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Timetabling an Academic Department
with Linear Programming

This paper is a description of an approach to the faculty timetabling
problem using linear programming based on my experience of timetabling a
small university department in this manner for three years. It is practical
in the sense that it demonstrates the efficiency and effectiveness of linear
programming as a means of university timetabling and shows how the vari-
ables and constraints of the linear program can be conceptualized to solve the
timetabling problem.

Linear programming involves the optimization (maximization or
minimization) of a linear objective function subject to linear constraints. It
has been widely used in government and industry to solve problems asso-
ciated with scheduling, transportation, construction, and manufacturing. It
has also been used before in timetabling, as the review of the literature below
indicates. Objections to using linear programming in timetabling have
generally been based on concerns about the size of the problem but these are
becoming increasingly irrelevant as computers become more powerful and as
computer time becomes less expensive.

Definitions and Examples

The following paragraphs contain some commonly used timetabling
terms and their definitions. In practice many of these terms are used loosely
and have general or multiple meanings. Because this exposition requires a
set of precise and consistent terms, I have given these words and phrases
exact definitions but, in doing so, have attempted to reflect their common
usage. Some illustrative examples are given for many of the defined terms.
These examples do not exhaust current practice and, above all, do not
exhaust the possibilities.

Course

The word "course" is widely understood to mean a discrete admini-
strative unit of instruction. In any institution, courses are identified by a
unique course number which often includes a non-numerical prefix as well
as a numeral, and by a title which may not be unique. In fact it is the
smallest unit of instruction for which a student can obtain credit. One does
not receive credit for a fraction of a course and only rarely are students
allowed to obtain credit for a single course more than once. Courses can be
contrasted with larger administrative units of instruction such as programs.
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Courses must also be distinguished from their particular offerings, called
course sections.

Course Section

A course section is a particular offering of a course with a certain
:Troup of students during a definite period of calendar time. Course sections
within a given period of time usually have a unique identifying designation
in addition to the course number. This may be called a section number. A
course section is the smallest unit of instruction that a student either takes
or does not take. Multiple sections of the same course can be offered during
the same calendar period but students almost never register concurrently for
more than one section of the same course. At the secondary school level the
terms "singleton", "doubleton", and "tripleton" are used to refer to courses for
which one, two, and three sections respectively are offered during the same
period of calendar time. For a given course section, classes are usually held
in the same location with die same instructor; but the defining characteristic
is probably the group of students who are registered in the section, rather
than the classroom, instructor, or time of offering.

Timetabling Period

This is the period of calendar time for which a course timetable will
apply and is normally equal to the calendar length of course sections. In
universities these include academic years, semesters, quarters, and terms.
Secondary schools generally use school years or semesters. A number of less
standardized timetabling periods may also be employed such as summer
sessions, extended summer sessions, and intersessions. Most timetabling
periods in current use in education are between two weeks and ten months
in length.

There are some scheduling problems that cross timetabling periods
but these usually involve the choice of courses rather than the times at which
chosen courses are offered. Sequenced courses must be offered so that pre-
requisites come before the courses that require them. Some courses must be
offered in every timetabling period, perhaps in multiple sections, whereas
others must only be offered once in every second or third timetabling period
if sufficient enrolments are to be maintained. The availability of faculty
members and other resources may also influence the choice of course sections
to be offered in any given timetabling period.
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Section Cycle Period

Timetabling periods are divided into shorter periods that are
timetabled repetitively. These are here called "course section cycle periods"
or just "cycle periods". At the college and university level the almost
universal cycle period during the academic year is the standard five day work
week, although some institutions offer classes on Saturdays. At the secon-
dary level there are a nuinber of popular variations. These include daily
timetabling and cycle periods of either four or six days both incorporated into
the standard five day week. The individual days in four and six day cycles
do not correspond to the named days of the standard week and are usually
given numbers instead. The purpose of these variations is to avoid the time
penalties often borne by course sections offered on Mondays and Fridays. By
deliberately allowing the cycle period length to differ from that of the
standard week, school officials can be assured that Monday and Friday will
not correspond to any one day in the cycle period and that no day in the cycle
will be systematically disadvantaged.

