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Abstract

This paper empirically and systematically assessed the

iarformance of bootstrap resampling procedure as it was applied

to a regression model. Parameter estimates from Monte Carlo

experiments (repeated sampling from population) and bootstrap

experiments (repeated resampling from one original bootstrap

sample) were generated and compared. Sample sizes of 20, 30, 50,

and 100 were considered in the simulation. Ten independent Monte

Carlo experiments and ten independent bootstrap experiments were

conducted respectively for each sample size condition, with 1,000

samples (resamples for bootstrap; for each experiment. Estimates

for standardized regression coefficients were obtained from each

sample, and the mean estimates across samples were evaluated in

relation to the population parameters. The results indicate

that, as the number of resamples increases, the mean bootstrapped

estimates did not show a clear tendency to converge on the

population parameters. But, with the increase of the original

bootstrap sample size, the quality of the bootstrapped estimates

improved. For the case of regression analysis, the results raise

some concern about the validity of the assumption underlying the

bootstrap procedure.
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Background

In educational and pSychological research, the overreliance

on statistical significance testing has been challenged on

several grounds, including issues related to sample size and to

the validity of theoretical assumptions underlying parametric

statistical techniques (Carver, 1978; Shaver, 1993; Thompson,

1989). The sample size issue becomes prominent due to the fact

that any null hypothesis can be rejected (statistically

significant) when sample size is large enough, and the importance

of statistical significance tends to be greatly exaggerated in

research practice. As to the assumptions required for parametric

statistical techniques, often, these assumptions are difficult,

if not impossible, for research practitioners to meet or assess.

To avoid the blind reliance on statistical significance

testing, some researchers have turned to methods which are more

empirically grounded. Bootstrap procedure, which is computing-

intensive in nature, has become prominent in recent years as a

complement to the traditional statistical significance testing,

or an alternative approach to making statistical decisions

(Thompson, 1993). Instead of relying on the theoretical sampling

distribution and sample sizes, bootstrap procedure, through

repeated resampling with replacement from the original sample,

empirically generates estimated sampling distribution, upon which

our statistical decisions can be based (Diaconis & Efron, 1983;

Efron, 1979; Lunneborg, 1990; Thompson, 1992). In this sense,

bootstrap procedure attempts to avoid the pitfalls associated
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with the traditional statistical significance testing, such as

the sample size issue, the concern for the validity of the

theoretical assumptions for our data in hand, etc. Since its

debut in the late 70's (Efron, 1979), bootstrap method has

gradually attracted the attention of the researchers in the

educational and psychological research arena (Lunneborg, 1983;

Lunneborg, 1987). With increasingly easier access to powerful

computing facilities, this method becomes more attractive than

before.

Researchers in the educational and ps'rchological research

arena have applied the bootstrap technique to a variety of

research problems, ranging from measurement issues, such as item

discrimination and item bias indices, to multivariate statistical

techniques, such as principal component analysis, factor

analysis, and structural equation modeling (Bentler, 1992;

Daniel, 1992; Harris & Kolen, 1988, 1989; Lambert, Wildt &

Durand, 1990, 1991; Mendoza, Hart & Powell, 1991; Thompson, 1988;

Thompson & Melancon, 1990), Some researchers also provided

theoretical rationale or simulation results attesting to the

applicability of this procedure to some widely used statistical

methods (Bickel & Freedman, 1981; Freedman, 1981; Wu, 1986).

Though bootstrap procedure is promising as a complement or

an alternative to the traditional statistical significance

testing, it may have its own weaknesses which have not been

adequately investigated empirically. One potential weakness was

pointed out by Bollen and Stine (1993) in the area of structural
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equation modeling research, which indicated that conventional

bootstrap resampling might fail to generate the intended

empirical distributions for some sample statistics. Another

example was from a study by Tryon (1984) which showed that

bootstrapped estimates failed to converge on such basic

population parameters as means and standard deviations.

