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Abstract

Two ANOVA models for item seores are compared. The first is an items by

subject random effects ANOVA. The second is a mixed effects ANOVA with items

fixed and subjects random. Comparisons regarding reliability,

Cronbach's a coefficient, psychometric inference, and inter-item covariance

structure are made between the models. When considering the inter-item

covariance structures for the two ANOVA models, brief comparisons with factor

analysis models are also made. It is concluded that inference from a sample

of items to a population of items requires homogeneous inter-item covariances,

that reliability has different meanings under the two models, and that while

coefficient a is a lower bound for reliability under the second model, it is

not under the first.

Key Words: Coefficient Alpha, Covariance Structure, Generalizability,

Linear Models, Psychometric Inference, Reliability



Linear Models
4

Introduction

This paper compares two different ANOVA models for items. The first

model is the two-way items by examinees random effects (Model II) ANOVA. The

second model is the two-way items by examinees mixed effects (Model III)

ANOVA. Very careful and complete statistical derivations of these models are

given by Scheffe' (1956a, 1956b, and 1959). This paper draws heavily

from Scheffe''s work. The two ANOVA models are compared to each other in

detail and briefly to factor analysis models. Factor analysis models are

extensively discussed by Harmon (1976) and Mulaik (1972). As considered here,

the factor analysis model is statistically more similar to the mixed ANOVA

model than to the random ANOVA model. Under the factor analysis model, items

are considered fixed and non-random, while subjects are randomly sampled from

a population of subjects. See Mulaik and McDonald (1978), Williams (1978),

and McDonald and Mulaik (1979) for an alternative formulation of the factor

analysis model.

All of the models under consideration are linear models. A model is

defined as linear if an examinee's expected score on an item is a linear

function of item characteristics. Item characteristics may be fixed

parameters as in the mixed ANOVA model or random variables as in the random

ANOVA model. The factor analysis model is here considered to be linear in its

item parameters which are usually called factor loadings even though these

linear coefficients are applied to factor scores, which are unobserved random

variablcs associated with examinees. An example of a nonlinear model is the

logistic ogive item characteristic curve model (Lord and Novick, 1968). From

a theoretical viewpoint, linear models usually do not accurately describe

dichotomously scored items, and most items are so scored. However, for

carefully constructed tests, linear models for item scores are often
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sufficiently accurate to provide useful approximations. [See Feldt (1965),

Hsu and Feldt (1969), Hakstian and Whalen (1976), Seeger and Gabrielsson

(1968), Gabrielsson and Seeger (1976), McDonald and Ahlawat (1974), McDonald

(1981, 1935), and Collins, Cliff, McCormick, and Zatkin (1986).]

The discussion of the models presented here will focus on three

characteristics useful in psychometrics. The first is reliability. Under the

three models reliability is defined as the squared correlatim between an

observed and a true score. A few relevant references regarding reliability

are Gutman (1945), Novick and Lewis (1967) Bentler (1972), Jackson and

Agunwamba (1977), and Bentler and Woodward (1980, 1983). Parametric

expressions for reliabil:ty and Cronbach's (1951) coefficient alpha are given,

and the sampling distribution for the sample alpha coefficient is discussed.

The second characteristic is the inter-item covariance matrix. For each

model, the assumed or resulting covariance structure is discussed and compared

with factor analysis models. Finally, psychometric inference is discussed.

Psychometric inference is considered as statistical inference to a population

of items from a sample of items randomly drawn from the population. The more

general term generalizability is not used since it connotes statistical

inference for a wide array of facets, not just items. There is a large body

of literature on psychwetric inference. A few references are Hotelling

(1933), Tryon (1957), Lord and Novick (1968), Cronbach, Gleser, Nanda, and

Rajaratnam (1972), Mulaik (1972), Kaiser and Michael (1975), Rozeboom (1978),

McD,,oald (1978), and Brennan (1983). Both the approach ami results presented

here, while most similar to, differ in part from those developed by Lord and

Novick (1968) and C,'onbach et al. (1972).

Brief descriptions of seven conclusions original to this paper are:

1. Conditional variances for interaction effects may be heterogeneous in
the random ANOVA model.

BEST COM' AVAILABLE
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2. The random ANOVA model requires the inter-item covariance matrix to
have homogeneous off-diagonal elements, while the mixed ANOVA model
places no restrictions on the inter-item covariance matrix except
positive semi-definiteness. Hence, any factor analysis model may be
subsumed under the mixed ANOVA model but not the random ANOVA model.

3. Interaction effects in the random ANOVA model are analogous to
specific factors in a certain single common factor factor analysis
model, while the examinee main effect is analogous to the single
common factor.

4. The squared correlation between observed scores and true scores is a
useful definition of reliability under the random ANOVA model as well
as under the mixed ANOVA model, but the definition of true score
differs under the two models.