Class Period

A class period or just a class is a continuous length of time during
which instruction is offered. At the secondary and post-secondary levels
these can vary from twenty minutes to four hours or more. Typical daytime
courses at post secondary institutions have class periods with nominal
lengths of either 1.0 or 1.5 hours. The nominal class period includes a time
to change classes of 10 or 15 minutes in these two cases leaving 50 and 75
minutes of actual instruction respectively. Typical evening class periods are
of 3.0 nominal hours but one or more breaks during the class leaves about 2.5
hours of actual instruction. Thus actual instruction consumes 83 percent,
more or less, of the nominal class period.

At the secondary level, timetables with variable-length class periods
are sometimes built on a time period module that is the highest common
factor of the class period lengths. Class periods of 40, 60, and 80 minutes
would be built from a module of 20 minutes. The modules are timetabled
with fixed time boundaries so that class periods can be slotted into the day
without unnecessary overlap and without time gaps that cannot be utilized.

Section Cycle Pattern

Within each course section cycle period there is usually a standard
predefined pattern of times at which classes begin and end, a set of standard
class lengths, and a standard distribution of class periods for given course
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sections over the days of the course section cycle period. This is the section
cycle pattern. For example, universities that use a five-day weekly cycle
period often timetable all class periods for a given course section on Mondays,
Wednesdays, and Fridays at the same time or on Tuesdays and Thursdays
at the same time. Courses offered on three days have nominal class period
lengths of 1.0 hours and those offered on two days have nominal class period
lengths of 1.5 hours. All courses will begin on an hour or half-hour boundary.
Colleges and universities often follow different patterns than this during
timetabling periods outside the usual academic year. The simplest section
cycle patterns occur with daily cycle periods for which class periods begin at
the same fixed times each day. Fixed daily starting times may also be used
with longer cycle periods. The practice of having all classes of a given course
section begin at the same time of day is adhered to less frequently at the
secondary level than at the post secondary level. This provides greater
flexibility and greater complexity in that the timetabling problem involves
distributing course sections throughout 40 weekly class periods, for example,
rather than five to ten daily class periods. Section cycle patterns are not
absolutely necessary for timetabling but are used almost universally to avoid
timetable conflicts and to allow for the efficient use of intensively utilized
resources.

Section Class Pattern

The section class pattern or just class pattern is the set of class
times and durations for a single section of a given course. Some examples
include Monday, Wednesday, and Friday at 1030 to 1130; Tuesday at 0900
for 1.5 hours and Wednesday at 1400 for 1.5 hours; and Thursday evening at
1800 for three hours. The term "time slot" is sometimes used as a synonym
but this can be misleading since the class periods in the section pattern need
not all be at the same time, as the second example above indicates. The set
of all section class patterns for a given timetable is, of course, the section
cycle pattern.

Class-teacher timetabling problem

This term appears in the theoretical literature more than in practice
but it does appear frequently enough to justify a definition. The class-teacher
timetabling problem assumes a set of class periods in a section cycle period
and a collection of teachers and student groups, not necessarily equal in
number. During the section cycle period, each teacher must meet each
stivient group for a specified number of class periods such that no teacher
meets more than one student group during any single class period and such
that no student group meets more than one teacher during any single class
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period. The matching of student groups and teachers during class periods is
one-to-one but there is no necessary requirement that eithkz teachers or
student groups meet during all class periods. An important simplifying
characteristic of this problem is that student groups do not change their
membership. This eliminates individual course section conflicts.

Review of the Literature

The literature in the area of school timetabling is uneven and not
uniformly helpful. Much of it consists of discussions of the characteristics or
advantages of certain types of timetables, an area of concern excluded from
this article. The following review of the literature considers only material on
the techniques of timetabling and concentrates on linear programming.

Much of the literature on timetabling dates from the 1960s and
1970s when it first became clear that computers could be useful in timetab-
ling. Less has been done since that time. There is a stream of literature
dealing with theoretical aspects and computerized solutions found in
periodicals in computer science and operations research and another stream
consisting of "how to" manuals for practitioners. The books on timetabling,
all in the how-to category, (Brookes, 1980; Delacour, 1971; Dempsey and
Traverso, 1983; School Timetabling, 1976; Simper, 1980; and Walton, 1972)
were published in the United Kingdom except for Dempsey and Traverso.
This illustrates another trend, namely the greater interest in this problem
in Europe than in North America.

