ED 368 552
AUTHOR
TITLE
INSTITUTION
REPORT NO
PUB DATE

NOTE
PUB TYPE

EDRS PRICE

DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

SE 054 156
Bishop, Alan J.; And Others
Significant Influences on Children's Learning of
Mathematics. Science and Technology Education
Document Series, No. 47.
United Nations Educational, Scientific, and Cultural
Organization, Paris (France).
ED-93/Ws-20
93
102p.
Viewpoints (Opinion/Position Papers, Essays, etc.)
(120) -~ Collected Works - Serials (022)

MFQ1/PCO5 Plus Postage.

Community Influence; Cultural Context: Educational
Quality; Elementary Secondary Education}
*Instructional Materials; *Mathematics Education;
*Prior Learning; *Social Influences; Student
Experience; *Teacher Influence; Teacher Role
Mathematics Education Research; *Psychology of
Mathematics Education

This book is intended to bring to a wider audience

research concerned with the significant influences on the quality of
mathematics learning taking place in schools. The four essays are:
(1) "Influences From Society" (Alan Bishop); (2) "The Socio-cultural
Context of Mathematical Thinking: Research Findings and Educational
Implications" (Terezinha Nunes); (3) "The Influences of Teaching
Materials on the Learning of Mathematics" (Kathleen Hart); and (4)
"The Role of the Teacher in Children's Learning of Mathematics"
(Stephen Lerman). A list of references from the International Group
for the Psychology of Mathematics Education conference proccedings
contains 77 citations and a list of other references contains 194

citations.

e e e de vk e ve gk ke de o sl s ok sl e o o e de e ek ofe ke deode e o o ke o e ok e e e e ok e e ok ok o vk o o o e e de e e e ok o e o ke ok ke e e s ke

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
ededede ek o e e ok e Fe o K ko o ek e e e e e e e e e e e ke ke ke o e s e o ek e e e ok sk e ok ok ook ok




ED 368 552

Significant Influences
on Children's Learning
of Mathematics

R e —

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

h s .

., .
"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

2

U.S. DEPARTMENT OF EDUCATION
Oftice of Educational Rasearch and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

K Trus documant haa been reproduced s
received trom the person of organization
onginating o

[ Minor changes have been made to improve
reproduction quably

® Pointaof view or opinions stated in this docu-
ment do not necessariy represent ofhicial
OERI poation o pohcy

4

:
| B




GG -

No.

No.

Q

ERIC

Aruitoxt provided by Eic:

No.

No.

No.

No.

No.
No.

No.
No.

No.

No.
No.
No.

No.

No.

No.

No.

No.

No.

No.
No.

10

11
12
13

14

15

16

17

18

19

20
21

22

Science and Technology Education Documents Series (STEDS)

Glossary of Terms used in Science and Tachnology Educa-
tion. 1981 (English)

Methodologies for Relevant Skill Development in Biology
Education. 1982 (English)

Nutrition Education: Curriculum Planning and Selected Case
Studies. 1982 ( English) (Reprint in Nutrition Education Series
No. 4)

Technology Education as part of General Education. 1983
(English and French)

Nutriticn Education: Relevance and Future. 1982 (English)
Reprint in Nutrition Education Series, No. 5)

Chemistry Teaching and the Environment. 1983 (English)

Encouraging Girls into Science and Technology Education:
Some European Initiatives. (English)

Genetically-Based Biolc gical Technologies. 1984 (English)

Biological Systemes, Energy Sources and Biology Teaching.
1984 (English)

Ecology, Ecosystem Management and Biology Teaching.
1984 (Reprint 1986) (English)

Agriculture and Biology Teaching. 1984 (English)
Health Education and Biology Teaching. 13984 (English)

The Training of Primary Science Educators - A Workshop
Approach. 1985 (English)

L‘Economie sociale familiale dans le développement rural.
1984 (French)

Human Development and Evolution and Biology Teaching.
1985 (English)

Assessment: A Practical Guide to Improving the Quality and
Scope of Assessment Instruments. 1986 (English)

Practical Activities for Out-of-School Science and Technology
Education. 1986 (English)

The Social Relevance of Science and Technology Education.
1986 (English)

The Teaching of Science and Technology in an Interdisci-
plinary Context. 1988 (English)

Mathematics for All. 1986 (English, Spanish)

Science and Mathematics in the General Secondary School
in the Soviet Union. 1986 (English)

Leisure, Values & Biology Teaching. 1987 (English and
French)

No.
No.

No.

No.

No.

No.
No.

No.

No.

No.

No.
No.

No.
No.
No.
No.

No.
No.
No.
No.

No.
No.

No.
No.

23
24

25

26

27

28
29

30

31

32

33
34

35
36
37
38

39
40
41
42

43

45
46

Use of Sea and its Organisms. 1987 (English)

Innovations in Science and Mathematics Education in the
Soviet Union. 1987 (English)

Biology and Human Weifare. Case Studies in Teaching
Applied Biology. 1988 (English)

Sourcebook of Science Education Research in the
Caribbean. 1988 (English)

Pour un enseignement intégré de ia science et de la techno-
logie : trois modules. 1988 ( French)

Microbiological Technigues in School. 1988 (English)

Games and Toys in the Teaching of Science and Techno-
logy. 1988 (English, French)

Field Work in Ecology for Secondary Schools in Tropical
Countries. 1988 (Engiish, Arabic)

Educational Materials Linking Technology Teaching with
Science Education: Technology in Life. 1988 (English)

Evaluation and Assessment in Mathematics Education. 1989
(English)

Systems Thinking in Biology Education. 1989 (English)

Base Physique de I'¢lectronique dans I'enseignement secon-
daire ; module méthodologique. 1989 ( French)

Mathematics, Education and Society. 1989 (English)
Bibliography in Integrated Science Teaching. 1990 (English)
Educacién Matematica en las Américas VII. 1990 (Spanish)

The Teaching of Science and Technolo_y in an Interdisci-
plinary Context. 1990 (English)

Teaching Biotechnology in Schools. 1990 (English)
Electronics Teacher's Guide. 1991 (English)
Children, Health and Science. 1991 (English, French, Spanish)

Reuniones del Primer Congreso liberoamericano de Educa-
cién Matematica. 1992 (Spanish)

Educacién matematica en las Américas VIII. (Spanish)

The Influence of Computers and Informatics on Mathematics
and its Teaching. (English)

Physics Examinations for University Entrance. (English)

Education for Teaching Science and Mathematics in the
Primary School. (English)

Cover photos

Hh W N =

. Photo UNESCO/Paul Almasy
. Photo UNATIONS

. Photo UNESCO/D. Bahrman
. Photo rights reserved




Science and Technology Education

Document Series No. 47

SIGNIFICANT INFLUENCES
ON CHILDREN'S LEARNING OF MATHEMATICS

by

Alan J. Bishop
Kathleen Hart
Siephen Lerman
Terezinha Nunes

Education Sector

UNESCO

Paris, 1993
ED-33/WS-20

O




Table of Contents

Introduction

Influences from society
Alan ].Bishop

The socio-cultural context of mathematical thinking: research findings and
educational implications

Terezinha Nunes

The influences of teaching materials on the learning of mathematics
Kathleen Hart

The role of the teacher in children's learning of mathematics

Stephen Lerman

References in PME proceedings .

Other references

27

43

61

87

91



Introduction

Mathematics has become one of the most
important subjects in the school curriculum
during this century. As modern soceties have
increased in complexity and as that
complexity has accompanied rapid
technological development, so the teaching
of mathematics has come under increased
scrutiny.

Research in mathematics education
generally has also become more and more
important during that time, but has struggled
to keep up with the increasingly complex
questions asked of it. There was a time when
mathematics learning could be conceptualised
simply as the result of teaching the subject
called mathematics to a class of children in
the privacy of their classroom. As long as the
concerns were largely quantitative, such as
how to provide more mathematics teachers,
more mathematics classrooms, and more
mathematics teaching for more students, that
picture appeared to be adequate. We now
know that that simplistic picture will not
help in answering any of the significant
questions of recent decades which
predominantly concern the quality of the
mathematics learning achieved.

Of course it is the case that in many, or
even most, countries in the world, there are
still quantitative issues surrounding
mathematics learning. Indeed, in the
developing world there is often little
opportunity for the luxury of engaging with
subtle issues of quality in the face cof
horrendous quantitative problems of
educational provision. Nevertheless, as the
UNESCO publication Mathematics for all
showed (Damerow et al.,1984), one cannot
divorce the problems of mathematics
learning from the wider problems of society,
and thus there is every reason for all mathe-
matics educators to become aware of the
factors which have the potential to affect
the quality of mathematics learning taking
place in schools. This book is intended to help
bring to a wider audience research which
informs us about the significant influences on
that quality.

In particular, the authors have
identified four groups of influences which

appear to be of crucial importance for learners
of mathematics. Firstly there are the
demands, constraints and influences from the
society in which the mathematics learning is
taking place. These, in a sense, set the
knowledge and emotional context within
which the meaning and importance of
teaching and learning mathematics are
established. Recent research has
demonstrated that it no longer makes sense to
try to consider mathematics learning as
abstract and context-free, essentially because
the learner cannot be abstract or context-free.
The research problems centre on which of the
many societal aspects are of particular
significance, on how to study their influences,
and on what if anything to do about them.

The second set of influences concern the
knowledge, skills and understanding which
the learners develop outside the school
setting and which have significance for their
learning inside the school. This topic for
research has onlv developed relatively
recently, but its findings have surprised many
mathematics teachers with its implications
for their work. One of the great educational
challenges of the present time concerns how
school mathematics teaching should take
learners' out-of-school knowledge into
account.

The third set of influences on children's
learning of mathematics come from the
teaching materials and aids to learning in
the classroom. These have become more subtle
and varied - from the textbook to the
computer - and have increased in number and
importance considerably over the last
decades. In the face of such development, the
need for continuing research and analysis
concerning the significance of these influences
has become even more important.

The fourth and final influence is not a
new one at all - indeed it could be thought of
as the oldest influence on mathematics
learning - the teacher. Every learner can
quote the memory of a particularly
influential teacher, whether good or bad, and
every teacher knows the feeling of influence
which the position gives them. There has in
the last decade been a growth of interest in




research into the influence which teachers
can, and do, have on the mathematics
learners in their charge, and it is important
to bring these ideas to a wider audience.

The four authors have drawn on recently
published research which has been reported
in publications and at academic conferences,
but in particular, as we are all long-standing
members of the International Group for the
Psychology of Mathematics Education(PME),
we have made sustantial reference to ideas
which have developed within that context.
The major research strands of PME have been
fully documented in the following book:

Mathematics and cognition, edited by
Pearla Nesher and Jeremy Kilpatrick,
Cambridge University Press, Cambridge, 1990

under the headings of: epistemology, learning
early arithmetic, language, learning
geometry, learning algebra, and advanced
mathematical thinking. In addition, the

references at the back of this book are in two
sections - the first, to particular papers in
certain Proceedings of the annual conferences
of PME, which are referred to in the text as
(xxxx,PME,1988) and the second, to other
publications.

Interested colleagues can obtain copies of
the Proceedings of previous PME conferences
by writing to:

Alan 3Bell,

Shell Centre for Mathematics Education,
University of Nottingham,

Nottingham NG7 2RD,

UK.

We would like to record our thanks to
UNESCO for making this publication
possible, and to our many colleagues around
the world who share in the development and
communication of knowledge in this field.

Finally, we dedicate this book to learners
of mathematics everywhere.




Influences from Society

Alan ]. Bishop

Schools and individual learners exist within
socizties and in our concern to ensure the
maximal effectiveness of school mathematics
teaching, we often ignore the educational
influence of other aspects of living within a
particular society. It is indeed tempting for
mathematics educators particularly to view
the task of developing mathematics teaching
within their particular society as being
similar to that of colleagues eisewhere,
largely because of their shared beliefs about
the nature of mathematical ideas. In reality
such tasks cannot deal with mathematics
teaching as if it is separable from the
economic, cultural and political context of the
society. Any analyses which are to have any
chance of improving mathematics teaching
must deal with the people - parents,
teachers, employers, Government officials
etc. - and must take into account the
prevailing attitudes, beliefs, and aspirations
of the people in that society. The failure of
the New Math revolution in the 60’s and the
early 70’s was a good example of this
phenomenon (see Damerow and Westbury,
1984).

It is thercfore my task in this first
chapter to explore those aspects of societies
which may exert particular influences on
mathematics learning. These may happen
either intentionally or unintentionally.
Societies establish educational institutions
for intentional rcasons - and formal
mathematics education is directly shaped
and influenced by those institutions in
different ways in different societies.
Additionally, a society is also composed of
individuals, groups and institutions, which
do not have any formal or intentional
responsibility for mathematics learning.
They may nevertheless frame expectations
and beliefs, foster certain values and
abilities, and offer opportunities and images,
which will undoubtedly affect the ways
mathematics is viewed, understood and
ultimately learnt by individual learners.

Coombs (1985) gives us a useful
framework here. In discussing various 'crises
in education' he argues that education should
be considered as a very broad phenomenon,

rather than being a narrow one, and that
there are different kinds of education. In his
work he separates Formal Education (FE)
from Non-formal Education (NFE), and
Informal Education (IFE).

Formal Education, he says, "generally
involves full-time, sequential study
extending over a period of years, within the
framework of a relat’vely fixed curriculum”
and is "in principle, a coherent, integrated
system, (which) lends itself to centralized
planning, management and financing" (p.24),
and is essentially intended for all young

people in society.

In contrast NFE covers "any organised,
systematic, educational activity, carried on
outside the framework of the formal system,
to provide selected types of learning to
particular subgroups in the population, adults
as well as children" (p.23). In contrast to FE,
NFE programs “tend to be part-time and of
shorter duration, to focus on more limited,
specific, practical types of knowledge and
skills of fairly immediate utility to
particular learners" (p.24).

Finally IFE refers to "The life-long
process by which every person acquires and
accumulates knowledge, skills, attitudes and
insight from daily experiences and exposure
to the environment.... Generally informal
education is unorganized, unsystematic and
even unintentional at times, yet it accounts for
the great bulk of any person's total lifetime
learning - including that of even a highly
'schooled’ person" (p.24).

We shall organise this chapter’s
contribution around these three different
kinds of education, looking varticularly at
the influences from society on the three kinds
of mathematical education. Finally there
will be a discussion of some of the significant
implications which result from this analysis.

Societal influences through formal mathe-
matics education (FME)

It seems initially obvious that any society
influences mathematics learning through the
formal and institutional structures which it
intentionally establishes for this purpose.




Paradoxically, at another level of thinking
it will not be clear to many people just what
influence any particular society could have
on its mathematics learners, in terms of how
this will differ from that which any other
society might have. Indeed, mathematics
and possibly science have, I suspect, been the
only school subjects assumed by many people
to be relatively unaffected by the society in
which the learning takes place. Whereas for
the tcaching of the language(s) of that
society, or its histcry and geography, its art
and crafts, its literature and music, its moral
and social customs, which all would probably
agree should be considered specific to that
society, mathematics (and science) has been
considered universal, generalised, and
therefore in some way necessarily the same
from society to society. So, is this a tenable
view? What evidence is there?

The formal! influences on the
mathematical lcarners will come through
four main agents - the intended mathematics
curriculum, the examination and assessment
structures, the teachers and their tecaching
methods, and the learning materials and
resources available. The last two aspects
which are part of the implemented
curriculum (Travers and Westbury, 1989) will
be specifically considered in the final two
chapters of this book and therefore I will
concentrate here on the first two, the
intended mathematics curriculum, and the
examinations.

The intended mathematics curriculum

If we consider the mathematics curricula in
different countries, our first observation will
be that they do appear to be remarkably
similar across the world. Howson and Wilson
(1986) talk of the “canonical curriculum”
(p.19) which appears to exist in many
countries. They describe “the familiar school
mathematics curriculum (which) was
developed in a particular historical and
cultural context, that of Western Europe in
the aftermath of the Industrial Revolution”.
They point out that “In recent decades, what
was once provided for the few has now been
made available to - indeed, forced apon - all.
Furthermore, this same curriculum has Yeen
exported, and to a large extent voluntarily
retained, by other countries across the world.
The result is an astonishing uniformity of
school mathematics curricula world-wide”

(p.8).

This fact has made it possible to conduct
large-scale multi-country surveys and
comparisons of mathematical knowledge,
skills and understanding such as those by the
International Association for Education
Achievement (IEA) whereas such com-
parisons would probably be unthinkable in a
subject like history. Indeed, one of the main
rescarch issues in the Second International
Mathematics Survey (SIMS) was whether
the 'same’ mathematics curricula were being
compared (see Travers and Westbury, 1989).
Some idea of the extent of the agreements
found can be gained from Table 1 (below)
which shows the relative importance
accorded by different countries to potential
topics and behavioural categories to be
included in the Population A (13 year olds)
assessment. Travers and Westbury concluded
from their further analysis of the data
concerning Table 1 that “The only topic for
which there appears to be a substantial
problem of mismatch is Geometry. Indeed a
major finding of the Study proved to be the
great diversity of curricula in geometry for
Population A around the world” (p.32).

It could be argued that such international
survays, and the comparative achievement
data they generate, encourage the idea that
the mathemarics curricula in different
countries should be the same, particularly
when, as in this case, they are seeking the
highest common factors of similarity. At the
very least, this approach could well lead to
mathematics educators in many countries
anxiously looking over their shoulders at
their collcagues in other counties to see what
their latest curricular trends are. One
wonders what would result from a research
study which sought to find the differences
between mathematics curricula existing in
different countries. I suspect we might well
find a different picture from that portrayed
in Table 1. The recent book by Howson (1991)
which documents the mathematics curricula
in 14 countries, is therefore a welcome
addition to our sources.

Indeed socicties may well not only
influence the national intended curriculum in
ways in which SIMS would not reveal, but
may also influence the intended curriculum at
more local ievels.




Table 1

Behavioral Categories*

m Flowcharts and programming
112 Real numbers

Computation
Comprehension
Application
Content topics Analysis
0co Arithmetic
001 Natural numbers and whole numbers vV VvV Vv 1
002 Common fractions v v 1 I
003 Decimal fractions v Vv Vv 1
004 Ratio, proportion, percentage v Vv 1 I
005 Number theory I I -
006 Powers and exponents I 1 - -
007 Other numeration systems - - - -
008 Square roots I I - -
009 Dimensional analysis I I - -
100 Algebra

101 Integers v v 1 I
102 Rationals I I I I
103 Integer exponents s - . -
104 Formulas and algebraic expressions I I I I
105 Polynomials and rational expressions I s - -
106 Equations and inequations (inear only) v I I B
107 Relations and functions I I 1 -
108 Systems of linear equations - - - -
109 Finite systems - - - -
110 Finite sets I I I -

200 Geometry

201 Classification of plane figures 1 v 1 Is
202 Properties of plane figures I v 1 I
203 Congruence of plane figures 1 ] I Is
204 Similarity of plane figures I I I Is
205 Geometric constructions s s s -
206 Pythagorean triangles Is Ik I -
207 Coordinates 1 1 I Is
208 Simple deductions Is 1 1 I
209 Informal transformations in geometry 1 I 1 -
210 Relationships between lines and

planes in space - - -
21 Solids (symmetry properties) k5 b Ik -
212 Spatial visualization and

representation - s Ik -
213 Orlentation (spatial) - - -
214 Decomposition of figures - - - -
215 ‘I'ransformational geometry Is I I

300 Statistics

301 Data collection Is 1 I -
302 Organization of data 1 I I Is
33 Representation of data I 1 1 Is
304 Interpretation of data (mean,

median, mode) 1 I I -
305 LCombinatoric - - - -
306 Outcomes, sample spaces and events Is - - -
307 Counting of sets, P(AB), P(AB),

independent events - - - -
308 Mutually exclusive events - - - -
309 Complementary events - - - -

400 Measurement

401 Standard units of measure v VvV VvV .
402 Estimation 1 1 I -
403 Approximation I I I -
404 Determination of measures:

areas, volumas, etc. v v I I

*Rating scale: V = very important; I - important; Is - important for some systems.
A dash () = notimportant.

) -
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Moreover in the SIMS study there were
striking differences between the intended and
the implemented curricula in various
countries, and also striking variations in the
latter within national systems. Some of that
variation could undoubtedly be due to local
intended variations: “With the significant
exception of Japan, all systems have
relatively high indices of diversity and it
may be that such diversity is a reflection of
the responses that teachers make to the
overall variations of rcadiness for Algebra
that they find at this level” (Travers and
Westbury, 1989, p.131).

It is well known that the intended
mathematics curricula certainly do vary
between schools in differentiated systems,
i.c. where there is not a comprchensive
(single) school structure. In some highly
differentiated systems in W.Europe for
example the grammar school, the gymnasium
and *he lycée have very different curricula
fromn the other schools in those systems. The
SIMS study showed (Travers and Westbury,
1989) the following data which gives the
‘Opportunity to Learn’ figures for Arithmetic
and Algebra in the different sectors of the
differentiated systems in Finland,
Netherlands and Sweden (Opportunity to
Learn is a % mcasure of the availability of
that topic in the curriculum).

Arithmetic Algebra
median median
Finland
Long course 74 73
Short course 74 67
Netherlands
VWO/HAVO 87 83
MAVO 83 80
LTO 74 53
LHNO 70 47
Sweden
Advanced 70 57
General 61 25

As an cxample of how such curricular
differentiation can influence performance, a
Hungarian study (Klein and Habermann,
PME, 1988) produced the following data:

Type of school and curriculum Mean test score

Grammar schools
Curriculum “Mathematics 117
(special) 13.41

Grammar schools
Curriculum “Mathematics I’
(special) 8.68

Specialised vocational secondary
schools (SVSS) Curriculum F

(Direction Computing services) 6.03
Grammar schools
Basic curriculum 541

SVSS Curriculum group A/B/E
(Direction Industrial and

agricultural professions) 4.87
SVSS Curriculum C (Direction Health

and medical professions) 3.39
SVSS Curriculum D (Direction

Kindergarten nursing) 266

There is however little evidence that the
different curricula operating within national
systems are anything other than merely sub-
sets of the ‘total’ national curriculum. One
reads phrases like “watered-down”, “simpler
version” etc. which suggest that different-
iated systems will tend towards what Keitel
(1986) says was the situation “in England now
at the sccondary level: a sophisticated,
highly demanding mathematics course for
those who continue their studies, and next to
nothing for the rest” (p.32). The different-
jated mathematics curriculum thereby
reflects the differentiation which the society
appears to want, and which it secks to
perpetuate through its formal educational
structures.