5. Reliability as defined in 14 . has different meanings under the two
models. In the mixed ANOVA model, interaction (specific) variance is
included in true score variance, while in the random ANOVA model it
is not.

6. The parametric value of Cronbach's alpha coefficient is a lower bound
to the parametric value of reliability (as defined in 4) under the
mixed ANOVA model but not under the random ANOVA model.

7. Given certain normality assumptions, a transformation of the sample
alpha coefficient has an F distribution under the random ANOVA model.
For the mixed ANOVA model, the F distribution only holds if in
addition to certain normality assumptions there are either no
interactions or the inter-item covariance matrix has special
restricted forms.

The practical implications of these conclusions for the analysis of test data

will be diseussed in the last section of this paper.

The Items by Examinees Random ANOVA Model

The model presented here is essentially the same model developed by

Scheffe" (1959, chap. 7). It assumes that a random sample of n items chosen

from a countably infinite population of items is administered to a random

sample of N examinees chosen from a countably infinite population of

examinees. The sampling of items and examinees is assumed to be completely

independent. Let xij represent subject j's observed score on item i. A

preliminary form of the model is
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xij tij + eij i = 1,...,n j = 1,...,N . (1)

The quantities tij and eij are, respectively, the true score and the error

sc(xe of examinee j on item I. Different definitions for true and error

scores under the random ANOVA model will be admitted later. Within the

present context, true and error scores are not absolutes; their definitions

may vary depending on the inferences being made. The various true and error

scores considered in tnis naper are not necessarily an exhaustive set of

possible true and error scores under the models presented.

If examinee j responds independently and repeatedly to item i, these

replications are indexed by the subscript k. For cognitive tests such random

replications are rarely available, though they occasionally may be obtained

for affective scales. The present development assumes that such replications

are not available from the data. In the theoretical development of the model,

these replications are allowed to be present. In particular, the model

assumes that for the sequences of independent random varqables

e..2,
eijk'

Var(e
k

) E(e2 ) = 02(e
ij

)

'

i.e., that the error variances are
ij

heterogeneous over the domains of i and j. For notational simplicity, the

subscript k will usually be suppressed, since for the remainder of the paper

it will usually take the value of one.

The above imply that Ei(eij) = 0 and that E(e) = 0, where notation

such as Ei and Vari means that the expectation and variance are taken over the

population whose members are indexed by the subscript i. When no subscript is

present the expectation is over random replications. The above also imply

that the true and error scores are uncorrelated, i.e., Cov.(t ,e. ,)
1 ij ij

Cov.(t. .,e - 0 for all j,j' and 1,1' , respectively. It is further

assumed that all errors are independent within and across all populations.
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Scheffe' (1959, chap. 10) shows that the expressions for expected mean

squares, to be presented later, are valid under the heterogeneity of error

variances indicated above. He also shows that the F distribution theory

invoked later is exactly valid only when the error variances are homogenous,

but holds approximately when the error variances are mildly heterogeneous if

the design is balanced. This paper az.sumes that the error variances are only

mildly heterogeneous and that each examinee responds to each item once and

only once. Hence, the design is balanced and the F distribution theory will

be assumed to hold when the appropriate normality assumptions, discussed

later, are invoked.

The following quantities will be used in later developments:

= 02(e.) ,

J 1J J 1J

.)) = o2(e.) , and
1

EiEjE(eli) = Ei(o2(ei)) = Ej(o2(ei))

The model is further specified by writing

t. . = p + a. + b. + c. . (2)
ij 1 13

where u and
1 j ij 1 j ij L lj

= tij E(t) Ej(tii) + p . The overall mean is denoted by p , while

ai and bi denote the main effects due to item i and examinee j,

respectively. The interaction effect due to item i and examinee j is denoted

by cij. These definitions implicitly assume that all items are similarly

BEST COPY AVAILABLE
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scored and hence on the same scale. Scheffe' (1959) shows that the above

definitions imply that the model components: a. 1). and c. . Nave

unconditionalandforthec.also conditional expectations of hero.
lj

For what follows, it is important to note that the subscripts i and j do

double duty; they are both subscript indices and random variables.

Furthermore, the ai, bi, and cij are functions of the random variables i and

j. Scheffe' introduces additional notation to avoid these double meanings

for the subscripts, but the present paper sacrifices Scheffe''s conceptual

clarity for notational economy.

Scheffe' (1959, pp 240-241) shows that certain marginal covariances among

the model components are zero. His derivations are presented here in detail

because of their importance. Schefie' shows that

E, E (a. *c . .)
1 j 1 13

E.F.a.*E.(c
ij
.)1i]

1 1 j

E.(a.*c ) = 0 becatisec.-C) for all i,

1 1 t 1.

