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Abstract

In this paper, .quadratic curve equating metho;i for equating different test forms under a
random group data collection design is proposed. Procedures for implementing this method and
related issues are described and discussed. The quadratic curve method was evaluated using real
test data and simulated data in terms of model fit and equating error, and was compared to
sevéral other equating methods. It was found that the quadratic curve method fit many of the real
test data examined and that when model fits the population, this method could perform better

than other more sophisticated equating methods.




A Quadratic Curve Equating Method to Equate

the First Three Moments in Equipercentile Equating

In standardized testing, often multipl;a test forms are needed because examinees need to take
the test at different occasions and one test form can-be administered only once to ensure test
security. In this situation, it is typica‘lly required that test scores derived from different forms are
equivalent. Efforts can be made in the test construction process to make different forms as
equivalent as possible (e.g., forms can be built based on the same table of specifications; items can
be selected to have approximately equal average difficulty level). But often these efforts are not
enough to ensure test score equivalency for different forms. So, test equating based on test data is
often performed to adjust test scores so that scores on different forms are more equivalent. There
are several designs for collecting test equating data. One of the designs is the random groups
design, in which different test forms are administered to different but randomly equivalent groups
of examinees.

Under the random groups equating design, the examinee groups that take different test
forms (for simplicity, say, form X and form Y) are regarded as being sampled from the same
populaton. The differences in score distributions for different test forms are attributed to form
differences and randomness of the examinee groups. Equating form X to form Y involves
transforming the X scores so that the transformed X scores have the same distribution as the Y
scores. If an assumption can be made that the population distributions for X and Y scores have the
same shape and only differ in mean and variance, then the linear equating method will be most

appropriate. Linear equating takes tﬁe form

1,.(x)=0y|:x;‘lx:|+py , (N
X




where x is the score on form X, 4, and g, are means for form X and form Y, oy and oy are
standard deviations (s.d.) for form X and form Y, and /, (x) is the equated form Y score for x.

If no assumptions can be made about the shape of the population score distributions,
equipercentile equating method is the method of cheice. Equi'perccntile equating for a discrete score

distribution is given by

p'(x)-PrY < u' (x)]
PrlY =u"(x)]

ey(x)= +u (x)-.5, (2)

where Pr means probability, p”(x) = Pr(X < x)+.5Pr(X = x) , and u’(x) is the smallest integer
such that p*(x) = Pr[Y < u'(x)].

Equipercentile equating based on samples may have large sampling error because for any
particular score, the equating relationship is based on local frequencies at that score point. Two
types of smoothing techniques have been introduced to reduce random errors: pre-smoothing and
post-smoothing. Pre-smoothing smooths the score distributions for form X and form Y separately
and equates the smoothed score distributions. Post-smoothing (Kolen, 1984) smooths the
equipercentile equating function directly.

Studies have been done to evaluate these methods (see Kolen, 1984, Fairbank, 1987, Cope
& Kolen, 1990, Hanson. 1990, Hanson, Zeng, & Colton, 1991). Results from Hanson, Zeng,
and Colton (1991) she ved that smoothed equating was more accurate than unsmoothed
equipercentile and linear methods in terms of meai squared errors. However, linear equating
consistently had smaller random error, especially when sample sizes were small. This finding
resulted because the linear method uses only means and standard deviations in computing the
equating equation and these aggregate statistics typically have small sample variability. However, a
fundamental limitation of linear method is that if the shape of the distribution of X scores is

different from that of ¥ scores in the population, it could be seriously biased. While an increase in




sample size could reduce standard errors of equating, it will not reduce bias. Angoff (1987)
commented that equipercentile equating lacks a theoretical basis while linear equating makes strong
statistical assumptions which are often violated. He sugéested that consideration be given to
equating methods which employ theoretical models that take into account higher moments. The
purpose of this study is to propose a quadratic curve equating method, and to compare it with some
other equating methods. If successful, the quadratic curve method would produce less random

error than other pre- or post-smoothinz equipercentile methods, and less bias than the linear

method.
The Quadratic Curve Equating Method

In choosing such a nonlinear equating function, the following aspects were considered:

(1) The function should be more flexible than the linear function. ‘

(2) The function should preserve beneficial properties of linear equating, such as using
statistics with small random errors and being computationally simple.

