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Abstract
Two ANOVA modeis for item scores are compared. The first is an jtems by
subject random effects ANOVA. The second is a mixed effects ANOVA with items
fixed and subjects random, Comparisons regarding reliability,
~ronbach's a coefficient, psychometric inference, and inter-jtem covariance
structure are made between the modeis. When considering the inter-item
covariance structures for the two ANOVA models, brief comparisons with factor
analysis models are also made. It is concluded that inference from a samplz
of items to a population of items requires homogeneous inter-item govariances,
that reliability has different meanings under the two models, and that while
coefficient o is a lower bound for reliability under the second model, it is

LD

not under the first.
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Linear Models
y
Introduction

This paper compares two different ANOVA models for items. The first
model is the two-way items by @xaminees random effects (Model 1I) ANOVA. The
second model is the two-way items by examinees mixed effects (Modeli ILI)
ANOVA. Very careful and complete statistical derivations of these models are
given by Scheffe” (1956a, 1956b, and 1959}. This paper draws heavily
from Scheffe’'s work. The two ANQOVA models are compared to each other in
detail and briefly to factor analysis models., Factor analysis models are
extensively discussed by Harmon (1976) and Mulaik (1972). As considered here,
the factor analysis model is statistically more similar to the mixed ANOVA
model than to the random ANOVA model. Under the factor analysis model, items
are considered fixed and non-random, while subjects are randomly sampled from
a population of subjects. See Mulaik and McDhonald (1978), Williams (1978),
and McDonald and Mulaik (1979) for an alternative formulation of the factor
analysis model.

All of the models under consideration are linear models. A model is
defined as linear if an examinee's expected score on an item is a linear
function of item characteristics. Item characteristics may be fixed
parameters as in the mixed ANOVA model or random variables as in the random
ANOVA model. The factor analysis model is here considered to be linear in its
item parameters which are usually called factor loadings even though these
linear coefficients are applied to factor scores, whicn are unobserved random
variables associated with examinees. An example of a nonlinear model (s the
logistic ogive item characteristic curve model (Lord and Novick, 1968). From
a tneoretical viewpoint, linear models usually do not accurately describe
dichotomnously scored items, and most items are so scored. However, for

carefully constructed tests, linear models for item scores are often
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sufficiently accurate to provide useful approximations. [See Feldt (1965),
Hsu and Feldt (1969), Hakstian and Whalen (1976), Seceger and Gabrielsson
(1968), Gabrielsson and Seeger (1976), McDonald and Ahlawat (1974), McDhonald
{1981, 1985), and Collins, Cliff, McCormick, and Zatkin {1986).]

The discussion of the models presented here will focus on three
characteristies useful in psychometrics. The first is reliability. Under the
three models reliability is defined as the squared correlation between an
observed and a true score. A faw relevant references regarding reliability
are Gutman (1945), Novick and Lewis {1967) Bentler (1972), Jackson and
Agunwamba (1977), and Bentler and Woodward (1980, 1983). Parametric
expressions for reliability and Cronbach's (1951) coefficient alpha are given,
and the sampling distribution for the sample alpha coefficient is discussed.
The second characteristic is the inter-item covariance matrix. For each
model, the assumed or resulting covariance structure is discussed and compared
with factor analysis models. Finally, psychometric inference is discussed.
Psychometric inference is considered as statistical inference to a population
of items from a sample of items randomly drawn from the population. The more
general term generalizability is not used since it connotes statistical
inference for a wide array of facets, not just items. There is a large body
of literature on psychowetric inference. A few references are Hotelling
(1933), Tryon (1957), Lord and Novick (1968), Cronbach, Gleser, Nanda, and
Rajaratnam (1972), Mulaik (1972), Kaiser and Michael (1975), Rozeboom (1978),
McDznald (1978), and Brennan (1983), Both the approach anu results presented
here, while most similar to, differ in part from those developed by Lord and
Novick (1968) and Cronbach et al. (1972).

Brief descriptions of seven connlusions original to this paper are:

1. Conditional variances for interaction effects may be heterogeneous in
the random ANOVA model.

8
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N

The random ANOVA model requires the inter-item covariance matrix to
have homogeneous off-diagonal =lements, while the mixed ANOVA model
places no restrictions on the inter-item covariance matrix except
positive semi-definiteness. Hence, any factor analysis model may be
subsumed under the mixed ANOVA model but not the random ANOVA model.

3. Interaction effects in the random ANOVA modal are analogous to
specific factors in a certain single common factor factor analysis
model, while the examinee main effect is analogous to the single
common factor.

L, The squared correlation between observed scores ana true scores is a
useful definition of reliability under the random ANOVA model as well
as under the mixed ANOVA model, but the definition of true score
differs under the two models.

5. Reliability as defined in 4. has different meanings under the two
models. In the mixed ANOVA model, interaction (specific) variance is
included in true score variance, while in the random ANOVA model it
is not.