- E.E1).*E.(c. .)1j]
J 1 1J

= E.(b.*c .) 0 because c = 0 for all j,
J 'J

EiEcycii*ci,j) i

= Ei[EiEr(cii*ci,j)IjJ

= Ei[Ei(cip)*Ei,(ci,j1j)J
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.E.(c.*c.).0becausec..(:) for all j,3

c(c. . .,) = E.[E (c. .,1i)3
ij. ij 1 j ij J 13

.1

=E.(c.*c.)-Obecausec.=0 for all i.
1 1 1. 1

In the above, the notation E.E. refers to the expectation over the bivariate
1 1

distribution obtained from sampling pairs of items from the population of

items where the members of each pair are distinct.

Scheffe" (1959) does not discuss the following model component

conditional covariances:

( a . , c . 1 j )
1 lj

c(b.,c. .1i)
J 13

E.(a.*c. .1j),
ij

= E.(b.*c. 1i),
j 13

13 1 j j 13 1 j
and

c(cij,cij,lj,j") = Ei(cij*cij, 1j,j')

These conditional covariances are of considerable concern because as will be

seen later their values determine the inter-item covariance matrix.

Though a formal proof will not be given, it is asserted here that the

above conditional covariances are also zero under Scheffe"'s (1959) model.

Four considerations lead to this conclusion. First it does not appear

possible to generate model component data such that Scheffe"'s marginal

covariances are zero but the above conditional covariances are not.

13
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Second, Scheffe''s proof that the above marginal covariances are zero depends

on the order in which the conditional covariances are taken. If the order is

switched the same result must be found. This implies that the above

conditional covariances must have expected values of zero, and this can occur

only if all are zero or some are positive and some negative such that their

average is zero. Because, as will be shown, these conditional covariances

determine the inter-item covariances, and tests are usually constructed or

items that all intercorrelate positively, it appears more reasonable in a

testing context to assume that the conditional covariances are zero rather

than some positive and some negative. Third, Scheffe' (1959, pp 242-243)

considers the two-way random model interaction components as analogous to the

error terms in a two-way fixed effects model and these later have all

conditional covariances as zero. Fourth, Cornfield and Tukey (1956) consider

several covariances in the derivation of expected mean squares for factorial

designs, but in the two-way random model these covariances are all zero.

Scheffe' (1959) defines the variance components of the model as:

02(a) = E.(a), u2(b) = E.(b), and 02(c) = E.E.(c.). In defining u2(c),
J J j ij

Scheffe' does not consider the interaction conditional variances

02(c1) = E(c) and 02(0.) = E.(c.). Though i and j are assumed to be

statistically independent variables, cij is a function of both these variables

and for this reason the conditional interaction variances need not be

homogeneous. If it is assumed that the model components have a multivariate

normal distribution as Scheffe' sometimes does, then the model components are

mutually statistically independent and this forces the interaction conditional

variances to be homogeneous. Here they will be considered heterogenous unless

otherwise specified. Scheffe''s (1959, chap. 10) demonstration that his

formulas for expected mean squares are valid under heterogeneity of error

1 4
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variances implies the same under heterogeneity of interaction conditional

variances.

Of particular interest in the random model ANOVA are the mean squares for

examinees and the mean squares for items by examinees which are denoted MSb

and MS
c'

respectively. Scheffe' (1959) derives the following expressions for

the expected value of these mean squares: E
Ns
(Ms

b
) na2(b) 02(b) 02(e)

n

and En
N
(MS

c
)

02(b) 4. 02(e), where E nN
denotes that these expectations are

the means of an infinite number of bivariate random samples consisting of n

items and N subjects.

These mean squares are of interest because Hoyt (1941) has shown that the

sample value of Cronbach's (1951) coefficient a, denoted a herein, is given by

a = [(MS
b

MS
c
)/MS

b
] = 1 (MS

c
/MS

b
) . The parametric counterpart of

a depends upon the statistical model used to describe the data. For the

random ANOVA model this parameter is denoted aRA , the subscript RA denoting

that this definition is specific to the random model ANOVA. The

darameter a
RA

is defined by

Enti(MSb) EnN(MS.)
02(5)

a
RA E

nN
(MS

b
)

a2(b) + a2(c)/n + 02(e)/n
(3)