In fact there is no a priori reason at all
why mathematics curricula should be the
same in all countries. Mathematics in schnols
can be considered in similar ways to art,
history, and religion, where there is no
necessity for curricula to be the same in
different socicties. We now know, from the
cthnomathematics research literature which
has been gathered in the last twenty vears,
about the enormous range of mathematical
techniques and ideas which have been
devised in all parts of the world {(see Ascher,
1991). We have evidence from all continents
and all socictics of symbolic systems of
arithmetical and geometrical natures
devised to help humans extend their
activities within the physical and social
environments that have grown to be ever more
complex. From the Incas with their quipus to
help with their accounting (Ascher and
Ascher, 1981), to the Chinese with their
detailed geomantic knowledge for designing
cities (Ronan, 1981), or from the Igbo's
sophisticated counting system (Zaslavsky,
1973) to the Aboriginal Australian's supreme
spatial and locational sense (Lewis, 1976) the
known world is full of examples of rich and
varied indigenous mathe-matical knowledge
systems.

1i




So the question needs to be asked: Where
does the expectation of a universal
mathematics curriculum come from? Of course
we would expect there to be recognisable
similaritics, as Travers and Westbury show,
just as we recognise similarities between the
curricula of other subjects across different
socictics. But recognising similarities is
totally different from expecting universality.
In part the expectation derives from the fact
that countries and socicties are not isolated;
there is much inter-socictal comrmurnication
and there has been for many centuries.

Socicties influence the intended
mathematics curriculum in most countrics
through certain nationally or regionally
structured organisations. In the case of strong
centralized governments the curriculum will
be the responsibility of the education
ministry, while in more decentralized
systems such as the USA, Australia and
Canada the power for deciding on the
intended curriculum rests with the state or
local government. For example, in the United
Kingdom the present government has recently

instituted a national curriculum, a.

development in which the highly political
nature of national curricular decision-making
has been rather obviously demonstrated. We
have thercfore seen the typical political
pressure groups being very active - the 'back
to basics' groups led by traditionalists
amongst the employers and the government,
the tecachers and educators concerned about
the erosion of their influence by the central
government's ‘interference’, the more
progressive industrialists who want to ensure
that school leavers can compete with the
'best of the rest of Europe', allied with
parents whose genuine concerns about their
children's futures are coloured by lurid media
reporting about the poor comparative
performance by UK pupils in various (and
someatimes suspect) international surveys.

Governments, education civil servants,
political academics and others with
educational power are thus nowadays very
aware of what is happening in other
countries because they feel that they have to
be. The competitive economic and political
cthic demands it. International conferences,
‘expert’ visits, exchanges, articles, books and
reports, all enable ideas from one country to
be available to others. But there is more to it
than mere communication however.

The expectation of a wuniversal
mathematics curriculum has another basis.
As well as communication, there has been
gradual acculturation by dominant cultures,
there has been the assimilation of new idcas
believed to be more important than
traditional ones, and there has also been
cultural imperialism, practised of course on a
large scale by colonial govarnments (sce
Bishop, 1990 and Clements, 1989). There has
in particular been the widespread
developiaent of a belief in the desirability of
technological and industrial growth.
Underlying this technological revolution has
been the mathematics of decontextualised
abstraction, the mathematics of system and
structure, the mathematics of logic,
rationality and proof, and therefore the
mathematics of universal applicability, of
prediction and control.

What we have witnessed during the last
two centurics is nothing less than the growth
of a new cultural form, which can be thought
of as a Mathematico-Technological (MT)
culture (sce Bishop, 1988). The growth of the
idea of universally applicable mathematics
has gone hand-in-hand with the growth of
universally applicable technology.
Developments within each have fed the
other, and with the invention and increased
sophistication of computers, the nexus is truly
forged.

It is difficult sometimes to understand the
extent of the influence of this MT culture, so
firmly embedded has it become in modern
socicties' activities, structures and thinking.
We now are in danger of taking the ideas and
values of universally applicable mathe-
matics so much for granted that we fail to
notic~ them, or to question them, or to see the
possibility of developing alternatives. The
acceptance of wuniversally applicable
mathematics has had a particularly pro-
found impact on mathematics curricula in all
countries and in all societics. The impetus to
become ever more industrialised and
technologically developed in the so-called
“under-developed” countries has been under-
pinned by the belief in the importance of
adopting the mathematics and science
curricula of the more - industrialised
societies. It is the belief in the power of the
ideas of universally applicable mathematics
which has created the expectation of the
universal mathematics curriculum.
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So, all around the world, in societies
with different economic structures (see Dawe,
1989), in societies with different political
structures (see Swetz, 1978), and in societies
with different religious bases (see Jurdak,
1989), learners find themselves grappling, not
always successfully, with the intricacies of
arithmetical algorithms, algebraic symbol-
isations, geometrical theorems. Later on, if
they pass the required examinations, they
meet infinitesimal calculus, abstract alge-
braic structures, other geometries and appli-
cable mathematics.

Moreover, until perhaps ten years ago,
this situation was largely unquestioned. Now
it is being seriously challenged from various
quarters and we can see different groups
within societies trying to exert rather
different influences on their school curricula.
The major challenges which we can identify
so [ar concern the irrelevance of an indust-
rialised and technological cultural basis for
the curriculum in predominantly rural
societies, and’ the rise of computer education
in industrialised societies.

The first of these challenges comes
principally from within societies having a
predominantly rural economy. The growth of
the awareness of the economic and societal
bases of much of the universal mathematics
curriculum has not been as clear as the
development of 'intermediate technology' or
‘appropriate technology' in many of these
countries. However we can now begin to
recognise a desire for a more relevant school
curriculurm which is leading mathematics
.educators in those countries to search for a
more 'appropriate mathematics' curriculum.
Desmond Broomes, in Jamaica, is a mathe-
matics educator responding to this perceived
concern in the rural society of the West
Indies, and his ideas represent this view
well. In Broomes (1981) he argues that:

“Developing countries and rural
communities have, therefore, to re-
examine the curriculum (its objectives
and its content). The major problem is to
ruralize the curriculum. This does not
mean the inclusion of agriculture as
another subject on the programme of
schools. Ruralizing the curriculum
means inculcating appropriate social
attitudes for living and working together
in rural communities. Ruralizing the
curticulum must produce good farmers,
but it must also produce persons who
would co-operatively become economic

com-munities as well as social and educ-
ational communities.” (p.49)

In Broomes and Kuperus (1983) this
approach means developing activities
which:

“a) bring the curriculum of schools
closer to the activities of com-munity
life and to the needs and aspirations
of individuals;

b) integrate educational institutions,
vertically and horizontally, into the
community so that outputs of such
institutions are better adapted to the
lifeand work in the com-munity;

o) redistribute teaching in space, time,
and form and so include in the
education process certain living
experiences that are found in the
community and in the lives of
persons;

d) broaden the curriculum of schools so
that it includes, in a meaningful way,
socioeconomic, technical and
practical knowledge and skills, that
is, activities that allow persons to
combine mental and manual skills to
create and maintain and promote
self-sufficiency as members of their
community.” (p.710)

In implementing this strategy, according
to Broomes (1989) the teacher should pose
problems to the learner and these problems
should:

- "be replete with the cultural
experiences of the learner;

- be, for the most part but not solely,
practical and utilitarian;

- lllustrate mathematics in use;

- be capable of being tackled
profitably using mathematics;

- not make excessive mathematical
demands (in terms of the learner’s
level of mathematical
sophistication);

- provide ample scope for cooperative
activity among persons at different
levels of mathematics
competence.” (p.20)

We can find some of these same
sentiments shared by educators in parts of
Africa, in Southern Asia, in Papua New
Guinea and in rural parts of South America
and Australia. In some of these countries
there is a particularly strong desire to
represent the growth of indigenous cultural
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awareness through the mathematics
curriculum. That is, what we are seeing is not
just a rejection of the MT culture which
underlies the 'universal' curriculum and
underpins modern industrialised societies, but
a replacement of that cultural ideology with
a rediscovered, indigenous, cultural heritage.
Gerdes (1985) in Mozambique and Fasheh
(1989), the Palestinian educator, are
particularly eloquent in expressing this
perspective on the mathematics curriculum,
and Nebres (1988) is also adamant about its
importance. The new mathematics textbooks
in Mozambique, for example, perhaps
demonstrate more than any other country's
do, just how one can reconstruct the
mathematical curriculum within a rural and
non-western society.

What is most significant from this kind
of curricular activity is not, however, the
particular mathematics curriculum
developed in any one country, but rather the
richer understanding which we can all now
share that it is possible, and probably
desirable in certain situations, to construct
and implement alternatives to the canonical
universal curriculum. These developments
encourage mathematics educators
everywhere to explore ways in which the
curriculum can become a more responsive and
appropriate agent in the mathematics
education of the socicty's learners. The time
has passed when it was considered sensible to
merely import another society's curriculum
into one's own society. It is however sensible
to 'import' the idea of an alternative
mathematics curriculum, as well as the kind
of background research necessary to identify
the appropriate bases, the strategies for
development, and the approaches to
implementation. From a rural society’s
perspective, of course, these ideas and
approaches would be most likely to be found
in other rural societies.

The second rajor challenge to the myth
of the universal mathematics curriculum is,
paradoxically perhaps, coming from within
industrialised societies themselves, as
computer technology grows in its range of
influence. Thc justification for much of the
existence of particular topics in the
mathematics curriculum came from their
assumed uscfulness, both to the individuals
and to society as a whole. This was similar to
the justification which lay the behind the
'back to basics' movement spearheaded by
industrialists and governments who were

reacting to the uselessness, as they and many
parents saw it, of the New Math of the
previous generation. However the validity
and relevance of this 'utility’ argument is
now being seriously disputed within
mathematics education as it becomes clear
that computers and calculators can take over
many of the previously needed skills.

Howson and Wilson (1986) describe some
of the features of the new curricular situation
brought about by computers:

“a) algorithms

Algorithmic processes lie at the heart
of mathematics and always have
done. Now, however, there is a new
emphasis on algorithmic methods
and on comparing the efficacy of
different algorithms fer solving the
same problem e.g. sorting names
into alphabetical order or inverting a
matrix.

b) Discrete mathematics

Computers are essentially discrete
machines and the mathematics that
is needed to describe their functions
and develop the software needed to
use them is also discrete. As a result,
interest in discrete mathematics -
Boolean algebra, difference
equations, graph theory, ... - has
increased enormously in recent
years: so much so that the traditional
emphasis given to the calculus, both
at school and university, has becn
called into question.

¢) Symbolic manipulation

The possibility of using the computer
to manipulate symbols rather than
numbers was envisaged in the early
days of computing. Now, however,
software is available for micros which
will effectively carry out all the
calculus techniques taught at school
- differentiation, integration by parts
and by substitution, expansion in
power series - and will deal with
much of the polynomial algebra
taught there also. Is it still necessary
to teach students to do what can be
done on a computer?” (p.69).

Fey (1988) concurs with these views and
summarises the situation thus:

“The most prominent technology-
motivated suggestions for change in
content/process goals focuses on
decreasing attention to those aspects of
mathematical work that are readily done




by machines, and increasing emphasis
on the conceptual thinking and planning
required in any ‘tool environment’.
Another family of content
recommendations focus on ways to
enhance and extend the current
curriculum to mathematical ideas and
applications of greater complexity than
those accessible to most students via
traditional methods. I distinguish:

Numerical comput-ation,

Graphic computation,

Symbolic computation,

Multiple representations of
information,

5. Programming and the connections of
Computer Science with Mathematics
curricula,

6. Artificial intelligences and machine
tutors.” (p.235)

It is not just the topics within the
curriculum which are being questioned or
proposed, the whole purpose and aims of
mathematics education are now under
scrutiny. Dorfler and McLone (1986) present
us with the following argument:

N

“The dilemma for mathematical
educators in considering the place of
mathematics in the school curriculum
can be described thus. On the one hand,
the increased technological demands of
society and the development of science
require highly trained mathematicians
who can apply themselves to a variety of
problems; they also require professional
scientists, engineers and others to have a
greater acquaintance with and
competence in mathematical technique.
In addition, whilst the increased use of
computational aids is likely to lead to less
demand for routine mathematical skill
from the general workforce, a larger
number of technical managers will be
nceded who can interpret the use of
these computa-tional aids for general
application. On the other hand the basic
mathematical requirement for
employment is unlikely to grow beyond
general arithmetic skill (often with the aid
of calculator) and the interpretation of
charts, tables, graphs, etc.; indeed, not
much beyond the needs of everyday life
mentioned earlier in this section.

Arguments for school mathematics
based on its ability to develop powers of
logical thinking do not provide sufficient
justification as it cannot be clearly shown
that such powers are uniquely developed
through the study of mathematics” (p.57).
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Keitel (1986) argues the same thing from
another point of view. She is concerned in
that paper with the ‘social needs’ argument
for mathematics teaching;:

"By ‘social needs’ demands I understand
here the pressures urging school
mathematics to comply with the needs
for certain skills and abilities required in
social practice. Mathematics education
should qualify the students in
mathematical skills and abilities so that
they «can apply mathematics
appropriately and correctly in the
concrete problem situations they may
encounter in their lives and work.
Conversely, sccial usefulness has been
the strongest argument in favour of
mathematics as a school discipline, and
the prerequisite to assigning
mathematics a highly selective function
in the school system.” (p.27)

She argues in her paper that computer
education is now taking over this argument
from mathematics education, and that this
should release mathematics education from
that demand. We need therefore to consider
just what the intentions of future
mathematics curricula should be. Should
mathematics not continue to be a core subject
within the school curriculum, but become
optional? Should it become more of a critical
and politically informed subject serving the
needs of a concerned society faced with an
environmental holocaust? Should it become
more of a vehicle for developing democratic
values?

These kinds of curricular debates
demonstrate that if we wish to take society's
influences on mathematical learning
seriously then academic considerations and
criteria are not sufficient. In modern
industrialised societies mathematics is so
decply embedded in the cultural, economic
and knowledge fabric of that society that the
mathematics curriculum must also reflect the
political, economic and social concerns of that
society.

Sociologists concerned with education
have long argued about the relationships
between educational practices and societal
structures. Bowles and Gintis (1976) for
example argued that the evidence showed
that education, rather than eradicating
social inequality (one of the aspirations of
education in a democracy), tends to reinforce
it. Giroux (1983) however demonstrated that
although schools are tied to particular social
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features of the society in which they exist,
they can also be places for "emancipatory
teaching”. Bourdieu (1973) distinguishes
cultural reproduction from social
reproduction, and argues that the first is
what is mainly transmitted by the home and
the school, with the curriculum and the
examinations as the principle instruments for
cultural reproduction. '

There is however little dispute that the
intended mathematics curriculum is an
important vehicle for the induction and
socialisation of young people into their
culture and their society, and as such it tends
to reproduce and reinforce the complex of
values which are of significance in that
society. It is only recently however that such
social and political values within the
mathematics curriculum have been recognised
and discussed (see, for example, Mellin-
Olsen, 1987; Bishop1988; Frankenstein, 1989).
Hitherto, mathematics, due to the
assumptions of universality, was thought to
be reutral - i.e.. culture-free, societally-free
and value-free. That stance is now no longer
valid and those who work in mathematics
education everywhere need to recognise the
importance of revealing and debating the
values aspects of the curriculum which have
been largely implicit for many years. Some
years ago Swetz (1978) made us aware of some
features of the political embeddedness of
mathematics education in certain socialist
counties, but more recent developments by
other researchers are provoking mathematics
educators in many other non-socialist
countries to consider just how their
mathematics curriculum should respond to
these different concerns within their
particular societies (see, for example, the
writings of several people in Keitel et al,,
1989). Thus we can see from all these diverse
developments that the concept of the
universal mathematics curriculum is losing its
credibility both in theory and in practice.
The intended mathematics curriculum has
also been shown to be a vehicle capable of
responding to the political and social needs of
society.

It has therefore become an object of
serious political concern itself - a state of
affairs often deplored by many
mathematicians. In a sense though this was
to be expected. Any subject which becomes as
important as mathematics has become in
society, cannot be immune to the different
pressure groups within that society. The

mathematics curriculum is clearly far too
important an instrument to be determined by
mathematicians alone. Whether it can be as
responsive as it needs to be, to accommodate
all the influences from society, is however a
moot point, and is one which will be taken up
in the final section of this chapter.

The examinations

The second major influence from society on the
mathematics learners comes through the
formal examinations, and the examination
system. The examinations seem to the
learners to define operationally what is-to be
required of them as a result of their
mathematical education ~ no matter what
their teachers, parents, and other formal and
inform.al educators may say to the contrary.
The old adage 'education is what remains
with you after you've forgotten everything
you learnt at school' may have a certain
amount of truth in it, but the fact is that any
learner on any formal educational course will
be acutely aware of the essential demands of
their particular forthcoming examination, or
assessment, In particular, as the
examinations operationalise the significant
components of the intended mathematics
curriculum, so they tend to determine the
implemented curriculum.

Just as was the case with the idea of the
universal mathematics curriculum, so it is
with mathematics examinations - they look
very similar from country to country. As long
as there existed international consensus about
the content of the intended curriculum, it also
scemed sensible to have similar
examinations. There are however variations
between countries, and although there has
been no systematic research into the variety
of examination practices around the world, it
appears that the following represent the
major aspects of difference:

- proportion of short to long examination
questions. Some education systems
emphasise short questions more, and may
cast them in a multiple-choice format,
while others prefer long questions to
predominate. The issue seems to relate to
how large the content sample is for the
examination - short questions allow a
greater sampling, long questions less;

- proportion of ‘content’ to ‘process’
questions. This relates to the previous
aspect, but refers essentially to whether
the examination is intended for the




assessment of knowledge and skills
which have been ‘covered’ in the
teaching, or for the assessment of
processes which are assumed to have been
developed;

- extent of teacher role in the examination
process. Some systems merely expect the
teacher to be the administrator of the
examinations produced by ‘outsiders’,
while others take the view that the
teacher’s assessment is a key part of the
examination process. In the latter case
there will be more of a moderating role
played by ‘outsiders’;

- proportion of oral and practical work
included in the examination. In some
systems the examinations are entirely
written, whilst in others practical
materials will be available and in others
pupils will give their answers mainly
orally.

- amount of examined work completed
during the course of teaching, rather than
in a final ‘paper’. As more process aspects
of mathematics teaching are
emphasised, so the final paper has
decreased in importance;

- extent of pupil choice. In some
examinations all questions and papers are
compulsory, while in others there are
choices to be exercised by the candidates.
Such choices allow pupils to emphasise
their strengths and minimise their
weaknesses thereby allowing pupils to
show what they know rather than what
they don’t know. Individual attributes
are valued by some societies more than by
others;

- the extent to which the examination is
norm-referenced or criterion-referenced.
While all examinations inevitably
contain both aspects, the emphasis is a
matter of decision, and relates
particularly to the underlying purpose of
the assessment.

Thus even within the framework of the
canonical universalist mathematics
curriculum there can be marked variations in
examination content, procedure and
emphasis, related to the particular goals of
the society and to the societal demands being
made of the assessment.

Moreover as the development of
alternative curricula increases so we can
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expect to see yet more different problems and
tasks presented, and different issues raised,
and these may well enter the formal
examination structure and process. When this
happens, it is likely to be a politically
sensitive matter, as was demonstrated by an
incident in a recent public mathematics
examination in the UK. In 1986, candidates in
one examination for 16 year olds were
presented with some information on military
spending in the world, which was compared
with a statement from a journal (New
Internationalist) that "The money required to
provide adequate food, water, education,
health and housing for everyone in the world
has been estimated at $17 billion a year".
The candidates were asked "How many
weeks of NATO and Warsaw Pact military
spending would be enough to pay for this?
(show all your working)". The outcry from
the national newspapers and from society's
establishment was remarkable, with one
headline asking "What has arms spending to
do with a maths exam?"(Daily Mail, 14 june,
1986) and public correspondence on this issue
continued for some time, illustrating well the
societal controls felt to be important on the
examinations and the examination system.

Here we are of course talking about
summative, rather than formative
assessment. Society has little interest in the
latter, seeing it as merely a part of the
teaching process. Summative assessment,
however, usually in the form of an
examination, is very much felt to be society's
concern and various tensions can be seen to
exist in all socictics over the formal school
examinations. These tensions scem to be
particularly sharply defined in mathematics
education perhaps because mathematics
itself can appear to be a sharply definable
subject, but also because of its role in selection
for future education or careers.

A major tension is between examinations
as indicators of educational achievement,
and as instruments for academic control. Ina
school subject like mathematics, in which
there is much belief in the importance of the
logical sequences within mathematics itself,
the prevailing image projected by the
curriculum is of a strongly hierarchical subject
- certain topics must necessarily precede
others. With such an image, academic
progression and control can be felt to be
tightly determined, with, for example,
performance at one level being seen to be
achieved before the next topics in the logical
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sequence can be attempted. This image
controls much of the current practice in
mathematical assessment, with only those
who have demonstrated mastery of the
required knowledge being allowed access to
higher level learning in the subject. It is an
image which is favoured by many academic
mathematicians, and by those 'meritocratic’
traditionalists amongst employers, parents,
and government officials.

In contrast to this image is the belief that
the examinations should as far as possible
enable the learners to demonstrate what they
personally have learnt as a result of their
mathematical education. A consequence of
this belief is that, given the variety of
school learning contexts for mathematics, the
variety of teachers and materials influencing
learners, and the variety amongst the
learners themselves, the examinations
should be as broadly permissive as possible.
As well as perhaps including what might be
called standard mathematical questions, the
learners should, therefore, be allowed to
submit projects, investigations, essays,
computer programs, models and other
materials, and to be assessed orally as well
as in written form. All of these types of
assessment do exist in different countries as I
have suggested, but their acceptance in an
examination system by a society depends
strongly on beliefs concerning educational
access, the recognition and celebration of
individual differences, and the
encouragement of individual development
through a broad mathematical education.