(3) The performance of this method should be comparable to more complicated techniques
like smoothed equipercentile equating in most, if not all, testing situations.

Based on the preceding considerations, a quadratic curve to relate scores on form X to form

Y was proposed which takes the form
g(x)=ax*+bx+c . (3)

The coefficients a, b, ¢ are so determined such that the equated X scores will have the same
mean, standard deviatio - {(s.d.) and skewness as the form Y scores. The difference between this
relationship and linear equating relationship is that it has one additional squared term and that

ske vness is taken into account in computing the equating function.




The assumption underlying this method is that the shapes of the X and Y score
distributions are the same except that they have different skewness. In another words, if population
distributions are used that differ only in their first three r'noments, the equated X score distribution
using this method will be the same as the Y score distribution. '

In order to determire coefficients g, b, and ¢ using the method of moments, the following

set of non-linear equations needs to be solved:

E[q(X)]- E(Y)=0 4)
BT}~ £ =0 ®
Efla(x)F}-E(r*)=0 (6)

where E represents expectation. If ¢(X) is substituted in these equations, we get:
P P g

E[aX? +bX +c|-E(Y)=0 )
E|(ax? + bX + )| - E(r*) =0 (8)
E|(ax?+bX +¢)' |- E(r*) =0 ©)

The left hand side of these equations are functions of a, b, ¢, the first six moments of X
scores, and the first three moments of Y scores. When population distributions are not known,
sample moments are used. The Newton-Raphson method could be used to simultaneously solve
this set of equations for g, b and ¢ iteratively. Another easier way to find these coefficients is to
utilize the property that linear transformation does not change the skewness of a score distribution.
The procedure is as follows.

First, let us define skewness of Y as

E[y - E()]

Sk(Y) =
{Ely £

(10)
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Find d so that Z=X+dX2 will have sam= skewness as Y; i.e., Sk(Z)=Sk(Y). This can be done

using an iterative numerical method. Second, Let b equal the ratio of s.d. of Y tos.d. of Z; i.e.,
5.d.(Y)
b=

A2 We know that b Z will have same s.d. and skewness as Y because multiplication by
s.d.

the constant b does not change the skewness of Z. Then add a constant ¢ so that c+5(X+dX2) has

same mean, s.d. and skewness as Y. The three coefficients are thus determined.

Some Technical Issues

Symmetry.: One of the requirements for an equating method is symmetry. That is, the same
equating relationship should result whether X is equated to Y or Y is equated to X. This quadratic
function is clearly not symmetric since different orders of moments are used for X and Y scores.
Kolen (1984) proposed an average of two equating relations obtained when X is equated to Y and
Y is equated to X. However, this treatment still does not yield exactly symmetric results. For the

quadratic method, a weighted average of two equating functions will be used. Suppose for a given
score x, the equated score obtained from one direction is y, , that from the other direction is y, ,

and the two first derivatives at score point x are d, and d, , then the weighted average is

Y =w +(1 _wl)yZ )

where

_ tan]. 5arctan(d, )+ Sarctan(d, )] - d,
w, = 4= .

This weighted average is guaranteed to be symmetric for the linear case. For the quadratic
curves in this situation, the curvature can be expected to be very small. Thus, a good
approximation to symmtry can be assumed.

Equating at Extreme Scores: Equating at both ends of score range are problematic for nearly
all equating methods. This issue also concerns the quadratic method. In implementing the post-

smoothing method, Kolen (1984) excluded the upper half percent and the lower half percent of the
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data in computing the spline function and use two straight lines to link the ends of the spline to the

two unequated end scores. This practice was also adopted in the present study.