The rationale for this definition is that a converges in probability to aRA

under the RA model. This is discussed further below. Since a
RA

is defined in

terms of EnN(MS
b
) and E (MS

c
) whose definitions in turn depend upon the RA

nN

model, the definition of aRA is tied to the RA model and hence the RA

subscript. Feldt (1965) has shown that under the additional assumptions of

independent normal distributions for the {a1}, tbil, and (eijI,

(1 a
RA

)/(1 a) is distributed as FEN-1, (n-1)(N-1)]. Under these

assumptions, the conditional variances for both the interactions and errors

15
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are consi lred nom.)geneous, but slight neterogeneity shoui peoduee m.w,t

only mill dep3rtures from thc expre3slrl 1,1; th

mean of an F distributim it foilows that E
nN

(a) - r(N 1)/N f)1
RA

[2/(N 3)7. This 310W5 that a is an a.-Iymptotic.,l!y N 4 unb:a:3e.i

estimator of (IRA .
Even withsut the normalL4 assumptions, a I. st:11

consistent estimator for a
RA

since it is a method of moments estmator

for a
RA

(3erfling, 1953), and equivalently converges in probability to IRA

The random ANOV4 (RA) model nas been presented in some detail. It is n)w

of interest to compare that model to the factor analysis Fik; model. 1.-ni3

comparison may be made by examining the conditional -:t)varianee malrix for th

n sampled items, the conditioning being on the n items selected frrn the

infinite population of items. Let the observed scores on the n items be

represented by the column vector x .
The conditional cova-iance matr.ix Zs

Ej:(25j E.(x.))'(x. E.(x.))] .
The diagonal elements of this matrix

-xln J -J -J j -j

are Var.(x. = 02(5) 02(0.1 4- u2te.) . Because it is assumed here that
J 1J

,

under the RA model covi(eipci,j) = 0 for any pair of it,:mis randomly

selected from the 1...)pulation of items, it follows that this covariance will

be zero for all pairs of items in the randomly selected sample of n items,

and consequently that the off-diagonal elements of this matrix are

Cov.(x. = u2(b) .
The rather simple form of this conditional

J 1J 1 J

covariancematrixmayberepresentedas

where J represents a matrix of all ones and A iS a diagonal matrix with the

indicated elements. It follows that the conditional covariance matrix for the

true se':Irses on the n items is

ti
1n --'02(13)J +4(02(0-)) -

1 6
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Hocking (1985) presents covariance structures for a wide variety of random and

mixed ANOVA models. He assumes homogeneity among the error and conditional

interaction variances. Given his assumptions, his results agree with those

presented here.

The RA conditional covariance structure is identical to the covariance

structure of a one common factor FA model with homogeneous factor loadings and

n specific factors distinct from the errors. This is Spearman's (1904) model

but with the additional restriction that the ttems all correlate equally with

the general factor. More specifically, the subject main effect variance in

the RA model is analogous to the common factor variance in the FA model while

the conditional interaction variances in the RA model are analogous to

specific variances in the FA model. Another way to characterize this

conditional covariance structure is as an essentially tau uivalent model

(Lord and Novick, 1968) but with the addition of n specific factors with

possibly heterogeneous variances.

If the specific factors have homogeneous variances, then the conditional

covariance structure for the true scores is equivalent to tha equicorrelation

model (Morrison, 1976). Under the equicorrelation model, the first and

largest eigenvalue of EtIn, denoted AI, is equal to no2(b) + o2(c) . The

second distinct eigenvalue of Etin has multiplicity n-1 and is given

by 02(c) . It is denoted A2

The simple form of the conditional covariance matrix in the RA model

results from the uncorrelatedness of the model components. Though this

covariance structure is a rather restricted special case of the many more

versatile covariance structures permitted by FA models, the RA model permits

explicit statistical inference to a population of items. The price for this

gain in "generalizability" is the assumption of a simple covariance structure

17
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among the items.

The inferential differences between considering items random and

considering items fixed may be illustrated by how reliability may be defined

under these conditions. For subject j, let the item domain true score be

defined as T = E.(x. ) = p b, . This implies that the item domain error
1 ij

score for subjectjis =x-T=a+c+e. Note that for randomEj

replications E(c) = a. + c.j , and that for examinees E(c) = a. .

Furthermore, considering just a one-item test, Cov.(cj.
j
,) =

1 i

a2(a) for all j j' . These conditions violate the usual assumptions of

classical test theory (Lord and Novick, 1968, chap. 3), because here the

errors do not have means of zero aril the errors are inter-correlated.

However, Cov.(T.,c.) = 0 and this crucial result implies that if interest
J J J

focuses on the reliability of a specific test composed of n randomly selected

items with respect to the item domain true scores, then a useful definition of

reliability is Rel(x ,T ) = [Cor (x ,T . Reliability so defined

measures the accuracy with which relationships between observed test scores

are indicative of relationships between item domain true scores.