Under this view, there is no necessary
reason why examinations in mathematics at
school should be the same from one society to
another. Each society makes its choice for its
own political, educational and social reasons.
This view terds to have strongest support
amongst the more progressive educators,
parents, and politicians of a more socially
democratic persuasion. It is a view which
also seems to be gaining strength as 'personal
technology’ - hand-held calculators of
increasing sophistication, and personal
computers - becomes broadly accepted within
mathematics teaching. Personal technology
has negated many of the traditional logical
sequences thought to be so essential to
mathematical development e.g. calculators
are challenging the ideas of sequencing of
arithmetic learning, and symbolic
manipulation computer software is doing the
same for algebra and calculus as we have

seen. In addition, personal graphic
calculators can now present geometrical
displays which are forcing mathematics
educators to rethink the orders of geometrical
and graphical constructions. Educationally,
these personal technologies are putting so
much potential mathematical power in the
hands of individual learners that developing
and examining individual, and particularly
creative, talents becomes much more of a
general possibility. As the range of
possibilities of mathematical activities
increases so the necessary ordering of
mathematical mastery becomes less clear and
the former view becomes less tenable.

In the debate between these two views,
one suspects that what is really at stake is
the more fundamental issue of social control
versus educational opportunity, and the role
which examinations and the examination

~ systems play in this political struggle. In all

industrialised and developing countries,
access to the higher and further levels of
education is not just academically controlled
but is socially controlled as well. The
established social order within any society
has a vested interest in controlling mobility
within that society and academic
educational control is an increasingly
powerful vehicle for achieving this (see
Giroux, 1983 for a lucid discussion of writings
on this issue).

Moreover academic control, through the
use of mathematical examinations is a
particularly well-known phenomenon. It
happens throughout Europe, for example, and
in many other countries. Revuz (1978)
described the phenomenon (mainly from the
French perspective) in these terms:

“Moreover, the quite proper demand for
the wide dissemination of a fundamental
mathematical culture has boomeranged,
and been transformed into a multiplicity
of mathematical hurdles at the point of
entry into various professions and
training courses. A student teacher is
regarded as of more or less value in
accordance with his level in mathematics.
Subject choices which make good sense
in terms of their relevance to various jobs
have been reduced to the level of being
‘suitable only for pupils who are not
strong enough in mathematics’; instead
of attracting pupils by their intrinsic
interest, they collect only those who could
not follow, or who were not thought
capable of following, a richer programme
in mathematics. Success in mathematics
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has become the quasi-unique criterion
for the career choices and the selection of
pupils. Apologists for the spread of
mathematical culture have no cause to
rejoice at this; this unhealthy prestige has
effects diametrically opposed to those
which they wish for.

The cause of this phenomenon is
undoubtedly the need of our society, as at
present constituted, to try to reproduce a
selective system which runs counter to
attempts at democratisation which are
going on simultaneously. Latin having
surrendered its role as a social
discriminator, mathematics was
summoned involuntarily to assume it. It
allowed objective assessment to be made
of pupils’ ability, and it seemed, amidst
the upheaval of secondary education in
general, to be one of the subjects which
knew how to reform itself, which stood
firm and whose usefulness (ill
understood, truth to tell) was widely
proclaimed.” (p.177, translated by
D.Quadling)

A similar perspective on the phenomenon
is offered by Howson and Mellin-Olsen
(1986). They say:

”Mathematics, as we have written earlier,
enjoys a high status within society at
large. This may be due in part to its
‘difficulty’ and its utility, but it has also
been argued by sociologists, such as
Weber (1952) and Young (1971), that its
status is also due to the way in which it
can be ‘objectively assessed’. The public,
rightly or wrongly, has faith in the way in
which mathematics is examined and
contrasts the apparent objectivity of
mathematics examinations with the
'softer’, more subjective forms of
assessment used for many other subjects,
e.g. in the humanities. Young advanced
the view that three criteria which helped
determine a subject’s status in the
curriculum were:

1 the manner in which it was assessed -
the greater the formality the higher
the status;

2 whether or not it was taught to the
‘ablest’ children;

3 whether or not it was taught in
homogeneous ability groups.

Certainly, mathematics would fulfil all
Young's conditions. It is important, then,
when considering possible changes in
methods of assessment to realise that
their chances of acceptance will be
greater if they do not contradict society’s
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expectations of what a mathematics
examination should be.” (p.22)

One example of this ‘social filter’ role of
examinations is that in many European
countries it is extremely difficult for some
immigrant groups to gain access to higher
education - not because of overt racist
practices but because of academic control
practices which have the effect of restricting
access to certain groups, through language and
cultural aspects for example.

Where these practices have been
recognised by certain immigrant communities
one interesting effect has been to concentrate
their educational and parental attention on
the mathematical performances demanded
by the ‘social filter’. In the UK, for example,
the Asian Indian students achieve
significantly higher in mathematics
examinations than many other immigrant
groups, and they thereby progress more
successfully to the higher levels of education
(see Verma and Pumfrey, 1988). One suspects
that the large numbers of oriental Asian
students succeeding in mathernatics at higher
levels in American universities is a similar
response to a perceived societal situation by
an ethnic minority community (see, for
example, National Research Council, 1989,
and Tsang, 1988).

However, generally the control through
mathematics examinations still prohibits
access to higher educational opportunities for
many other minority groups and indigenous
peoples in societies like Europe, Australia
and USA. Furthermore where the Western
European model of examinations has either
been adopted by developing countries or in
some cases where their studerts still take
European examinations, the same problems
occur. For example, Isaacs’ (1985) description
of some of the changes which the Caribbbean
Examination Council is making to its
examinations, indicates the problems well:

“The examinations will probably continue
to undergo modifications to ensure that
they reflect more accurately the abilities,
interests, and needs of Caribbean
students. It is hoped that they will help
reduce the number of students who see
mathematics as a terrifying trial in their
rite of passage to adulthood, and, at the
same time, increase substantially the
number who perceive and use
mathematics as a tool for effective
living.” (p.234)




The other example of social controi by
mathematics and its examinations which is
now recognised concerns the barriers to the
continuing educational opportunities for giris.
There are strong views expressed to the effet
that girls and women are penalised in many
countries through the use of certain
mathematics examinations (see Sells, 1980).
Also, since mathematics is not felt to be as
popular a subject as others, by girls, o the
extent to which mathematics is used for
control, it restricts girls' possibilities in
education more than boys'.

Educational opportunity could be
expected to be a strong goal in any democratic
society but, even in such societies, either the
examination structure, or the actual
examinations, ensure that not all children
have the same educational opportunities.
Insofar as societies contain inequalities, those
will tend to be reflected in unequal
educational opportunities, despite steps being
taken to remove the barriers and obstacles.
The mathematical examination is a well-
used obstacle, for example, but it can be
altered, its effects can be researched and
publicised, and its influence therefore either
be reduced or exploited. One suspects
however that all that will happen will be
that unless fundamental changes take place
in the structuring of societies, those sccieties
will create newer obstacles - perhaps indeed
the rise in importance of computer education
will increasingly come to mean that computer
competence will replace mathematical
competence as the filter of social and
academic control.

Societal influences on children through
informal mathematics education (IFME)

It has been important to explore fairly
thoroughly the formal and intentional
influences which society exerts on
mathematics learning through the curriculum
-and the examinations, because to a large
extent it is the public knowledge, or at least
perception, of these which determine to a
large degree the characteristics of the
informal education which societal influences
bring to bear on young people. Few adults
have access to within-school or within-
classroom information except through
occasional visits either as a parent, or as an
‘official visitor' e.g. as a school governor, or
prospective employer. Also, Chevallard
(1988) makes us aware of a contradiction
within modern industrial societies that is:

”1 No modern society can live without
mathematics.

2 In contradistinction to societies as
organised bodies, all but a few of
their members can and do live a
gentle, contented life without any
mathematics whatsoever.” (p.49)

Mathematics is becoming, therefore, an
‘invisible' form of knowledge to many people
in society.

On the other hand, most adults will have
memories of their own experiences of school
learning, including mathematics, which may
or may not be pleasant, or accurate, or even
relevant to today's situation. Of course in
most societies it is still the case that not all
adults have been to school, that even those
who have may not have stayed very long,
and even if they did they may not have
experienced much mathematics beyond
arithmetic. Nevertheless it would be rare at
least to find a parent who did not feel that
they had some experiences and beliefs about
the school subject with which to influence the
young learners. This is of course particularly
the case for all adults’ experiences and
understanding of various mathematical ideas
gained ilircugh their work, their leisure and
through their own informal education, as
Nunes will discuss in the next chapter. That
cultural and societal heritage provides an
influential source of knowledge, particularly
in societies where formal education facilities
are under pressure.

There are many individuals in a society
who could potentially influence a young
person, but if we are considering young
learners as a whole, the two principal groups
of people who seem to have the greatest
potential for IFME are the adult members of
the family and of the immediate social
community, and people working in what I
shall term 'the media’. From the young
person’s perspective, the only other major
source of influence, apart from adults
exercising a formal educational role, is that
of their peer group, and their role will be
mentioned in a subsequent section.

Turning first to the immediately
available adults for the young learner of
mathematics, we can surmise at once that it is
their perception, memory and image of how
mathematics in school was for them which
will colour their influence. As well as
therefore being a traditional image, it also
appears to be a mainly negative image. The

20 15




evidence, such as it is, documents the feelings
of inadequacy and inferiority felt by many
parents about their knowledge and image of
mathematics. In the UK, for example, the
influential Cockcroft Committee (1982)
commissioned a study into the mathematical
knowledge of adults in UK society. The
findings were dramatic, as they revealed not
just the widespread inability to do what
could be called 'simple’ mathematical tasks
but also the frustrating, unpleasant and
generally negative emotions felt by many
people about their mathematical
experiences. Here are some of the statements
made by respondents:
“I get lost on long sums and never know

what to do with the "left-overs'.

"My mind boggles at the arithmetic in
estimation.”

“I'm hopeless at percentages really.”

“I'm afraid | have to write it down. My
brother can do it in his head.”

"My husband says I'm stupid.”

Even in a study which involved only UK
adults who had already obtained first
degrees at University (excluding
mathematics degrees), many of the same
difficulties and negative attitudes emerged
(Quilter and Harper, 1988). In both studies
the reasons for these problems were mixed,
but memories of poor teaching and uncaring
teachers figured prominently, as did an
image of mathematics as a 'rigid’ subject,
lacking relevance to their personal lives, and
having correct procedures which needed to be
performed accurately. Strangely it also
appears that for many adults, the negative
experience is assumed to be so widespread
that to claim matheinatical ignorance and
inadequacy is socially acceptable, however
unpleasant it may be personally.

From the perspective of the previous
scction also, we can well understand the guilt
associations which usually accompany such
feelings. If, as was described there,
mathematics has been used as a sirong
academic and social filter by society, many
people will have experienced failure as a
result. Even those who survived the filtering
process can be expected to have some negative
feelings about mathematics - they know that
they had to do well in it to progress in their
education or their work, and that that
incentive was,in many cases, their only
motivation for continuing to study it.
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If the collective parental and adult
memory of school mathematics is in fact a
largely negative one, this memory can so
easily be transmitted as a negative image to
the next generation, thereby influencing the
mathematical expectations of the children,
their motivations for studying mathematics
and their predispositions for continuing, or
not, to study the subject. For example the
evidence from the gender research
demonstrates the strength of parental
influences (Fox, Brody and Tobin, 1980).
While the patterns of influence may not be
the same across societies, the influences
themselves clearly exist.

However we should not assume that all
parental influence is of a negative kind, nor
that there is nothing fo be done about it. The
FAMILY MATH project (Thompson, 1989) is a
project concerned to help parents to help
their children with their school
mathematics. As Thompson says: "The
EQUALS educators work to encourage all
students to continue with math courses when
they become optional in high school in the
United States - particularly those students
from groups that are under-represented in
math-based careers. These educators asked
EQUALS to develop a program that would
also involve parents in addressing this issue”
(p.62). The reports about FAMILY MATH
indeed suggest that it is possible to affect and
mediate parental influences on their
children’s attitudes and achievements in
mathematics,

Turning now to what I call 'the media’,
we need first to clarify what this might
mean in different societies. It refers to the
people responsible for disseminating
information, images, beliefs, and ideas in
general, produced by individuals and groups
within society, but received by the yourg
through different media - newspapers.
circulars, books, radio, films, TV,
advertisements etc. Occasionally, as with for
example an academic visitor to the school, a
young learner will have a chance to engage
directly with that individual, but such
opportunities are rare, and in general their
ideas are mediated by 'the media'.

One important difference between
traditional village societics and modern
industrial societies is the relative proportion
of influence coming from immediate
community adults compared with that from
the media. Whereas in traditional village
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societies the local adults can exert maximal
influence over the young learners (see for
example, Gay and Cole, 1967), in modern
industrial societies the amount of information
and imagery coming from the media is much
greater and more complex, and has an all-
pervading infiuence both on the young and on
the adults themselves. In these societies, the
information and images available can include
job and career information, the latest
scientific and engincering ideas presented
through ‘popular science' television
programmes and in magazines, games and
puzzles of a mathematical nature, as well as
facts, figures, charts, tables and graphs on
every conceivable aspect of human activity.
The learners will see mathematical ideas
and activities appearing in a variety of
contexts; and they will see people engaging
with those ideas in various ways and with
various feelings. However 'the media' do not
take it upon themselves to represent the
whole spectrum of human engagement with
mathematical ideas - their task is often one
of satisfying a customer or client need, as in
selling a magazine or advertising a new
computer system.

Generally therefore, and unlike the
personal knowledge one has from known
adults, the media will tend to project
'typical' images and this typicality has
become a source of great concern amongst those
educational and social activists seeking to
increase the educational and employment
possibilities of groups within their society
who do not enjoy equal opportunitics under
the present systems. For example, the
research on gender, on social class, and on
ethnic and political minorities in
industrialised societies has often pointed to
biased stereotypical images portrayed by the
media. In terms of influences on the learner of
mathematics, these images often relate to
the prestige and importance industrialised
societies attach to mathematical,
technological, scientific and computer-
related careers, to the need for high levels of
qualification and skill in these subjects, and
to the predominance in these careers of
mainly men, who tend to come from the more
powerful ethnic or social groups in that
particular society (see, for example, Holland,
1991; Harris and Paechter, 1991). Thus the
messages which are rececived by the young
people are that mathematics is a very
important subject, that it is a difficult subject,

and that only certain people in society will
be able to achieve well in it.

A recent movement to overcome this
largely unhelpful influence is known as the
‘Popularization of Mathematics’, a collection
of attempts to ‘improve’ the image of
mathematics as a subject, by using media of
all kinds (TV, radio, newspapers, games, etc.)
to reveal the more pleasurable faces of
mathematics and to generate interest,
enthusiasm and positive intentions, rather
than failure, fear and avoidance. The con-
ference of that title, organised by the
International Commission on Mathematics
Instruction, and its report (Howson and
Kahane, 1990) involved educators from many
countries in the issues of why popularize,
how te do it successfully, and who are the
‘populace’, amongst others. The ideas ranged
from Mathematics Trails (walks involving
mathematical problems) through city
centres, to mathematical game shows
produced for prime-time national television,
from breathtakingly beautiful films and
videos to mind-bending wooden puzzles, from
‘popular’ mathematical articles in national
papers to special mathematical magazines
for children.

The conference, and the report, left one in
no doubt that the mathematics education
community believes that the influences
coming at present from the media are not
generally helpful and need to be educated,
and enriched.

Societal influences through non-formal
mathematics education (NFME)

Adapting Coombs’ (1985) definition, non-
forma! mathematics education would involve
any organised, systematic, mathematics
education activity, carried on outside the
framework of the formal system, in order to
provide selected types of learning to
particular subgroups in the population, adults
as well as children.

We can easily recognise NFME in
provision such as adult numeracy
programmes, out-of-school 'gifted children'
courses, televised learning courses,
correspondence learning activities, and
vocational fraining courses of many kinds. As
at previous congresses, for example, the
Action Group 7 on "Adult, technical and
vocational education"” held at the
International Congress on Mathematics
Education (ICME6) in Hungary in 1988,
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contained many examples of interesting
developments grouped under the sub-
headings of 'Vocational/Technical
Education', 'Adult Education’ and 'Distant
Education', (Hirst and Hirst, 1988).

At that congress there was also a Special
Day devoted to the topic "Mathematics,
Education, and Society" (Keitel et al., 1989)
at which various ideas concerning NFME
were presented. For example, Smart and
Isaacson (1989) described a course for non-
science qualified women who wished to
change to a career in technology and science,
and which involved many mathematical
‘conversions'. Sanchez (1989) talked about a
radio programme series in Spain designed to
popularise mathematics. Also Volmink
(1989) described different approaches to
"Non-school alternatives in Mathematics
Education” which the black communities in
South Africa have turned to because of their
frustration with the FME provision at
present: e.g. private commercial colleges,
supplementary programs, and the Peoples’
Education Movement which is articulating
generalised concepts which "aim to transform
the educational institution and will find
final embodiment only within a new political
structure” (p.60). Thus NFME not only offers
opportunities for a different context for
learning mathematics, but in some situations
it is clearly intended to challenge the
precepts and practice of FME. In the same
vein, and in the same country, South Africa,
Adler (1988) describes 4 project concerned
with "newspaper-based mathematics for
adults" who had had little access to
mathematics education because of the
inadequate provisions within the apartheid
system.

Non-formal education has in some way
been a marker of educational development in
a society, and Freire (1972) showed the
developing world the way in which it could
play a cignificant role in a society's
development. The Pecoples’ Education
Movement in South Africa is a good recent
example of this, and it is clearly very
important that mathematics is not left out of
the whole process. In industrialised socicties
also there are sigrificant NFME
developments, and a good example is given by
Frankenstein's (1990) book which describes a
‘radical' mathematics course intended
mainly for adult students who have been
made to feel a failure at maths. It is a
textbook which tries to overcome learning
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obstacles by developing methods that help
empower students. More than most textbooks,
it uses examples, illustrations, activities and
tasks drawn from everyday experiences and
contexts not just to develop mathematical
knowledge, but also to develop a critical
understanding in her adult students.

Furthermore many of the participants at
the previously mentioned ICMI conference on
"T'he Popularization of Mathematics'
(Howson and Kahane, 1990) spoke of
mathematics clubs, after-school activities,
master classes, and exhibitions, all of which
contribute important influences of a non-
formal mathematics education kind.

Volume 6 (1987) of the UNESCO series
“Studies in Mathematics Education” is also
entirely devoted to the theme of “Out-of-
school mathematics education” and contains
many examples including mathematical
clubs, camps, contests, olympiads, and
distance education courses. Losada and
Marquez (1987) document in a detailed way
the many out-of-school mathematics
activitics in Colombia and demonstrate how
significant that form of education can be. As
they say “while the teacher-student ratio in
schools ranges from 1 to 20 to 1 to 60,
traditional classroom education cannot be
expected to be particularly effective... In
such circumstances out-of-school mathematics
programmes can provide more opportunities
for more young people” (p.117).

Clearly the borderline between IFME and
NFME becomes blurred at times, particularly
when there are considerable attempts to
enrich both at the same time by, for example,
enlisting the help and support of adults and
other significant people in the overall
mathematical education of the young people.
That does not really matter of course. What
is important is that educators recognise as
educational, the influences which come
either informally or in a more structured way,
non-formally, from the various segments of
society.

What then can be said about such
influences and what they affect? If we
reflect a little more on the informal and non-
formal influences described so far, we can
detect effects at two levels, both of which
have important consequences for mathematics
learners; the level of mathematical ideas,
and the level of learning mathematics.
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Influences on mathematical ideas and on the
learning of mathematics

At the first level, there are clearly influences
regarding mathematical concepts and skills.
Before children come to school, their parents
will often have taught them to count, to begin
to measure, to talk about shapes, timc,
directions etc. Neither will this kind of
parent's talk and activity cease wher. the
children begin school. Within the
immediate adult community particular
knowledge, often related to mathematics,
will be shared, as Nunes documents in the
next chapter. The newspepers and other
media reports involving money, charts,
tables, percentages will all inform and
educate the learner, complementing and
supplementing the information and ideas
being learnt in school. Now, with
sophisticated calculators and home
computers becoming more widely available,
the young mathematical learner may well be
racing ahead of the formal mathematics
curriculum and will often outstrip the
teacher's knowledge in some specific
domains.

Equally the sources for mathematical
intuition are frequently images from society,
rather than from within school. Popular
images and beliefs, for example, about
statistical and probabilistic ideas scem not
only to come from society but also seem to be
relatively impervious to formal educational
influences. (Tversky and Kahnemann, 1982;
Fischbein, 1987).

Geometrical images will come from
physical aspects of the environment,
although what is important is how the
individual interacts with that environment.
Thus, once psychologists thought that living
in a 'carpentered environment' (with straight
sided houses, rectangular shapes, right
angles etc) was very important for learning
geometry and for developing spatial ability.
Now we know that what is important is how
individuals interact with their environment.
So for example, to an urbanised European the
desert of central Australia may seem to be
devoid of anything which could aid spatial
development, but the spatial ability of the
Aborigines who live and work there is known
to be exceptional because of what they have
to do to survive there (Lewis, 1976). This is
equally the case with Polynesian navigators
(Lewis, 1972) and Kalahari nomads (Lea,
PME, 1990). Interactions with the physical

environment of a socicty undoubtedly give
rise to many geometrical images and
intuitions.

The other major source of societal
influence on the learner's knowledge of
mathematical ideas is the language used.
The relationships between language and
mathematics are of course extremely complex,
and there is no space here to cover all the
ground which has in any case already been
analysed by others (Pimm, 1987; Zepp, 1989;
Durkin and Shire, 1991).

From the perspective of this chapter the
two most important aspects for mathematics
educators to be aware of scem to be:

- the fact that mathematics is not
language-free,

- not all languages are capable of
expressing the mathematical concepts of
MT culture.

The first point may seem obvious, but it
has profound implications. Mathematical
knowledge, as it is developed in any society
relates to the language of communication in
that society. As has already been shown, the
mathematics curriculum in many countries
has been based largely on the Western-
European model and it has a certain cultural,
and therefore, linguistic basis. Though this
basis is an amalgam of different languages,
the principal linguistic root is believed to be
Indo-European (Lecach, 1973). That
particular 'shorthand' omits the important
Greek and Arabic connections in the
development of universally applicable
mathematics, and we should perhaps
consider the Indian-Greek-Arabic-Latin
chain as being its original language base.
From this base, Italian, Spanish, French,
German, and English developed its language
repertoire during the 17th, 18th and 19th
centuries, and it is probably the case that
nowadays English is the principal medium
for international mathematical research
developments. This is an important problem
for any country, researcher, or student, for
whom English is not the first or preferred
language.