Methodology and Data

The proposed quadratic curve equating was evaluted in two aspects: model fit and sampling

€ITOT.

Model Fit

Like the linear equating method, this new method makes an assumption zibout the true
population equating relationship. How well this method performs logically depends on how close
the true eqauting is to the quadratic form in real testing situations. Real test data were used to
assess the model fit for this method. For each pair of test forms, five different equating methods
were applied and plotted for visual examination: unsmoothed equipercentile equating, spline post-
smoothing with smoothing parameter s=0.2 and s=0.5, quadratic curve equating, and linear
equating. The first four central moments of the equated X scores with the quadratic curve method
were also computed. If the assumptions of this method are met, the kurtosis of the equated X
scores would be expected to be close to that of the Y scores. Under normality, the sampling
variance of kurtosis equals 24/N where N is the sample size (see Kendall & Stuart, 1977, pp.
258). The extent to which the model fits the data can be partially assessed by comparing the
difference of the kurtosis after equating and the standard deviation of absolute kurtosis differences.

The first two pairs of data are the same as the first two pairs used in Hanson, Zeng, and
Colton (1991). The first pair consists of two 30-item subsets from a professional licensure exan.

The second pair consists two 20-item subsets of two forms of Reading subtests of ACT




Assessment. Each of these data setshave ver/ large sample sizes. So the unsmoothed
equipercentile equating relationship is taken as the population equating.

Data from an operational equating of the ACT Assessment were also used. These data
contain seven forms (form A to form G) for each cf the four tests: English with 75 items,
Mathematics with 60 items, Reading with 40 items.and Science with 40 items. For each test, seven

pairs of distributions were used for equating (form A to B,Bto C... G to A).

Sampling Error

Because the quadratic curve method uses aggregate statistics, like the linear method, it
would be expected to have less sampling variance than the unsmoothed equipercentile method or
even the smoothed equipercentile methods when the model assumptions are met. Parametric
bootstrapping methods (Efron, 1982) were used to assess the sampling error of this equating
method and compare it to the unsmoothed equipercentile method, the linear method, and the spline
post-smoothing method. First, a pair of population distribution were defined using either smoothed
sample distibutions or very large sample distributions. Second, sample distributions with sample
size N (three different sample sizes were used in this study. For long test of 75 items N=500,
2000, and 3000; for short tests of 20, 30 and 40 items, N=250, 500, and 2000) were generated
from the population distributions by computer and equatings with various methods were
performed. Third, the second step was repeated n (in this study, n=200) times and evaluative
indices were computed for each score point.

The study by Hanson, Zeng, and Colton (1991) showed that pre-smoothing and post-
smoothing yielded comparable results in terms of mean squared error. So it is sufficient to just use
post-smoothing to represent srpoothed equipercentile methods.

Three types of population distributions were used. The first type was two pairs of observed
distributions with very large sample sizes. These observed distributions were taken directly as the
population distributions. These were the 30-item licensure exam subtests and the 20-item Reading

subtests described previously.
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The second and third types was on smoothing ACT Assessment score distributions using
log-linear smoothing method (Hanson, 1992). The second type was intended to represent
situations where the equipercentile equatings with smoothed score distributions were close to the
quadratic function. The third type were to represent situtions where the equipercentile equatings
with smoothed score distributions were not close to. the quadratic function. The third type was used
also to assess the robustness of the ql;adratic curve method to model violation. From initial
examination of the equating functions from different methods, English form A and B, Science
form G and A were selected to represent the seco‘;1d type and Reading form A and B were selected
to represent the third type. Pearson ¥ statistics for model fit were examined to determine the
degrees of the log-linear model. Figure 7 gave plots of the equipercentile equating and other
equatings based on three pairs of smoothed score distributions.