The computer-science operations-research approaches culminated
with an extensive review of the literature by Schmidt and Stralein in 1980.
Of their 343 references, 274 were in English, 57 in German, and 12 in
various other European languages. Schmidt and Ströhlein made several
predictions of future trends that we can look back on after more than a
decade of additional experience. They predicted thAt (309):

A major evolution will, therefore, come in the near future.
Timetable programs will probably move from remote
handling in huge computing centres to minicomputer
systems owned by the school and handled directly by the
teachers.

This did not happen in the near future but is happening now with microcom-
puters rather than minicomputers. Schmidt and Ströhlein also predicted
that: "... software support by database systems for bookkeeping will grow
rapidly" (309). This has turned out to be more true than they perhaps
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expected. Many modern school timetabling systems do not actually
timetable. Instead they provide data input facilities, arrange the data to
make timetabling easy, and produce reports; in other words, only the
bookkeeping services envisioned by Schmidt and Ströhlein. This greatly
eases the often enormous clerical burden on timetablers.

Shortly before the Schmidt and StrOhlein review, McKillop (1978)
had classified techniques for timetabling into four categories: heuristic,
combinatorial, graph theoretical, and linear programming. Schmidt and
Ströhlein did not present an exhaustive and mutually exclusive system of
approaches as did McKillop, but they did discuss the "operations research
approach" which consisted essentially of linear programming. They were not
optimistic about the future of linear programming in timetabling because the
problems can become large and complex very quickly and can consume large
amounts of computer time. This, it turns out, is also true of the other
approaches. The consumption of large amounts of computer time is no longer
very relevant because costs have gone down by several orders of magnitude
and continue to decline. What has become important in its place is the effort
required to prepare the input for linear programming if the timetabling
problem is large.

Lawrie (1969), in an early application of integer linear program-
ming, used what he called "arrangements" as variables. Arrangements
consisted of sets of courses for various streams in a school which could be
offered at the same times without producing conflicts. This was done in the
context of a section cycle pattern consisting simply of a five-day school week
divided into 40 equal non-overlapping class periods without any further
structure. The problem of avoiding offering two courses at the same time
that were to be taken by the same persons had to be solved beforehand to
generate the arrangements. The only linear programming constraints in
Lawrie's approach prevented more courses in a given subject from being
offered in any class period than there were staff members qualified to teach
in that subject area. Lawrie originally minimized the number of different
arrangements as an objective function but found that this departed.
considerably from what school principals regarded as optimal. As a
consequence he abandoned objective functions in favor of generating a
number of feasible solutions that principals could choose from. Lawrie's
model, particularly his use of arrangements, raises some important issues.
Developing the arrangements, which he did by hand, solves most of what we
now regard as the timetabling problem. The process of producing arrange-
ments by hand, besides being very difficult and time consuming, would not
likely result in the generation of all possible unique arrangements. Some
feasible and perhaps highly desirable arrangements would never make it as
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far as the linear program and could never be considered for implementation.
This along with the very limited role for the computer prevented Lawrie's
model from being followed up. One must also question the highly unstruc-
tured section cycle pattern he used, although this may not have been his
choice. Even though his course sections all had multiple class periods during
the weekly section cycle period, there were no section class patterns. In
theory, a five-period mathematics course section could have met for five
consecutive class periods during the same day. Such an outcome must be
considered very suboptimal.

In a second article describing an approach based on linear program-
ming (Tripathy, 1984), 900 course sections in 25 different areas of specializa-
tion at the university graduate level were timetabled by grouping courses
into larger groups of courses in which enrolment was required of most of an
identifiable group of students. Unlike many other approaches to this prob-
lem, Tripathy included rooms in his formulation but grouped them into five
categories according to capacity. Each course group was associated with a
room category based on expected enrolment. The constraint sets related to
the required periods per week, the availability of rooms, and the require-
ments that the students in a group take certain courses which therefore could
not be offered at the same times. The objective function had coefficients
based on desirabilities broadly defined. Much of Tripathy's article discusses
the solution algorithm used to obtain integer estimates of the variables,
something handled automatically by modern linear programming packages.

The Timetabling Problem

The problem dealt with here consists of timetabling a predetermined
set of course sections into a section cycle pattern for a given timetabling
period. This definition of the problem assumes that a timetabling infrastruc-
ture is already in place, that decisions that cross timetabling periods have
already been made, and that certain other necessary ancillary decisions have
already been made or will be made after the timetable is complete. These
restrictions make the timetabling problem completely cross-sectional. Cross-
sectional timetabling must be distinguished from the scheduling problems
studied by specialists in operations research, the job shop problem for
example. These all involve flows of various types and all have important
longitudinal components.