In relation to the second point, in many
countries of the world there are several
languages used, but for national and political
reasons, one (or some) are specifically chosen
as the national language(s). It is likely that
not all the languages being used in a society
will necessarily be capable of expressing the
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concepts and structures of the MT culture - this
will largely depend on the roots of the
language. European-based languages, those
with Indian roots, and the Arabic family of
languages appear to have the least structural
differences, although there are always
particular vocabulary gaps as international
mathematics develops.

Other languages, in rural Africa,
Australasia, and those used amongst
indigenous American peoples, are being
studied and demonstrate their difficulties in
expressing both the structures and the
vocabulary of the MT culture's version of
mathematics (see, for example, Zepp, 1989
and Harris, 1980). This is not of course to say
that thesc languages are incapable of
expressing any mathematical ideas - they
will certainly be capable of expressing the
mathematical ideas which their cultures
have devised. This is the important
linguistic relationship with
ethnomathematics - and another reason for
secking  to create more independent
socictally-based mathematics curricula
rather than relying on the model from MT-
based societies. Thus in this way the societal
language(s) can reinforce the societal
mathematics which can offer the bases for
alternative curricula,

But language issues are cxtremely
complex, particularly from a societal
perspective, and the political and social
conflicts which different language use can
cause, can scem to be of a different order from
those which should concern mathematics
educators. Nevetheless 50 much damage has
been done to cultural and social structures in
many countries by assuming the universal
validity of MT-based mathematics that we
cannot ignore the language aspects of this
cuitural imperialism (sec Bishop, 1990). If
countries, and socicties within countries, are
to engage in the process of cultural
reconstruction then the language element in
relation to informal, non-formal, and formal
mathematics education is critical.

A final point concerning the informal and
non-formal influences on mathematical ideas
is that they have a cumulative effect. They
build up into an image of 'mathematics' as a
subject itsclf. For example, we have already
noted that it is projected as being an
important and prestigious subject in both
industrial and deveioping societies and is
thereby projected as being essentially a
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benign subject.  Little mention is publicly
made of its extensive association, through
fundamental rescarch, with the armaments
industry, with espionage and code breaking,
and with economic and industrial modelling
of a politically-partial nature. Little public
debate occurs about the questionable
desirability of fostering yet more
mathematical research to make our socicties
yet more dependent on even more complex
mathematically-based technology (sce
however, Davis, 1989 and Hoyrup, 1989).
The reaction of 'the media' to the
examination question about costs of
armaments shows the extent of public
ignorance of these matters.

Equally mathematics in society is
typified, and imagined by most pcople, as
the most secure, factual and deterministic
subject. There is little public awareness of
the disputes, the power struggles, or the
social arenas in which mathematical ideas
arc debated and constructed. Descartes’
dream still rules the general societal image
of mathematics. For example, in the study by
Bliss et al. (1989) concerning children’s
belicfs about “what is really true” in science,
religion, history and mathematics, the
majority of children in England, Spain and
Greece considered both mathematics and
science to be truer than history or religion. As
Howson and Wilson (1986) put it “Only in
mathematics is there verifiable certainty.
tell a primary child that World War 2
lasted for ten years, a..d he will believe it;
tell him that two fours are ten, and there
will be an argument” (p.12).

At a second level the informal and non-
formal socictal influences concern the
learning of mathematics. We have already
noted the beliefs about its difficulty and its
motivations, but there are also more
fundamental and significant beliefs about
how mathematics is learnt. Paralleling the
popular image of mathematics as secure
factual knowledge is the widespread belief
that mathematical procedurcs need to be
practised assiduously and over-learnt so that
they become routine, and that this should go
hand-in-hand with the memorising of the
various conceptual ideas and their
representations.  Another popular belief
concerns 'understanding' as being an all-or-
nothing experience, rather than a gradual
increasing of meaning and constructed
connections. Overall the popular image is of
a received, objective, form of knowledge,
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rather than of a constructed subject, running
contrary to what we know from recent
cognitive rescarch. (Lave, 1988; Schoenfeld,
1987).

There is also, as has been mentioned, the
impression that because it is reputed to be a
difficult subject, only some learners will be
able to make progress with it. Thus, rather
like artistic or musical ability, young pcople
perceive themsclves as ceither having
mathematical ability or not. The research on
mathematical giftedness does in  fact
demonstrate that it clearly is a precocious
talent, appearing carly rather like musical
giftedness, but one suspects that the image
from society about mathematical ability is
rather more broad in its reference than just to
giftedness.

The concept of "ability' does seem to be a
pervasive one in socicty outweighing
‘environment’ as the cause of achievement,
particularly in the ‘clear-cut' subject of
mathematics. The accompanying belief is
that one is fortunatc to be born with this
abiiity since it is (clearly!) innate. The pride
of a parent on discovering that their child is
a gifted mathematician is probably only
clouded by the popular image from society of
mathematical geniuses being slightly odd
characters living in a remote and csoteric
inner world and unable to socialise with
other people - a theme to which several
contributors to the ICMI conference on
‘Popularization’ referred.

Equally parents, although not necessarily
rating their son's or daughter's abilities any
differently, do apparently believe that
mathematics is harder for girls and requires
more effort to succeed in (Fox, Brody and
Tobin, 1980). This belief undoubtedly helps
to shape the feeling, prevalent in different
socicties, that mathematics is not such an
important subject for girls to study.
Fortunatcly many womens' groups are now
hard at work dispelling this image, and
IOWME (the International Organization of
Women and Mathematics Education) has
been particularly active.  Recent rescarch
(Hanna, 1989) for example shows that the
creation of a more positive and favourable
image for girls who are mathematically able
is apparently having some beneficial effects.

These then are some of the most
significant influences which society exerts on
the learners of mathematics. The 'messages'
the learners receive are many, and often

conflict. Some are intentionally influential,
while others are merely accidental. But they
all help to shape important images and
intuitions in the young learners’ minds, which
then act as the personal cognitive and
affective 'filter' for subsequently experienced
ideas. Let us then move on to consider how
the learners make sense of, or cope with,
these various societal influences which they
experience.  Are there any rescarch ideas
which can help us to understand and interpret
the learners' situation?

The competing influences on the individual
learners

Considering first of all the arca of
motivation, this is perhaps the most
significant aspect needing to be richly
understood by mathematics educators,
because it provides the essential dynamic for
the mathematics learning process wherever
and whenever it takes place. A classic
dichotomy is usually made between extrinsic
and intrinsic motivation, referring to the
location of the influence for motivation. In
one sense we can think of societal influences
as being essentially extrinsic whereas, for
example, the ‘'puzzling' nature of a
mathematical problen can seem to be localed
internally to the learner. The interaction
between intrinsic and extrinsic motivation
though relates both to the internalisation of
the extrinsic, and also to the perception of a
familiar external target for the intrinsic. It
is clear that societal influences initially
exist 'outside’ the learner, but the extent of
their influence will depend on how
internalised they become, and, therefore,
that internalisation process is the key to
understanding motivation for the learncers.

We have claimed in this chapter that
socicties formally influence mathematics
learning through their school curricula and
their examination structures. From the
learner's  perspective, therefore, those
influences will motivate to the extent that
they are internalised and help to shape the
learner's goal structures. There appear to be
two significant and interacting aspects to
attend to here - the ‘messages’ being
commuinicated to the learner and the people
conveying those messages. In terms of the
mathematics curriculum, the principle
message will concern the values - explicit or
implicit (the 'hidden' curriculum) - which
the curriculum embodies, mediated by the
teacher, and which may, or may not, be seen
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as significant by the learner. The area of
values in mathematics curricula has not been
well explored in research, but the clues we
have from research on attitudes and beliefs
certainly supports the above analysis (see for
example, McLeod, PME, 1987).

However, the extent to which the
mathematics curriculum embodies the values
of MT culture (for example) will only partly
determine the motivational power of those
values. The real determining factor will be
each individual's acceptance of those values
as being worthwhile or not, which will
depend on how they relate to the learner's
goal structure, and how di.:crent people
figure in that structure. To talk of goal
structures is not however to suggest that they
are fixed and immutable. One recently
developing research area - that of situated
cognition (Lave, 1988; Saxe, 1990) - reveals
the phenomenon of 'emergent’ goals. If one
understands mathematics learning as
something which develops from a social
mathematical activity, then through that
activity will emerge mathematical goals, to
be achieved, which would not necessarily
have been apparent before the start of that
activity.

Thus, one corollary is that as one learns
about mathematical ideas through doing
mathematical activities, one also learns
about goals, and in a social context. A
statement by the teacher to the effect that an
important goal of mathematics learning is to
become systematic in one's thinking, for
example, may well be negated by the
learners' shared experiences of trial-and-
error approaches which nevertheless succeed
in finding appropriate solutions to problems
(see Booth, 1981). Moreover, it may well be
that the latter message, learnt in activity
and in the context of one's peers, or one’s
adults, will be internalised more
significantly than the teacher's message.

This kind of gulf, between what learners
are told that they should do and what they
actually do to be successful, may well be one
source of the well-documented dislike of
mathematics, and even of the phenomenon of
mathophobia, the fear of mathematics. It is
the kind of experience which, if repeated
often enough, will lead learners to believe
that mathematics, even if it is an important
subject, may not be what they personally
want to invest their energies in. More
rescarch on learners' emergent goals,
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particularly in the schoo! learning context
could provide some very powerful ideas for
mathematics educators.

A more significant contributor to the
learner's mathematical motivation may well
be the messages concerning the examinations,
which come both formally and informally
from society. The within-school 'messages’
concerning final examinations, combined with
the experiences of immediate adults will be
highly significant in creating a schema of
beliefs and expectations with which the
learner's own experiences of mathematical
success or failure will be interpreted. The
internalisation of beliefs and expectations, as
with any aspect of motivation, will be
dependent on the significance to the learner
of the people mediating those beliefs and
expectations.  Sullivan (1955) refers to
‘Significant Others' i.e. people who can
exercise that kind of influence - they may be
role models, advisers, counsellors, objects of
worship and awe, or of scorn and dislike.
Their significance is a personally
attributable characteristic and wili be likely
to vary both as the richness of the individual
learners varies and as the variety of 'types’
in the society varies. From this analysis we
can see that the learner's mathematics
teachers, parents, mathematical peers and
rcal or mediated 'mathematicians', are
likely to be the major sources of
mathematical motivation influence.

The learner's interpretation of success and
failure does seem to be an important research
site for understanding their motivation,
particularly in a subject like mathematics,
which is believed by many learners to be
‘clear-cut’, where one always knows (they
think) whether the answer is right or wrong.
Moreover this act of 'interpretation' can be
seen as part of the wider cognitive task for
the learner, of understanding mathematical
activity as a societally defined phenomenon.
Attributing success or failure in the subject
relates strongly for the learner to personal
questions and concerns like “How will I fit
into society - what job will T do - how
mathematically qualified should 1 become?”
and "How do I relate to other people in
society - am [ more or less competent at
mathematics than they are?”

Attribution theory can help us here.
Wiener’s (1986) work is being explored in
relation to mathematics learning and the
findings are interesting. For example Pedro et
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al. (1981) reported that, in US society, males
are more likely to attribute their success to
their ability than females, and that females
are more likely than males to attribute their
successes to their efforts,  So far, however,
we have no rescarch which systematically
explores mathematical attributions in
relation to the influences of significant
others, although the role of the teacher does
appear to be fundamental, as might be
expected (see Lerman, this book).

Attributional understandings and
interpretations like these appear also to be
strongly embedded in the learner's meta-
cognition about mathematics. Because
mathematics at all levels is learnt in
socially defined activities, the people who
share in influencing those mathematical
activities will also play a role in shaping
cach learner's total perspective on
mathematics. Gay and Cole (1967) in their
study of the Kpelle, were clearly taken by
surprise by one of the college students they
were testing:

A Kpelle college student accepted all the
following statements: (1) the Bible is
literally true, thus all living things were
created in the six days described in
Genesis; (2) the Bible is a book like other
books, written by relatively primitive
peoples over a long period of time, and
contains contradiction and error; (3) all
living things have gradually evolved over
millions of vears from primitive matter;
(4) a "spirit" tree in a nearby village had
been cut down, had put itself back
together, and had grown to full size again
in one day. He had learned these
statements from his Fundamentalist
pastor, his college Bible course, his
college zoology course, and the still-
pervasive animist culture. He accepted
all, because all were sanctioned by

. authorities o which he feels he must pay
respect. (p35)

The rescarchers scemed to expect logical
consistency to be an over-riding criterion for
that student, and they used that kind of
cvidence to infer that mathematical
reasoning (as they knew it) had little place
in Kpelle life. We now know of course that
mathematics is not the universal and
independent form of knowledge which they
assumed. Moreover, and perhaps for us now
more importantly, they also assumed that
such socially-bound cognitive behaviour was
not typical in America (their home). Lave
(1988) has certainly demonstrated that not to

be the case, and in gencral the growing
awareness of the socially constructed nature
of all human knowledge makes us realise
that all learners have the task of making
sense of other people's messages in a variety
of social situations.

Thus although perhaps mathematics
educators would like to think that in some
way societal influences from the immediate
adults and from the media will enhance,
support and generally reinforce the messages
which the child receives from school, the
reality is more likely to be one of conflict.
The variety of people involved makes it
unlikely that there will be a kind of benign
consistency.

The learner is therefore rather like a
bilingual, or multi-lingual, child who must
learn to use the appropriate 'language’ in the
appropriate social context. In fact it would be
more appropriate to describe the
mathematics learner as bi-cultural, or multi-
cultural, since so much more than language is
involved in learning mathematics. We have
already noted the influence of interactions
with the physical environment which create
so much of an impact on geometrical and
spatial intuitions. Also social customs and
habits, which give rise to expectations, are
not always expressed through language but
are learnt through social interactions while
engaged in particular activities.

Halliday's (1974) work on 'linguistic
distance’, for considering the cognitive task
for bilingual learners, is an interesting
construct here. Dawe's (1983) research used
Halliday's idea to conjecture that bilingual
learners of mathematics in English at school
would have more difficulty the ‘'further
away' the structure of their home language
was from English. So, for his study, the
order: Italian, Punjabi, Mirpuri and Jamaican
Creole, was hypothesised as being the
difficulty dimension, with Italian being the
‘closest’ to English. For logical reasoning in
English this proved to be the case, but not for
mathematical reasoning, where a gender
effect interacted with the language factor.

It is possible to broaden the idea of
linguistic distance to that of 'sociocultural
distance' between two different principal
social situations experienced by the learner.
Thus it seems reasonable to conjecture that
mathematics learners whose immediate
home cultures relate more closely to the
structure and character of the school culture,
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will have less difficulty in reconciling the
messages coming from the two cultures, than
will learners whose home cultures are a long
'distance’ from their school culture.

Perhaps though we will make more
progress in educational terms if we attend less
to the "messages received” metaphor which
emphasises the role of the learners as
predominantly passive receivers, and more to
the idea of the learners as constructors of
their own personal and cultural knowledge.
The essential cognitive task for any learner is
making meaning, by creating and constructing
sensible connections between different
phenomena, and because most mathematical
activity takes place in a social context, this
mathematical construction will take place
interactively. Each new generation of young
mathematical learners is actively
reconstructing the varied societal knowledge
of mathematics with which they come into
contact, and in their turn they (as adults)
will influence the social context within
which the next young generation will engage
in their own reconstruction.

Of particular relevance to this point is
Saxe's recent research (Saxe, 1990) which
demonstrates three aspects of importance to
us as educators. Firstly his street candy-
sellers in Brazil learned as much from older
children as they did from immediate adults
in the communitics. So we should include
‘older children' in the categories of
‘immediate adult’ in our previous discussions,
as they are likely to play a key role in any
socialisation process. Also that knowledge
was validated and developed within a strong
peer-group structure, and it is likely that
peer-groups influence far more than has been
recognised so far. Finally although there
was some evidence of school mathematical
ideas and techriques being used out of school,
it was very clear that the street selling
experiences had furnished a rich schema
which informed the children’s learning
within the school situation. This finding
supports, interestingly, the cognitive
instructional research findings (see Silver
1987 for a summary) that the most significant
contributor to the learning of new information
is the extent of the previously learnt
information. However it should also
encourage educators to realise that the most
important prior knowledge may well have
been learnt outside the schooi context, and
will therefore be embedded in a totally
different sccial structure.
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My own example of this, already
extensively quoted (see Bishop, 1979),
concerns an interview with a student in Papua
New Guinea, a situation where the
home/school socio-cultural distance is large.
I asked him "How do you find the area of
this (rectangular) piece of paper?" He
replied "Multiply the length by the width".
I continued "You have gardens in your
village. How do your people judge the arca
of their gardens?" "By adding the length and
width". Taken rather aback I asked "Is that
difficuit to understand?" "No, at home I add,
at school I multiply". Not understanding the
situation [ pursued the point: "But they both
refer to area”. "Yes, but one is about the area
of a piece of paper and the other is about a
garden”. So I drew two (rectangular) gardens
on the paper, one bigger than the other, and
then asked "If these were two gardens which
would you rather have?” to which he quickly
replied "It depends on many things, I cannot
say. The soil, the shade .." I was then about
to ask the next question "Yes, but it they had
the same soil, shade ..." when I realised how
silly that would sound in that context!

Clearly his concern was with the two
problems: size of gardens, which was a
problem embedded in one context rich in
tradition, folk-lore and the skills of
survival. The other problem, area of
rectangular pieces of paper was embedded in
a totally different context. How crazy I must
be to consider them as the same problem!

So how did he reconcile the conflict
which I could see? [ cannot answer that
question because I firmly believe that for him
there was no conflict. They were two
different problems set in two entirely
different contexts, and it was only I who felt
a conflict. As with Gay and Cole above, my
cultural background encouraged me to belicve
that logical consistency demanded a
resolution of the conflict which would arise if
one were to attempt to generalise the two
procedures. If one were not interested in doing
that however, there is no problem.

Educational implications

What, then, are the educational
implications that can be drawn from all of
this evidence, analysis and conjecture? The
first thing to ask is "What do we mean by
education?" since it is now clear that the
learner is subject to many influences of a
potentially educating kind. Also we can now
see that if 'education’ is only considered to be
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what happens in school then any potentially
powerful out-of-school experiences will be
denied a legitimacy in that society. As was
said earlier, at present the school curriculum
and examinations contain what most adults
think should be learnt through mathematics
teaching and any other mathematical
knowledge they have learnt through practice
is not “real” mathematics. In fact it would be
easier to argue that totally the opposite is
true: school mathematics, because it is learnt
in the necessarily artificial world of school
cannot be 'real’ mathematics!

But the issue is not whether one context is
real and another not. Both clearly are real,
but they are also very different. Therefore
the conceptual task is not to crecate an
artificial dichotomy but to begin by looking
for the similarities and Coombs (1985) has
offered us an important way forward. We can
now consider formal mathematics education
(FME), informal mathematics education
(IFME) and non-formal mathematics
education (NFME).

In certain cases the developments we can
sce in NFME and IFME are motivated by the
desire to compiement, supplement and
generally extend the FME 'diet' offered by
the formal educational institutions, while in
others there is an objective of challenging the
assumptions, the structures or the practices of
FME. These kinds of developments will
surely have influences on FME to the extent
that they can demonstrate their successes to
the educational professionals and to the
wider society.

From the formal educational viewpoint
these developments in IFME and NFME could
be considered as unwanted challenges to the
educational status quo, and which should
therefore be resisted by whatever political
and social means are possible. However more
positively one can consider these
developments as important educational
experiments whose effectiveness, if proven,
and whose validity, if accepted, compel
them to be considered as viable possibilities
within the formal educational provision.

This is not to propose their demise as
valid educational agents in their own right
but to recognise that formal mathematics
education can learn from these 'experiments’,

and can be modified. In some cases they are
developing new methods, new materials and
new practices, which could be used to extend
the range of ideas reaching teachers, and
teaching material developers. In others,
there could be influences on the intended
formal curriculum of the society and on the
examination procedures.

The increases, both quantitative and
qualitative, in NFME and IFME provision in
both industrial and developing societies,
certainly demonstrate that FME at present is
not meeting the demands which different
societies are making. It should therefore be a
continual source of challenge to those of us
who are responsible for the character of FME
in any society to explore its potential for
responding to the different demands and
influences coming from society. For example,
television and other popular media can raise
the awareness about certain ideas, but they
cannot develop the knowledge of those ideas
systematically. Neither can they develop
skills effectively. On the other hand skills,
such as key-typing, can be learnt effectively
through non-formal situations, which could
have much pay-off for formal educational
work with computers and word-processors. So
how should FME be shaped, in the context of
rapidly expanding and influential NFME and
IFME deveclopments?

Trying tc answer that question means
that those of us who work in mathematics
education more generally need to be much
more aware than we have been of
developments in NFME and IFME, to accept
them as valid educational concerns, to
stimulate their active growth and to
recognise their growing power and influence
not just on FME but on societies’ development
generally.

This chapter has demonstrated not only
the range of influences which society brings to
bear on mathematics learners, but also how
the learners try to deal with these and how
the different educational agents respond to
societies' demands. It is a chapter predicated
on the belief that a societal perspective on
mathematics learning is essential in framing
the more narrow and specific concerns of
rescarch, development, and practice within
formal mathematics education.
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The Socio-cultural Context of Mathematical Thinking:

Research Findings and Educational Implications

Terezinha Nunes

R: 8 years old, is solving a problem about giving
change in a simulated shop situation which is
part of an experiment. He writes down 200 -
35 properly aligning units and tens and
proceeds as follows:

R: Fiveto get to zero, nothing (writes down zero);
three to get to zero, nothing (writes down
zero); two, take away nothing, two (writes
down two).

Is it right?

No! So you buy something from me and it
costs 35. You pay with a 200 cruzeiros note
and [ give it back to you?

After another unsuccessful attempt on the same
computation, the experimenter asks:

Do you know how much it is?
If it were 30, then ['d give you 170.

But it is 35. Are you giving me a discount?

One hundred and sixty five.

From Carraher, Carraher &
Schliemann, 1987, p.95

Much research has shown that
mathematical activity can look very
different when it is embedded in different
socio-cultural contexts. For example, we
calculate the amount of change due in school
word problems by writing down the numbers
and using the subtraction algorithm. Outside
school in a shop we may figure out change
differently, using oral methods and
decomposing numbers (as R. did, decomposing
35 into 30 and 5 and solving the two problems
sequentially) or even by adding on from the
value of the purchase to the amount given as
the money is handed to the customer. Itis my
purpose in this paper to discuss the fact that
mathematical activities look different in
different contexts and to explore the implic-
ations of these differences for mathemaucs
education. The review presented here is
selective both due to space limitations and to
my choice of depth rather than breadth of
coverage. Only two topics in mathematics

education will be reviewed: arithmetic and
geometry. For a broad coverage of topics,
other works can be consulted (Keitel, et al.,
1989; Educational Studies in Mathematics,
1988; Nunes, in press; Stigler and Baranes,
1988).