The evaluative indices are bias, standard error (s.e.), and root mean squared error (RMSE).
For any score x on form X, denote ¢(x) as the true (or populaton) equated score and é,(x) as
equated score based on saraple s with any particular equating method. The mean equated score

based on n samples is

13,
ui(x) =—- e:(x)
n s=1
The estimated bias is
)U'E(x) ""e(X).

The estimated standard error is

\/ii(és(x)—#«x))2~

s=1




The estimated root mean squared error is

\jli(a, (x) ). |

n sy

These indices are computed for all the raw score points and estimated root mean squared
errors are ploted for all the methods being compared. Weighted averages of these indices weighted

by the X score population distribution are also computed by the formula:

i(index)Pr(X = X),

x=]

where k is the number of items.
The root mean squared errors for five above mentioned equating methods were plotted
along the score scale for visual comparison. Weighted averages of absolute bias, standard error,

root mean squared error(RMSE) and estimated standard error of RMSE were tabulated.

Results

Descriptive statistics for all real data equatings are summarized in Table 1. Because of the
adjustment to achieve symmetry, the first three central moments of form X after equating were not
exactly the same of that of form Y. But this adjustment had little effect on means and standard
deviations except for one case. (ACT Mathematics form C and form D where the adjustment
resulted in a 0.019 difference in s. d.); skewness was affected only at the third decimal point
except for one case. The equating functiors for the real test data sets are plotted in Figure 1 through
Figure 6. The plots showed that the quadratic equating is more flexible and provides better fit in
most cases than the linear equating method.

Figures 1 and 2 plot the equating functions for the two large sample data. Here, the

unsmoothed equipercentile equatings are regarded as population equatings. The post-smoothing




functions were closer to the population equating because that the unsmoothed equipercentile
equating is very smooth. The quadratic curve equating appears to fit the two population equatings
quite well. The maximum biases are within 0.2 score pc;ints. The kurtosis difference were reduced
by about half after equating in both cases.

The plots of equating functions based on ACT Assessment operational equating data sets
showed that the quadratic curve method performed quite well in smoothing the equipercentile
equating function in most cases. In many cases, the quadratic equating function was between post-
smoothings with s=0.2 and s=0.5. The quadratic method did not perform well in 3 to 4 cases
(Math Cto D, Math D to E,.Reading A to B, and perhaps Reading B to C), where the unsmoothed
equipercentile equatings displayed an "S" shape. Examination of the kurtosis revealed that these
cases correspond to the highest after-equating kurtosis differences among all the 28 quadratic
equatings. The standard error of sample kurtosis for a sample size of 2900 is 0.091. The standard
error for the kurtosis difference for two independent samples of size of 2900 is thus about 0.129,
The average absolute kurtosis difference before equating is 0.163. The average (over all equatings
conducted) absolute kurtos:s difference after equating is 0.097 which is smaller than the standard
deviation of the sample difference. The number of absolute kurtosis differences that are smaller
than 0.129 is 20 out of 28. These results suggested that the quadratic curve method fits this set of
operational equating data sets reasonably well.

Population equatings for three pairs of distributions used in the simulation are shown in
Figure 7. Root mean squared errors for five different equating methods based on five pairs of
population distributions were plotted in Figure 8 through Figure 12. Figures 8 and 9 contain plots
of RMSE of equatings for samples draw from two large sample data sets: the 30-item Licensure
test and the 20-item ACT Reading test.

For the Licensure test, the quadratic method performed about the same as the
postsmoothing methods for the small sample size and performed better than these methods for the

large sample size. For the 20-item Reading test, the quadratic method performed better than the

smoothing methods at some score ranges but not at others. Note that in these two cases, linear




equating had remarkably small RMSE, especially when sample sizes were small. This finding is
probably due to the small form difference in both cases.

