behavioral, affective, and somatic components of

depression. Although originally designed for use by trained

interviewers, it is now most typically used as a self-report

measure (Beck, Steer, & Garbin, 1988). For each 4-point Likert-

scaled item, respondents select the statement that most

accurately describes their own feelings; higher scores represent

a more severe level of reported depression.

The study providing the basis for our work here is one of a

series conducted by Byrne and Baron (1993a, 1993b; Byrne, Baron,

5



5

& Campbell, 1993, in press; Byrne, Baron, Larsson, & Melin,

1993a, 1993b) in validating a higher-order factorial structure of

the BDI for nonclinical adolescents. Their research has

demonstrated strong support for a 2nd-order structure consisting

of one higher-order general factor of depression, and three

lower-order factors which they labelled Negative Attitude,

Performance Difficulty, and Somatic Elements. In the present

paper, we examine this structure as it relates to males and

females. We turn now to a more detailed view of the model under

study.

The Hypothesized Model

The postulated model of BDI factorial structure is portrayed

in Figure 1 in terms of both EQS and LISREL notation. It

represents a typical covariance structure model and can therefore

be decomposed into two submodels --a structural model, and a

measurement model. The structural model defines the pattern of

relations among the unobserved factors and is typically

identified in schematic diagrams by the presence of interrelated

circles, each of which represents an hypothetical construct (or

factor). Turning to Figure 1, we see an hierarchical ordering of

circles such that if the page were turned sideways, the

"Depression" circle would be on top, with the three smaller

circles beneath it. Let's now review this diagram in terms of

both EQS and LISREL lexicon.

Insert Figure 1 about here

Figure 1 com be interpreted as representing one 2nd-order

6



6

factor (Depression: F4; El), and three 1st-order factors

(Negative Attitude: F1; ill; Performance Difficulty: F2; i2;

Somatic Elements: F3; 13). The single-headed arrows leading from

the higher-order factor to each of the lower-order factors

(F1,F4-F3,F4; yl-y3) are regression paths that indicate the

prediction of Negative Attitude, Performance Difficulty, and

Somatic Elements from a global Depression factor; they represent

the 2nd-order factor loadings. Finally, the angled arrow leading

to each 1st-order factor (D1-D3; C1-C3) represents residual error

in the prediction of the Negative Attitude, Performance

Difficulty, and Somatic Elements factors from the higher-order

factor of Depression.

The measurement model defines relations between observed

variables and unobserved hypothetical constructs. In other words,

it provides the link between item scores on an assessment

instrument and the underlying factors they were designed to

measure. The measuroment model, then, specifies the pattern by

which each item loads onto a particular factor. This submodel can

be identified by the presence of rectangular boxes, each of which

represents an observed score. Turning to Figure 1 again, we see

that each box represents an observed score for one BDI item. The

single-headed arrows leading from each lst-order factor to the

boxes (V1-V21; A11-121,3) are regression paths that link each of

the factors to their respective set of observed scores; these

coefficients (V,F,s; Vs) represent the lst-order factor

loadings. For example, Figure 1 postulates that Items 16, 18, 19,

and 21 load onto the Somatic Elements factor. Finally, the
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single-headed arrow pointing to each box (E1-E21; e E 11- 21)

represents observed measurement error associated with the item

variables.

One important omission in Figure 1 is the presence of

double-headed arrows (t's) among the 1st-order factors thereby

indicating their intercorrelation. This is because in 2nd-order

factor analysis, all covariation among the 1st-order factors is

explained by the 2nd-order factor.

Expressed more formally, the CFA model portrayed in Figure 1

hypothesized a priori that: (a) responses to the BDI could be

explained by three 1st-order factors, and one 2nd-order factor of

General Depression, (b) each item would have a non-zero loading

on the 1st-order factor it was designed to measure, and zero

loadings on the other two 1st-order factors, (c) error terms

associated with each item would be uncorrelated, and (d)

covariation among the three 1st-order factors would be explained

fully by their regression onto the 2nd-order factor.