5, The parametric value of Cronbach's alpha coefficient is a lower bound
to the parametric value of reliability (as defined in Y4) under the
mixed ANOVA model but not under the random ANOVA model.

7. Given certain normality assumptions, a transformation of the sample
aipha coefficient has an F distribution under the random ANOVA model.
For the mixed ANOVA model, the F distribution only holds if in
addition to certain normality assumptions there are either no
interactions or the inter-item covariance matrix has special
restricted forms.

The practical implications of these conclusions for the analysis of test data
will be disnussed in the last section of this paper.

The Items by Examinees Random ANOVA Model

The model presented here is essentially the same model developed by
Scheffe” (1959, chap. 7). It assumes that a random sample of n items chosen
from a countably infinite population of items is administered to a random
sample of N examinees chosen from a countably infinite population of
examinees. The sampling of items and examinees is assumed to be completely
independent. Let xij represent subject j's observed score on item i. A

preliminary form of the model is
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Xiy = tij + e i =1,ee0,n  J =1,00.,N . (1)
The quantities t1J and eij are, respectively, the true score and the error
scure of examinee j on ttem i, Different definitions for true and error
scores under the random ANCVA model will be admitted later. Within the
present context, tLrue and error scores are not absolutes; their definitions
may vary depending on the inferences being made, The various true and error
scores considered in tais ~aper are not necessarily an exhaustive set of
possible true and error scores under the models presented.

. If examinee j responds independently and repeatedly to item i, these
replications are indexed by the subscript k, For cognitive tests such random
replications are rarely available, though they occasionally may be obtained
for affective scales. The present development assumes that such replications
are not available from the data. In the theoretical development of the model,
these replications are allowed to be present. In particular, the model
assumes that for the sequences of independent random variables
eij1’ eij2’ e eijk’ ee ! E(eijk) =0 for all i, Jj, and k, and that

Var(eijk) = E(

eijk) = oz(eij) , {.e., that the error variances are
heterogeneous over the domains of i and j. For notational simplicity, the
subscript k will usually be suppressed, since for the remainder of the paper
it will usually take the value of one.

The above imply that Ei(eij) = 0 and that Ej(eij) = 0, where notation
such as E; and Var'i means that the expectation and variance are taken oﬁer the

population whose members are indexed by the subscript i. When no subscript is

present the expectation is over random replications. The above also imply

)

that the true and error scores are uncorrelated, i.e., Covi(tIJ eij'

= Covj(tij’ei'j) =0 for all j,j” and i,i” , respectively. It is further

assumed that all errors are independent within and across all populations.

10
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Scheffe” (1959, chap. 10) shows that the expressions for expected mean
squares, to be presented later, are valid under the heterogeneity of error
variances indicated above. He also shows that the F distribution theory
invoked later is exactly valid only when the error variances are homogen-=ous,
but holds approximately when the error variances are mildly heterogeneous if
the design is balanced. This paper a.sumes thal the error variances are only
mildly heterogeneous and that each examinee responds to each {tem once and
only once. Hence, the design is balanced anc¢ the F distribution theory will
he assumed to hold when the appropriate normality assumptions, discussed

later, are invoked.

The following quantities will be used in later developments:

- 2 - 2 . I 2 - 42
Ej(eij) EJE(eij) hj(c (eij)) ¢ (ei) )

2 I 2 - 2 s q2 c
Ei(eij) = EiE(eij ) Ei(o (eij)) o (ej) , and

) A 2 = 2 - 2 - 2
hiEjL(eij) E, (o (ej)) Ej(o (e;)) =0 (e)
The model is further specified by writing

tij =y o+ ai + bj + Cij (2)

f

where u Eihj(tij) , a; = Ej(tij) ST bj = Ei(tij) - u, and

oy * tij Ei(tij) - Ej(tij) + u . The overall mean is denoted by u , while

aj and bj denote the main effects due to item 1 and examinee j,
respectively. The interaction effect due to item i and examinee j is denoted

by Cij' These definitions implicitly assume that all items are similarly

Q 1.1




Linear Models
9

scored and hence on the same scale, Scheffe” (1959) shows that the above

definitions imply that the model components: aj, bj. and i3

unconditional and for the 24 4 also conditional expectations of zero,

have

For what Follows, it is important to note that the subscripts i and j do
double duty; they are both subscript indices and random variables.

Furthermore, the as, b

., and c;; are functions of the random variables 1 and
J

1]
j. Scheffe’ introduces additional notation to avoid these double meanings
for the subscripts, but the present paper sacrifices Scheffe’'s conceptual
clarity for notational economy.