The existing timetabling infrastructure includes the definition of the
timetabling period and its placement relative to the calendar and also
includes the section cycle pattern. The major cross-period scheduling decision
to be made in advance is the set of course sections to be offered during each
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timetabling period. Each course section will likely be associated with a
particular instructor and may be associated with a particular location. As an
alternative, the instructor and location may be assigned to each course
section after the timetable has been completed. It is also possible to
timetable the instructors and locations as additional variables in the
timetabling but this greatly increases the complexity of the process.

In my department, I circulated a questionnaire to all departmental
faculty members in November asking them for their ranked preferences for
courses that they wished to teach during the academic year beginning the
following September. A separate questionnaire asked for recommendations
for courses to be taught in extension and by outside instructors. The
information -eturned in the questionnaires along with program requirements
and our recent history of course offerings provided input into the construction
of a list of proposed course sections broken down by semester to be offered
during the following academic year along with the assignment of faculty to
course sections. Constructing this list required decisions on the courses to
be offered in each semester and the number of sections of each course. This
phase is done by hand because the scope for real decision making has been
narrowed considerably by faculty shortages and by tight upper and lower
limits on faculty course load. After circulating the proposed list including
faculty assignments to all faculty members and receiving feedback, a final list
was constructed. At this point I had in hand the course sections for each
timetabling period and the names of the faculty members associated with
each section. A second questionnaire was then circulated asking faculty
members for preferences with respect to day and time for the courses to
which they had been assigned. The next step, the job of the linear program-
ming procedure, was to assign these course sections to section class patterns
(time slots) within the cycle pattern. Room assignments were made at the
building level after timetabling had been completed.

I digress here to highlight some important differences between the
above sequence of events and that described in timetabling textbooks that
deal with the secondary level. The differences arise largely from the fact that
both students and faculty are much more intensively timetabled at the secon-
dary level, that is, they spend a larger percentage of their timetabled time in
class than do post secondary students and faculty. Other differences include
the much smaller allowable class size variation at the secondary level and
the practice in some secondary schools of keeping student groups intact for
all classes. As a consequence, secondary students generally choose their
courses for the following year before the timetable is constructed. The
detailed information contained in these choices constitutes an important
input into the timetabling process and greatly facilitates what is, in essence,
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a much more tightly constrained timetabling problem. At the high school
level, decisions on the number of course sections to be offered can be based
on an accurate count of student numbers. Contrast this with the decision at
the university level which is generally based on past experience.

Textbooks on timetabling at the secondary level devote considerable
space to working with the conflict matrix, a structure that is not even
possible without knowing student course choices in advance. The conflict
matrix, whether on paper or in computer memory, contains all courses (but
not sections) for the timetabling period in both the rows and columns. Each
element of the matrix consists of the number of students who have opted to
take both the course in the row and the course in the column. This is the
number of potential time conflicts since actual conflicts will not be known
until the timetable is complete. It is the number of students who would be
prevented from taking one of the two courses if they were timetabled in
single sections with the same section class pattern, that is, at the same times
on the same days. The diagonal of the constraint matrix, where the row
course akid the column course are the same, contains the total number of
students who have included that course in their selections. The high school
timetabler begins with the diagonal to determine the number of required
sections for each course. These sections are then timetabled in a manner
which minimizes the number of actual time conflicts.

Colleges and universities generally do not have the information
required to construct a conflict matrix at the point at which it would be
useful, nor do they really need one since the looser post secondary
timetabling problem is much less vulnerable to such conflicts. Instead
conflicts are anticipated based on program requirements and historical
patterns of course choice rather than on current choices. For example, two
courses required in the same year of the same program would not be time-
tabled in the same section pattern in single sections. This conflict problem
is explicitly handled by constraints in a linear programming model.

Linear Programming

This is the point at which linear programming is employed to assign
course sections to section patterns, or time slots. All practical linear
programs must be solved on a computer and most are solved by large main-
frame computers. Packages are available to do linear programming on micro
computers but these are restricted in the number of variables and constraints
that they can handle. I used a mainframe package from IBM that has been
available in various revisions for more than 20 years, the "Mathematical
Programming System (extended)", usually referred to as "MPSX" or just
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"MPS". The input format for MPS has become a standard (Gregory, 1993)
that can be accepted by some other packages as well. One of these othor
packages is IBM's recent successor to MPSX, the Optimization Subroutine
Library (1992) or OSL, which is available on computer workstations as well
as on mainframe computers.