This paper is divided into four main
sections. The first section relates to arith-
metic and analyzes two types of difference
between arithmetic in and out of school,
differences in success rates and in the
activity itself. The second section relates to
space and geometry and looks at the
interplay between logic and convention in
geometrical activities. In the third section,
two views of how to bring out-of-school
mathematics into the classroom are
contrasted. Finally, the last section briefly
summarizes the main issues in the study of
the socio-cultural context of mathematical
thinking and outlines ideas which can be
explored and investigated in the classroom.

Arithmetic in and out of school.

Human activity in everyday life is not
random but erganized, or structured, to use a
more mathematical term. Even the simplest
interaction, like that between two friends
meeting on the street, can be shown not to be
totally spontaneous but rather structured and
predictable. 1 will distinguish two types of
organization for the purposes of this
discussion, social and logico-mathematical
organization. Social organization is pres-
criptive and often implicit; it has to do with
what people should do in certain types of
situation without their being necessarily
able to know why they behave in those
particular ways. Logico-mathematical
organization is deductive and can often be
made explicit; it allows people to go beyond
the information given at the moment and to
know why the deduced information must be
correct {(and that holds even in the cases
when an error has been made). The logico-
mathematical structure pertains to the
actions and situations as such while the




social organization pertains to the actions as
interpersonal events, that is as interactions.

In any mathematical activity, both
social and logico-mathematical organization
are involved, regardless of whether it takes
place in the classroom or outside (for a
different view, which rejects the idea that
mathematical skills are based on logical
structures, sce Stigler & Baranes, 1988).
However, it must be emphasized that
distinguishing between the social and the
logico-mathematical organization for
analytical purposes does not assume the
independence of these two aspects of
organization in human life: In any instance of
mathematical activity, be it in the classroom
or outside, both forms of organization come
into play.

Mathematical activities carried out in
and out of school have different social
organizations but are based on the same
logico-mathematical principles. The kernel
of the social organization differences
between mathematical activity in and out of
school appears to be that everyday
activities involve people in mathematizing
situations while traditional mathematics
teaching focuses on the results of other
people's mathematical activities (Bishop,
1983) Thus in school, teachers expect that
students will produce a particular solution
(related to the application of an algorithm,
for example) right from the moment a
problem is posed. In contrast, an everyday
problem may be correctly solved through
many different routes and no particular route
is prescribed from the outset,

To take a simple example, Scribner and
her collaborators {Scribner, 1984; Farhmeier,
1984) have analyzed how inventory takers
solved the problem of finding out quickly and
accurately how many cartons of milk were in
the ice-box often from viewing points which
required them to fill in information about
invisible cases in stacks. No particular route
is "correct” or "expected” from the outset. In
the classroom, a similar problem would be
phrased as "how many cartons of milk are
there if there are 38 cases and each case
holds 16 cartons". The school problem
requires in principle counting cases and
multiplying number of cases by number of
cartons in a case. Scribner and her
collaborators found that in real stock-taking,
counting single cases to multiply by the
number of cartons was not the only strategy
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available. Several other strategies were
used especially because piles were not neat
and cases might not be complete. Other
methods included the use of volume concepts
(for example, counting stacks of cases of
known height by looking only at the top of
the stacks), skip-counting cartons in
incomplete cases (for example, 8, 16, 24, 30
etc), compensating across cases and stacks (for
example, counting a half case as full and
then compensating for this when coming
across another incomplete case), keeping
track of partial totals per area in the ice-box
etc. In short, actual inventory taking does not
have a pre-established path: inventory
takers tend to draw freely on known
information combined in several ways. In
contrast, a school word problem of the same
nature is most likely to be used in order to
practice the multiplication algorithm, a
result of other people's mathematical
activity which is to be learned in school.

Does this central difference in the social
structure of mathematical activities in and
out of school affect the way pcople represent
and understand the logico-mathematical
structures? This question will be looked at
here from two perspectives. The first relates
to the rates of success in mathematical
activities carried out in and outside school.
The second relates to the way the activity is
carried out, its characteristics and methods.

Differences in rates of success.

Two studies have documented systematically
very important differences in rates of success
when the same people carry out basically
the same mathematical calculations in and
out of school.

The first of these studies was by
Carraher, Carraher, and Schliemann (1985),
who interviewed five street vendors (9 to 15
years old) in Recife, Brazil. The youngsters
sold small items like fruits, vegetables, or
sweets in street corners and markets. The
study started with the investigators
approaching the youngsters as customers and
proposing different purchases to the
children, asking them about the total costs of
purchase and the change that would be given
if differerst notes were used for payment. The
study was summarized by Carraher (PME,
1988) as follows:

"Below is a sequence taken from this
study which exemplifies the procedure:
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Customer/experimenter: How much is
one coconut?

Child/vendor: Thirty-five.

Customer/experimenter: I'd like three.
How much is that?

Child/vendor: One hundred and five.

Customer/experimenter: I think I'd like
ten. How much is that?

Child /vendor: (Pause) Three will be one
hundred and five; with three more, that
will be two hundred and ten. (Pause) I
need four more. That is... (pause) three
hundred and fifteen... I think it is three
hundred fifty.

Customer/experimenter: I'm going to
give you a five-hundred note. How much
do 1 get back?

Child/vendor: One hundred and fifty.

When engaged in this type of
interaction, children were quite accurate
in their calculations: out of 63 problems
presented in the streets, 98% werc
correctly solved. We then told the
children we worked with mathematics
teachers and wanted to see how they
solved problems. Could we come back
and ask them some questions? They
agreed without hesitation. We saw the
same children at most one week later
and presented them with problems using
the same numbers and operations but in
a school-like manner. Two types of
school-like exercises were presented:
word problems and computation
exercises. Children were correct 73% of
the time in the word problems and 37% of
the time in the computation exercises.
The difference between everyday
performance and performance on
computation exercises was significant.”
(Carraher, PME 1988, p.3-4).

two varying prices. An example of a problem
of this type is transcribed below.

A shopper compared two boxes of sugar, one
priced at $2.16 for 5 pounds, the other $4.30
for 10 pounds. She explains, The five pounds
would be four dollars and 32 cents. | guess
I'm going to have to buy the 10-pound bag
just to save a few pennies." (Murtaugh, 1985,
p.35)

Problems of this nature involve
comparisons of ratio-- which one is larger,
2.16/5 or 4.30/10? Lave and her associates
observed 98% correct responses in the ratio-
comparisons carried out in the supermarket
by the adults; in contrast, only 57% of the
responses given by the same adults in a
maths test of comparisons of ratios were
correct. Thus, the results observed by
Carraher, Carraher, and Schliemann (1985)
for Brazilian street vendors are replicated
among American adults: mathematics
outside school shows better results than in
school-like situations for the same subjects
working on the same types of problems.

Differences in the social organization of
street and school mathematics and their
similarities in logico-mathematical struc-
turing.

Several authors have tried to analyze the
activities which are carried out when people
are engaged in mathematical problems in
and out of school. Nesher (PME, 1988)
summarized some of the contrasts between
mathematics in and out of school. Citing
Resnick (1987), Nesher pointed out the
following differences:

“(1) schooling focuses on the
individual's performance, whereas
outside school mental work is
often socially shared;

(2) school aims to foster unaided

Thus, young street vendors were more
successful in their computations outside
school than in their efforts to solve
school-like exercises presented to them by
the same experimenters.

Similar results were obtained by Lave
(1988) in a study with 35 adults (21 to 80
years) in California. All of the subjects in
this study had higher levels of instruction
(range 6 to 23 years) than the Brazilian
youngsters. Lave and her collcagues observed
adults engaged in shopping in supermarkets
and trying to decide which was a better buy
comparing two quantities of a product with

thought, whereas mental work
outside school usually involves
cognitive tools;

(3 school cultivates symbolic
thinking, whereas mental activity
outside school engages directly
with objects and situations;

(4)  schooling aims to teach general
skills and knowledge, whereas
situation-specific competence
dominates outside." (p.56)

To these, Nesher added also that:

L
N

"Learning outside school is part of the
immediate social and economic system.
The goal on the part of the trainer is to
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put the traince as soon as possible on the
production line" (p.56)

while

“This is not exactly the case at school.
Schools aim to pass on knowledge to
students to partly be empioyed at school
in further training, but mainly to be
employed elsewhere, after leaving school
(...) schools have to deal with questions of
motivation or with questions of rewarding
procedures” (p.57)

which may not come up outside school.

Nesher's contrast of learning in and out of
school, however, does not cover what many
authors scem to regard as perhaps the two
most important differences. These are: (1)
that the mathematics used outside school is
a tool in the service of some broader goal, and
not an aim in itself as it is in school (sec
Lave, 1988; Murtaugh, 1985); and (2) that the
situation in which mathematics is used
outside school gives it mcaning, making
mathematics outside school a process of
modelling rather than a mere process of
manipulation of numbers.

Carraher (PME, 1988) expanded on this
last aspect of the difference by arguing that

“Mathematics outside school s
conducive to the development of
problem solving strategics which reveal a
representation of the problem situation.
The choice of models used in problem
solving and the interval of responses are
usually sensible [when mathematics is
carried out outside school] even though
not always correct. Students using school
mathematics often do not seem to keep
in mind the meaning of the problem,
displaying problem solving strategies
which have little connection with the
problem situation and coming up with
and accepting results which would be
rejected as absurd by anyone
concentrating on meaning." (p.19)

Carraher supported this analysis by
referring to a study by Grando (1988), in
which farmers’ and students’ responses to a
series of problems were contrasted both in
terms of the strategies used and in terms of
how sensible the responses provided were in
view of the preblem. The farmers (n = 14) in
the study had little or no school instruction
and had learned most of their mathematics
outside school; the students (20 in seventh
and 40 in fifth grade), even though belonging
to the same rural communitics, had learned
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most of their mathematics in school. They
were asked, for example, how many pieces of
wire with 1.5 meters of length could be
obtained by dividing into pieces a roll of
wire 7 m long,

"The farmer's responses, obtained
through oral calculation [typically an
out-of-school method], fell between 4 and
7 pieces with 93% giving the correct
answer. The students’ responses fell
between .4 and 413 pieces. These
extreme answers were given by students
who carried out the algorithm for division
(correctly or incorrectly) and did not
know where to place the decimal point”
(p12)

a difficulty not faced by farmers. who
continuously thought about the meaning of
the question and would neither accept as an
answer to this problem a number which
indicated less than one picce of wire nor a
number as high as 413.

The role of modelling in the farmers'
procedures was clearly identified through
their verbalizations, which indicated that
they simultancously kept track of the number
of picces and the amount of wire used up.
Their responses could be obtained by a process
like the following: "one piece, one meter and
a half; two picces, three meters; four picces,
six meters--then, it's four pieces"”.

The argument being presented here is not
that farmers were more able than students in
mathematics. It is possible that students
could have solved the problem correctly if
they had used the same method as the
farmers. All of the students attempted
division in this problem, a mecthod which
was adequate and perhaps triggered by the
idea of dividing the roll of wire into picces.
However, faced with the difficulty of
operating with decimals, they tried no other
route to solution. Farmers, in contrast, were
not restricted to division by any particular
set. They were consequently able to avoid the
decimal division by adding the pieces up to
the desired total length, thercby preserving
their ability to monitor their response as
solution was approached.

Differences in methods for solving
problems in and out of school are also very
clearly observed in problems involving more
than one variable, like proportions problems.
From the mathematical point of vicw, all
proportions problems involve the same
structure. Thus it is possible to devclop a
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general algorithm which can be applied in
any proportions problem independently of
the type of variable involved, be it money,
length, weight or whatever. This is in fact
what the teaching of proportions in school
aims at: the transmission of a general
algorithm, which takes the form a/x = b/c.
However, outside school the nature of the
variables and the relationships which

~ connect them are not set aside for the sake of

the development of a general algorithm,
The routes to solution tend to reflect in some
sense¢ the relationship between the
variables, as we can see by contrasting the
findings reported by Carraher (PME, 1986)
with foremen and by Schliemann and Nunes
(1990) with fishermen solving proportions
problems in Brazil.

Carraher (PME, 1986) observed that
construction foremen solving proportions
problems about scale drawings preserved
throughout calculation the notion of
scale--that is, the notion that a certain unit
drawn on paper corresponds to a certain unit
of "real life" wall. The 17 foremen
interviewed in this study were successively
shown four blueprints and asked to figure out
the real-life size of one or more walls in each
blueprint drawing. The data they used to
solve the problem were obtained from the
blueprint: a pair of data on one wall (the
real-life size and the size on the blueprint)
and the size on the blueprint of the target
wall. All successful solutions with unknown
scales were obtained by foremen who first
simplified the initial ratio (size on scale to
real-life size) to a unit value and then used
this ratio in solving the problem. When the
original pair of data on one wall was, for
example, 5 cm on the blueprint corresponding
to 2 m in real-life, foremen first simplified
this ratio in order to find the basic
correspondence--"2.5 cm on paper is worth 1 m
of wall", as a foreman said--and then used
this simplified ratio to find the length of
the target wall. This strategy of finding the
simplified ratio allowed foremen to carry out
the arithmetic in a way that reflected the
relationship between the variables, value on
paper and real-life size.

Foremen's strategics build an interesting
contrast to those observed among fishermen
by Schliemann and Nunes (1990) because
fishermen hardly ever used as a method the
identification of a simplified relationship
between the variables. Schliemann and
Nunes interviewed 16 fishermen who had to

deal with the price-weight relationship in
their everyday life in the context of selling
the products of their fishing. On the basis of
their analysis of the fishermen's everyday
activities, Schliemann and Nunes expected
that fishermen would develop methods of
solution of the type which has been termed
"scalar solution" by Noelting (1980) and
Vergnaud (1983). Scalar solutions to
proportions problems involve carrying out
parallel transformations on the two
variables (such as doubling, trebling or
halving the values) without calculating
across variables (and thus finding the
functional factor). Schliemann and Nunes
observed that scalar solutions were preferred
by fishermen even when these solutions
became cumbersome due to the fact that the
target value was neither a multiple nor a
divisor of the data given in the problem
(like finding the price of 10 kilos given the
price of 3 kilos of shrimp). The strong
preference observed among fishermen for
scalar solutions cannot be explained in terms
of their school instruction for two reasons: (1)
scalar solutions are not taught in Brazilian
schools, where the Rule of Three (a/x + b/c)
is traditionally taught; and (2) 14 of the 16
fishermen had less than 6 years of schooling
and the proportions algorithm is taught in
6th or 7th grade in the area where the study
was conducted.

The preservation of meaning in
out-of-school mathematics is clear not only
in the modelling strategies involved in
problem solving but also in the calculation
procedures used. Reed and Lave (1981), who
first described the difference between oral
and written arithmetic in greater detail,
made this point quite clearly by
characterizing oral arithmetic, typical of
unschooled Liberian taylors, as a
“manipulation of quantities procedure" and
written arithmetic as a "manipulation of
symbols procedure”. Carraher and
Schliemann (1988) further expanded this
analysis by pointing out both differences and
similarities between oral and written
arithmetic. Oral arithmetic preserves the
meaning of quantities in the sense that
hundreds are treated as hundreds, tens as
tens, and units as units, as can be seen in the
two examples below, one involving
subtraction and one involving division.

In the first example, the child was solving
the problem 252 - 57 using oral arithmetic
in a simulated shop. The child said: “Just
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take the two hundred. Minus fifty, one
hundred and fifty. Minus seven, one
hundred and forty three. Plus tha fifty
you left aside, the fifty two, one hundred
ninety three, one hundred ninety five"
(from Carraher, PME, 1988, p.10).

In the second example, the child was
solving a word problem which asked
about the division of 75 marble among
five boys. He said: "If you give ten
marbles to each one, that's fifty. There
are twenty-five left over. To distribute to
five boys, twenty five, that's hard.
(Experimenter: That's a hard one.) That's
five more each. That's fifteen" (from
Carraher, PME, 1988, n.7).

It can be easily recognized that the
relative value of numbers is preserved
throughout in oral computation--for
example, the children said "two hundred
minus fifty" and "give ten marbles to each
boy". In contrast, in the school algorithm for
computation children would be taught to say
“seven divided by five, ore" (when dividing
seventy by five and obtaining ten) and "two
minus one" (when subtracting one hundred
from two hundred), ignoring the relative
value of the digits.

Carraher and Schliemann (1988), how-
ever, pointed out not only differences but also
similarities between oral and written arith-
metic, arguing for the coordination of social
and logical structuring in any context in
which mathematical activities are carried
out. The similarities were related to the
logico-mathematical principles that con-
stitute the basis for the arithmetic
calculations.  Detailed analysis of the
processes of calculation showed that the
properties of the operations used in oral and
written computations are the same:
associativity for addition and subtraction
and distributivity for multiplication and
division. Neither users of oral nor users of
written arithmetic name these properties of
the operations. However, when they under-
stand the procedures they use, they explain
the steps in calculation drawing or the pro-
perties of the arithmetic operations.

To sum up the contrasts presented
hitherto between mathematics in school and
out of school, we saw that mathematics
outside school is a tool to solve problems and
understand situations while school
mathematics involves learning the results of
other people's mathematics. As a
consequence of this difference, mathematics
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outside school tends to be more like
modelling, in which both the logic of the
situation and the mathematics are
considered simultaneously by the problem
solver. In contrast, school mathematics
typically focuses on mathematics per se,
resorting to applications not as a basis for the
development of understanding but as
occasions for practising specific procedures.
Despite the differences, arithmetic in and
out of school relies on the same properties of
operations. The social organization of the
mathematical activities varies in and out of
school while the logico-mathematical
principles which come into play remain
invariant.

Logic and convention in geometrical
activities.

Arithmetic is a type of mathematical
activity related to the quantification of
variables and operations involving
quantities. Geometry can be seen as the
mathematization of space--or the "grasping
of space” through mathematics
(Freudenthal, 1973). It involves a whole
range of activities which can be carried out
in and out of school like determining
positions, identifying similarities (in shape,
for example), analyzing perspectives,
producing displacements, quantifying space,
and deducing new information through
operations. Some of these activities are
involved in cultural practices outside school.
These practices may have to do with
everyday needs of whole populations or they
may be specific of subgroups carrying out
particular activities. Determining position
is a simple example of a geometry-type
activity in everyday life which may be
shared by whole populations. In order to
walk about in a village or a city, everyone
needs some ability to determine one's
position in relation to the place one wants to
go to - especially if the place to be found was
never visited before or if one is using a map.
Orientation in space appears to be
accomplished by a mixture of logical and
socio-culturally determined ways of repre-
senting space.

The logic of determining positions
involves relating objects to each other
according to an imaginary system of axes
which can be applied in any situation.
Piaget and his collaborators (Piaget and
Inhelder, 1956; Piaget, Inhelder &
Szeminska, 1960) have made a significant
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contribution to our understanding of this logic
of space by tracing the development of the
understanding of vertical and horizontal in
Swiss children. They were able to show that
children's understanding of the vertical and
horizontal axes does not stem directly from
the empirical experience of standing upright
and lying horizontally. Piaget's work
suggests that this under-standing is
constructed as children relate objects to one
another in space.

Piaget and his colleagues did not concern
themseclves with variations in the use of
these systems of coordinates cither within a
culture across different situations or across
cultures. More recently other authors have
looked at these variations and pointed out
interesting cultural inputs into this logical
system. For example, Harris (1989) notices
that in most Western cultures we use the
framework of "left" and "right", “in front of"
and "behind", "above" and "below" when
describing positions. "Left" and "right" are
descriptions derived from an imaginary axis
related to the two sides of the body as "in
front" and "behind" are related to the front
and the back of the body; "above" and
"below" are related to high and low, as head
and feet relate to each other. When this
organization is represented on paper,
conventions are that ihe left-right axis on
paper ccrresponds to a horizontal line while
the perpendicular axis from the nearest to
the furthest point on the page corresponds to
a vertical line.

However, as Harris further points out,
other cultures may not readily use the
body-related system of axes (like left-right)
cither for everyday practices or when space
is represented on paper. Several Aboriginal
groups in Australia scem to prefer to use
compass points even over very small
distances.  "For example, when one
Aboriginal woman was looking for a
particular picture on a wall covered with
photos, her companior. directed her to look to
the west side of the wall" (Harris, 1989,
p.12) - a situation in which Westerners
would have used "left/right" instead.
Similarly, when teachers were giving
instructions on how to do letters in a
handwriting lesson, they would use the
compass points; "to write the letter 'd' the
instructions (spoken in Walpiri) might be:
'Start here on the north side, go across south
like this and down across to the north and up,
and then make a stick like this" (Harris,

1989, p.12). Bishop (1983) also reports the
description of a system of sloping axes by a
student from Manu, an island in Papua
New-Guinea, as "a line drawn horizontal in
the northwest direction". The description of
a sloping line as "horizontal" is incongruent
with Western conventions and could be
interpreted as incorrect. However, if we
consider it together with the description of
the slope as "in the northwest direction",
this student's description of the diagram
reveals the use of compass points in the
representation of relationships in a plane.

Piaget and his collaborators (1960)
stressed the importance of this system of axes
not only for locating a point in space but also
as part of devising a means for measuring
angles and defining figures in a plane. They
described children’s success at copying angles
as a function of their understanding that the
slope of a line could be described by two
points simultancously related to a horizonial
and a vertical axis. Similarly, Carraher and
Meira (1989) observed how youngsters
learning to use LOGO employed a system of
coordinates when trying to determine the
angle to be turned by the turtle in order to
copy a target figure. The imposition of this
imaginary set of axes on the manipulations in
space with LOGO is remarkable because no
such a system had occurred to the youngsters'
instructors at the outset. The LOGO learners
scemed to be bringing to this new situation a
way of organizing space which they had
developed independently of that particular
experience. The use of such static reference
systems is even more interesting when one
reflects upon the fact that this is not the only
way that the youngsters could have
approached the metric of angles in a
dynamic situation. As Magina (1991)
suggests, such a metric is available in our
culture in the reading of traditional clocks
but not a single subject in the Carraher and
Meira study used the clock analogy when
quantifying angles in LOGO.