Since Covj(7.c..j,Tj) = a2(b) ,

= 02(b) + (1/n2 )11.102(c.) + (1/n2)11.1a2(e.) ,

J *3 1

and Var.(t.) = a2(b) , it follows that
J J

Rel (x .,-t.)J J

a2(b)

a2(b) + (1/n2)X7a2(ci) + (1/n2)17o2(ei)

= Var.(T.)/Var.(i..),33 3 3

(5)
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which is the usual ratio of true score variance to observed score variance. If

the error variances and the conditional interaction variances are homogeneous

then
aRA Rel(x.j'Tj) '

otherwise aRA is only an approximation to this

reliability, albeit not a bad one.

An alternative definition of reliability under the RA model which is more

appropriate when concern is not with the reliability of a particular randomly

constructed test but rather with the population of such tests is

E
in

[Rel(x ,T )] . Here, E
n
denotes that the expectation is over the

population of randomly constructed tests consisting of n items. This

definition of reliability is appropriate when the same test will be

administered to every examinee, but concern is with the reliability of any

randomly constructed test rather than a particular test that is randomly

selected. The situation in which different examinees take different randomly

constructed test forms is not often encountered in practice and is not

addressed in this paper ,but see Lord and Novick, 1968, p. 208). If the error

variances and the conditional interaction variances are homogeneous, then

E
n
[Rel(j'Ij)] This follows since Rel(x ) = a

RA
for each andx

- aRA

every randomly constructed test consisting of n items. If homogeneity does

not hold, an exact expression for E
n
(Rel(x ,T )) requires additional model

specifications which will not be attempted in this paper. However, it may be

shown by using the delta method of Kendall and Stuart (1977, Vol. I) that aRA

is a first order approximation for E
in

[Rel(x ,T )] under heterogeneity.

If the data are accurately described by the RA model, but the usual

definition of reliability (Lord and Novick, 1968, chap. 3) is adopted, then

19
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.6%

Usually, Rel(x.j,t,-) > MA
nHowever, if ther m amis no ite by exe

j

interaction and the error variances are homogeneous then Re) (T .) . a
RA'J 'J

A comparison of (6) to (5) shows that the interaction (speciric)

variances are included in the numerator of Rel(7( .) but excluded from the
'J 'J

numerator of Rel(x
j

) .
This difference is due to the difference in

definitionsbetweent,andt..If the true score is specific to the test,

i.e., -E . , then the interaction (specific) variances are included in the true
3

score variance. When the true score is defined over the population of items,

i.e., T. , then the interaction (specific) variances do not contribute to the

true score variance.

Two brief observations regarding the RA model are of interest. If no

interactions are present the RA model may be viewed as a linear analog of the

one parameter Rasch model (Lord and Novick, 1968, p 402) with explicit item

and examinee sampling. Second, the symmetry of the RA model allows

consideration of not only the inter-item covariance matrix but also the

similarly constrained inter-examinee covariance matrix.

This section of the paper has presented a detailed development or the RA

model and a brief comparison of the RA model to the FA model. The development

demonstrates that under the RA model generalization in a statistical manner

over a population of items requires a simple and specialized cova-iance

structure among the items. In the next section, the mixed ANOVA (MA) model is

considered.

20
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The Items by Examinees Mixed ANOJA Model

Hocking (1973) compares three different versionr. of the two-way mixed

ANOVA (MA) model that have been presented in the statitical literature, and

resolves the differences between their a,-ociated exet;sions for expected

moan squares. This paper adopts the most general on, of these three which is

due to Scheffe" (1959). In the mixed ANOVA model, tne N examinees are

randomly sampled from an infinite population of examinees, but the n items are

considered fixed and non-random. Even though the items may be randomly chosen

from a population of items, this fact is ignored; tne MA model simply is not

concerned with statistical inferences to a populatIon o items. All

statistical inferences are conditional on the n items s...lected, since the

population of items is not defined in the MA model.

The model may be written as

x. . t + e. .
1=1,...,n j=1,...,N

13 13 LJ

where t- = ji ,a. + bj + cij . The model assumes th-it the error scores have
1

zero means for all i and j and this implies that the t-ue and error scores are

uncorrelated. The non-random parameters p and ai represent the overall mean

and the main effect of item i, respectively. The random variable bi

represents the main effect due to examinee j, while tne random variable c.13

represents the effect due to the interaction of examinee j with item i. These

modelcomponentsaredefinedasp-E.E(1/n)17t. EJ (T .) ,

J

a. = E.(t. .) p , b. - T . u , and c. . t. . T . E.(t. .) +
1 j ij *J 13 1.3

J J 13

The above definitions imply that the model componenti wilt satisfy the

following conditions: 7na. = r?c. . = E.(b.) = E.(- .) - 0 .

ti i 1 1J J J J ,J

It is aiso implicitly assumed that the items are similarly scored and hence on
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the same sca1e. AlLowing for heterogeneous error variances yields the

following: o2(e ) = E (e2 ) and o2(e) = (1/n)7no2(e )

-i

Iftheerrorvat'iancesarellornogeneollsrther
o2(e) for all

1

Let t. represent the n dimensional column vector of examinee j's true
-J

scores on the n items. The true score covariance matrix is

= toii,) = EiPtj Ei(ti))"(ti Ei(y)] . The only restriction placed

on E is that it be positive semi-definite. The covariance among the items may

be of a very general form, including any multiple common factor model. This

is quite different from the RA model where a simple specific conditional

covariance structure is assumed. Removing the randomness of the items permits

a much more general covariance structure among the items, but eliminates any

statistical inferences concerning the population of items.