The complete process involves data preparation for the linear
programming input and the preparation of schedules and lists from the
output of the linear programming step. A linear program consists of at least
one objective function and any number of constraints, all expressed as linear
functions of variables. Preparation of the input is done in three phases,
variable construction, constraint coding, and objective function specification.

Variable Construction

The structure of the linear programming variables provides consi-
derable insight into the sorts of decisions that the computer makes. From
among all variables entered into the program the computer must select a
subset, usually a small subset, that contains variables that are both feasible
and optimal. This set of basic variables, as they are called, is used to
construct timetables and course lists. The variable names used in this
exercise consisted of 13 characters. Many computer codes constrain the first
character of a variable to be alphabetic and either do not allow lower case
characters or allow lower case but ignore case differences. These limitations
are observed in the variable definitions below. The variables are prepared
conversationally by a program that prompts the user for information in a
logical order. This process is described in the next paragraph and the
structure of the resulting variables in Table One.

The variable information is prepared one course at a time. The user
is initially presented with a table of prefixes and asked to enter the one
character corresponding to the course prefix. The course number is then
entered. This information appears in characters seven to eleven of the
variable name. The computer then requests that the allowable or not allow-
able class cycle patterns be selected from a menu of such patterns and codes
this as the first character of the variable name. This is followed by an
elaborate set of questions to specify starting times and period lengths. Times
that correspond exactly to the class cycle pattern can be specified quickly as
can single offering times. Multiple non-standard times must be specified in
detail. This information requires the five columns from two to six. Although
there is some provision for nor-standard times, the structure of the variable
name limits these. For example, since there is provision for only one starting
time in a variable name, a course section could not be offered with classes at
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Table One

Informational Structure of Linear Programming
Variable Names

Character posi-
tion in vari-
able name

Type of information coded into
variable at given position

1 Section class pattern: an arbitrary alphabetic
character for each pattern.

2
Starting hour: a numeral or letter for the hour
during which classes begin using the 24 hour
clock and assigning hours of ten and above let-
ters beginning with "A" and continuing on.

3 Starting tens of minutes: a numeral from zero
to five.

4 Starting minute: any single digit numeral but
usually zero or five.

5,6 Class period length: nominal period length in
units of five minutes.

7
Course prefix: an arbitrary character to repre-
sent the course prefix. Although prefixes may
be two to four characters Lng, most institu-
tions have fewer than 36 of these so they can
be conveniently represented with one character

8,9,10,11 Course number: four numeric characters at
UNB but this can vary with institution.

12,13
Instructor: two characters representing the in-
structor, usually first and last initials, but
arbitrary characters for unknown (to be an-
nounced) instructors.

13
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different starting times on different days. If the number of such cases was
limited and clearly specified, for example, Friday evening and Saturday
morning at specific times, it could be built into the section class patterns.
But the practice in some junior high schools of having classes of a given
course sectior start at a variety of times on different days would require a
more elaborate structure of the variable name for the section class patterns,
the starting times, and perhaps the period lengths. It might even be
necessary to timetable the individual class periods rather than the course
sections. Finally the program prompts the user for the content of the last
two columns of the variable name, the codes for faculty members who can
teach the course. These are presented as a menu. At this point a set of
variables has been prepared for one course with every allowable combination
of section class pattern, starting time, period length, and instructor. The
cycle is repeated for the other courses.

The end result for a department of 13 faculty members is a set of
200 variables of which about 35 will be selected by linear programming to
form the basis or set of feasible and optimal section offerings for the
timetabling period. The 200 variables represent all course section offerings
that the timetabler has judged to be possible. The linear programming
problem can be simplified by eliminating those course and pattern combina-
tions that are clearly infeasible. For example, some graduate courses must
be offered in the evening and so no variables would be coded to represent
daytime offerings of such courses. Constraints could be coded to prevent
these courses from being ofc'ered during the daytime but this needlessly
complicates the linear program.

The output of the linear programming step consists of a list et all
input variables and their values. Variables not in the basis receive a value
of zero, to indicate that the course section designated by the given combina-
tion of course, pattern, time, and instructor is not to be offered. Variables in
the basis have a value of one to indicate that the section will be offered.
Variable values greater than one are not reasonable since this would imply
that one instructor could teach multiple sections of a course in a single time
slot.