A different type of geometric activity
which was also analyzed by Piaget and his
co-workers deals with the concept of the
straight line as "the line of sight”, a concept
which is involved in projective geometry. As
Freudenthal (1973) points out, this is a
complex definition of a straight line and may
be preceded by other ways of understanding
the straight line. It may also be developed
more clearly in connection with certain
activities of specific groups of people who
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have to take into account perspective in
drawing or who have to carry out navigation.

While interviewing fishermen, I
obtained the following explanation for how
they found their way in the narrow channel
which they took through the barrier of reefs
off the coast where they fished:

“You just have to look at the church and
the tall coconut tree (a particularly tall
trce which stands out in the region).
When the church runs in front of the
tree, that's how you get into the channel®.

When 1 asked what he mecant by "the
church running in front of the tree”, the
fisherman explained:

“The things that are closer to the ocean
move faster as you move and look at
them. They don't move, you move, but
what is behind them changes and makes
it look like they move. That's what we
mean when we say that the church runs
in front of the coconut tree".

Despite the anccdotal nature of this
example, it helps us understand why it is
that people concerned with navigation turn
out to do so well in projective geometry tasks:
they rely on coordinations of lines of sight in
order to determine their course. In contrast,
when we orient our routes on land we rely
more on roads and distances than on the line
of sight.

Bishop's (1983) results comparing three
groups of students in Papua New-Guinea scem
to support the idea that projective geometry
is related to specialized activities. He
showed the students a scries of photographs
of small abstract objects and asked them to
identify the place from which the camera
took the photograph. This is reportedly a
difficult task, which was performed much
better by the students who came from an
island (who averaged 51 correct responses)
than by the students who came from the
highland or the urban environments (who
averaged 34 and 26 correct responses,
respectively).  The specificity of the
activity is even more clearly understood
when one iooks at the results of some of the
other tasks that were presented to the
students. These results do not reveal a
general superiority of the islanders in all
spatial tasks. For example, the islanders
showed a more restricted spatial vocabulary
than the other two groups of students and
drew maps picturing the route from their own
room to the university officc which were less

accurate than the maps drawn by urban
students.

In conclusion, similarly to what was
observed in the ficld of arithmetic,
cveryday practices involving the
mathematization of space reflect both
socio-cultural experiences and invariant
logical relations. Locating objects on a plane
may vary both within a culture and across
cultures in the use of body-anchored or
compass-related systems of axes. However,
it is possible to identify an invariant logic on
which these variations are based, which is
constituted by the very notion that an
imaginary system of axes can be imposed on
the to-be-represented space. Everyday
practices of particular groups can also give
rise to specific ways of understanding space
which may not be as important to other
people not involved in such practices. The
conception of a straight line as "the line of
sight” scems to emerge more readily among
people involved in navigation than among
pcople who do not concern themselves with
navigation. This concept of the straight line
does not appear to be a routine that people
memorize but a real activity because the
same ability can be used in rather difficult
and different tasks such as finding the
position from which a picture was taken.

Bringing street mathematics into the class-
room.

In the previous sections we have discussed
examples of mathematics learned outside
school without discussing how to build
connections between everyday mathematics
and teaching. In this section we will explore
how everyday practices can be brought into
the classroom and what ecffects this may
have on school learning,.

The idea of bringing out-of-school
mathematics into the classroom is not new.
The following arguments, amazingly current
both in their nature and in the goals
proposed for arithmetic teaching, are taken
from a manual prepared for teachers by
Brideoake and Groves as carly as 1939:

We felt that in the past, many children
who failed to achieve success in "sum
lessons” showed considerable grasp of
the subject when shopping in the High
Street or taking the milk. They were not
devoid of number sense, but the school
approach seemed to be faulty (p.5).
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In the carlier period it was "sums" which
mattered.  Class teaching was the
mecthod , with its visualising and
memorising, and the ideal was that the
children should learn the four rules and
be able to get the daily “six sums” right.
Then a reaction in favour of individual
work set in. This was led by the great
ed ucationist, Madame Montessori, and
resulted in a flood of “number
apparatus”, extensive cxercises in
counting, and pretentious written sums;
but still there was, very often, little mental
alertness or real number power. Now
many teachers are feeling their way to a
realistic approach, with its underlying
idca that development of number sense
is wiat matters, and that "sums” are only
the expression of this (Brideoake and
Groves, 1939, pp.9-10).

To want tc use a realistic approach or
bring children's number sense into the
classroom is onc thing; to be successful at it is
quite another. In this context, an informal
observation by an educator, Herndon (1971),
is very informative. He describes how he
met in a bowling alley a student who had
difficulty in school arithmetic but who could
keep track of eight bowling scores at once in
the alley. He then realized that all of his
students had some use of mathematics
outside school in which they were successful
and tried to make them solve exercises in
school which were similar to what they
could do outside school. This is how he
describes his attempt:

Back in cighth period [ lectured him [the
boy from the bowling alley] on how: smart
he was to be a league scorer in bowling. 1
pried admissions from the other boys,
about how they had paper routes and
made change. [ made the girls confess
that when they went to buy stuff they
didn’t have any difficulty deciding if
those shoes cost $10.95 or whether it
meant $109.50 or whether it meant $1.09
or how much change they'd get back
from a twenty. Naturally I then handed
out bowling-score problems, and
naturally everyone could choose which
ones they wanted to solve, and naturally
the result was that all the dumb kids
immediately rushed me yelling. “Is this
right? [ don't know how to do it! What's
the answer? This ain't right, is it?"* and
"What's my grade?". The girls who
bought shoes for £10.95 with a $20 bill
came up with $400.15 for change and
wanted to know if that was right?
(Herndon, pp.94-95).

Bringing out-of-school mathematics into
the classroom is not simply a matter of
finding an cveryday problem and presenting
it as a word problem for the application of a
formula or an algorithm alrcady taught.
This approach does not change the main
difference between mathematics in and out of
school pointed out earlier because students
would still be in the same position of trying
to learn the products of other pcople's
mathematical activities. Bringing
out-of-school mathematics into the
classroom means giving students problems
which they can mathematize in their own
ways and, in so doing, come up with results
(methods, gencralizations, rules etc.) which
approach those alrcady discovered by
others.

Different PME authors have explored
routes to mathematics teaching related to
the idea that out-of-school mathematics can
be brought into the classroom with positive
results.  Some of these studies will be
reviewed here and can be used as starting
points for further explorations. I would like
to distinguish two types of teaching
approaches in  which out-of-school
mathematics is brought into school.

The first approach starts from a
particular aspect of mathematics which one
wants the students to learn--notation
systems, methods, theorems ctc.--and then
scarches for cveryday problems which
instantiate that aspect of mathematics. In
this case, the teacher will create constraints
in order to ensure that the specific aspect of
mathematics comes up in the analysis of the
cveryday situation and will not consider
teaching successful unless the specific goal is
achieved.

The second approach involves bringing
sensible problems from everyday life into the
classroom without a pre-established idea
about which particular method of mathe-
matizing the situation is to be the end-result
of the lesson. Although the teacher chooses
the problem because there are interesting
mathematical relations which can be
explored in the situation, there may be no
rcady-made solution process which the
students are expected to learn by analyzing
the problem situation and many ways of
solving the problem will be considered
legitimate. Teaching will be considered
"successful” if students analyze the
situations, use mathematical concepts in
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their analyses, build relationships between
different concepts and improve on their own
methods as they repeatedly employ them on
solving further related problems. Teachers
may introduce mathematical notations as
the pupils devise their solutions but the
specific teaching of these notations is not the
aim of the activities from the outset.

In short, the first approach is task
oriented. It aims at teaching concepts,
notations, methods etc. and can be evaluated
on the basis of whether or not pupils
accomplished the specific target. The second
approach is global and open-ended. It aims
at developing "mathematical minds". Its
evaluation must take into account pupils’
progress over time and determine whether or
not they become more sophisticated in their
mathematical analyses of situations as they
progress in school.

This section is divided into three parts.
In the first two, I will present work and idcas
from both of these approaches. Ileave to the
reader the task of evaluating them and
deciding whether they can be combined into
a unified philosophy for the teaching of
mathematics or not. In the third part, some
of the teachers' reactions to bringing out-
of-school mathematics into the classroom are
presented.

Teaching specific aspects of mathematics
with the support of everyday life
experiences.

We have seen that people learn much about
mathematical concepts outside school.
However, it does not follow that school
mathematics can profit from children's
knowledge of out-of-school mathematics. It
is quite possible to recognize that
mathematical ideas are often learned
outside school but still be sceptical about the
importance of bringing out-of-school mathe-
matics into the classroom. The need for
studies which show whether bringing every-
day concepts into the classroom can actually
contribute to the development of school
mathematics was clearly argued by Janvier
(PME, 1985). His arguments are summarized
in the following points:

“(1) certain mathematical ideas have
natural phenomenological
counterpart since they result by a
process of abstraction from objects
and observable entities” (p.135);

(2) these ideas formed from everyday
experience represent models
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which give meaning to the
mathematical ideas;

(3) two positions can be formed about
the role that these models may
have in mathematical education:
(a) models are restricted in their
generalizability and should there-
fore be forgotten as soon as correct
and efficient handling of abstract
symbols is achieved; and (b} a
model is irreversibly a model for
life and can be brought into play at
any moment when there is a need
for the mathematical relationships
and rules to be rediscovered.

The question posed by Janvier is thus
essentially whether everyday mathematics
is so bound up with the context in which it
was learned that it cannot be "pulled up”
from the context and transformed into a more
general model. Models for understanding
money, for example, could remain defined as
such and the relationships between numbers
which were learned in money contexts would
not be recognized in other contexts. A
different but related concern is expressed by
Booth (PME, 1987), who raises the
possibility that students may not link up the
specific representations used in teaching
with the more general mathematical ones,
and will thus not profit from the experiences
with the particular situations. Below wce
will review a sample of studies in which
children learned mathematics in specific
contexts and were tested for their learning in
more general ways. They do not represent an
exhaustive review of the literature; they are
described here as samples of attempts to
teach particular aspects of mathematics on
the basis of situations which pupils may
alrcady understand from their everyday
experience.

Higino (1987) analyzed the use of
children's knowledge of money as a support
for learning place value notation and the
written algorithms for addition and
subtracticn. She worked with a task
previously used by Carraher (PME, 1985;
Carraher and Schliemann, 1990) in which
children play a shopping game and are
asked to pay different amounts of money for
the items they purchase. The children are
given nine tokens of two different colours
which represent coins of different
denominations, one and ten. They are then
asked to pay for items they purchase in the
play shop using these tokens. The amounts of
money can be obtained (a) only with singles
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(for example, six); (b) only with tens (for
example, 30); and (c) mixing singles and tens
(for example, 17, a sum which can only be
paid if the child uses one 10 and 7 singles).
The 60 children in Higino's study were 7 to 9
years of age and were attending second grade
in state schools in Recife, Brazil. They were
matched at the outset of the study with
respect to their knowledge of place value
notation and then randomly assigned to one
of four groups:

€1) an unseen control group that received only
the regular classroom instruction on place
value notation and the
addition/subtraction algorithms;

(2) a symbolic teaching group, that received
experimental instruction on place valuc
and the algorithms without recourse to
any materials other than explanations
about the decades and the rules of the
addition/subtraction algorithms;

(3) a sequential everyday-symbolic group,
that first practised counting money and
working out change in the pretend shop
and then received instruction on place
value and on the addition/subtraction
algorithm;

(4) a parallel everyday-symbolic group, that
practised counting money and giving
change and received parallel instruction
on place value notation and the
addition/subtraction algorithms.

Results showed that all four groups
progressed with instruction according to an
immediate post-test. However, in a delayed
post-test given approximately one month
later, children from the symbolic teaching
group no longer differed significantly from
the unsecen control group while the other two
experimental groups still did significantly
better. Moreover, children from the parallel
everyday-symbolic group showed a small
improvement in their mean number of correct
responses to the addition/subtraction
problems after one month of instruction while
the other groups showed slight decrements.
Thus Higino was able to show that
connecting everyday experiences with
classroom learning of addition and
subtraction produces better results than
teaching without regard for children's
previous knowledge.

Another study which attempted to
analyze the role of everyday situations in
the development of basic concepts of addition

and subtraction was carried out by De Corte
and Verschaffel (PME, 1985). They argued
that most instructional approaches use word
problems as applications of addition and
subtraction but it is questionable whether
word problems representing real situations
only have this role in elementary
arithmetic.

“Indeed, recent work on addition and
subtraction word problems has produced
strong evidence that young children who
have not yet had instruction in formal
arithmetic, can nevertheless already
solve those problems successfully using a
wide range of informal strategies that
model closely the semantic structure and
meaning of the distinct problem types."
(p.305)

Working from this assumption, De Corte
and Verschaffel compared a control group,
instructed in the traditional way described
above, to an experimental group, who
learned addition and subtraction concepts
mostly from solving word problems and
learning scveral ways of representing the
semantic relations in the problems. They
observed that the experimental group made
twice as much progress on word-problem
solving than the control group after one year
of instruction, a difference which was
statistically sig-nificant. De Corte and
Verschaffel concluded that this line of
investigation is worth pursuing further
although they recognize that the probiems
used in the experimental program were
relatively poor in content and did not
approach outside-school situations as much
as desired. Similar positive results were
reported also by van den Brink (PME, 1988)
after a year-long experiment on children's
learning of addition and subtrac-tion concepts
either by modelling from everyday
experiences or from teaching with-in a
traditional approach.

Looking at somewhat more complex
situations, Janvier (PME, 1985) analyzed the
role of models in teaching negative numbers
by contrasting two groups of students, one who
had learned negative numbers from a
symbolic model and a second one which had
learned from what he calls a "mental image"
model based on particular experiences. The
symbolic-model group learned negative
numbers by having the symbolism introduced
only loosely related to an initial situation
and then concentrating on rules for
manipulating numbers. Different colours
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were used for negative and positive numbers
and rules were of the type: "when you add
two numbers of the same colour you make an
addition and keep the same colour; when you
add two numbers of different colours, you
subtract the small one from the big one and
take the colour of the big one" (Janvier, 1985,
p.137).

The mental-image group attempted to
solve problems about a hot-air balloon to
which bags of sand or helium balloons could
be attached, the first having the effect of
lowering the balloon while the latter
brought it higher. Balloons and bags were
initially of one unit but several of either
could be used at once so that symbolism could
be developed for larger numbers. Adding
meant tying an extra-clement and subtracting
was identified with removing an element
from the dirigible. Janvier found that the
mental-image group did significantly better
on addition items than the symbolic-model
group; no significant difference was found for
subtraction. Furthermore, when students
were interviewed later, those from the
mental-image group could correct the
mistakes they had initially made by going
back to the model; however, the
symbolic-model students simply repeated
within the model the same mistakes and
were unable to revise their wrong answers.

Other studies which must be mentioned
and which deal with more advanced
mathematical concepts are in the realm of
functions and algebra. Janvier (1980) and
Nonnon (PME, 1987) have investigated the
use of situations represented graphically in
the teaching of functions. Both studies
analyze students' difficulties with graphic
representation and improvement after
teaching. However, no systematic com-
parisons between the experimental groups
and others taught without the support of the
everyday situations represented graphically
are available and clear conclusions are thus
precluded. Filloy (PME, 1985) studied the
use of addition/subtraction of packages of
unknown weights onto two- plate balance
scales as images for algebraic manipulations
with unknowns. Although he reports some
success, he scems to be cautious about the
results of this experience in a later paper.
Filloy and Rojano (PME, 1987) argued that
subjects could achieve a good handling of the
concrete model but developed a tendency to
stay and progress within this context only,
showing difficulty in abstracting the
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operations to a syntactic level and in
breaking with the semantics of the concrete
model.

To summarize, it seems possible to use
everyday situations in the classroom as
instances of particular aspects of
mathematics and obtain better learning of
this mathematics in context than in a
traditional teaching schema relying
primarily on symbolic manipulations.
Further research is undoubtedly still
necessary since only a very narrow range of
mathematics has been systematically
investigated.

Real-life mathematics used in an open-ended
fashion.

Streefland {PME, 1987) presented in very
clear terms the instructional principles
which guide the open-ended type of realistic
mathematics education which we are
distinguishing from the modelling of specific
mathematical aspects discussed above.
These instructional principles are:

a) context problems (or situations) occupy a
dominant role in mathematics education,
serving both as a source and as a ficld of
application of mathematical concepts;

b) a great amount of attention must be paid
to the development of situation models,
schemas and symbolising;

c¢) children can make significant
contributions to classroom work through
their own productions and constructions in
the process of moving from informal to
formal methods;

d) this learning process is of an interactive
nature;

e) different concepts become more clearly
interrelated in this progressive
mathematization of situations.

Streefland (PME, 1987; PME, 1988) has
produced several examples of how children
can learn mathematical concepts in the
progressive mathematization of real
situations. In one PME research report,
Streefland (PME, 1987) describes the process
of mathematization leading from division in
the sense of equal sharing to fractions. The
children start from a situation in which they
are asked to work out how to share three
candy bars among 4 children. Examples of
how the distribution is performed and what
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children learn from this distribution in this
first phase of teaching involve:

dividing each bar of chocolate into 4
equal parts and taking one part for each
child, a procedure which leads children
to describe each child's share as 3 x 1/4
or3/4;

realizing that each child could have a half
chocolate, using up two whole chocoiates,
and the last chocolate would then be cut
into for equal parts, each child's share
being described as 1/2 + 1/4 (this
description helps children understand
that 1/2 and 2/4 are the same amount).

In the second phase of teaching, "concrete
stories of fair sharing gradually melt into
the background (...). The activities change
into composition and decomposition of real
fractions" (Streefland, PME, 1987, p.407)
using methods of decomposing fractions into
units and finding equivalences, but it is still
best "not to wipe out all the traces of the real
situations referred to even at this stage”
(p-407). For example, 5/6 can be decomposed
into1/6+1/6 +1/6 + 1/6 + 1/6 and then other
equivalences can be found like 3/6 + 2/6 and
then1/2 +1/3 and so on.

In the third level of teaching, "the rules
for the composition and decomposition of
fractions will become the objects of mathe-
matical thought (...) the methods of
production vshich turn out to be the most
efficient might become standard procedures
or algorithms” (p.407). "For example,
children work with questions like: 1/2 + 1/3
arc probably pseudonyms for other fractions
with a common name; produce these other
fractions”.

Streefland reports that children working
with this approach to the teaching of
fractions show increasing skills in producing
equivalent fractions, in operations with
fractions with the exception of division, and
a general dominance of the clementary laws
for operation as methods of production.

Streefland (PME, 1988) presented further
examples of his instructional approach
including topics like subtraction, division
and further examples about fractions. He
also strengthened his theoretical principles
on teaching, by arguing that:

- when students work with their own
constructions for mathematizing reality,
they have the opportunity of strongly
interconnecting several topics which are

related but taught separately in other
approaches to mathematics education
because "genuine reality can be organized
mathematically in various ways"
(Streefland, PME, 1988, p.89);

- in this learning process, children acquire
a variety of aids and tools in the
progressive mathematization of
situations becoming competent in the use
of different terminologies, symbols,
notations, schemas, and models;

- organizing and structuring the
mathematics should be as much as
possible the business of the children
themselves, a principle which stresses
the importance of interaction and
cooperation in this way of approaching
mathematics education.

Other significant aspects of this realistic
approach to the teaching of mathematics are
emphasized by De Lange (1987; in press),
who discusses the importance of using real
mathematics also in the assessment of
children's success in learning mathematics,
and by Boero (PME, 1989). who points out
that there are misconceptions of real
situations which may creep up in
mathematics classes when external contexts
are used for conceptualizing. According to
Boero, these misconceptions do not
necessarily hinder the process of
conceptualizing mathematics; they are
rather problems to be faced by students "if
one wants the pupils to gradually understand
that there are levels of 'intuitive evidence'
and 'intuitive' ways of thinking which must
be exceeded if a rational working command of
certain phenomena is to be reached, and that
mathematics may have an important role in
this passage from intuition to ration-
alization" (Boero, PME, 1989, p.69).

The evidence produced by Streefland on
pupils' progress in the process of
mathematizing situations is provocative.
Mathematics appears as a way of
representing and mentally manipulating
situations, bridging the gap between a
problem and a solution and allowing children
to go beyond the information they started
the task with. Streefland's descriptions of
how children progress from close modelling
the situations to developing abbreviated and
general procedures as they interact with
each other and compare the efficiency of the
different procedures suggest the importance
of exploring this approach further with a
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new range of topics. It is especially
interesting to note how children seem to
understand quite clearly the mathematical
equivalence of their different procedures on
the basis of their model.ing properties but
still go on to evaluate tteir efficiency. They
do not stop working when they "find the
answer”.

To summarize, the open-ended realistic
approach to mathematics teaching involves
the search for everyday situations which can
be treated as sensible problems in mathe-
matics classes. The choice of situations is not
geared to the teaching of particular
mathematics topics. Pupils success is not
evaluated on the basis of whether a specific
bit of mathematical knowledge was
accomplished. Instead, pupils success is
evaluated on the basis of the progressive
sophistication of their methods and their
building of relationships between concepts,
symbols, notations and terminologies. This is
essentially the basis of Streefland’s (PME,
1988) contrast between the teaching
approach developed by “realistic
instruction” to the "structuralist approach”
proposed by Dienes. While the realistic
approach starts from pupils good sense in a
problem situation and progresses to more
formal procedures, in the structuralist
approach "vertical mathematizing is
overstressed and formal procedures are
imposed" (p.89). In other words, concrete
materials devised for instruction within the
structuralist approach do not aim at bringing
out-of-school reality into the classroom.
Instead, mathematical objects are devised
for the purpose of concretely exemplifying
mathematical procedures and represent-
ations already formalized. The mathe-
matical objects thus devised may have no
meaning outside the classroom. This means
that pupils may not have models which
they can readily call upon to understand
their experiences in the classroom.