One potential problem with bootstrap procedure may be

related to the underlying assumption of bootstrap resampling

itself. Bootstrap resampling solely relies on one original

sample. In the argument of Diaconis and Efron (1983), the

underlying assumption for bootstrap procedure was that, large

sample or population results could be approached or reconstru7.:ted

by repeated random resampling from a small sample. (It is in the

sense of using this sample at hand and pulling oneself up by

one's own bootstraps that the procedure acquired its name.) As

empirical support for the validity of this assumption, Diaconis

and Efron (1983) empirically demonstrated that the population

correlation between Grade Point Average (GPA) and average Law

School Admission Test (LSAT) for all 82 American law schools in

1973 could be approached by repeated random resampling from a

bootstrap sample of 15 law schools. Lunneborg (1983) stated chis

assumption more clearly, "The bootstrap conjecture is that the

sa..T1ing distribution of the statistic being studied and the

sampling distribution found from this iterative process are

essentially identical for a wide variety of statistics." (p. 1)

The underlying assumption that, through repeated resampling,
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enough information can be extracted from a small sample to

reconstruct large sample or population results, may not have been

subjected to rigorous empirical scrutiny. In sampling, even

assuming that sound sampling techniques are used, a particular

sample may have its own idiosyncracies due to sampling

fluctuations. If random samples are repeatedly drawn from a

population, these sampling idiosyncracies tend to be cancelled

out. In bootstrap resampling, however, repeated random samples

are drawn from one original sample, and potentially, we may be

capitalizing on those sampling idiosyncracies associated with our

particular sample. Consequently, the resultant picture of the

empirical sampling distribution provided by bootstrap procedure

may be a distorted one (Fan, 1993).

Monte Carlo Simulation and Bootstrap Resampling

In this study, a clear distinction is made between Monte

Carlo simulation and bootstrap resampling. In Monte Carlo

experiment, new random samples are repeatedly drawn from a

population with known parameters. From each new sample, the

statistic is obtained as the estimate of the population

parameter. The performance of these statistics from all the

random samples are then examined relative to the known population

parameter. In bootstrap experiment, however, one original random

sample is drawn from a population with known parameters. Random

samples are then repeatedly drawn from this original bootstrap

sample using the technique of sampling with replacement. From

7
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each resampling, the statistic for the population parameter is

obtained. The performance of these statistics over all the

resamples are then examined relative to the known population

parameter.

Monte Carlo experiment represents the classical approach for

estimating probability of certain event. The underlying

assumption for this approach is obvious: sampling fluctuations

tend to be cancelled out over repeated random sampling from the

population, and as the number of samples increases, the mean

statistic over the samples will converge on the population

parameter. An intuitive example may help shed some light on this

logic. Suppose we know that for a good and even coin, the

likelihood of obtaining either the head or the tail from each

flip is 0.5. In an empirical experiment to check one particular

coin, we flip it 10 times. We may not obtain five heads and five

tails exactly due to sampling fluctuations, and probably we will

NOT be surprised to see eight heads and two tails. But, if we

repeat our experiment 1000 times with 10 flippings in each

experiment, we have reason to believe that the average number of

heads and tails over 1000 repeated experiments will approach the

population value of 5, instead 8 or 2 as in the first experiment.

If the average numbers of heads and tails over 1000 experiments

turn out to be 8 and 2 respectively, we may become suspicious

about the quality of our coin, because over repeated sampling, a

good and even coin is highly unlikely to give us estimate so far

off from the theoretical population parameters.

8
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If we have a coin which has been proven previously to be

good and even, and we want to test a new coin-flipping c'avice

(sampling procedure). If, from our repeated sampling, the

estimate for the probability of head or tail to occur converges

on values of, say, 0.2 or 0.8, rather than on the known parameter

of 0.5, then we have reason to call into question the integrity

of our new flipping device itself.