Constraint Coding

Constraints are linear combinations .of the variables that are set to
be equal to, greater than or equal to, or less than or equal to a constant. For
the purpose of timetabling, constraints can be classified as implicit or
explicit. Implicit constraints are those that can be derived from the variable
names without any additional information. Once the variables are construct-
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ed, the complete set of implicit constraints can be generated by a computer
program written for that purpose. The set of constraints that prevent a
faculty member from teaching multiple course sections at the same time can
be derived from the variables since each variable contains the codes giving
the time of a course offering and identifying the responsible faculty member.
Explicit constraints require the input of additional information before they
can be coded. For example, the constraints that prevent sections of different
courses from being offered at the same time require information on which
pairs of courses must be offered at different times.

Any variable that is infeasible independently of all other variables,
if it has been coded in the first place, should be deleted from the variable set
rather than constrained. This practice reduces the number of variables and
helps to keep the program manageable. Variables that are clearly sub-
optimal can also be deleted provided that this does not introduce
infeasibilities into the program.

All constraints were coded by dedicated computer programs using
as input the set of variables and the other required information for the
explicit constraints. For the explicit constraints some of these programs were
conversational while others required input in the form of a computer file.
The coding of constraint names will not be considered in detail here because
this varied according to the type of constraint and constraint names were not
used after the linear program had run. It should be noted though that all
constraint names began with a single alphabetic character giving the type of
constraint according to the detailed classification in the following paragraphs.
Each constraint type was only one of greater than or equal to, less than or
equal to, or equal to; and this could therefore be determined from the first
character of the name. The last character in every constraint name was an
integer giving the value of the right hand side of that constraint. The right
hand side is the limiting value for the constraint. For example, the right
hand side of an equality constraint requiring that a faculty member teach
three course sections in a semester would be three.

Implicit Constraints

The first set of implicit constraints is that which prevents any
faculty member being assigned two or more course sections with overlapping
times. This set of constraints is prepared by a program that examines the
variable list, locates course sections taught by the same instructor with
conflicting times, and prepares a set of less than or equal to constraints for
each potential time conflict for each instructor that limits the maximum
number of such course sections to one.
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The second set of implicit constraints prevents two sections of the
same course from being offered at the same time. It should be pointed out
that not every timetable requires this type of constraint. Indeed in some
cases, multiple sections of the same course are deliberately set at the same
time. In our case these courses were compulsory and students taking courses
in different departments needed the extra flexibility provided by different
times for different sections.

Explicit Constraints

The first set of explicit constraints controls the number of course
sections per instructor. Separate minima and maxima can be coded as grea-
ter than or equal to and less than or equal to constraints if the exact number
is not known. Since the exact number was known, equality constraints were
used to set the number of course sections per instructor to a fixed predeter-
mined number for each instructor.

The second set of explicit constraints controls the number of sections
per course. This can be any of the three types of constraints, but since the
exact number was known in advance of timetabling an equality constraint
was coded for each course to set the number of sections. In most cases this
was one, but for a few compulsory undergraduate courses it was greater.

The third set of explicit constraints prevents sections of designated
different courses from being offered at the same time. It is the existence of
this constraint which, more than any other, complicates timetabling and
creates the need for the use of computers. The extra input that makes this
an explicit constraint consists of conflict lines. A conflict line is a series of
course numbers. In each line, no course after the first can be offered at the
same time as the first. The lines are listed in ascending numerical order of
the first course and courses in each line after the first are listed in ascending
numerical order. This ordering prevents redundant constraints from being
coded, constraints that would simply reverse the course order of previous con-
straints. Generating conflict lines is non-trivial. These were developed in
conjunction with departmental faculty and went through several drafts before
finalization. Contrast this with the conflict matrices used in programs where
students register before courses are timetabled. Obviously, courses that are
compulsory in a program in the same term cannot be offered at the same
time but there are other restrictions that are highly desirable but not
essential. In any given program, options should be offered at different times
if possible to increase student choice. Indeed if there is too much concurrent
offering of options, students may be unable to register for a complete
program. Students may be required to take some options within their major
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area but often have the right to take some options in other areas. This is
further complicated by the fact that some students may already have taken
some of the available options. Another complication is that course conflicts
may occur for non-programmatic reasons. Two otherwise non-conflicting
courses may require the use of the same shop or laboratory, for example. On
the other hand, it is not possible to offer all courses at different times. Part
of the problem with course conflicts is to judge how far to go. Too many
course conflict constraints could lead to a linear program with no feasible
solution or such a small set of feasible solutions that the optimal solution
would depart radically from true optimality. Too few could limit student
choice and even prevent students from taking complete programs. A course
conflict constraint limits the sum of two potentially conflicting course sections
to be less than or equal to one.