Scheffe’ (1959, pp 240-2%1) shows that certain marginal zovariances among

the model components are zero, His derivations are presented here in detatll

because of their importance. Scheffe’” shows that

= 1 (n *
o(ai,cij) bihj(di Cij)

. .
Ela Ej(clj)|l]

"

Ei(ai*c[.) = 0 because ¢, = 0 for all i,

o(bj,cij) = Ej[bj*Ei(Cij)lj]

= Ej(bj*c. ) = 0 because C‘j =0 for all j,
c(clj,ol,J) = El’i,Ej(clJ*ci,J) i=- i

- £ [EE ,(cij*ci,j)lj]

- EJ.[E.(cijlj)*Ei,(ci,jU)_}
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= Ej(c..*c..) = 0 because ° g = 0 for all j,

and

ole, .. ....) = Ei[EJ(oijli)*Ej,(c. iyl =3’

ij i ij’

= E,(c, *2, ) =0 because ¢, = 0 for all i.

In the above, the notation EiEi’ refers to the expectation over the bivariate
distribution obtained from sampling pairs of items from the population of
items where the members of each pair are distinct.

Scheffe” (1959) does not discuss the following model compunent

conditional covariances:

a(ai,cij|j) = Ei(ai*cijlj)’
o(bj,vijli) = Ej(bj*cijli),
o ( lj,ci,j[i,i’) = Ej(cij*ci,j|i,i’), and
a(clJ,cij, j,i") = Ei(cij*cij’ APRAD.
v

These conditional covariances are of considerable concern because as will be
seen later their values determine the inter-item covariance matrix.

Though a formal proof will not be given, it is asserted here that the
above conditional covariances are also zero under Scheffe’'s (1959) model.
Four considerations lead to this conclusion. First it does not appear

poss}ble to generate model component data such that Scheffe’'s marginal

covariances are zero but the above conditional covariances are not.

13
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Second, Scheffe’'s proof that the above marginal covariances are zero depends
on the order in which the conditional covariances are taken. If the order is
switched the same result must be found. This implies that the above
conditional covariances must have expected values of zero, and this can occur
only if all are zero or some are positive and some negative such that their
average is zero. Because, as will be shown, these conditional covariances
determine the inter-item covariances, and tests are usually constructed of
items that all intercorrelate positively, it appears more reasonable in a
testing context to assume that the conditional covariances are zero rather
than some positive and some negative. Third, Scheffe” (1959, pp 2k2-243)
considers the two-way random model interaction components as analogous to the
error terms in a two-wav fixed effects model and these later have all
conditional covariances as zero. Fourth, Cornfield and Tukey (19%6) consider
several covariances in the derivation of expected mean squares for factorial
designs, but in the two-way random model these covariances are all zero.
Scheffe’ (1959) defines the variance components of the mcdel as:
g?(a) = Ei(ai), 62(b) = Ej(bg), and o%(c) = EiEj(cij). In defining g2(c),
Scheffe’ does not consider the interaction conditional variances
oz(ci) = Ej(cij) and oz(cj) = Ei(cij). Though i and j are assumed to be
statistically independent variables, cij is a function of both these variables
and for this reason the conditional interaction variances need not be
homogeneous. If it is assumed that the model components have a multivariate
normal distribution as Scheffe’ sometimes does, then the model components are
mutually statistically independent and this forces the interaction conditional
variances to be homogeneous. Here they will be considered heterogenous unless
otherwise specified. Scheffe’'s (1959, chap. 10) demonstration that his

farmulas for expected mean squares are valid under heterogeneity of error

14
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variances implies the same under heterogeneity of interaction conditional
variances,

Of particular interest in the random model ANOVA are the mean squares for
examinees and the mean squares for items by examinees which are denoted MS,
and MS,, respectively. Scheffe’ (1959) derives the following expressions for
the expected value of these mean squares: EnN(MSb) = no2(b) + o2(c) + o?(e)
and EnN(MSo) = o*(e) + o*(e), where E_ . denotes that these expectations are
the means of an infinite number of bivariate random samples consisting of n
items and N subjects.

These mean squares are of interest because Hoyt (1941) has shown that the

~

sample value of Cronbach's (1951) coefficient o, denoted a herein, is given by

R >

= E(MSb - MSC)/MSb] =1 - (MSC/MSb) . The parametric counterpart of

>

=

depends upon the statistical model used to describe the data. For the

random ANOVA model this parameter is denoted « , the subscript RA denoting

RA
that this definition is specific to the random model ANOVA. The

Jarameter a is defined by

RA
. - By MSp) = By (M8 e2%(9)