From the definitions of the random model components, the variances and

covariances for these components may be expressed as functions of the

Scheffe" (1959) shows that

Var.(b.) = E.(b2) (7)
J J J J

. , and (8)
j ij 1 j j ij 1 j 11 1 1

Cov (to *c..) .
j j ij j j 13 1'

Scheffe" (1959) defines the variance components as

(9)

o2(b) = Var.(b.) and (10
J J

o2(c) = [1/(n-1)]Ir.'llar.(c..) = [1/(n-1)] .1?(a. TJ- )
(11)

1 j

2 2
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Using these definitions, he shows that MSb and MSc, as previously defined

under the RA model, have the following expected values under the MA model:

EN(MSb) = no2(b) + 02(e) and EN(MSc) = o2(c) + o2(e) , where EN denotes the

expectation over an infinite number of random samples of N examinees.

It is interesting to note that the random components are correlated in

the MA model and that these correlations are determined by . In the RA

model the random components are uncorrelated, but the covariances among the

items are required to be homogeneous. What happens to the component

correlations in the MA model when the inter-item covariances are assumed to be

homogeneous will be investigated shortly.

First, however, reliability and its relationship to coefficient alpha

will be discussed. The sample alpha coefficient under the MA model is

identical to the sample alpha for the RA model, and is given

as a = (MSb MSb)/MSb. Its parametric counterpart under the MA model will be

denoted by amA and is defined as

[E
N
(MS

b
) E

N
(MS

c
)]

MA E
N
(MS

b
)

_ (12)
(12(b) 02(e)/b

The rationale for this definition is that a converges in probability

to a
MA

under the MA model. This is further discussed below. If (1) the

random model components including the errors are normally distributed, (2) the

error variances are homogeneous (though mild heterogeneity should be

acceptable), and (3) o(c) = 0, then using results given by Scheffe" (1959) it

may be shown that E(1 amA)/(1 a)] is distributed as

(n-1)(N-1)], which is the same distribution as under the RA model.

Similarly, tnis F distribution implies that EN(a) = [(N-1)/(N-3)]an

[2/(N-3)] , and hence that a is an asymptotically unbiased and consistent
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estimate of am . Kristof (1963) has previously derived these results. If

02(0) * 0, then the F distribution still holds if E has the highly symmetric

structure discussed by Scheffe' (1959, p 264) or if Ex has the type H form

described by Huynh and Feldt (1970); but as will be seen later a
MA

is then a

strict lower bound to reliability. However, even if the foregoing assumptions

are not fulfilled, a is still a consistent estimator of am since it is a

method of moments estimate for a
MA

(Serfling, 1983), and equivalently

converges in probability to am . Finally, it should be noted that

if 02(c) = 0, then all the cii = 0 and the A model is identical to the

essentially tau equivalent model discussed by Lord and Novick (1968).

Under the MA model, the mean true score of examinee j is

rn
t . = (1/n)

ijk
L.E(x ) where, as discussed under the RA model, E denotes

expectation over the errors associated with random replications.

Let x. denote the n dimensional column vector of the j-th examinee's observed
-J

scores on the n items. Let E denote the covariance matrix for the observed
-x

scores. It follows that Z + A(o2(ei)) where A(32(ei)) is a diagonal
-x -

matrix with the error variances as its elements. Following Lord and Novick

(1968, chap. 3), reliability under the MA model is defined as

Rel(Z .,T .) = [Cor.( ,T .)]2 = 02(b)/Co2(b) + 02(e)/11] (13).j .j
J 'J

= Var (E .)/Var.( :: .) .J J 'J

The above follows from the expressions for the variance components given in

(10) and (11). Comparison of the last expression in the first line of (13)

with the expression for a
MA

given in (12) demonstrates

that amA = .) if and only if 02(0) = 0 , i.e., the items are
'J 'J



ta qvd ril . Other.dise, .a

MA
< Rel(T( T ).

.j' J

0.33,11t.i of r_;;Ittman 'i90_51, Novick and Lewii (19- '., 13entler (1972), and

Ja,:.k,;n and 4gunwamba (1977).