Objective Function Specification

The objective function is the linear combination of the variables that
is maximized to determine, within the set of feasible variable combinations,
which particular combination is optimal. The need for a feasible timetable
is obvious but what constitutes optimality is less clear. I started with an
arbitrary constant for every objective function coefficient and then introduced
a stochastic component to eliminate large numbers of identical coefficients
which could lead to multiple optinial solutions. A systematic component was
then added to each coefficient. For the systematic component, I relied largely
on the preferences of faculty members obtained by questionnaire. Most pre-
ferences were of the day and time type and these were easy to build into the
objective function by assigning higher coefficients to variables representing
preferred days and times. The magnitudes of the coefficients involved some
judgement, especially where the preferences of different persons were in
conflict. I also used the objective function in second and later runs of the
program to prevent the undesirable outcomes of earlier runs if a constraint
threatened infeasibility.

In the MPS format, the objective function is coded in the same
manner as a constraint but is designated as unconstrained whereas a con-
straint is designated as equal to, greater than or equal to, or less than or
equal to.

Input File Preparation

The MPS input format consists of four sections: rows, columns, right
hand side, and bounds. The rows section contains the name of each con-
straint and the objective function and a code for each one to indicate the type
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of constraint or, in the case of the objective function, that it is unconstrained.
The columns section contains the names of all variables associated with each
constraint name or objective function for which the coefficient is non-zero,
and the value of that coefficient. The various constraint generating programs
produce the columns section of the MPS input. The right hand side section
includes all constraint names and their limiting values. The bounds section
contains upper or lower limits for any bounded variables. All variables, as
defined here, have an upper bound of one. In this particular formulaticn of
the timetabling problem, the entire MPS input file can be generated from the
columns section and this is done by a dedicated program as the last step
before the linear program is run. Since the columns section contains the
names of all constraints and the name of each constraint identifies its type
and contains its limiting value, the rows and right hand side sections can be
derived from the columns section. For the bounds section, all variable names
are extracted from the columns section and are set to an upper limit of one.

The input file format also allows variables to be restricted to integer
values. In the linear programming examples reviewed above this was done
since fractional course sections a,,T never taught. Linear programming
packages that can do integer programming generally solve the problem first
without restricting the variables to integers and then impose the integer
restriction on those variables that are not already integers. The difficulty is
that integer linear programming is much more time consuming than general
linear programming. In this example, the variables were lower-bounded at
zero by the non-negativity constraints built into linear programming pac-
kages and upper-bounded at one by the bounds section. Without an integer
restriction, they could still assume fractional values between zero and one.
An integer restriction was imposed on all variables even though, in practice,
nearly all of the variables assumed integer values without the need for
integer linear programming. This seemed to be a consequence of the fact
that all variables were constrained by several different sets of equality
constraints with integer values on the right hand side. The important point
here is that very little extra computer time was required to force the
vafiables to integer values.

A university department of 13 faculty members offering 30 to 40
course sections per semester generates a linear program of 200 variables, 380
constraints, and 1400 non-zero elements in the objective function and the
constraints. Increasing the size of the department would increase the
number of variables proportionately but would likely increase the number of
constraints more than proportionately. The increase in the size of the
constraint set would depend not only on the increase in the numbers of
faculty members and course sections offered but also on any change in the
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complexity of the program offerings. Decomposition techniques can be used
with subprograms that are almost independent to split the program into a
number of smaller programs while still allowing the co-ordination required
by a few common courses or instructors. A large number of academic
programs with numerous or complex cross-linkages would produce a large
and cumbersome linear program.