-=Z- = = - . (3)
RA E:nN(MSb) 02(b) + g2(c)/n + a%{e)/n

~

The rationale for this definition is that a converges in probability to aRA

under the RA model. This is discussed further below. Since aRA is defined in

terms of EnN(MSb) and E y(MS,) whose definitions in turn depend upon the RA

model, the definition of aRA is tied to the RA model and hence the RA

subscript. Feldt (1965) has shown that under the additional assumptions of

independent normal distributions for the {a;}, {bs}, f{c;;}, and fe

J i} iJ
(1 - aRA)/(1 - a) is distributed as F[N-1, (n-1)(N-1)]. Under these

b

assumptions, the conditional variances for both the interactions and errors

15




are consi jered homogeneous, but s1igat Awterogeneity siioul 1 produe: 3t moant

oty miid departures from the ¥ jistribation. Using the exprassion for the

mean of an F distripbnfion it Follaws that EﬂN(d) = TIN - 1)/ - BE)JR -

a>

T2/(N - 3)7. This 370ws that a i3 an asymptotically (a5 N+ =) unblased
estimator of Moy Even wichout the normalisy assumplions, a is stitl 2
consistent. estimator for Upn since it is a method of moments estimator

for Top (3erfiing, 1983), and equivalently converges in probabiiity Lo

in RA

The random ANOVA (RA) model nas been presented in som2 detail. Tt i3 ndw
of interest to compare that modei to the factor analysis ‘FA; modal. This
comparison may be made by examining the conditional ovariance mat-~ix {20 the
n sampled items, the conditioning baing on the n items selected from the

infinite population of items. Let the observed secores on the n itams be

represented by the column vector x . The conditional covarianca matrix s

E.C(x. - E.(x.)) (x, - E.{(x,))] . The diagonal zlements of this matrix
oGy 7 Byl gy - Eyleg)) ] ¢ aragona

.)

J

g2(h) + oz(ci) + oz(ei) . Because it is assumed here that

gxln i}

are Var . (x.
jooi

j) = 0 for any pair of itams randomly

selected from the population of items, it follows that this covariance will

A (A
under the RA model “Ovj"ij'ci'

ne zero for all pairs of items in the randomly selected sample of n items,

and consequently that the off-diagonal elements of this matrix are

Cov . (

j xij'xi’j) = ¢2(b) . The rather simple form of this conditional

covariance matrix may be represented as L = o7 (0)d + alo*(e ) + oz(ei)]
where J represents a matrix of all ones and 4 is a diagonal matrix with the

indicated elements. It follows that the conditional covariance matrix for the

true scores on the n items is

Ip, - 0%(0) + alo*(e)) .

-~
=
-

O
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Hocking (1985) presents covariance structures for a W~ide variety of random and
mixed ANOVA models., He assumes homogeneity among the error and conditional
interaction variances. Given his assumptions, “is results agree with those
presented here.

The RA conditional covariance structure is identizal to the covariance
structure of a one common factor FA model with homogeneous factor loadings and
n specific factors distinct from the errors. This is Spearman's (1904) model
but with the additional restriction that the items all ccrrelate equally with
the general factor. More specificaily, the subject main effect variance in
the RA model is analogous to the common factor variance in the FA model while
the conditional interaction variances in the RA model are analogous to
specific variances in‘the FA model. Another way to characterize this
conditional covariance structure is as an essentially tau uivalent model
(Lord and Novick, 1968) but with the addition of n specific factors with
possibly heterogeneous variances.

If the specific factors have homogeneous variances, then the conditional
covariance structure for the true scores is equivalent to tha equicorrelation
model (Morrison, 1976). Under the equicorrelation model, the first and

largest eigenvalue of [

Lt [n? denoted A,, is equal to no?(b) + ¢%2(c) . The

second distinet eigenvalue of gt]n has multiplicity n-1 and is given
by o%(e) . It is denoted A,

The simple form of the conditional covariance matrix in the RA model
results from the uncorrelatedness of the model components. Though this
covariance structure is a rather restricted special case of the many more
versatile covariance structures permitted by FA models, the RA model permits
explicit statistical inference to a population of items. The price for this

gain in "generalizability" is the assumption of a simple covariance structure

17
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among the items.
The inferential differences between considering items random and
consicering items fixed may be illustrated by how reliability may be defined

under these conditions. For subject j, let the item domain true score be

defined as Tj = Ei(xij) =y t bj . This implies that the item domain error
score for subject j 1is Ej = x b - Tj =a +¢ i + e j e Note that for random
replications E(sj) = a. + cfj , and that for examinees Ej(cj) = a.

Furthermore, considering just a one-item test, Cov, (e

)

15°%15°
g2(a) for ail j #= j° . These conditions violate the usual assumptions of
classical test theory (Lord and Novick, 1968, chap. 3), because here the
errors do not have means of zero ani the errors are inter-correlated.
However, Covj(rj,sj) = 0 and this crucial result implies that if interest
focuses on the reliability of a specific test composed of n randomly selected
items with respect to the item domain true scores, then a useful definition of
reliability is Rel(?_j,rj) = [Corj(§.j,rj)]2 . Reliability so defined
measures the accuracy with which relationships between observed test scores
are indicative of relationships between item domain true scores.