This open-ended realistic approach is
not restricted to arithmetic but has also been
tried out with geometry. Goddijn and Kindt
(PME, 1985) strongly criticized traditional
geometry teaching as stereotyped and
restricted to "the flat world of textbook".
They propose to give geometry teaching a
new approach by working from the
three-dimensional world.  Examples of
questions in their programme include working
with proportion and scale comprehension as
students look at pictures and take into
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account distances and viewing points.
Students attempt to find the position from
which a picture was taken and are
encouraged to use explanatory drawings in
this process. In so doing, they "discover” the
line of sight and the changes in perspective
and size of figures as the "viewer" moves
about. They look at shadows and reflect on
related phenomena such as the phases of the
moon. They watch a student enact the
movements of the moon around the earth in
front of a bright light and ask each other
how is moon seen, lit-up or in shadow, from
the perspective of pupils is different parts of
the room. They use the "line of sight" from
the point where they stand, imagine it from
the point where someone stands, and try to
figure out where someone must stand in order
to have a particular viewpoint.

Goddijn and Kindt describe how students
(and teachers alike!) become surprised at
how well their methods using lines of sight
(which may even be concretely represented
by strings) work in drawing and solving these
problems. But the results of this exploration
of space are not restricted to perspective
drawing; students found, for example, a
totally new manner of doing the classic
assignment of constructing the line through a
given point which intersects two skew lines.
Thas, by teaching geometry as "grasping
space through mathematics”, Goddijn and
Kindt were able to observe a progressive
sophistication of students’ methods for
dealing with spacial and geometrical
problems.

Teachers’ reactions to bringing out-of-school
mathematics into the classroom.

Many mathematics teachers seem to resist at
least initially, the suggestion of bringing
informal knowledge of mathematics into the
classroom. Several reasons are pointed out in
the literature. First, Schultz (1989) observes
that teachers seem to expect that they will
carry out the same pedagogy they were
themselves the recipients of. They learn
from modelling their teachers as much as (if
not more than) they learn from theories in
teacher education programmes. Second, they
are usually concerned with covering the
standard curriculum material, which is
determined in terms of traditional
mathematics topics, and not in terms of
mathematization of situations. To this
concern is added the resistance to the use of
intuitive methods in the classroom because




these methods conflict with teachers' views
of mathematics as a formal system of
knowledge (see Ernest, 1989) and as
"something superior" (Rosenberg, 1989).

Strategies which have been used to deal
with such resistance include both teachers'
observations of children's spontaneous
mathematical activity outside the classroom
and teachers' experience of the same
teaching approach when they themselves
mathematize experiences of a more complex
nature. Rosenberg (1989) reports that
"Aha!-experiences happened very often
when they (the teachers) started from
informal problems and finally got to
familiar formal structures" (p.83).

A last source of resistance comes from
teachers' beliefs about what students
will/will not do when faced with a new
educational experience. In this context, it is
interesting to report briefly on an informal
observation with a group of Brazilian
teachers, who found it hard to believe that
pupils would experiment with and improve
upon procedures and mathematical models
once they had already found an answer to
the problem. In traditional mathematics
teaching, finding an answer usually
determines the end of the activity. For this
reason, teachers expected that students will
stop working as soon as an answer is found.
They were also convinced that some answers
are correct and others are wrong and that
shifting mathematical models within a
problem simply means "finding the right
answer versus finding the wrong answer”. A
little later in the day I asked the teachers to
develop a simple way of determining the
rate of inflation, a problem of everyday
significance in Brazil. They quickly came up
with the idea that inflation could be viewed
as the average of all price increases. They
drew up a list of items, wrote down their
estimations of increases in prices in
percentages and calculated the average
increase. They were not satisfied with their
solution to this problem and did not stop
working. They realized that housing and
grocery shopping might affect people's
everyday expenses more markedly than
entertainment, for example. One teacher
suggested that they could give weights to
the items which would be proportional to
the impact the item had on a worker's
monthly spending. They worked out that the
wage could be represented as 100% and they
could then estimate what percentage of it

was spent per month on each item. They
calculated a weighted average of the
increases as their new solution. At this
point, the teachers seemed to have an "Aha!
experience".  They realized that, in
situations such as the one they had just
worked on, students might well look at the
same problem in different ways by trying out
different mathematical models on the same
problem.

Finally, it is interesting to add Schultz's
(1989) comments on the impact that the use of
real-life mathematics in the classroom had
on the student-teachers she worked with.
Although no systematic data are presented,
she observed that they became more aware
of what they had learned and the way they
learned and seemed to develop new methods
and ideas for teaching their own students. If
modelling from real-life situations turns out
to have a positive impact on future
mathematics teachers, this may be just as
important as the effects it has directly on
pupils. However, no research data seem yet
available on this issue.

Final comments

This paper reviews research which shows
that the social context in which
mathematics is carried out influences the
way people approach mathematical
problems. Mathematics in many of today's
classrooms is taught as an abstract form, a set
of symbols, procedures, and definitions to be
learned for perhaps some later application.
Mathematics used outside school is a type of
modelling: it is a way of representing reality
so that further knowledge about the reality
can be obtained from the manipulation of the
representations without the need to check
these new results against reality
(D'Ambrosio, 1986). These differences in the
social situations and their corresponding
mathematics have an impact on rates of
success and types of procedures used by the
problem solvers. Research has shown that
bringing out-of-school problems into school as
a way of teaching mathematics is not only
possible but also a beginning of a more
successful story about mathematics teaching.
Further research is still needed and more
clear theorizing so that successful isolated
experiences can be transformed into an
effective educational theory.

Bringing out-of-school mathematics into
the classroom means facing questions which
may not be addressed in the traditional
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forms of teaching. Some of the questions
which emerge within this approach to
mathematics teaching are presented below.

We know that many concepts can be
learned outside school and that this
knowledge can be useful in school. But we
cannot be casual about which concepts and
situations we choose to bring into school. An
implicit route in this choice appears so far to
be to look at present mathematics curricula
and choose problem situations appropriate
for present day curricula. However, is it
possible to identify some "core” concepts
which will guide this choice in a new way?

A second question has to do with the
introduction of mathematical represent-
ations, Pupils solving real problems do not
need to reinvent mathematical represent-
ation. When and how is mathematical
representation to be introduced?

A third question which remains to be
investigated is which factors affect the
passage from informal to more formal
mathematical representation in the process
of mathematizing real problem situations.
Much of the success of the realistic approach
depends upon interaction between pupils and
we have achieved relatively little
understanding of what in these interactions
brings about children’s progress. Is it conflict

between different perspectives or is it the
convergence of different ways of representing
the same problem? This is not a trivial
question but one of great theoretical
significance, as Bryant (1982) has pointed
out.

Finally, it would be desirable to
accomplish better descriptions of the process
of progressive mathematization which takes
place when students interact and solve real
mathmaticss problems together. Is there a
single route in the development of each
particular concept or are there many ways to
get to the same place? Does natural
language, which is of course used in the
students' interactions, play a part in this
process or not? Is the progressive
mathematization of situations a process of
reconstruction of solutions at ever- higher
levels of abstraction or does it involve
dropping old models which are then
replaced by new ones? Is there a moment
when real problems are no longer important
or do they retain their role of giving initial
meaning to formalizations even at the
highest levels of abstraction?

Hopefully, further research and fruitful
cooperation between researchers and
teachers will bring clearer answers to many
of these questions in the future.

Terezinha Nunes was Associate Professor at the Universidade Federal de Pernambuco, Brazil,
and has been recently working as Research Fellow at The Open University, UX. From October
1991 she will be a lecturer at the Institute of Education, University of London. Her studies of
mathematical knowledge developed outside school (published mostly under her previous
surname, Carraher) analyze children's and adults' understanding of the numeration system,
arithmetic, and simple mathematical models such as ratio and proportions. She has sustained
much interest in the educational implications of these findings and worked closely with the
educational authorities in Recife, Brazil, in the development of teacher education programmes.
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The Influences of Teaching Materials

on the Learning of Mathematics

Kathleen Hart

This is an excerpt from a conversation
between a teenage girl and a mathematics
educator: (I: Interviewer; A: Alison)

I: You need four cubes for eight people so
for four people...?

A: Yes, but then if it was soup cubes, you'd
want the same amount of taste wouldn't
you so you would have to put the same
amount in the soup to get the same taste
to it, if you put less it wouldn't taste as
nice.

I: Really, even if you were only making
half as much soup?

A: Yes, 'cos you need the same amount don't
you, else it would taste horrible, it
wouldn't taste as strong.

I: Butlet's say you make enough soup for 8
people and you put 4 cubes in, now the
next day you are making soup for 4
people. How many cubes would you put
in then?

A: T would put in two but it would not taste
as nice would it?

I: Don't you think s0?

A: No.
I: You don't think it would taste the
same?

A: Because if you are going to make soup
you are going to have to use the cubes
anyway to make it taste aren't you?

I: Yes

A: So if you want it to taste just as good as
it did when you made it for 8 you would
have to put the same number of cubes in
it. Otherwise it won't taste the same.

I: Ithink it would. I think if you are going
to make half as much soup, you want
half as many cubes.

A: 1 suppose you could, but I wouldn't if
was making the soup.

Frank is only ten years old and he and
his class have been ‘taught' about the
volume of a cuboid.

(I: Interviewer; F: Frank) Ixbxh=V

F: Well,a,b,c,d, e f, g hijk1-1,273,
4,5,6,7,8,9,10, 11, 12. That'll be 12
times2and ...

I: Can you tell me how you know that?

F: Well, lis ... um... the tenth letter of the

alphabet.
I: Yes.
F: So,10.
I: Ah... who told you that?
F: ... (long pause)...
I: Did you just make it up?
F: Think so, yes.
I: Okay, and 'b' will be? And 'h'?
F: H..um...eh4...a,b,cd,ef,gh,..1,

2,3,4,5,6,7,8,9,10... two's is twenty...
eight, twenty eights will be one
hundred and ... one hundred and ... eight
... oh, two hundred and ... oh, one
hundred and forty.

I: Alright, and then it says equals V.
F: Equals V? 140.

I: How do you know that that's not right,
shaking your head?

F: V isn't the 120th letter of the alphabet
(laughs)...

Frank's common sense came to the rescue!

These children have been in school
mathematics classes for six to ten years but
there are obvious misconceptions held by
them. This chapter is about research
concerning materials which are available
to the teacher to assist in the process of
teaching. Materials can include books,
computer software or languages, concrete
materials (manipulatives) or other aids.
The emphasis is on research which led to
the production of the material or which
sought to produce evidence of its
effectiveness. The main source of the
research references is the work of members
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of the international group Psychology of
Mathematics Education.

Most children learn their mathematics
in school although they use it and obtain
their first ideas of the topic in the world
outside the classroom.  Within the
classroom they may be grouped with others
of the same age, other pupils of the same
attainment level or simply all the other
children who live in that village or street.
The teacher who provides the experiences
from which they are supposed to learn has
a difficult task no matter which way the
children who share the classroom are
selected. The researches of PME take as a
basic premise that the teacher is striving
for the children to understand what they
are doing. PME reports which describe
teaching experiments in which a form of
written material, a set of concrete
manipulatives or a computer program have
been tried so that learning is more effective
are not numerous. Many are based on the
desire to provide empirical evidence of the
validity of a learning or psychological
theory and in only a few cases are the
results overwhelmingly supportive.
However, books are written and materials
produced and the research results must shed
some light on how this can be better
achieved so that learning takes place.
Nobody has yet provided a solution for the
question 'how can I best teach this child'.
Throughout the world, with very few
exceptions the performance of children on
mathematics tasks is considered
unsatisfactory by educators in their country.
Is this because educators set unreasonable
tasks in the discipline of mathematics or
because the ecxpectations are entirely
reasonable but those who teach the subject
singularly inefficient?

Learning theories and their influences

Most research is carried out within a
theoretical framework. The choice of
framework influences the assumptions, the
premises suggested and tested and the
outcomes. Sometimes materials arec
invented to conform to the theory and the
rescarch is perhaps to test their
effectiveness or indeed provide some
evidence of behaviour which supports the
theory itself. Often existing books or
teaching aids are criticised because their
development contradicts a learning theory.
At the moment most mathe-matics books for
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young children which are based on language
and words only would be condemned as "too
abstract”, developmental psychology
having pro-vided theories which state
that a young child is incapable of abstract
reasoning.

Piaget's developmental theory outlined
stages of mental development loosely tied
to age. The theory divided intellectual
development into four major periods:
sensorimotor (birth to 2 years); pre-
operational (2 years to 7 years); concrete
operational (7 years to 11 years); and
forial operational (11 years and above).

Piaget's interest was in the psychology
of the child but many educators have
extended and interpreted his writings in
order to apply the theory to teaching as is
shown here by Ginsburg and Opper (1969) in
their book Piaget’s Theory of Intellectual
Development:

“While Piaget has not been mainly
concerned with schools, one can derive
from his theory a number of general
principles which may guide educational
procedures. The first of these is that
the child's language and thought are
different from the adult's. The teacher
must be cognizant of this and must
therefore attempt to observe children
very closely in an attempt to discover
their unique perspectives. Second,
children need to manipulate things in
order to learn. Formal verbal
instruction is generally ineffective,
especially for young children. The child
must physically act on his environment.
Such activity con-stitutes a major
portion of genuine knowledge; the
mere passive recep-tion of facts or
concepts is only a minor part of real
understanding.”

The theory of Piaget has for many years
influenced those who teach mathematics,
mainly through the advice given to
teachers in training. The definition of the
concrete operational level and the features
which distinguish it from the formal
operational level have led often to a belief
that children below the age of eleven years
should be given manipulatives to assist
them in learning mathematics or indeed in
some cases to replace the abstraction of
mathematics with only those experiences
which could be regarded as 'real’.

This has further become the suggestion
that the use of concrete materials is good in
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itself irrespective of the topic being taught.
Researchers have started to discuss the gulf
between manipulatives and formal school
mathematics and PME members have
considered this with respect to the learning
of Algebra.

Ausubel (1963) rather than having an
age-dependent theory provides a theory of
learning which emphasises the depen-
dence of new knowledge on old knowledge
and is perhaps better suited to the needs of
mathematics teaching which traditionally
builds on previous teaching. As Novak
(1980) says in quoting him:

“However, we must also consider the
cognitive functioning and psychological
sct of the learner as new knowledge is
internalised. Here we must distinguish
between rote learning wherein new
knowledge is arbitrarily incorporated
into cog-nitive structure in contrast to
meaningful learning wherein new
knowledge is assimilated into
specifically relevant existing concepts
or propositions in cognitive structure.
Since the nature and degree of
differentiation of relevant concepts and
propositions varies greatly from learner
to learner, it follows that the extent of
meaningful learning also varies along a
continuum from almost pure rote to
highly meaningful”.

In Europe successful learners of
mathematics in schools and universities
have always been few in number, successful
linguists or engineers are more numerous.
This state of affairs did not improve
proportionally with the introduction of
universal secondary education. This has
often meant that those who succeed have
had the reputation of possessing a superior
(or certainly different) type of intelligence,
their success being judged not attributable to
the skill of the teacher or the suitability of
materials but to the make-up of their
brains/intelligence. Psychologists and
educationalists can only measure
performance on tasks and therefore a theory
which discusses the potential for learning
as does that of 'information processing’ is of
value,

Those who have espoused this theory
tended to produce tasks which they said
were useful for judging the amount of 'space’
available in one's cognitive make up. More
recently the emphasis in mathematics

education research has moved to the
constructivist point of view.

A large number of PME members espouse
Constructivism, indeed the XIth Conference
in Montreal had Constructivism as its
central theme. Kilpatrick (PME, 1987)
describes some fundamental points:

"“The constructivist view involves two
principles:

L Knowledge is actively constructed
by the cognizing subject, not
passively received from the
environment.

2 Coming to know is an adaptive
process that organizes one's
experiential worlds; it does not
discover an independent pre-
existing world outside the mind of
the knower."

“The first principle is one to which most
cognitive scientists outside the
behaviourist tradition would readily
giveassent, and almost no mathe-
matics educator alive and writing today
claims to believe otherwise. The second
principle is the stumbling block for

many people.”

"Radical constructivism adopts a
negative feedback, or blind, view toward
the 'real world. We never come to
know a reality outside ourselves.
Instead, all we can learn about are the
world's constraints on us, the things not
allowed by what we have experienced as
reality, what does not work. Out of the
rubble of our failed hypotheses, we
continually erect ever more elaborate
conceptual structures to organize the
world of our experience."

“Von Glasersfeld has identified five

consequences for educational practice

that follow from a radical constructivist
position:

(a) teaching (using procedures that aim
at generating understanding)
becomes sharply distinguished
from training (using procedures
that aim at repetitive behaviour);

(b) processes inferred as inside the
student’s head become more
interesting than overt behaviour;

(¢} linguistic communication becomes
a process for guiding a student's
learning, not a process for trans-
ferring knowledge;
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(d) students’ deviations from the
teacher's expectations become
means for understanding their
efforts to understand; and

e) teaching interviews become attempts
not only to infer cognitive
structures but also to modify

them. All  five
consequences fit the constructivist
stance, but they appear to fit other
philosophical positions as well."

At all levels of the constructivist belief
the child is active in the learning process
and not a passive receiver of knowledge.
Radical constructivists would advise
teachers to provide rich learning
experiences for the child from which he can
construct his own mathematics. This is a
viewpoint different from that which says
the teacher armed with materials is the
source of the major part of mathematics
information in the classroom.

Ample evidence has been provided,
over many years, that children change the
information they are given by adults and
remember it in a different form. Children
also invent their own methods for carrying
out mathematical tasks. Street children in
Brazil for example have adequate methods
of calculation of profits on goods they sell.
Many English children ignore the
generalised, formal methods of solution
they are taught in school, in favour of more
specific, inven*ed methods (Booth, 1981).
Whether this is because the child's
unsullied intuition is at work or whether it
is because of desperation arising from a lack
of understanding of the teacher's
presentation, is unknown. We know that
many children start school knowing how to
count, to sort and to put objects in order.
Children are able to construct mathematics
but nobody has yet shown that they can
construct all that is needed to be a
mathematically competent adult in the
year 2000. Research which shows a teacher
can be most effective with talk and a
blackboard is not often carried out in
mathematics education. Brophy (1986),
writing in the Journal for Research in
Mathematics Education, quoting from the
general research on teaching said:

"Mere engagement in activities will not
facilitate learning, of course, if those
activitics are not appropriate to the
students' needs. Thus, the teacher's
desire to maximize content coverage by
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pacing students briskly through the
curriculum must be tempered by the
need to see that the students make
continuous progress along the way,
moving through small steps with high,
or at least moderate, rates of success
and minimal confusion or frustration.
Process outcome research suggests that
teachers who elicit greater achievement
gains from their students address this
dilemma effectively partly by

selecting activities that are of
appropriate difficulty levels for their
students in the first place and partly by
preparing those students thoroughly for
the activities so that they can handle
them without too much confusion or
frustration.

This research also indicates that the
academic learning time that is most
powerfully associated with achievement
gains is not mere ‘time on task’, or even
‘time on appropriate tasks’, but time
spent being actively taught or at least
supervised by the teacher. Greater
achievement gains are seen in classes
that include frequent lessons (whole
class or small group, depending on
grade level and subject matter) in which
the teacher presents information and
develops concepts through lecture and
demonstration, elaborates this infor-
mation in the feedback given following
response to recitation or discussion
questions, prepares the students for
follow-up assignments by giving
instructions and working through
practice examples, monitors progress
on those assignments after releasing
the students to work on them
independently, and follows up with
appropriate feedback and re-teaching
when necessary. The teachers in such
classes carry the content to their
students personally rather than leaving
it to the curriculum materials to do so,
although they usually convey
information in brief presentations
followed by opportunities for recitation
or application rather than through
extended lecturing.”

Generally both theory and research
seem to point to the importance of the
teacher and her interaction with the child.
Materials cannot of themselves provide
enough for the child to learn. Increasingly
the suggestion is that teachers adopt the
methods of research and learn from
listening to and observing children.




Progression in mathematical ideas

Written materials, textbooks, worksheets,
computer programs are produced with a
particular progression in mind. The writer
presupposes a logic which dictates what
should precede what other piece of
mathematics teaching. The structure of
mathematics often dictates what must be
considered a pre-requisite. For many years
Bloom's taxonomy provided a theoretical
underpinning for progression in what
teachers should present to children. More
recently the suggestions of van Hiele
concerning the structure of Geometric
progression in the school curriculum has
become popular in research projects and has
been extended to other parts of
mathematics. It is quite general and the
increasing complexity of demand is obvious.
These definitions are from Shaunessy
(1986):

"Level O. (Visualization) The student
reasons about basic geometric
concepts, such as simple shapes,
primarily by means of visual
considerations of the concept as a
whole without explicit regard to
properties of its components.

Level 1. (Analysis) The student reasons
about geometric concepts by
means of an informal analysis of
component parts and attributes.
Necessary properties of the
concept are established.

Level 2. (Abstraction) The student
logically orders the properties of
concepts, forms abstract
definitions, and can distinguish
between necessity and sufficiency
of a set of properties.

Level 3. (Deduction) The student
reasons formally within the context
of a mathematical system,
complete with undefined

ter:ns, axioms, an
underlying logical system, defined
terms and theorems.

Level 4. (Rigor) The student can
compare systems based on
different axioms and study various
geometries in the absence of
concrete models.”

Biggs and Collis (1982) have
formulated a taxonomy to provide tasks
which become structurally more difficult
and to assess the quality of children's
answers. The advantage of this is that the

child is not labelled and conveniently
assigned to a level of performance as is the
danger with neo-Piagetian assessment but
the quality of response can be seen to vary
depending on the task.

Gagne was one of the first theoreticians
to analyse topics for the pre-requisites at
each stage (especially in mathematics).
Such an analysis is vital for any production
of materials.

Curriculum developers have ample
advice on progression but little empirical
evidence of a teaching sequence which is
more effective than another because of the
order of presentation. The research scene in
education is woefully lacking in
longitudinal surveys where the same
children are investigated as they grow
older. We have details of the per-formance
of cohorts of children of different ages but a
statement about the performance of a
particular age group cannot reflect the
diversity within that group. Age is not a
very good predictor of performance both
because of the diversity in one age level but
also because there is ample evidence of
young children being capable of learning
quite complicated mathematics in a novel
setting. Here the questions that must be
asked are:

(1) Although young children can learn this
topic, why should they?

(2) They learn in a research setting, but are
they going to learn with the ordinary
teacher in the ordinary classroom?

Hierarchies in mathematics attainment

In the absence of a detailed
longitudinal study following the same
children for many yecars, the empirical
evidence of progression we have is based on
the performance of children of different
ages on various mathematical topics. These
data take on greater significance if the
questions are written according to some
postulated hier-archical demand.
National and indeed international surveys
may provide information on levels of
difficulty but they are usually carried out in
order to monitor whether a representative
sample of the nation's children are
performing any differently to the
representative sample tested in a different
year. The testing of children using the van
Hiele levels in Geometry has given some
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evidence of levels of difficulty in Geometry
(often within the U.S. setting).