Ad Hoc Adjustments

Completion of the timetabling phase involved multiple runs of the
linear program. After some runs, timetables and lists were prepared and
circulated to faculty members for comment. The comments were used as
input into the subsequent runs of the program. Other ad hoc adjustments
had to be made because some desirable characteristics of the timetable could
not be represented easily in a linear programming format. The ad hoc
adjustments were made to the columns section before the complete input file
was prepared. The constraint generating programs that produced the
columns section added an explanatory comment to the end of each line that
facilitated the alteration of the columns section with a text editor.

A requirement that is impossible to code in a linear program, but
one that I imposed, is that each faculty member have one weekday with no
classes. To achieve this, I ran the program without this tx)nstraint and then
chose an appropriate weekday off for each faculty *member based on the
initial assignment of course sections. For many faculty members, the initial
run had generated one or more weekdays without classes. I ran the program
again after either lowering the objective function coefficients for the chosen
day off or deleting all the variables corresponding to course sections on the
day off.

Some adjustments, while not necessary, simplified the linear
program. Individual faculty members who preferred to teach at times that
were unpopular with the majority of faculty members had the variables
representing their course sections at other times deleted. This ensured that
they got their preferences and reduced the number of variables and
constraints in the linear program.

Linear Programming Output

The output from The MPS system contains all variables and their
values. The same job that generated the linear programming solution
contained a step that filtered the output to eliminate all variables with zero
values. What remained were the variables with values of one representing
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all course sections chosen as the most optimal of the feasible solutions.
These were then used to produce course lists and timetables.

Typically, three to five runs were required with the circulation of
two or three draft timetables to faculty members before a near final timetable
was obtained. The final adjustments were often required by unforseen
circumstances occurring after it had become impossible to make major
changes. These changes were made by hand by altering the list of optimal
variables to eliminate or add a course section or to change an instructor or
some other aspect of a course. New lists and timetables could then be
generated from the revised set of optimal variables.

The results were generally well received by faculty members. Prob-
lems occasionally arose when the file of conflict lines omitted courses that
should have been included and when faculty members neglected to indicate
strongly held preferences on the preference questionnaire. The resulting
timetables can be considered optimal to the extent that we were able to
define optimality.

Application to Conflict Matrices

Some interesting twists arise when applying these techniques to the
high school situation with course registration occurring before timetabling.
The aim of the high school timetabler is to minimize course conflicts but the
assumption is often made that they cannot be eliminated entirely. In linear
programming terminology, there is no feasible solution when conflicts cannot
be eliminated. But it is difficult to accept that the additional information in
the hands of the high school timetabler makes timetabling more rather than
less difficult. The difference is that university students are forced to choose
non-conflicting courses from a timetable regardless of their preferences
whereas high school students eventually receive a timetable that reflects
their preferences.

The high school timetabler might be tempted to build information
from the conflict matrix into the objective function to make conflicts
suboptimal rather than infeasible but this turns out to be impossible.
Negative weights could be placed on two course sections with a large number
of conflicts except that the weighting coefficients would need to multiply the
product of the two course section variables. This is neither linear nor
separable and cannot be entered into or solved by a linear program.

A more viable approach would be to code conflict lines for all course
combinations that have non-zer:: 2ntries in the conflict matrix. If the linear
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programming procedure did not reach a feasible solution with this constraint
set, constraints could be removed successively for course combinations for
which the constraint matrix entries were the lowest until a feasible solution
was reached. In fact, the timetabler could make judgements about the unde-
sirability of a conflict based on information additional to that contained in
the conflict matrix and remove the constraints in a different order.

Conclusions

Linear programming is an effective and viable means of timetabling
at the university level. It alone among timetabling techniqus goes beyond
finding a merely feasible solution and locates, among the set of feasible
timetables, one that is optimal. Unfortunately, running linear programs
large enough to do non-trivial timetabling requires a mainframe computer or,
at least, a workstation. This will likely change as the line between
microcor: -11-Lters and workstations becomes blurred as a result of the more
powerful microprocessors and more sophisticated operating systems becoming
available for microcomputers. It can now be said that earlier concerns about
excessive amounts of computer time being required for timetabling with
linear programming no longer have any validity. A real disadvantage is the
fact that linear programming packages are not particularly easy to use and
generally require specialized knowledge of the user. This could be at least
partly avoided by a user friendly front end specifically aimed at university
timetabling. But such a front end does not now exist and the user is forced
to resort to custom programming. Nevertheless linear programming may
have a future in timetabling since timetabling is essentially linear and there
are real advantages to being able to locate optimal solutions.
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