: - _ 2
Since COVj(X.j,TJ) = ¢%(b) ,
Var (x ;) = o*(b) + (1/n*)]To%(c ) + (1/n") o (e) ,

and Varj(Tj) = g2(b) , it follows that

g2 (b)

Rel(x .,1.)
*J J

52(6) + (1/n9)] 0ot (c,) + (/0] fe%(e)) )

I

Var,(t.)/Var  (X..
arJ(TJ) rJ( J),

18
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which is the usual ratio of true score variance to observed score variance. If
the error variances and the conditional interaction variances are homogeneous

is only an approximation to this

RA

then a,, = Rel(x.j,rj) , otherwise apa

reliability, albeit not a bad one.
An alternative definition of reliability under tne RA model which is more
appropriate when concern is not with the reliability of a particular randomly
constructed test but rather with the population of such tests is
En[Rel(Q.j,tj)] . Here, E, denotes that the expectation is over the
population of randomly constructed tests consisting of n items. This
definition of reliability is appropriate when the same test will be
administered to every examinee, but concern is with the reliability of any
randomly constructed test rather than a particular test that is randomly
selected. The situation in which different examinees take different randomly
constructed test forms is not often encountered in practice and is not
addressed in this paper but see Lord and Novick, 1968, p. 208). 1If the error
variances and the conditional interaction variances are homogeneous, ther
This follows since Rel(;.j,Tj) = ap,

every randomly constructed test consisting of n items. If homogeneity does

for each and

r v -
EnLRel(x.j,tj)] = ap,

not hold, an exact expression for En(Rel(;-j’Tj)) requires additional model

specifications which will not be attempted in this paper. However, it may be
shown by using the delta method of Kendall and Stuart (1977, Vol. I) that Gpp
is a first order approximation for En[Rel(i.j,ti)] under heterogeneity.

If the data are accurately described by the RA model, but the usual

definition of reliability (Lord and Novick, 1968, chap. 3) is adopted, then
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Relfw .0 .3} = Cor (x .t 1 = var (L /Var {x ) 6
) -] 3 ) )b J J cJ
1
62(n) + 1/n?) 6% (c )
-1 i
n n
o2 (o) + (1/n2)§i02(ci) + (1/r‘)2102’91)

lJsually, Rel(z'j,t'j) > Spp However, if Lher2 is no itam LYy examninoe?
interaction and the error variances are homogeneous then Rel(;'j,f'j\ =T

A comparison of (5) to (5) shows that the interaction (speci©ic}
variances are included in the numerator of Rel(i'j,f'j) but exciuded from the
numerator of Rel(;'j,Tj) . This difference i3 due to the difference i1
definitions between E'j and Tj . If the true score is specific to the test,

i.e., t 50 then the interaction {specific) variances are included in tne t rue

score variance. When the true score is deflined over the population of items,
i.e., Tj , then the interaction (specific) variances do not contribute o the
true score variance.

Two brief observations regarding the RA model are of interest. If no
interactions are present the RA model may be viewed as A linear analog of the
one pararieter Rasch mod»1l (Lord and Novick, 1958, p U02) with explieit item
and examinee sampling. Second, the symmetry of the RA model Aallows
consideration of not only the inter-item covariance matrix but also the
similarly constrained inter-examinee covariance matrix.

This section of the paper has presented a detailed development of the RA
model and a brief comparison of the RA model to the FA model. The development
demonstrates that under the RA model generalization in a statistical manner
over a population of items requires a simple and spacialized covariance
structure among the items. In the next section, the mixed ANOVA (MA) model i3

considered.

o 20
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Iﬂ? Ttems by Examinees Mixed ANOJA Model

Hocking (1973) compares three different versisns o the two-way mixed
ANOVA (MA) mode2l that have heen presented in the sLatistical literature, and
resnlves the differences between their a:..nciated «x wessions for expected
mean squares. Tnis paper adopts the most general orr of these three which is
due to Scheffe’ (1959)., 1In tne mixed ANOVA model, tae N examinees are
randomly sampled from an infinite population of exarinees, but the n items are
considered fixed and non-random. Even though the ileoms may be randomly chosen
from a populatiosn of items, this fact is ignored; tne MA model simply 1s not

)

concerned with statistical inferences to a populaticon 57 items. All

stati

(V]

ti2al inferences are conditional on the n items s2iected, since the
popaiation of items is not defined in tne MA model.

The model may b2 written as

X.. =t .+ e . i=1,...,n J=1,...,N

where t gt ua, b, +tceC . The model assumes th«t the error scores have

ij i J 1
zero means for all 1 and j and this implies that the tL~ue and error scores are
uncorrelated. The non-random parameters y and a4 irepresent the overall mean
and the main effect of ivem i, respectively. The random variable b,
represents the main effeot due to examinee j, while tne random variable cij

represents the effect due to the interaction of examinee j with item i, These

it

) - n -
model components are defined as = E.{C1/n)) L, . .0t )
P ° TR Ly i3 il

a, =E{(t..)-wuw,b. =t . -u, ande,.=¢t.. -t . -E(t. )+ u.
T Byltyg) by g ij = tig o Byl e

The above definitions imply that the model components will satisfy the
following conditions: z?a = Z?c,, =E (b)) =E,(~ =0,

i~i 173 J ) J 4]
Tt is aiso implicitly assumed that the items are simiiarly scored and hence on
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the same scale., Allowing for heterogeneous ercor variances yields the

following: o%{(e,) = E.(e?.) and o%(e) = (1/n)E?oz(ei)
If tne error variances are homogeneous, then o?(e,) = o?(e) for all i.