Assessment of Model Fit

The focal point in analyzing SEMs iithe extent to which the

hypothesized model "fits" or, in other words, adequately

describes the sample data. This assessment entails a number of

criteria, some of which bear on the fit of the model as a whole,

and others, on the fit of individual parameters. Traditionally,

overall model fit has been based on the x2 statistic. However,

given the known sensitivity of x2 to variations of sample size,

numerous alternative indices of fit have been proposed and

evaluated (for reviews, see Gerbing & Anderson, 1993; Marsh,
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Balla, & McDonald, 1988; Tanaka, 1993). Certain of these

criteria, commonly referred to as "subjective", "practical", or

"ad hoc" indices of fit, are now commonly reported as adjuncts to

the 2/2 statistic. We turn now to a review of these as they relate

to each of the two programs. (Although both programs yield

statistics related to the residual matrix, these are not included

here.)

EQS Analyses

EQS reports several goodness-of-fit indices that address

statistical and practical fit, as well as model parsimony. First,

it yields a Z2 statistic for both the hypothesized and

independent models; the latter argues for complete independence

of all variables (in this case, items) in the model. EQS also

provides an optianal statistic called the Satorra-Bentler Z2

statistic (S-Bz2; Satorra & Bentler, 1988). This statistic

incorporates a scaling correction for the Z2 statistic when

distributional assumptions are violated.

Practical indices of fit include the Normed and Nonnormed

indices (NPI, NNPI; Bentler & Bonett, 1980), and the Comparative

fit index (CPI; Bentler, 1990), a revised version of the NFI that

overcomes the underestimation of fit in small samples (i.e.,

given a correct model and small sample, the NFI may not reach 1.0

[Bentler, 1992a]). Although these three indices of fit are

reported in the EQS output, Bentler (1992b) recommends the CFI to

be the index of choice. Values for both the NFI and CFI range

from zero to 1.00 and are derived from the comparison of an

hypothesized model with the independence model; each provides a

9
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measure of complete covariation in the data, with a value >.90

indicating an acceptable fit to the data. The NNFI was originally

designed to improve the NFI's performance near 1.0. However,

because NNFI values can extend beyond the 0-1 range, evaluation

of fit is not as readily discernible as it is with the

standardized indices.

Finally, to address concerns of parsimony related to model

fit, EQS provides for the evaluation of both the independent and

hypothesized models based on Akaike's (1987) Information

Criterion (AIC) and Bozdog-n's (1987) consistent version of the

AIC (CAIC); these criteria take goodness-of-fit, as well as

number of estimated parameters into account.

LISREL Analyses

Versions of the program up to and including LISREL 7

included as standard output, three indices of model fit - the e

statistic for the hypothesized model, the Goodness-of-fit Index

(GFI), an indeX of the relative amount of variance and covariance

jointly explained by the model, and the Adjusted GFI (AGFI) which

takes into account the number of degrees of freedom in the model.

In the most recent version (LISREL 8), however, the amount of

model-fit information provided in the standard output has been

increased dramatically to include all the goodness-of-fit

measures that have been addressed in die literature (Joreskog &

Sorbom, 1993a); in total, 32 evaluation criteria are reported.

In this paper, assessment of model fit for the EQS example,

as it relates to single-sample analyses, is based on the S-Bx2

statistic and CFI*, an analog of the CFI that is computed from

1 0
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S-Bx2 instead of e values (the S-Be is not yet available for

multigroup analyses); the LISREL example is based on the e

statistic and the CFI.

preliminary Analyses

These analyses are an essential prerequisite to SEM for

several reasons. First, it is important to know if there are

missing data and if so, the reason for their missingness. Given a

sufficiently large sample size, and data that are missing

completely at random (Muthen, Kaplan, & Hollis, 1987), listwise

deletion is usually recommended when working with SEM. Second,

one critically important assumption of SEM is that the data are

multivariately normal. To the extent that they are not, bears on

the validity of findings. While it is unlikely that the maximum

likelihood estimates would be affected, nonnormality could lead

to downward17 biased standard errors which would result in an

inflated number of statistically significant parameters (Muthén &

Kaplan, 1985). Finally, cases exhibiting extreme values of

multivariate kurtosis can serve to deteriorate model fit. It is

therefore important to identify and delete these outliers from

the analyses.