The purpose of the present study is to examine empirically

the performance of the bootstrap resampling procedure as applied

to regression analysis. For this purpose, computer simulation is

used to examine the characteristics of standardized regression

coefZicient estimates from both the Monte Carlo and the bootstrap

experiments.

Methods

To assess the performance of bootstrap resampling, bootstrap

experiments were conducted, and the estimates from the bootstrap

experiments were compared with the known population parameters,

and with those from Monte Carlo experiments. Since sample size

may affect how well a statistic converges on its paramer,

several sample size conditions were considered in the study.

A regression model of one dependent variable (Y) regressing

on two independent variables (Xl, X2) was used in the simulation.

The population correlations among the three variables (Y, X1, X2)

are specified as follows:

9
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X1 X2

Y 1.00 0.40 0.60

X1 0.40 1.00 0.20

X2 0.60 0.20 1.00

Through the procedures proposed by Kaiser and Dickman (1962),

samples were generated from the population with the inter-

correlations as specified above.

Since the population intercorrelations are known for the

variables in the regression model below, the standardized

Y = xp + e

regression coefficients for the population (population

parameters) are fully specified to be (Johnson & Wichern, 1988):

Beta 1
P (ataadardixed)=

1

Beta2

= Pxx2 Pxy

[1.0d 0.2011{0.401

0.20 1.00 0.60

[0.2911

0.541

Four sample size conditions of 20, 30, 50, and 100 were used

in the simulation. In order to reduce the likelihood for

haphazard chance discovery, ten independent Monte Carlo

experiments and ten independent bootstrap experiments were

conducted for each sample size condition. (Total number of Monte

Carlo experiments: 4x10=40; total number of bootstrap
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experiments: 4x10=40.) For each experiment (Monte Carlo or

bootstrap), 1,000 samples (for bootstrap experiment, 1,000

resamples) were drawn and sample standardized regression

coefficients were obtained from each sample. Altogether, for

each sample size condition, a total of 10,000 samples were

generated for Monte Carlo and bootstrap procedures respectively.

A schematic representation of the study for one sample size

condition is presented in Figure 1.

Since the individual samples (for Monte Carlo experiments)

and the original bootstrap samples (one for each bootstrap

experiment) were randomly drawn from a population with known

parameters (standardized regression coefficients), the estimates

for the parameters obtained from these samples were expected to

converge on the parameters as the number of replications

increased. The failure in this respect was indication of

problems with sampling procedures. In other words, if the

sampling procedure works the way as it should, logic dictates

that, the mean statistic based on ten samples will tend to be

closer to the parameter than the statistic based on a single

sample. In the same vein, the mean statistic over 100 samples

will tend to be closer to the parameter than that over 10

samples, etc. As the number of samples increases, the mean

statistic will tend to approach the population parameter, or

converge on the parameter.

11
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Bootstrap Experiments

For each of the four sample size conditions (n=20, 30, 50,

100), ten independent bootstrap experiments were conducted. For

each experiment, first, one original bootstrap sample was drawn

from the population with the known paran,Iters (standardized

regression coefficients). From this one bootstrap sample, 1,000

resamples were drawn by sampling with replacement. From each

bootstrap resample, the sample standardized regression

coefficients for the two independent variables (Betal for Xl, and

Beta2 for X2) were obtained. So for each independent bootstrap

experiment, a total of 1,000 estimates were obtained for Betal

(X1) and Beta2 (X2) respectively.

As reasoned above, unbiased estimate for population

parameter should possess the property of convergence on

population parameter over repeated sampling, Thus, as a general

tendency, the mean statistic based on several samples is expected

to be closer to the parameter than the statistic based on a

single sample; and the mean statistic based on a large number of

samples is expected to be closer to the parameter than that based

on a small number of samples. To check this important property

expected for unbiased estimate, for each bootstrap experiment,

the following indices were obtained:

1) the parameter estimate from the first Lootstrap resample;

2) the mean parameter estimate based on the first ten

bootstrap resamples;

3) the mean parameter estimate based on the first 100
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bootstrap resamples;

4) the mean parameter estimate based on the first 500

bootstrap resamples; and

5) the mean parameter estimate over all the 1,000 bootstrap

resamples.