Let gj represent the n dimensional column vector of examinee j's true

scores on the n items. The true score covariance matrix is

[}

= {oii,} = Ej[(gj - Ej(gj))’(gj - Ej(gj))] . The only restriction placed
on L is that it be positive semi-definite. The covariance among the items may
be of a very general form, including any multiple common factor model, This
is quite different from the RA model where a simple specific conditional
covariance structure is assumed. Removing the randomness of the items permits
a much more general covariance Structure among the items, but eliminates any
statistical inferences concerning the population of items.

From the definitions of the random model components, the variances and
covariances for these components may be expressed as functions of the

{g...} . Scheffe” (1959) shows that

il

Var.(b,) = E.(b2) = 0
rJ J) J( J) a (7)
i . ) - = -
Covj(cij'ci’j) Ej(cij ci’j) o5 o4 9 ta and (8)
Cov.(b.,c..) = E.(b.¥c..) =0, =0 _ . :
J( j clJ J( j lJ) 9. g,. (9)

Scheffe’” (1959) defines the variance components as

2 v . .
62(b) arJ(bJ) and (10)

02(e)

"

- n - -1y715" -
[1/(n 1)]ZiVarj(cij) = L1711 (e =0, ) . (11)
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Using these definitions, he shows that MS, and MSC, as previously defined
under the RA model, have the following expected values under the MA model:
EN(MSb) = no?(b) + o%(e) and EN(MSC) = ¢%(c) + 9%(e) , where Ey denotes the
expectation over an infinite number of random samples of N examinees,

[t is interesting to note that the random components are correlated in
the MA model and that these correlations are determined by L . In the RA
model the random compoaents are uncorrelated, but the covariances among the
items are required to be homogeneous. What happens to the component
correlations in the MA model when the inter-item covariances are assumed to be
homogeneous wWill be investigated shortly.

First, however, reliability and its relationship to coefficient alpha
will be discussed. The sample alpha coefficient under the MA model is
identical to the sample alpha for the RA model, and is given
A8 ; = (MSb - MSC)/MSb. Its parametric counterpart under the MA model will be

denoted by a and is defined as

MA

_ [Ey(MS) - By (M3,)] 0%(b) - dg%(c)/n

. = —mmmmmom 2 = . (12)
MA EN(MSb) g2(b) + g%(e)/n

~

The rationale for this definition is that a converges in probability
to ay, under the MA model. This is further discussed below. If (1) the
random model components including the errors are normally distributed, (2) the
error variances are homogeneous (though mild hetercgeneity should be
acceptable), and (3) ¢2(c) = 0, then using results given by Scheffe’ (1959) it
may be shown that [{(1 - aMA)/(1 - ;)] is distributed as

F[N-1, (n-1)(N-1)], which is the same distribution as under the RA model.
Similarly, this F distribution implies that EN(;) = [(N—1)/(N—3)]aMA -

A

[2/(N-3)] , and hence that o is an asymptotieally unbiased and consistent

2
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estimate of LT Kristof (1963) has previously derived these results. If
g2(c) = 0, then the F distribution still holds if L has the highly symmetric
Structure discussed by Scheffe” (1959, p 264) or if gx has the type H form

described by Huynh and Feldt (1970); but as will be seen later %A is then a

strict lower bound to reliability. However, even if the foregoing assumptions

-~

are not fulfilled, a is still a consistent estimator of « since it is a

MA
method of moments estimate for Gy (Serfling, 1983), and equivalently
converges in probability to YT Finally, it should b¢ noted that

if g2(ec) = 0, then all the i j

essentially tau equivalent model discussed by Lord and Novick (1958).

= 0 and the MA model is identical to the

Under the MA model, the mean true score of examinee j is
E;j = (1/n)Z?E(xijk) where, as discussed under the RA model, E denotes
expectation over the errors associated with random replications.
Let Xy denote the n dimensional column vector of the j-th examinee's observed
scores on the n items. Let gx denote the covarlance matrix for the observed
scores. It follows that I = L + A(o*(e;)) where A(o*(e;)) is a diagonal
matrix with the error variances as its elements. Following Lord and Novick
(1968, chap. 3), reliability under the MA model is defined as

v

[cOrj&.j,E.J.)]z = 0%(v)/[o%(b) + 0?(e)/n] (13)

Rel(x .,t .
(x.J. .J)