Let's now examine sample statistics related to the present

data; as noted earlier, the data are complete for both sexes.

1. Examination of Sample Statistics

EQS Analyses

When raw score data are used as input, EQS automatically

provides univariate as well as several multivariate sample

statistics; further insight can be obtained through descriptive

11
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analyses and the many graphical features now available in tre new

Windows version (Bentler & Wu, 1993) of the program. The

univariate statistics represent the mean, standard deviation,

skewness and kurtosis. As expected from previous work in this

area (Byrne & Baron, 1993a, 1993b; Byrne, Baron, & Campbell,

1993, in press; Byrne et al., 1993a, 1993b), several BDI items

were found to be severely kurtotic; values ranged from 0.19 to

39.40 (M=4.93) for males, and from 0.15 to 10.43 (M=1.92) for

females.

The multivariate statistics reported by EQS represent

variants of Mardia's (1970) coefficients of multivariate

kurtosis; two reported values bear on normal theory, and two on

elliptical theory. For adolescent males, the normalized estimate

of Mardia's coefficient was 68.51, while for adolescent females,

it was 39.49; both are distributed in very large samples from a

multivariate normal population as a normal variate so that large

positive values, as shown here, indicate significance.

At this time, EQS is unique in its ability to identify

multivariate outliers. The program automatically prints out the

five cases contributing maximally to Mardia's multivariate

kurtosis coefficient. Identification of an outlier is based on

the estimate presented for one case relative to those for the

other four cases; there is absolute value upon which to make

this judgement, and it is possible that none of the five cases is

actually an outlier; this was the case here for both adolescent

males and females.

12
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LISREL Analyses

reliminary analyses for LISREL are performed via its

companion package, PRELIS. As with EQS, the input of raw data

that represent continuous variables allows for the reporting of

univariate statistics representing the mean, standard deviation,

skewness, and kurtosis. The standard output for ordinal

variables, of course, differs substantially from the one for

continuous variables. While the present data are technically of

ordinal measurment, they are treated as if they were continuous

for purposes of consistency with the EQS analyses, as well as

those of the original study. (Although EQS/Windows provides for

the analysis of categorical variables, the current version of the

program requires a limit of 20 variables.)

In addition to reporting the x ..iimum and maximum frequency

values, (information that is also presented in bar chart form

PRELIS 2 also provides for single tests of zero skewness and

kurtosis, as well as for an omnibus test of these two moments in

combination; the single skewness and kurtosis tests are reported

as z-statistics, and the omnibus test as a x2 statistic.

For all continuous variables jointly, PRELIS 2 similarly

tests for multivariate normality. (For an extensive discussion of

these tests, see Bollen, 1989). Tests for multivariate normality

related to the present data revealed the following statistics for

skewness (males, z=84.56; females, z=61.36) , kurtosis (males,

z=35.99; females, z=25.42), and for 3rd and 4th moments

considered jointly (males, )42( 2)=8445.74; females, x2(2)=4410.81).

13
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2. Treatment of Nonnormality

An important assumption underlying SEM is that the data are

multivariately normal. Violation of this assumption can seriously

invalidate statistical hypothesis-testing such that the normal

theory test statistic may not reflect an adequate evaluation of

the model under study (Browne, 1982, 1984; Hu, Bentler, & Kano,

1992). One approach to resolution of the problem has been the

development and use of asymptotic (large-sample) distribution-

free (ADF) methods for which normality assumptions are not

required (Browne, 1982, 1984). (For an extensive discussion of

other solutions to the problem, see Bollen, 1989.) This is the

approach embraceu by LISREL in dealing with data that are

nonnormal. The strategy involves a two-step process. First, using

PRELIS, the researcher recasts the data into asymptotic matrix

form. LISREL analyses are then based on this matrix using

weighted least squares (WLS) estimation. Nonetheless, Joreskog

and Sorbom (1988a) note that the question of whether or not this

approach is superior to one that uses maximum likelihood (ML) or

general least squares (GLS) estimation, is still open to

conjecture; furthermore, the question of how nonnormal the data

must be before this process is implemented has not yet been

resolved.