Figures 10 and 11 present RMSE plots for situations when the quadratic function
appearedly fit the population equating relationship well. For these two cases, both the smoothing
methods and the quadratic method improved over the unsmoothed equipercentile methods. The
amount of improvement of post-smolothing methods is consistent to the results in Hanson, Zeng,
and Colton (1991). Cleary, in these two cases, the quadratic method performed better than all other
methods regardless of the sample sizes. But the better perfomance is more consistent along the
score scale for small samples than that for large samples.

Figure 12 contained plots of RMSE for a situation where the population equating
relationship does not fit a quadratic function. Apparently, there is no advantage to using this
method over using the unsmoothed equipercentile method. Interestingly, when the sample size is
small, the linear method had the smallest RMSE in the middle score range; when sample size is
large, virtually no methods showed improvement over unsmoothed equipercentile method in this
case.

Tables 2 through 6 contained the average values of absolute bias, standard error, and
RMSE, weighted by the X score population frequencies. For the first and second type of
populations, all the standard errors were much larger than the absolute bias except for the linear
method. So the RMSE values were mainly attributed to standard errors. For the first type
populations, the quadratic method had slightly better average performance than the smoothing
methods in one case and had slightly worse average performance in the other case. For the second
type populations, the quadratic method generally had better average performance than the
smoothing methods, a result vyhich is consistent wjth the plots. For the third type populations, the
quadratic method had smaller average standard error but not absolute bias. The larger average
RMSE were attributed to larger bias. Post-smoothing with larger smoothing parameters produced
larger bias, but a smaller standard error than that with smaller smoothing parameters. In almost all

the cases, linear methods always had smaller standard errors.
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Discussion and Conclusion

In searching for an appropriate polynomial function to model the equating relationshi, ,
there was a consideration to add one cubic term to the quadratic function so that kurtosis can also
be equated. But it was found not very desirable for two reasons. First, it makes computatio 1 much
more complicated. Second, sample kurtosis has much more random error than skewness. The
variance of sample kurtosis is four times that of sample skewness (see Kendall & Stuart, 1977, pp.
258). Higher order polynon;ial functions might be investigated in the future if these issues can be
properly resolved. The quadratic function could be studied as the first step in this direction.

Linear and equipercentile equating both have advantages and limitations. Smoothing
methods are aimed at reducing the random error of the equipercentile method but they usually
involve complicated mathematical manipulation and computer programming. Alsb, they often
require subjective judgement about model parameters. The quadratic equating method proposed in
this paper prevides another approach to reduce random error as well as bias. Both the idea and
computation are simple, and implementation of the quadratic method does not require subjective
judgement.

The results based on the real test data in this study showed that the quadratic method
worked well for most but not all of the test data. When the population equating relationship was
close to a quadratic in form, this method clearly displayed smaller random error and bias than other
sophisticated methods for both small and large sample sizes. However, procedures need to be
derived to judge whether or not the quadratic method adequately fits the population based on
sample data. An examination of the equipercentile equating relationship and the kurtosis difference
before and after the quadratic equating might be helpful if this procedure were to be used in

practice.
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Table 1. Descriptive Statistics for Observed Data before and after Quadratic Curve Equating

New form before equating
New form after cquating
old form

New form beforc cquating
New form after equating
old form

Form A bcfore equating
Form A after equating
Form B before equating
Form B after equating
Form C before equating
Form C after equating
Form D before equating
Form D after equating
Form E before equating
Form E after equating
Form F before equating
Form F after equating
Form G before cquating

Form G after equating

Form A before equating
Form A after equating
Form B before equating
Form B after equating
Form C before equating
Form C after equating
Form D before cquating
Form D after cquating
Form E before cquating
Form E after cquating
Form F before equating
Form F after cquating
Form G before cquating