Var,(t .)/Var (x .) .
NN Jed

The above follows from the expressions for the variance components given in

(10) and (11). Comparison of the last expression in the first line of (13)

with the expression for Ayp given in (12) demonstrates

that oy, = Rel(§.j,f.j) if and only if ¢2(¢) =0, 1i.e., the items are
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ZRel(x ., ). Tnis agreaes with

ssseatially taa eqiivilent,  Otherdslise, S AR IEERN

Lo ra3alhs of Guttman C194%), Noviak and Lewis (13- 7, Bentler (1972), and
Jasksoa and Agunwamba (13I77Y,

gnder Lhe assumption of egquivalent covariance ot untires for the RA and
“nomo1el3, eompacisons bebween the two modals regar i vi~jarn~2 components,
ped tabitity, and coefficient alpha will now be under. A=, The RA true score

sordi tional eava~iance structure given in (4) may b ~=axpressed as

t a2 ll
Lope - 04 ¢ st (14)

anere g? by = 9 and oz(ci) = u? . The followiny L~ue score covariance
stouct are witl be assumad for the MA model:
L=qd+alul) . (15)

For the abave covariance structure, Table 1 displays the variance

Insert Table 1 about here

componants for the RA and MA models. This paper has “ollowed the convention
5° labaiing the variance components the same in both models, but Table 1 shows
that “he variance components have different meanings under the two models.
Whnile o2{c) depends only on the specific variances, thougn in different ways
i1 the two models, 02(b) includes common and specifi~ variances under the MA
model but only common variance unde» the RA model. For more complicated
sovariance structures than {1%) under the MA model, nuch simple r.lationships
netween the variianece components and the covariance mit~ix are not apparent,

The differences in variance components between Ln> Lwo models have

ramif ications for reliability and coefficient alpha e the two models.

0O
&N

O
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Table 2 displays alpha and reiiabilities for the two models under the

indicated covariance structure, Coefficient alpha differs statistically under
the two models in that expectations are used in the denominator of Qpa while
summations are used in the denominator of Sy Nonetheless, coefficient alpha
has a similar psychometric meaning under the two models since under both
models the numerator and denominator depend, with slight variations, on the
same elements of the covariance matrix, Rcl(;.j,z.j) is identical under the
two models, but differs from Rel(;.j,rj) under the RA model as has already
been noted.

Under the RA model, the random model components are uncorrelated as was

previously discussed., For the MA model under the covariance structure in

(15),

Covj(bj'cij) = [q + (u;/n)] - [q + (1/n2)Z?ui]

i

2 o2
[u? (1/n)21uij/n and

(@]
0]
<
.
—
(@]
e
<
N
~
u

- q - (g +ui/n) - (q+ul./n) + [q+ (1/n2>z?u;]

n

N2 _ 2 _ 2 1
[(1/n)ziui uf - uf.l/n .

) -u?/n

Tf all the u? are equal, then Cov.(b.,c.:) = 0 and Cov,(c
i J 73y Ji

'j’ci’j

where u? is the common value for all the u;. The covariance -u?/n is due to

the fact that under the MA model Z?cij =0 for all j. As was noted
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previously for the RA model, the uncorrelatedness of the random model
components results in the simple covariance structure given in (4) and (14).
What has just been shown is that when a slightly simpler covariance structure
is assumed for the MA model, the random model components essentially become
uncorrelated. Hence, the correlations among the random components and the
inter-item covariances are related in a similar fashion under both models. To
obtain psychometric inference under a more complicated inter-item covariance
structure than {14) requires an RA type model which permits the model
components to be correlated. Such correlations would make expressions for the
mean squares much more difficult to obtain.
Finally, when the u§ are homogeneous and hence the equicorrelation
covariance structure presented by Morrison (1976) {(that is equivalent to
Scheffe’'s (1959) highly symmetric covariance structure) holds, then
no?(b) = i, where A, is the first and largest eigenvalue of L in the MA
model. The one remaining distinct eigenvalue of L, A,, has multiplicity n-1
and is equal to o?{c).

Summary and Discussion of Implications for Practice

It has been shown that coefficient alpha is approximately equal to but
not necessarily a lower bound to reliability under the RA model, and that it
is a lower bound to reliability under the MA and FA models (the result for the
FA model having been shown praviously by others). These conclusions concern
the parameter values for these quantities and not necessarily their sample
estimates. Under the RA model where statistical inference to a population of
items from a sample of items i3 permitted, it was found that the inter-item
covariances must be homogeneous, and that this homogen=2ity is due to the model
companents being uncorrelated. This restriction is not required under the MA

model, but it does not permit psychometric inference, These conclusions are,

27
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of course, specific to the models under consideration, and other models may
yield different results.

It is usually the case in education and psychology that inference from a
sample of items to a population of items is a desired goal in the analysis of
test data. However, this may not always be true. A situation in educational
measurement where psychometric inference may not be required is when a test is
divisible into well defined content heterogeneous subtests, and the subtest
scores are the measurements being analyzed. In this situation, an appropriate
model for the data could be a subtest by examinee two-way MA model. 1In
psychology, if an affective scale such as a personality inventory consists of
well defined psychologically distinct subscales, then a subscales by subjects
two-way MA model could also be an appropriate model for the data.