One major limitation associated with this treatment of

nonnormality has been its excessively demanding sample size

requirement. As a consequence of a major change in the storage

and computation of asymptotic covariance matrices using PRELIS 2,

however, the sample size restriction is now somewhat less

14
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stringent. Nevertheless, users are still cautioned that the

minimum sample sizes specified by the program (for a covariance

matrix, k(k+1)/2, where k = the number of variables) offer no

guarantee of good estimates of the asymptotic coavriance matrix

(Joreskog & Sorbom, 1993b).

Recently, however, Bentler and associates (Chou, Bentler, &

Satorra, 1991; Hu et al., 1992) argued that it may be more

appropriate to correct the test statistic, rather than use a

different mode of estimation. As such, Satorra and Bentler

(1988a, 1988b) developed the S-B e statistic which incorporates

a scaling correction for the x2 statistic when distributional

assumptions are violated; its computation takes into account the

model, the estimation method, and the sample kurtosis values.

From a Monte Carlo study of six test statistics under seven

distributional conditions, Hu et al., reported the S-Be to be

the most reliable. This is the approach taken by the EQS program

in the treatment of nonnormal data. In contrast to LISREL, then,

EQS uses an estimation method that assumes the data are

multivariate normal, but bases evaluation of model fit on a test

statistic that has been corrected to take nonnormality into

account.

Testing the Hypothesized Modal of BDI Structure

A summary of selected fit indices for both the EQS and

LISREL analyses is presented in Table 1. Results are reported

both for analyses that took the nonnormality of the data into

account, and for those based on normal theory estimation (i.e.,

data were considered to be normally distributed). ML estimation

15
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was used for all analyses except those based on nonnormal data

using LISREL 8; the latter were based on ADF estimation as

recommended by Joreskog and Sorbom (1988a). Not unexpectantly

(see Hu et al., 1992; Joreskog & Sorbom, 1988a), the LISREL

model-fitting results based on ADF estimation are somewhat at

odds with the findings based on ML estimation. Although the basic

pattern is similar, the x2 (as a measure of bad fit) and CFI (as

a measure of good fit) values are excessively high. One possible

explanation of the latter may lie with the enormous x2 value for

the highly misspecified null model; this of course, would lead to

an inflated CFI value. Interpretation of findings, then, are

therefore limited to the ML estimates and are based on the S-Bx2

and CFI* for EQS, and on the x2 and CFI for LISREL.

Insert Table 1 about here

As indicated by the CFI* (EQS), and CFI (LISREL) values

reported in Table 1, goodness-of-fit for the initially

hypothesized model of BDI structure was exceptionally good for

males; it was somewhat less so for females. However, before

turning to the problematic fit for adolescent females, let's

first complete our evaluation of the hypothesized model for

adolescent males by assessing the fit of individual parameters in

the model. For both EQS and LISREL, there are two aspects of

concern here: (a) the appropriateness of the estimates, and (b)

their statistical significance. Any differences between the two

programs are noted below in the discussion of these criteria.

16
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Feasibility of Parameter Estimates. The first step in

assessing the fit of individual parameters is to determine the

viability of their estimated values. Any estimates falling

outside the admissable range signal that either the model is

wrong, or the input matrix lacks sufficient informatio. Examples

of parameters exhibiting unreasonable estimates are: (a)

correlations >1.00, (b) standard errors that are abnormally large

or small. A standard error approaching zero usually results from

the linear dependence of the related parameter, with some other

parameter in the model; such a circumstance renders testing for

the statistical significance of the estimate impossible, and (c)

negative variances. Whereas LISREL perm4's these estimates to be

printed, EQS prevents their estimation by constraining the value

of the offending parameter to zero; the message PARAMETER XX,XX

CONSTRAINED AT LOWER BOUND will appear on the output.

Statistical Significance of Parameter Estimates. The test

statistic here represents the parameter estimate divided by its

standard error; as such, it operates as a z-statistic in testing

that the estimate is statistically different from zero. Based on

an a level of .05, then, the test statistic needs to be > ±1.96

before the hypothesis (that the estimate=0.0) can be rejected.