Mecan S8.d. Skewncss Kurtosis ~ Kurt. diff.  Kurt. diff. Sample size
before cquat.  after equat.
Licensure Subtest (30 items)
18.880 3.680 -0.130 2.786 38765
19.157 3.430 -0.304 2.934
19.157 3.430 -0.308 3.051 0.265 0.117 38765
ACT Reading Subtest (20 items)
12.300 3.757 -0.205 2.391 82062
12.688 3.580 -0.278 2.449
12.688 3.580 -0.280 2.522 0.131 0.073 83693
ACT English (75 items)
48.482 13.088 -0.089 2.187 0.185 0.030 2968
51.325 12.753 -0.320 2.373
51325 12.755 -0.322 2.423 0.236 0.050 2748
48.571 12.207 -0.168 2.286
48.571 12.207 -0.167 2.302 0.121 0.016 2921
51.156 12.206 -0.409 2.553
51.156 12.205 -0.406 2.532 0.230 0.021 2903
50.741 12.204 -0.312 2.436
50.741 12.204 -0.313 2.395 0.137 0.041 2880
51.273 12.770 -0.380 2.465
51.273 12.770 -0.381 2.521 0.126 0.056 2853
50.070 12.876 -0.306 2.428
50.070 12.876 -0.308 2.372 0.149 0.056 2800
48.482 13.091 -0.085 2.217
ACT Mathematics (60) items
28.463 10.569 0.481 2.535 0.282 0.143 2968
30.300 12.198 0.256 2.327
30.301 12.187 0.276 2.148 0.287 0.179 2748
29.758 11.563 0415 2.281
29.758 11.567 0424 2.463 0.315 0.182 2921
31.080 12.741 0.179 2.298
31.082 12.722 0.208 2.060 0.403 0.238 2903
28.937 11.448 0.296 2.116
28.937 11.450 0.305 2.367 0.307 0.251 2880
29.819. 11.358 0.380 2.444
29.819 11.358 0.380 2.424 0.057 0.020 2853
30.389 11.109 0.321 2.375 /
30.389 11.108 0.324 2.253 0.171 0.122 2800
28.463 10.566 0.474 2.392

Form G after cquating




Table 1 (continued). Descriptive Statistics for Observed Data before and after Quadratic Curve Equating

Mcan S.d. Skewness - Kurtosis Kurt. diff.  Kurt. diff. Sample size
before equat.  after equat.
ACT Reading (40) itcms

Form A before cquating 24804 6.584 -0.024 2.375 0.108 0.059 2968
Form A after equating 25.350 7.581 -0.065 2.386

Form B before cquating 25.350 7.581 -0.061 2.117 0.258 0.269 2748
Form B after equating 25.669 6.577 -0.141 2.158

Form C before equating 25.669 6.578 -0.150 2.466 0.349 0.308 2921
Form C after equating 25.837 6.896 -0.185 2.492

Ferm D before equating 25.837 6.896 -0.185 2459 0.007 0.033 2903
Form D after equaling 25.314 6.955 -0.099 2.408

Form E before cquating 25.314 6.954 -0.102 2.312 0.147 0.096 2880
Form E after equating 24.731 6.821 0.026 2.275

Form F before equating 24.731 6.822 0.031 2.385 0.073 0.110 2853
Form F after equating 25.452 6.511 -0.139 2458

Form G before cquating 25.452 6.512 -0.140 2.483 0.098 0.025 2800
Form G after equating 24.804 6.585 -0.022 2,434

ACT Science (40) items

Form A before equating 24,153 6.439 -0.192 2.553 0.148 0.042 2968
Form A after equating 22.661 7.077 0.200 2.543

Form B before equating 22.659 7.064 0.170 2.373 0.180 0.170 2748
Form B after equating 22.227 6.964 0.231 2.400

Form C before equating 22.330 6.964 0.232 2431 0.058 0.031 2921
Form C aftcr cquating 24.122 6.640 -0.044 2415

Form D before cquating 24.122 6.642 -0.048 2.496 0.065 0.081 2903
Form D after equating 22.965 6.515 0.061 2.477

Form E before equating 22,965 6.515 0.060 2.463 0.033 0.014 2880
Form E after equating 22.374 6.334 0.175 2.495

Form F before equating 22.374 6.334 0.173 2.443 0.020 0.052 2853
Form F after equating 22.439 7.073 0.110 2426

Form G before cquating 022439 7.072 0.111 2.405 0.038 0.021 2800
Form G after cquating 24.153 6.438 -0.191 2.511
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Table 2. Average Absolute Bias, Standard Error and Root Mean Squared Error for the Licensure Subtest.