If psychometric inference is desired and if ‘he RA model presented within
is going to be used to analyze the data, then it is appropriate to investigate
whether or not the data satisfy the covariance structure assumed under the RA
model. This covariance structure is a linear covariance structure, and Browne
(1972) has derived a procedure based on the principle of generalized least
squares (GLS) estimation that may be used to statistically test the fit of the
data to the RA model covariance structure. Browne's (1972) method is non-
iterative and hence relatively simple computationally. J;reskog (1978)
discusses statistical tests for covariance structures based on GLS and maximum
likelihood (ML) estimation methods. The computer program LISREL VI
(Jéreskog and Sgrbom, 1986) implements those methods as well as others, and
is accessible through the spss* (spss* Tne, 1986) computer program. Bentler
(1983) and Browne (1984) have developed GLS test procedures with weaker
distributional assumptions but more computational complexity. Bentler (1985)

has also written a computer program, EQS, which implements his procedure and
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is available as part of the BMDP Statistical Software computer package. It is
designed for easy use. If the RA model fits the data, then ; is an
appropriate estimator for tne reliability index, Rel(Q.J,rj), which assesses
now well relationships between observed scores represent relationships between
item domain true scores.

If the items are dichotomously scored, then difficulties may arise in
applying the above procedures to the usual sample covariance matrix or the
sample matrix of phi coefficients. Mislevy (1986) discusses these problems
and reviews alternative methods for testing covariance structures designed to
deal with dichotomously scored items. However, the results of Collins et al.
{1986) suggests that it may be appropriate to first analyze the usual matrix
of sample moment covariances or correlations. If difficulties arise, then
recourse may be had from the more theoretically and computationally complex
methods discussed by Mislevy (1986).

If the RA model cannot be applied because the data substantially violate
the requirement of homogeneous inter-item covariances, or inference to a
population of items is not desired, then the MA model may be used. As was
shown, a is a lower bound to reliability under the MA model and consequently
under any FA model (the latter having been shown previously by many others).
However, under the MA model, better lower bounds than a exist. The best is
the greatest lower bound to reliability, derived independently by JacEson and
Agunwamba (1977) and Bentler and Woodward (1980). Bentler and Woodward (1933)
present the most efficient numerical algorithm for computing a sample estimate
of the greatest lower bound to reliability. In general terms, the computation
requires the solution of a nonlinear optimization problem with inequality

constraints and is rather complex. For the investigator who desires a simpler

estimate, even if it is less optimal, Jackson and Agunwamba (1977) suggest
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that Guttman's A6 coefficient may be advantageous "in the typical situation
where the inter-item correlations are positive, modest in size, and rather
similar." The computer package SPSS* (SPSS* Inc., 1986) has a reliability
component which computes a sample estimate for A6 as well as several other
reliability estimates.

If the test has many items, then some investigators may find it difficult
or expensive to compute sample estimates for A¢ or the greatest lower bound.
These investigators may view coefficient a as an appealing reliability index
for long tests because of its computational simplicity. Such investigators
may find solace in the results of Green, Lissitz, and Mulaik (1977) which
suggest that a increases as the number of items increases even when the test
has multiple common factors and a is only a strict lower bound to the
parameter value of reliability. Green et al. (1977) argue that this result
makes a a poor index of test unidimensionality. Fortunately, those qualities
which make a a poor index for unidimensionality increase its worth as a
reliability index, and this is especially true for long tests. Nonetheless,
the greatest lower bound to reliability has optimal properties which indicate
that it is worth computing whenever feasible.

Finally, because coefficient alpha may be a useful estimate of
reliability under both the RA and MA models, it is worthwhile to review the F
distribution theory for ; under both models, 1In addition to the appropriate
normal ity assumptions for each model, the F distribution theory requires
homogeneity of error variances under both ANOVA models and homogeneity of
interaction conditional variances under the RA model, but mild heterogeneity
of these variances should not greatly affect the distribution theory. Under
the RA model, a may equal or approximately equal reliability?ﬁﬁ;h the F

-~ -

distribution for a holds, but a i3 not a lower bound for reliability. Under
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the MA model, the F distribution theory for ; holds and o equals reliability
when there are no interactions. If interactions are present, then the F
distribution theory for ; requires the special covariance structures of
Scheffe’ (1959, p 264) or Huynh and Feidt (1970) and a is then a strict lower
bound to reliability. If a conservative estimate of u or the parameter value
of reliability under either model is desired, then Wood~ard and Bentler (1978)

show how the F distribution theory for a may be used to obtain a probabilistic

lower bound to a.
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Table 1

“nhe RA and MA
~or Both Models

RA Mode .

Cn © 2 4D 3 - qd + 4(u?)
g?(9) = q g2(b) = q + (1/n2)‘?qf
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