LISREL 7 and its predecessors referred to these values as "t-

values". The output for LISREL 8, however, is consistent with

that of EQS in reporting these test statistics, and their

standard errors, immediately under each parameter estimate. One

additional difference between the two programs is that if the EQS

user requested robust statistics (i.e., S-Bx2), the output will

17
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feport two sets of test statistics and veandard errors - one for

the original, and one for the corrected x2 statistics.

For purposes of comparison across programs and estimation

processes, EQS and LISREL estimates are presented in Table 2. In

consideration of space, however, only the 1st-order factor

loading estimates are reported, and as they pertain only to

adolescent males. With respect to the previous point, note that

while the maximum likelihood estimate (under normal theory) for

Item 19 was significant, it was not so when multivariate kurtosis

was taken into account by the S-8x2 statistic reported by the EQS

program.

Insert Table 2 about here

Post Hoc Model-fitting to Establish Baseline Models

When an hypothesized model is tested and the fit found to be

inadequate, it is customary to proceed with post hoc model-

fitting to identify misspecified parameters in the model. If

multigroup equivalence is of interest, it is particularly

important that a baseline model be established for each group

separately before testing for their invariance across groups.

This model represents one that is most parsimonious, as well as

statistically best-fitting and substantively most meaningful.

Identification of misspecified parameters differs substantially

between the EQS and LISREL programs. Whereas EQS takes a

multivariate approach based on the Lagrange Multiplier Test (LM-

Test), the LISREL approach is univariate and is based upon the

8
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Modification Index (MI). Nonetheless, the objective of both tests

is to determine if a model that better represents the data would

result with certain parameters specified in subsequent run as

free, rather than fixed.

Before putting these techniques into practice, however, one

vitally important caveat needs to be stressed with respect to use

of both the LM-Test and MIs in the respecification of models. It

bears on two factors: (a) that both techniques are based solely

on statistical criteria, and (b) that virtually any fixed

parameter (constrained either to zero, or some nonzero value) is

eligible for testing. Thus, it is critical that the researcher

pay close heed to the substantive theory before relaxing

constraints as may be suggested by both the LM and MI statistics;

model respecic.ication in which certain parameters have been set

free must be substantiated by sound theoretical rationale!

Let's now return to the problematic fit of BDI structure for

adolescent females and examine these differential posthoc model-

fitting procedures within the context of the two statistical

packages.

EQS Analyses

Examination of the multivariate LM X2 coefficients related

to the initially hypothesized model (Model 1) for females

revealed substantial improvement in model fit to be gained from

the additional specification of an error covariance between Items

21 and 20 (LMe(1)=22.59), and the cross-loading (the loading of a

single item on more than one factor) of Item 20 on the higher-

order factor of Depression (LMe(2)=15.81) (i.e., Item 20 loaded

19
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on F
4
as well as on F 2 ).

Since the loading of Item 20 onto the Depression factor

would lead to a psychometrically ambiguous specification, the

model was reparameterized as a 1st-order CFA model in order to

assess possible misspecification at the lower structural level.

Estimation of this model replicated the misspecification of both

the error covariance and Item 20; the latter was shown to cross-

load on Factor 1. Thus, the hypothesized model (Model 1) for

females was respecified to include these two additional

parameters, and then reestimated. That we were able to

reparameterize the model by respecifying multiple parameters in a

single run represents a major difference from the LISREL program,

where only one parameter can be respecified at a time. As a

consequence, this respecified model represents Model 3 in Table

1, since Model 2 is redundant to the EQS analyses.

To assess the extent to which each newly specified model

exhibits an improvement over its predecessor, we examine the

difference in X2 (AX2) between the two nested models. This

differential i- itself x2-distributed, with degrees of freedom

equal to the difference in degrees of freedom (Adf) and can,

thus, be tested statistically; a significant Ax2 indicates a

substantial improvement in model fit. As is evident in Table 1,

the inclusion of these two parameters in the model yielded a

statistically significant and substantial improvement in model

fit (AS-F3x2(2)---31.33; 4CFI*=.04). Closer scrutiny of the parameter

estimates, however, revealed the original loading of Item 20 on

Factor 2 to be nonsignificant. In the interest of parsimony,

20
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then, the model was respecified with this parameter deleted.