:i.3sumption or equivalent covariance -,'-u,:ttres for the RA and

MA 'no-leis, compason!3 hetwoen the two models rega-1.'.. viriare components,

re:lahility, and coefficient alpha will now be und,..a;:en. The RA true score

cova-iance structure given in (4) may be --?expressed as

Linear Modela
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This agrees with

-tin (1'2 11(u)
E

1

...there (32(1.) q arid
02(c) u2

1' 1

(14)

. The followin: t-ue score covariance

st-uctire wiU be assumed for the MA model:

= qj A(u) (15)

For the above covariance structure, Table 1 displays the variance

---------

Insert Table 1 about here

components for the RA and MA models. This paper has followed the convention

cf labeling the variance components the same in both models, but Table 1 shows

that ;he variance components have different meanings under the two models.

While 02(0) depends only on the specific variances, tnougn in different ways

in the two models, o2(b) includes common and specific variances under the MA

model hut only common variance under the RA model. Por more complicated

covariance structures than (15) under the MA model, nuch simple rdationships

between the variance components and the covariance m 0 -ix are not apparent.

The differences in variance components between t two models have

ramifications for reliability and coefficient alpha Ind,- the two models.

J
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Table 2 displays alpha and reliabilities for the two models under the

--------------

Insert Table 2 about here

indicated covariance structure. Coefficient alpha differs statistically under

the two models in that expectations are used in the denominator of aRA while

summations are used in the denominator of a Nonetheless, coefficient alpha
MA.

has a similar psychometric meaning under the two models since under both

models the numerator and denominator depend, with slight variations, on the

same elements of the covariance matrix. Rcl(x
3

,t ) is identical under the
*

two models, but differs from Rel(x T ) under the RA model as has already
3'

been noted.

Under the RA model, the random model components are uncorrelated as was

previously discussed. For the MA model under the covariance structure in

(15),

Covi(bi,cij) + (ul/n)] [ct (1/n2)*1]

= (1/n)Yflu2]/n and
i

Cov (c. q (q + u2/n) (q + u2,/n) + Eq + (1/n2)11.1u21
j 13 1 j 1

.

= [(1/n).u2 u2,]/n
1 i 1

If all the U2 are equal, then Cov.(b. c. .) 0 and Cov.(c. .,c.,.) -u2/n
j j, ij

J 13 1 J

where u2 is the common value for all the u2. The covariance -u2/n is due to

the fact that under the MA model = 0 for all j. As was noted
1 13
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previously for the RA model, the uncorrelatedness of the random model

components results in the simple covariance structure given in (4) and (14).

What has just been shown is that when a slightly simpler covariance structure

is assumed for the MA model, the random model components essentially become

uncorrelated. Hence, the correlations among the random components and the

inter-item covariances are related in a similar fashion under both models. To

obtain psychometric inference under a more complicated inter-item covariance

structure than (14) requires an RA type model which permits the model

components to be correlated. Such correlations would make expressions for the

mean squares much more difficult to obtain.

Finally, when the ul are homogeneous and hence the equicorrelation

covariance structure presented by Morrison (1976) (that is equivalent to

Scheffe"'s (1959) highly symmetric covariance structure) holds, then

ne(b) = Al where AI is the first and largest eigenvalue of E in the MA

model. The one remaining distinct eigenvalue of E, A2, has multiplicity n-1

and is equal to e(c).

Summary and Discussiol of Implications for Practice

It has been shown that coefficient alpha is approximately equal to but

not necessarily a lower bound to reliability under the RA model, and that it

is a lower bound to reliability under the MA and FA models (the result for the

FA model having been shown previously by others). These conclusions concern

the parameter values for these quantities and not necessarily their sample

estimates. Under the RA model where statistical inference to a population of

items from a sample of items is permitted, it was found that the inter-item

covariances must be homogeneous, and that this homogeneity is due to the model

components being uncorrelated. This restriction is n's)t, required under the MA

model, but it does not permit psychometric inference. These conclusions are,

27
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of course, specific to the models under consideration, and other models may

yield different results.

It is usually the case in education and psychology that inference from a

sample of items to a population of items is a desired goal in the analysis of

test data. However, this may not always be true. A situation in educational

measurement where psychometric inference may not be required is when a test is

divisible into well defined content heterogeneous subtests, and the subtest

scores are the measurements being analyzed. In this situation, an appropriate

model for the data could be a subtest by examinee two-way MA model. In

psychology, if an affective scale such as a personality inventory consists of

well defined psychologically distinct subscales, then a subscales by subjects

two-way MA model could also be an appropriate model for the data.