Sample Size = 25C Sample Size = 500
Abs. Bias S.E. RMSE  s.e.(RMSE) Abs. Bias S.E. RMSE s.e(RMSE)
Unsmoothed 0.041 0.457 - 0.462 0.027 0.026 0.298 0.303 0.010
Lincar 0.113 0.388 0410 0.020 0.117 0.242 0.276 0.008
Quad. Curve 0.051 0.403 0410 0.021 0.049 0.257 - 0.265 €.008
Post Smooth 0.2 0.024 0.405 0.409 0.021 0.049 0.257 0.267 0.008
Post Smooth 0.5 0.069 0.387 0.399 0.019 0.088 0.247 0.269 0.007

Sample Size = 2000

Abs. Bias S.E. RMSE  s.c.(RMSE)
Unsmoothed 0.019 0.159 0.164 0.003
Lincar 0.111 0.132 0.180 0.003
Quad. Curve 0.034 0.140 0.148 0.002
Post Smooth 0.2 0.024 0.143 0.150 0.002
Post Smooth 0.5 0.059 0.140 0.158 0.003

Table 3. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Reading Subtest

Sample Size = 250 Sample Size = 500
Abs. Bias S.E. RMSE  s.e.(RMSE) Abs. Bias S.E. RMSE  s.c.(RMSE)
Unsmoothed 0.019 0.436 0.436 0.021 . 0.013 0.301 0.301 0.009
Lincar 0.062 0.365 0.373 0.016 0.063 0.249 0.259 0.007
Quad. Curve 0.028 0.381 0.383 0.017 0.031 0.264 0.266 0.008
Post Smooth 0.2 0.034 0.380 0.382 0.017 0.026 0.258 0.259 0.007
Post Smooth 0.5 0.051 0.361 0.366 0.016 0.047 0.244 0.250 0.007

Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.010 0.151 0.152 0.002
Lincar 0.068 0.124 0.145 0.002
Quad. Curve 0.039 0.132 0.139 0.002

Post Smooth 0.2 0.023 0.130 0.133 0.002
Post Smooth 0.5 0.046 0.122 0.133 0.002

) ——
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Tablc 4. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT English Test (A to B).

Unsmoothed
Linear

Quad. Curve
Post Smooth 0.2
Post Smooth 0.5

Unsmoothed
Linear

Quad. Curve
Post Smooth 0.2
Post Smooth 0.5

Sample Size = 500

Sample Size = 2000

RMSE  s.c.(RMSE)

Abs. Bias S.E. RMSE s.e.(RMSE) Abs. Bias S.E.
0.081 1.146 1.154 0.139 0.072 0.592 0.598 0.037
0.750 0919 1.230 0.138 0.685 0471 0.904 0.057
0.150 0.978 1.001 0.102 0.123 0.504 0.538 0.028
0.102 1.029 1.039 0.113 0.073 0.530 0.541 0.029
0.334 0.984 1.052 0.110 0.218 0.513 0.566 0.031

Sample Size = 3000

Abs. Bias S.E. RMSE  s.e.(RMSE)
0.038 0.470 0.476 0.024
0.733 0.370 0.849 0.044
0.121 0.396 0.434 0.019
0.066 0.419 0.433 0.020
0.193 0.406 0.462 0.023

Table 5. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Science Test (G to A).