These indices were compared with the known population

parameters to see how well these statistics would converge on the

population parameters.

Monte Carlo Experiments

Monte Carlo experiments were conducted in the same fashion

as the bootstrap experiments. The only difference, as explained

previously, is in how th,: samples were drawn. For each

independent Monte Carlo experiment, the same statistics were

obtained, and the same five indices were calculated to check how

well the statistics converged on the population parameters:

1 )

2 )

3

the parameter estimate from

the mean parameter estimate

Carlo samples;

the mean parameter estimate

Carlo samples;

Carlo samples; and

Carlo samples.

the first Monte Carlo sample;

over the first ten Monte

over the first 100 Monte

the mean parameter4) estimate over the first 500 Monte

the mean parameter5) estimate over all the 1,000 Monte

13
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Data Generation and Calculation of Statistics

All data generation, sampling (including sampling with

replacement for bootstrap), and calculations were accomplished by

using the Interactive Matrix Language (PROC IML) under the

Statistical Analysis System (SAS). Random normal samples were

generated by using the random number generator for normal

distribution (RANNOR under SAS). Random sampling with

replacement for bootstrap procedure was accomplished by

generating a vector of random numbers using random number

generator for uniform distribution (RANUNI under SAS). Each

element of the vector was independently generated (to accomplish

the feature of "with replacement" required by bootstrap), and

cJnstrained to be integers between / and m, with m being the

original bootstrap sample size. This vector of integers was then

used as the index numbers to draw row vectors (samples) from the

original bootstrap sample data matrix of mx3 dimensions (m:

original bootstrap sample size).

The sample intercorrelations among the three variables of Y,

Xl, and X2, as samples from a population with the specified

intercorrelations as in Table 1, were accomplished through

implementation of the procedures proposed by Kaiser and Dickman

(1962). All calculations were accomplished using matrix language

programming under PROC IML of SAS. For quality control purpose,

before iterations began, results of every step of matrix language

programming for calculations were compared, and found to be in

agreement, with the results from regular SAS procedures such as

14
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PROC REG, PROC MEANS, etc. The whole simulation process for both

Monte Carlo and bootstrap experiments was accomplished by using

SAS Version 6.08 for Microsoft Window on an IBl Computer with

486DX 66 MHz CPU with built-in math co-processor.

Results and Discussions

Due to the huge number of sample estimates which makes it

difficult to tabulate,fficult to tabulate, a graphic approach is used to

data. Figure 2 to Figure 5 depict the convergence tendency of

the estimates for the four sample size conditions respectively.

In these figures, to check the property of convergence, the mean

statistics over consecutively larger number of samples were

plotted in relation to the parameter values:

1) the regression coefficient from the first sample

(resample for bootstrap);

2) the mean regression coefficient of the first ten samples;

3) the mean regression coefficient of the first 100 samples;

4) the mean regression coefficient of the first 500 samples;

5) the mean regression coefficient of all the 1,000 samples.

The figures show that the estimates from Monte Carlo

experiments (represented by "o" in the graphs) consistently

converge on the population parameters as the number of samples

increased, and this tendency is clear for both Betal and Beta2,

and for all sample size conditions. The estimates from bootstrap

experiments (represented by "*" in the graphs), however, do not
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fare as well, since they do not seem to continue to approach

parameter values as the number of resamples increases.

Especially, when the original bootstrap sample size is small

(e,g., n=20), the divergence of bootstrap statistics from the

population parameters seems to be very substantial.