Because Model 4 was deemed to be substantively reasonable (see

Byrne et al., 1993 for an etended explanation) and exhibited an

excellent fit to the data, it was considered the most plausible

in representing the data for adolescent females.

LISREL Analyses

Consistent with the EQS analyses, the LISREL results based

on ML estimation also yielded a better-fitting model for males,

than for females, as indicated by CFI value .90 reported in

Table 1. A review of the MIs revealed two parameters to be

potentially worthy of estimation. The more prominent fixed

parameter (MI=22.60) represented the error covariance between

Items 21 and 20; the other (MI=17.04) represented the cross-

loading of Item 20 onto the Negative Attitude factor. As shown in

Table 1, three separate models (Models 2-4) were subsequently

specified and estimated.

A review of results related to these models reveals each to

yield a highly significant improvement in model fit over its

predecessor. As with the EQS analyses, for statistical,

psychometric, and theoretical reasons, Model 4 was considered to

be the most plausible in representing BDI data for adolescent

females.

Testing for Invariance Across Gender

Having determined the baseline model for each sex, analyses

proceeded next to test for their factorial equivalence across

males and females. At first blush, except for the differential

loading pattern of Item 20 and the specification of an error
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covariance for females, one might be quick to conclude that the

BDI was factorially equivalent across gender. Such a conclusion

would be premature, however, since a similarly specified model in

no way guarantees the equivalence of item measurements and

underlying theoretical structure; related hypotheses must be

tested statistically in a simultaneous analysis of data from both

groups. We turn now to these analyses as they are addressed

separately within the EQS and LISREL programs.

EQS Analyses

Since we already know prior to testing for cross-grcup

invariance, that Item 20 is apparently perceived differently by

adolescent males and females, the factor loading for this item

was not constrained equal across gender; the error covariance is

also unique to females, and is free to take on any value. Such

specification addresses the issue of partial measurement

invariance in the testing of equivalence across multiple samples

(see Byrne, Shavelson, & Muthen, 1989).

In EQS, we can test for the invariance of both the 1st- and

2nd-order factor loadings simultaneously. This approach is made

possible in two important ways. First, it employs the

multivariate LM-Test in the evaluation of equality constraints,

and second, it makes the detection of misspecified constraints

easy by providing probability values associated with the LM X2

statistic for each. A review of these statistics revealed four

constraints to be untenable. Probability values <.05 were

associated with Items 8, 10, 12, and 18 thereby arguing for their

nonequivalence across adolescent males and females.
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LISREL Analyses

Testing for invariance based on LISREL involved the testing

of three increasingly restrictive hypotheses, each nested within

the one preceding; these related to the equivalency of (a) number

of underlying factors, (b) 1st-order factor loadings, and (c)

2nd-order factor loadings. (For an elaboration of this procedure,

see Byrne, 1989.)

Analyses involved specifying a model in which certain

parameters were constrained equal across gender, and then

comparing that model with a less restrictive one in which the

same parameters were free to take on any value. As with model-

fitting, the Ax2 between competing models provided a basis for

determining the tenability of the hypothesized equality

constraints; a significant Ax2 indicating noninvariance (i.e.,

nonequivalence). Turning to the summary of LISREL analyses shown

in Table 3, we see that the first invariance model (Model 1)

tested for the equivalence of an underlying 3-factor structure

(irrespective of factor loading patt.ern) across males and

females. This initial specification simply tests for adequacy of

model fit in a simultaneous analysis of multigroup data, and

provides the criterion against which the two subsequent

invariance models are compared; given a CFI value of .92,

multigroup model fit was considered to be reasonably good. A

second model was then specified in which the pattern of lower-

order factor loadings was constrained equal across the two

groups. (Note that Item 20 was not constrained equal across

groups). Comparison of this model (Model 2) with Model 1 yielded
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a statistically significant difference in model fit (p.01),

thereby substantiating rejection of the hypothesis that item

measurements were equivalent across males and females.