Unsmoothed
Lincar

Quad. Curve
Post Smooth 0.2
Post Smooth 0.5

Unsmoothed
Lincar

Quad. Curve
Post Smooth 0.2
Post Smooth 0.5

Sample Size = 250

Sample Size = 500

Abs. Bias S.E. RMSE s.c.(RMSE) Abs. Bias S.E. RMSE s.c.(RMSE)
0.078 0.809 0.816 0.068 0.024 0.600 0.603 0.037
0.449 0.642 0.813 0.064 0.461 0.483 0.695 0.042
0.101 0.680 0.694 0.048 0.101 0.516 0.530 0.028
0.056 0.721 0.728 0.052 0.072 0.540 0.547 0.030
0.201 0.688 0.726 0.048 0.215 0.527 0.579 0.033

Sample Size = 2000

Abs. Bias S.E. RMSE s.c.(RMSE)
0.020 0.298 0.302 0.009
0.463 0.238 0.539 0.019
0.103 0.254 0.281 0.008
0.053 0.267 0.276 0.008
0.132 0.261 0.299 0.009
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Table 6. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Reading Test (A (o B).

Sample Size = 250 Sample Size = 500
Abs. Bias S.E. RMSE  s.e.(RMSE) Abs. Bias S.E. RMSE s.e.(R. SE)
Unsmoothed 0.056 0.969 0.973 0.103 0.042 0.685 0.690 0.047
Linear 0.351 0.787 0.883 0.081 0.355 0.564 0.689 0.045
Quad. Curve 0.339 0.854 0.932 0.097 0.336 0.620 0.722 0.057
Post Smooth 0.2 0.119 0.866 0.877 0.083 0.101 0.623 0.635 0.039
Post Smooth 0.5 0.258 0.787 0.839 0.076 0.244 0.587 0.647 0.040

Sample Size = 2000

Abs. Bias S.E. RMSE  s.e.(RMSE)
Unsmoothed 0.027 0.341 0.346 0.012
Linear 0.359 0.283 0.476 0.018
Quad. Curve 0.339 0.301 0.472 0.019

Post Smooth 0.2 | 0.102 0.314 0.335 0.011
Post Smooth 0.5 |  0.192 0.308 0.374 0.013
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Figure 1. Equating functions for ACT Reading subscore using obscrved data.
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O

ERIC

Aruitoxt provided by Eic:




Equating function minus identity function

FormEtoF

—— Unsmoothed
----- Quad. Curve
~ = Post Smooth 0.2

Raw Score

Raw Score

2 _ ---= Post Smooth 0.5
--------- Lincar
I I | I I I I
0 10 200 30 40 50 60 70
Raw Score
FoomF1o G FormGto A
0.5 — -— Unsmoothed A
— : d 2 U\ |- Quad. Curve N
5 83221083;53 g 03 - - Post Smooth 0.2 |
5 - = Post Smooth 0.2 S +=+= Post Smooth 0.5 !
5 00— .-.=~ Post Smooth 0.5 5 00447 as| e Lincar
= ) Wae VY e Linear =
= s, .'\. E
g S 05
é ‘0.5 - ."\ “‘ é’
& * E -10-
o K =1
S s N
3] = N e
s 04 N [\ R T
o A OV S ¥, S . Rty
£ O
T R o S 20 e
Foasd e I
...... s 7
I I I I T 1 ] | ] I I I I [ !
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

O

ERIC

Aruitoxt provided by Eic:

Figure 3 (continued). Equating functions for ACT English scores using observed data.
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Figure 5. Equating functions for ACT Reading scores using obscrved data.
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Figure 5 (continucd). Equating functions for ACT Reading scores using observed data.
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Figurc 6. Equating functions for ACT Scicnce scores using obscrved data.
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Figure 7. Population equatings for three pairs of distributions used in simulation.
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Figure 8. Root mean squared crror of cquating methods for Licensure test.
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Figure 11. Root mcan squared crror of cquating methods for ACT Science test (G 1o A).
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Figurc 12. Root mcan squared error of cquating methods for ACT Reading test (A to B).
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