Although bootstrap estimates do not seem to exhibit the

tendency to converge on population parameters, a closer

examination of the figures reveals that, in terms of degree of

divergence of the statistics from the population parameters,

bootstrap estimates show clear improvement as the original

bootstrap sample size increases. This is obvious when we compare

Figure 2 (sarple size: 20) with Figure 5 (sample size: 100). The

improvement patteril fis the sain c. for both Beta1 and Beta2. This

indicates that, for the regression model, larger sample size for

the original bootstrap sample may be necessary in order to avoid

potential elzcessive divergence of bootstrap estimates from the

population parameter values. This may also partially explain the

non-convergence patterns as exhibited by bootstrap estimates for

means and standard deviations as reported in Tryon's study

(Tryon, 1983), since only small sample sizes (15 and 25) were

used in the simulation in that study. It is possible that if

larger sample sizes had been considered in that study, the

quality of bootstrap estimates would have improved.

The fact,that the bootstrap estimates exhibit little

tendency to converge on population parameter value has some

interesting implications. As explained by Diaconis and Efron

16
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(1983), bootstrap procedure assumes that population results could

be approached or reconstructed through repeated sampling from the

small sample at hand. This assumption may have been accepted

prematurely without rigorous empirical scrutiny.

Conclusions

Based on the results from these systematic simulation

experiments, three tentative conclusions may be drawn with regard

to the bootstrap resampling procedure. First, the assumption for

bootstrap procedure, i.e., large sample or population results may

be approached or reconstructed through intensive resampling of a

small sample at hand, may not be capable of withstanding rigorous

empirical test, and the validity of this assumption may be called

into question. Although Diaconis and Efron (1983) conceded that

the procedure might not work for a few samples, and one could not

know in advance which they were, the results from this study

indicate that their view about the applicability of the procedure

still might have been overly sanguine. Especially considering

the generality of regression analysis as general linear model

which subsumes a variety of parametric tests, the somewhat

disappointing performance of the procedure in this study may

become a source for concern.

Second, the bootstrap estimates for regression coefficients

are biased to a certain extent in the sense that they do not

continue to approach population parameters with the increase of

the number of resamples. In other words, in many cases, these

1 7"
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estimates may approach some value other than the population

parameter, and it is not known what the value is. The divergence

pattern of the bootstrap estimates is especially striking when

the original bootstrap sample size was small.

Last, there is clear indication that the quality of

bootstrap estimates improves substantially with the increase of

the original bootstrap sample size, since when sample size gets

larger, the estimates tend to diverge much less from the

population parameters. If this can be replicated for other types

of statistical analysis, it may imply that it would be

advantageous or even necessary to use larger bootstrap sample

size so as to reduce the potential divergence of bootstrap

estimates from the population parameters.

is
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'o for Monte Carlo mean estimates
Betal '*' for bootstrap mean estimates
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Figure 2: Mean Statistics and Parameter: Convergence Tendency for
Betal (Sample Size 20)
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'o' for Monte Carlo mean estimates
Beta2 '* for bootstrap mean estimates
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Figure 3: Mean Statistics and Parameter: Convergence Tendency for
Beta2 (Sample Size 20)
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'o' for Monte Carlo mean estimates
Betal '*' for bootstrap mean estimates
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Figure 4: Mean Statistics and Parameter: Convergence Tendency for
Betal (Sample Size 30)
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Figure 5: Mean Statistics and Parameter: Convergence Tendency for
Beta2 (Sample Size 30)
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'o' for Monte Carlo mean estimates
Betal '* for bootstrap mean estimates
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Figure 6: Mean Statistics and Parameter: Convergence Tendency for
Betel (Sample Size 50)
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Figure 7: Mean Statistics and Parameter: Convergence Tendency for
Beta2 (Sample Size 50)
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Figure 8: Mean Statistics and Parameter: Convergence Tendency for
Betal (Sample Size 100)
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'o for Monte Carlo mean estimates
Beta2 '*' for bootstrap mean estimates
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Figure 9: Mean Statistics and Parameter: Convergence Tendency for
Beta2 (Sample Size 100)
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