Insert Table 3 about here

Given findings of some gender specificity related to the

lower-order factors, the next task was to identify the BDI items

contributing to this noninvariance. This was accomplished by

first testing separately for the invariance of each BD1 subscale

(i.e., all items comprising each subscale were tested as a

group). Given significant findings for any one of these three

tests, analyses proceeded next in testing for the invariance of

each item within each subscale. Finally, constraining all 1st-

order loadings known to be group-invariant, analyses then focus

on the 2nd-order factor loadings. Due to limitations of space,

results related to these nested series of tests are simply

summarized, as shown in Table 3. Readers who may wish a more

detailed description of this model-testing procedure are referred

to Byrne (1989, 1994; Byrne et al., 1989).

Summary

Working from a common data base and hypothesized model, this

paper has provided an extant example of the EQS and LISREL

strategies in testing for an invariant 2nd-order factor structure

across groups. Along the way, similarities and differences

between the two programs were noted with respect to: (a) approach

to, and information derived from preliminary analyses of the

24



24

data, (b) treatment of data that violate the assumption of

multivariate normality, (c) assessment of overall model fit, (d)

identification of parameter misspecification, (e) post hoc model

fitting, and (f) tests for multigroup invariance.

Although, substantively, results based on ML estimation were

consistent across the two programs, those bearing on the equality

of BDI measurement and structure across groups differed with

respect to five parameters - four 1st- and one 2rrl-order

loadings. The discrepancy in these findings is undoubtedly a

consequence of the univariate versus multivariate approach to the

identification of misspecified equality constraints taken by

LISREL and EQS, respectively. Of most concern is the inconsistent

finding related to the 2nd-order loading of F3 on F4. One

explanation likely lies in the Ilighly correlated structure among

the 1st-order factors for both males (mean K=.78) and females

(mean r=.76) which would not be taken into account in the

univariate test for invariance.

EQS and LISREL model fit statistics related to analyses that

took the nonnormality of the data into account were widely0

discrepant. Whereas the EQS approach in correcting the e

statistic yielded results that were reasonable, the x2 statistic

and CFI value produced by LISREL, based on the ADF estimator,

were unreasonably high. These findings support those from a Monte

Carlo study reported by Hu and colleagues (1992) that revealed

the ADF statistic to perform as a x2 variate only when sample

size approximates 5,000 cases. Given that most practical

applications of SEM involve substantially smaller sample sizes,
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the S-Sx2 statistic produced by EQS appears to be the more useful

measure of model fit when the data are in violation of the

normality assumption.

Although this comparison of the EQS and L1SREL programs has

highlighted only a few of their differential approaches to SEM

application, it is hoped that the issues addressed here will be

helpful to readers who may be relatively unfamiliar with the two

programs and/or the methodological procedures presented.
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Table 3
Summary of LISREL Tests for Invariance Across Gender

Model

1 Baseline
Multigroup model

2 All 1st-order factor
loadings invariant'

3 Item loadings
for F1 invariant

4 Item loadinas
for F2 invariant

5 Item loadings
for F3 invariant

6 All 1st-order factor
loadings invariantb
except Items 8
and 20

7 all 1st-order factor ,

loadings invariant
except Items
8,19, 20

8 Model 7 with
all 2nd-order
loadings
invariant

9 Model 7 with
2nd-order loadings
for F1 and F2 invariantb

3 3

X2
df CFI Model Comparison AX2 df

604.18 373 .92

641.25 390 .91 2 vs 1 37.07** 17

626.88 382 .91 3 vs 1 22.70** 9

610.91 378 .91 4 vs i 6.73 5

611.87 376 .91 5 vs 1 7.69 3

632.70 389 .91 6 vs 1 28.52* 16

627.85 388 .91 7 vs 1 23.67 15

636.01 391 .91 8 vs. 7 8.16* 3

628.41 390 .91 9 vs. 7 0.56 2

*p<.05 ** p < .01
a Item #20 was not constrained equal across gender.

b Equality constraints were imposed separately for each item loading.

dx2 = difference in x2 values; df = difference in degrees of freedom.

Fl = Factor 1 (Negative Attitudes); F2 = Factor 2 (Performance Difficulty); F3 = Factor 3 (Somatic Elements);

CFI = Comparative Fit Index
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Figure Caption

Figure 1. Hypothesized 2nd-order Model of BDI Factorial

Structure Expressed in both EQS and LISREL
.

Notation
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