If psychometric inference is desired and if ;he RA model presented within

is going to be used to analyze the data, then it is appropriate to investigate

whether or not the data satisfy the covariance structure assumed under the RA

model. This covariance structure is a linear covariance structure, and Browne

(1972) has derived a procedure based on the principle of generalized least

squares (GLS) estimation that may be used to statistically test the fit of the

data to the RA model covariance structure. Browne's (1972) method is non-

iterative and hence relatively simple computationally. Joreskog (1978)

discusses statistical tests for covariance structures based on GLS and maximum

likelihood (ML) estimation methods. The computer program LISREL VI

(Joreskog and Sorbom, 1986) implements those methods as well as others, and

is accessible through the SPSSx (SPSSx Inc, 1986) computer program. Bentler

(1983) and Browne (1984) have developed GLS test procedures with weaker

distributional assumptions but more computational complexity. Bentler (1985)

has also written a computer pnogram, EQS, which implements his procedure and
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is available as part of the BMDP Statistical Software computer package. It is

designed for easy use. If the RA model fits the data, then a is an

appropriate estimator for trie reliability index, Rel(T: .,T.), which assesses
'J J

how well relationships between observed scores represent relationships between

item domain true scores.

If the items are dichotomously scored, then difficulties may arise in

applying the above procedures to the usual sample covariance matrix or the

sample matrix of phi coefficients. Mislevy (1986) discusses these problems

and reviews alternative methods for testing covariance structures designed to

deal with dichotomously scored items. HoweN,er, the results of Collins et al.

(1986) suggests that it may be appropriate to first analyze the usual matrix

bf sample moment covariances or correlations. If difficulties arise, then

recourse may be had from the more theoretically and computationally complex

methods discussed by Mislevy (1986).

If the RA model cannot be applied because the data substantially violate

the requirement of homogeneous inter-item covariances, or inference to a

population of items is not desired, then the MA model may be used. As was

shown, a is a lower bound to reliability under thc, MA model and consequently

under any FA model (the latter having been shown previously by many others).

However, under the MA model, better lower bounds than a exist. The best is

the greatest lower bound to reliability, derived independently by Jackson and

Agunwamba (1977) and Bentler and Woodward (1980). Bentler and Woodward (1933)

present the most efficient numerical algorithm for computing a sample estimate

of the greatest lower bound to reliability. In general terms, the computation

requires the solution of a nonlinear optimization problem with inequality

constraints and is rather complex. For the investigator who desires a simpler

estimate, even if it is less optimal, Jackson and Agunwamba (1977) suggest

29
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that Guttman's X
6

coefficient may be advantageous "in the typical situation

where the inter-item correlations are positive, modest in size, and rather

similar." The computer package SPSSx (SPSSx Inc., 1986) has a reliability

component which computes a sample estimate for A6 as well as several other

reliability estimates.

If the test has many items, then some investigators may find it difficult

or expensive to compute sample estimates for A6 or the greatest lower bound.

These investigators may view coefficient a as an appealing reliability index

for long tests because of its computational simplicity. Such investigators

may find solace in the results of Green, Lissitz, and Mulaik (1977) which

saggest that a increases as the number of items increases even when the test

has multiple common factors and a is only a strict lower bound to the

parameter value of reliability. Green et al. (1977) argue that this result

makes a a poor index of test unidimensionality. Fortunately, those qualities

which make a a poor index for unidimensionality increase its worth as a

reliability index, and this is especially true for long tests. Nonetheless,

the greatest lower bound to reliability has optimal properties which indicate

that it is worth computing whenever feasible.

Finally, because coefficient alpha may be a useful estimate of

reliability under both the RA and MA models, it is worthwhile to review the F

distribution theory for a under both models. In addition to the appropriate

normality assumptions for each model, the F distribution theory requires

homogeneity of error variances under both ANOVA models and homogeneity of

interaction conditional variances under the RA model, but mild heterogeneity

of these variances should not greatly affect the distribution theory. Under

the RA model, a may equal or approximately equal reliabilitvWfien the F

distribution for a holds, but a is not a lowe' bound for reliability. Under
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the MA model, the F distribution theory for a holds and a equals reliability

when there are no interactions. If interactions are present, then the F

distribution theory for a requires the special covariance structures of

Scheffe" (1959, p 264) or Huynh and Feldt (1970) and a is then a strict lower

bound to reliability. If a conservative estimate of a or the parameter value

of reliability under either model is desired, then Woodward and Bentler (1978)

show how the F distribution theory for a may be used to obtain a probabilistic

lower bound to a.
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Table 1

A C.Apa-Lson Bet4een Variance Components C.- ..he RA and MA
Mode2.s Under the Indibated Covariance Strut.:-e ror Both Models

RA Mode..

F:tin

MA Model

(1,1 +

o2(b) q
G2(b) q + (1/n2)Yfl,1

Var. -02(0.). ,J.2 Var
j

=
1J 1

o2(c E."o2(.:.:. -
Ls 1. L 1

02(0) = :-1/(n-1)]) :) = [1/n31n
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