A progression of easy to hard items
gives information on some aspects of
children’'s understanding but is of more
value if there is evidence that children
who can successfully deal with items at a
stated level of difficulty can also
demonstrate success on those that are
regarded as being at a lower level. Such a
check can be carricd out on the single
occasion of testing by written questions or
interviews.  Statistical techniques to
quantify scalability are available. In the
case of methods of solution used by children
to solve problems onc can investigate their
use at different times in the child's school
carcer. Karplus and Karplus (1972) was
able to show that strategies used by
children to solve Ratio and Proportion
problems (or in most cases fail to solve
them) formed a progression. In his
longitudinal study, as the sample grew
older (and the pupils learned more
mathematics) they moved from one strategy
to another. Those methods of solution that

“were abandoned were considered to be at a

lower level being replaced by more
sophisticated ones.

For example he showed that children
who reasoned that one amount was an
enlargement of another simply because it
was bigger were, two years later, reasoning
in a different fashion. Some incorrect
methods used, however, were very
persistent and showed no change or as many
children moved into using them as moved
out and on to other strategics.

Concepts in Secondary Mathematics and
Scieace

The aim of the CSMS rescarch project
(Hart, 1981) was to inform teachers about
what secondary school children found
difficult in their mathematics and what
they found easy, with some indication of
why. The sample was large (1000 children
aged 12-16) and the intention was to
provide teachers with a view of the
mathematical performance of the vast
majority of children over four years of their
secondary schooling, rather than at 16 years
of age, when they complete a national
examination. The methodology was to
collect data from interviews and also from
written tests. The interviews provided
inforination about how children attempted
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to solve problems and about what crrors
they made. They were used to inform and
enhance the written test results.
Interviewing children one-to-one has
become an increasingly popular research
mcthod during the last ten years. The
belief is that a child will answer more
freely and truthfully if allowed to describe
orally and in its own words what is being
done. The CSMS project formulated a set of
ten subject hierarchies in which groups of
items were shown to be scalable, in that
success at harder levels presupposed success
at easier levels. A child was deemed to
have succceded at a particular level if it
had correctly answered two-thirds or more
of the items in that level and in all casier
levels.

It was apparent from the results that
there was more variation within an age
group than between age groups. The 14-
year-olds' performance on a given item was
only about five to ten per cent better than
that of the 13-year-olds. Nor did there
appear to be any large jump it
understanding at fifteen, although more of
the older children solved the harder items
successfully. A longitudinal survey of 600
children produced cvidence that certain
errors committed by pupils at age 12 years
were likely to persist, and be still apparent
at age 15. Two hundred children were
tested on questions in Algebra, Ratio and
Graphs at the end of their second, third and
fourth years in secondary school.

The research is dependent on the items
and is likely to be influenced by whatever
mathematics the pupils had previously
studied. All data are influenced by many
variables - previous mathematical exper-
iences, teachers, books, socio-economic class,
the items used and the evaluation of the
answers. The social factors were spread in
the CSMS data in that with such a large
sample chosen on the criterion of
approximation tc the normal distribution of
non-verbal 1.Q. scores, the influence of any
one teacher or textbook was blurred.
However, simply because children are more
successful on certain mathematical problems
than on others does not mean that this is
necessarily the best order for the
presentation of material. In the absence of
rescarch showing that there is a 'best
order', a case can be made for the premise:
if the pupils score badly on this topic which
they have normally been taught, then it is
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harder than this other on which they did
well, therefore in the material being
written it should come later. The
alternative is to rely on an analysis of the
mathematics involved or to base the order
of presentation on intuition in which
reflects teaching experience.

The CSMS rescarch was carried out in
English schools but the items have been
used by mathematics education rescarchers
from many other countries and appear to
produce valuable information for them. Lin
(1988) has replicated all the CSMS test
papers in Taiwan with large samples. His
results tend to support the existence of the
levels and show no great discrepancy
although Taiwanese children tend to be
very successful or fail badly on the items.
Lin's interviews show that the Taiwanese
sample do not resort to child methods but
are usually seeking in their memory for an
algorithm they have been taught.

The performance pattern of a
representative sample of Taiwanese
children was very different however,
perhaps reflecting the two cultures, as
shown in Figure 1.
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Progression in number complexity

Children's skills with number usually start
with the ability to enumerate the contents
of a set, whether it is simply by repeating
number words whilst climbing the stairs or
giving a number to the contents of a group of
toys, cakes or people. It has been long
recognised that fractions and decimals are
much more difficult for children than the
counting numbers. When there is a non-
integer value in a question it is made very
much harder, not slightly more difficult.

On the current mathematical diet provided
in schools many British children reject all
but whole numbers and exist throughout
their secondary school years trying to make
sense of their mathematics whilst using
only whole numbers. The nature of the
understanding of Fractions has occupied
many mathematics education researchers
over many years. The symbolic
representation a/b hides at least seven
different interpretations, the following is
provided by Kieran (1976).

His seven meanings are listed below, we
have illustrated each with an example:

1. Rational numbers are fractions which
can be compared, added, subtracted, etc.

This aspect concentrates on the meaning of a
fraction, usually the model employed for
weaching is a region or piece of a rectangle or
circle.  The operations on fractions
emphasis2 recognition, cenventions and
rules such as 'you can only add two fractions
if they have the same denominators'.

2. Rational numbers are decimal fractions
which form a natural extension (via our
numeration system) to the whole
numbers,

With the advent of metrication in Britain
the use of decimal fractions has increased
and fractions as parts of a whole (5/8, 3/14)
which were common in imperial measures
have ceased to be important. The calculator
of course employs decimal fractions and the
increased usage of this aid in the classroom
means a greater emphasis on decimal
notation.

3. Rational numbers are ecquivalence
classes of fractions. Thus {1/2,2/4,3/6.
....... }and {2/3,4/6,6/9.........]}
are rational numbers.

The common use of equivalence is in the
comparison of two fractions, addition and
subtraction, e.g. 1/2 = 2/4, if the second form
is more apposite we use that rather than
the first. Children often think the fraction
has changed in size and refer to 2/4 as
'bigger' because 2 and 4 are bigger than 1 and
2, whereas of course the two ratios name
exactly the same amount.

4. Rational numbers are numbers of the
form p/q, where p, q are integers and q is
not 0. In this form, rational numbers are
‘ratio’ numbers.
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This is a large step from meaning (1) as the
ratio a/b is not used to label a part of a
whole. The form a/b is often used in
mathematics problems, e.g. in enlargement
where a scale factor of 2/3 cannot be seen as
part of a pie/circle at all.

5. Rational numbers are multiplicative
operators.

Interpreted by some as a function machine,
others as a sharing or partitioning e.g. 1/6
of 12,

6. Rational numbers are elements of an
infinite ordered quotient field. They
are numbers of the form x = p/q where x
satisfies the equation gx = p.

In school mathematics this can be viewed as
using fractions to answer questions which
are impossible within the whole number
system, e.g.3/5 or 3 = 5n.

7. Rational numbers are measures or points
on a number line.

The number line is a model often used for
teaching mathematics, fractions can be
placed on the number line just as can whole
numbers and negative numbers. In
particular, the measurement of length
essentially uses a number line.

All these meanings are at some time
employed in school mathematics, the
emphasis given to cach in teaching varies
considerably. A child is dependent on
teaching for the realisation of the use and
conventions and cannot be expected to
'discover’ the ineaning of what is an
abstraction. The results of the CSMS
research (Hart, 1981) shows that although
many children can give the fraction name of
a region and can cope with the introductory
ideas of the topic, at least half the
secondary school population refuses to work
with fractions as numbers, e.g. with
fraction dimensions in an arca problem.
This of course restricts the mathematical
attainment of these children since they
cannot solve ratio problems, fail to see the
set of values which can be taken by a letter
and are very restricted in the use of area or
volume formulae.

Such a range of interpretations of
a/b is not adequately catered for by the
simple introduction through "a" regions of a
pie which has been subdivided into "b"
pieces. The model is of little use to
illustrate the multiplication or division of
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fractions. You cannot multiply a piece of pie
by another piece and you certainly cannot
enlarge a photograph ty multiplying by a
region. We tend to teach the region fraction
names when the child is quite young, eight
or nine years old and the image is powerful,
reinforced in the case of 'one half' by
common usage. The fact that the operation
of division is complete when one has a/b is
not recognised by at least half the 11-12
year olds tested by the CSMS team.

The CSMS Fractions results and
subsequent interviews pointed to the child's
refusal

1) to see a/b as the result of division,
2) toaccept that a/b was a number, and

3) to appreciate the equivalence of fractions
which were often seen as equivalent and
multiples of each other at the same
time.

For example in the CMF research (Hart et
al., 1989) a group of 12-year-olds were
taught ‘equivalent fractions' by their
teacher.

All the six children (boys) present at
the delayed interviews, three months after
the teaching, were asked whether 10/14
was double 5/7 or equal to it. Four children
declared the two fractions equal, appealing
to the fact that two times five gave ten, etc.
Mick thought saying they were equal was a
better answer but one could be double the
other. Matt however thought that 10/14
was both equal to and double 5/7. His
reasons were interesting in that they did not
include multiplication:

(I: Interviewer, M: Matt)

I:  So they are both true are they: 10/14ths
is double 5/7ths and 10/ 14ths is equal to
5/7ths?

M: Yes.

1:  What about this one? 10/14ths is more
than 5/7ths?

M: That's false.
I:  How do you know that?

M: Because that can't be the same as that.
If that is true then that would be false.

I:  What about this one?

M: 10/14ths, you just add them: add that
and you get 10 and add that you get 14.




There is a large gap between being able to
give a name to a region and being able to
manipulate fractions with operations. The
fraction 'one half' is used by young children
and seems to be accessible much earlier than
any other. The ability to compu’ one half
of a quantity or enlarge by a factor of two
are not indicative of an understanding of
other fractions and ratios.

Other difficult topics

Other topics which have been shown to be
more difficult than has traditionally been
believed are multiplication, proof, ratio
and proportion. The CSMS results
demonstrated that many British pupils did
not use the operation of multiplication,
replacing it with repeated addition.
Fischbein et al. (1985) considered 'repeated
addition’ intuitive. Children who interpret
multiplication in this way, need to see a
unit repeated, so "I/3 x 3/8" does not fit
happily within this format. PME
rescarchers have shown that the nature of
the multiplier is an important factor
affecting the difficulty of the problem.
Children perform better if the multiplier is
an integer, less well if it is a decimal larger
than 1, a multiplier which was a decimal
less than 1 was even more difficult. The
nature of the mulitiplicand has scarcely any
effect but further recent research has
investigated whether the demand of
'symmetric’ problems such as "If length is x
metres and the breadth y metres, what is
the area?" is greater than 'asymmetric’ ones
such as "one litre of milk costs x francs, how
much for y litres?”. The evidence was
clouded by pupils' use of the formula for
area and so the investigation continues.

There has, for many years, been a PME
working group looking at the problems
children have in dealing with Ratio and
Proportion. Piaget stated that proportional
reasoning was appropriate to the formal
operational level, it is a topic often called
upon by science teachers and has been a rich
source of research problems. As we have
secen Multiplication and Fractions have
both been shown to be difficult ideas for
children, computations associated with
Ratio and Proportion require the use of both.
Children as young as six years of age have a
qualitative understanding of proportion and
can provide for themselves a comparison
measure as reported by Streefland when he
described a young boy stating that a cinema

poster had an inaccurate picture of a whale
because he had seen a whale the previous
year and the whale was not that much
bigger than a man.

The quantification of these ideas is
much mere difficult and the type of number
involved is important. Enlargement by an
integer scale factor is easier than by a non-
integer. Ad hoc methods are used by both
adults and children to solve proportion
problems. One very prevalent incorrect
method known as "the incorrect addition
strategy” accounts for up to 40 per cent of the
errors in some (usually geometric) problems
in the CSMS Ratio study. It has been shown
to occur even more often in the USA.

This strategy (referred to as "the
incorrect addition strategy") stemmed from
the belief that enlargement could be
produced by the addition of an amount
rather than by the employment of a
multiplicative method. The child, in this
example, reasons that since the base line
had been increased by two units so must the
upright be so increased.

S\
3

Enlarge with a base of 5

The error was persistent over time and
scemed not to be part of a continuum which
eventually brings success. A subsequent
research project "Strategies and Errors in
Secondary mathematics (SESM) found that
those in the British sample who
consistently used this method tended to
replace  multiplication by rcpeated
addition on items which they solved
successfully. An SESM teaching experiment
showed that the error can be eradicated in
enlargement problems and greater success
attained with short-term intervention
which addresses the basic problems:

(i) the recognition by the child that the
‘method’ he uses produces strange
figures

(ii) the need for multiplication

(iii) facility with fraction multiplication
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(iv) the possession of a technique for
finding the scale factor.

A teaching scheme which included the
teaching of multiplication of fractions was
tried with groups of pupils known to use the
"incorrect addition strategy”. There was
initially great success with this but on
delayed post tests the Fraction
manipulation proved to be the barrier. A
modified version of the teaching module, in
which the Fraction work was replaced by
the use of the calculator proved to be more
successful (Hart, 1984). The intervention
material was designed to meet the
perceived problems listed above, and when
used by classroom teachers with intact
classes resulted in the abandonment of the
incorrect addition strategy. Successful
performance on Proportion problems was
demonstrated by about 60 per cent of the
total sample (n= 80 ) three months after the
teaching. The classes had been chosen by
their teachers, as likely to benefit from the
material, a fact which was borne out by the
pre-tests. Of the children classified as
persistent users of the incorrect addition
strategy, 22 out of 23 had abandoned it by
the time of the delayed post test. The
CSMS longitudinal data on the other hand
had shown that half of the ‘adders’ at the
age 13 years were still using this strategy
two years later. It does seem worthwhile to
identify an error and design corrective
material which tackles those aspects
symptomatic of the erroncous reasoning.

Other research on Ratio and Proportion
has investigated whether the child, when
faced with a problem such as that below,
uses the ratio (from Vergnaud, 1983): (xb or
xa).

Richard buys 4 cakes, at 15 cents each.
How much does he have to pay?

a = 15, b = 4, M = number of cakes,
M2 = cost.

M1 M> Mi Mo
1 a 1 a
~iA
xb xb Xa
b X b\*jx
xa
Fig. 2

Vergnaud refers to the ratio xb as
‘Scalar' and xa as 'Function’. Other authors
call them ‘between’ and 'within’. The
scalar ratio seems to be that most favoured
by pupils in different countries but whether
this is by choice or the effect of teaching is
not known. It would seem sensible to
encourage children to use both since this
gives them greater flexibility in choosing
the computation they intend to do.

Through research we have found that in
problems involving Ratio and Proportion,

(i) the nature of the scale factor is
important, often methods other than
the algorithm can be used,

(ii) some errors are very common but can be
corrected by intervention and

(iii) 'within' and 'between' ideas are not
equally accessible.

All such considerations should be taken into
account in the writing of materials. Firstly
the examples given to the child for solution
should be such that the ‘within' view
sometimes appears to be the most natural
and on other occasions the ‘between' numbers
being compared are the easiest. One should
certainly avoid examples which require
only doubling. Multiplication is such a
neglected operation it seems sensible to deal
with it again at secondary level regarding
it as 'related’ to division and not addition
and viewed as the total of an array rather
than repeated collections. Generally an

“effort must be made to convince children

that the method for solution taught by a
teacher is supposed to cover numerous cases
and be gencralisable.  The project
'Children's: Mathematical Frameworks'
{CMF) and subsequent research reported at
PME in 1989 have monitored teachers in
their own classrooms. At no time did the
teachers in the sample (n = 36) tell the
children why a generalisable method was
important. It seems sensible for a teacher
'to sell' what is very much more powerful in
the context of a problem which cannot be
solved by more naive or ad hoc strategies. It
is often the case that a very powerful tool is
introduced to solve a problem for which the
child can see an answer immediately and
being sensible rejects the teachers’ method.
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From concrete materials to formalisation

Young children, particularly those under
about the ag» of 11 years, very often
experience in sch:00l a more practical or
applied type of mathematics than their
older brothers and sisters. Influenced by the
theories of Piaget, teachers in many
countries have been advised to base
mathematics for young children on the use
of concrete materials (manipulatives). Such
mani-pulatives can be put to many uses.
They can be used to provide the base from
which concepts are developed. For example,
to know what.is meant by the word
‘triangle’ one needs to have seen, touched
and explored a lot of triangles.
Manipulatives can be the essence of a
problem, for example real or plastic money
being used for shopping. One use of
manipulatives which has been advocated
over a number of years is the provision of
well-structured experiences which lead to
the 'discovery' (albeit guided discovery) of
a generalisation or rule. This can then
become part of the repertoire of the child as
he moves into the more abstract or formal
type of mathematics commonly assumed and
built on in the secondary school. An
example of this type of teaching is when
the child is working towards the
acquisition of the formula for finding the
area of a rectangle. The classroom
experiences recommended by many texts and
teacher trainers include:

1) Covering space with various two
dimensional shapes in order to be able
to quantify how much areas there is.

2} Covering rectangles with squares.

3) Moving squares around to form
differently shaped rectangles.

4) Drawing rectangles on squared paper.

These activities are supposed tc be
enough to prompt the recognition that the
arca of any rectangle can be found by
multiplying the number of units in the
length by the number in the width. It is
this rule, often written A=l x b, which is
carried into the secondary school and which
is then used whenever the area of a
rectangle is sought.

The assumption that all secondary-
aged children have available a ‘formal’
method of finding the area of a triangle can

be shown to be false by the following
example from C.S.M.S.

Find the area

s
/

3cm

12+ 13+ 14+
a: 76% 87% 91%
b): 31% 39% 48%

Fig.3 Area examples CSMS

The pupils tested were 986 in number
and came from different British schools.
These two questions were attempted by the
same children on the same occasion. The
formula for the area of a rectangle would
have been taught in their primary school
mathematics and most of the children
would have met the extension to the area of
a triangle in their lessons.

The theory is that the child has a
firmer understanding of the rule because
s/he has seen from where it came and
because the discovery was his/hers, the
idea will be retained. This view fits well
with the constructivist philosophy. Many
children throughout the world have
learned (or failed to learn) in a different
environment as Dorfler (PME, 1989) says

Mathematics for many students never
gets their own activity, it remains
something which others have done (who
really know how to do it) and devised
and which can only be imitated (for
instance by the help of automized
algorithmic routines at which the
student works more like a machine than
like a conscious human being). In other
words, mathematics mostly is not part
of the personal experience and the
reason for this very likely is that the
mathematical knowledge of the
students was not (or only in an
insufficient way) the result of
structuring and organizing their own
experience.

‘Guided discovery' seems an attractive
alternative, however, there are drawbacks
when the ordinatry teacher puts theory and
interpreted theory into practice in the
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classroom. There is also a shortage of
detailed and long term monitoring of most
forms of teaching, to see whether those that
are attractive in the abstract are effective
with teachers and children as they are and
not as we might wish them. Evidence of the
lack of effective learning has become
available from the research project
'‘Children's Mathematical Frameworks'
(Hart et al.,, 1989). In this research,
volunteer teachers were asked to prepare a
scheme of work for the teaching of a rule or
formula, in which the pupils started with
concrete material and the formulation was
the synthesis of the practical work. Six
children in each class were interviewed by
the researchers

(i) before the teaching started,

(ii) after the concrete experiences and just
before a lesson(s) in which the pupils
were expected to 'discover’ or be
guided to 'discover' the formula,

(iii)  just after this lesson(s) and then
three months later.

The interviews were to find the child's
knowledge of the basic concept, whether he
was about to discover (or had just
discovered) the formula and then whether
he retained for future use a method with
concrete matcrials or a known algorithm.
The form of the child's knowledge is
important since if given tasks which assume
too high a level of sophistication then he is
doomed to fail.

The topics investigated were:
Equivalent Fractions, The Subtraction
Algorithm, Formulae for the Area of a
rectangle, the Volume of a cuboid and that
for the circumference of a circle as well as
the solution of simple algebraic equations,
all with children aged 8-13 years. The
data were collected in the form of audio-
tape recordings and the results showed that
the transition from concrete material to
formal mathematics was by no means easy
or straightforward. Very often the concrete
materials did not mirror the mathematics
and imperfectly modelled the ideas
involved. Sometimes they were sufficient
for the child to carry out a computation in a
"concrete” manner but did not in any way
lead to the rule or algorithm intended as
shown here:

Lok

Fig. 4

The child Anne used 'Unifix' blocks to
carry out the subtraction 65-29. Anne said
"Then I would have taken two tens and
another ten, but on the other ten, the third
ten, | would have taken one unit off, so I
would have 29, oh! - - - oh yes, so then I
would take the 29 away and add up all the
others and see how much is left. And its
36."

This is an effective way of carrying out
a subtraction using bricks but such a method
does not lead to the algorithm (which was
the intention). This rule requires the child
to start with the 'ones’ and to decompose 'a
ten’ into 'ones’ thus:

T O
6 5 9fromb5 wecannot 'do'

- 2 9 Go to the tens, change one of
these into ten ones and
collect these with the 5
ones.

3 6 Take9from 15, leaving 6
ones.

Take 2 from 5 tens, leaving 3
tens.

The primary school teacher who taught
‘equivalent fractions' used Cuisenaire rods,
discs, a fraction board and the children
drew and cut out circular discs. The
secondary teachers, in the same
investigation, used diagrams of regions. In
each case the 'family’ of fractions was built
around the factors of 12 and the number of
parts in a region was dictated by the
teacher. There was no general method that
a child could adopt in order to provide
himself with equivalent regions. Indeed; it
is difficult to see how anybody can choose
the appropriate number of discs or bricks
with which to work unless onc already
knows the equivalent fractions. Asked to
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use regions or discs to find an equivalent for
3/7, how is the child to decide on the
number of discs to take from the box unless
the rule is already known? Terence in this
interchange tries to use diagrams as he has
seen his teacher do.

a) —
O O
oo oo
DO oo o

Oov o0 0o 0 OO

b) Ooo/ooo/oooooo

Fig. 5 The drawings of Terence

I: You've drawn 12 circles.

T: I marked in 6/12. Three-eighths ... 1, 2,
3,4,5,6,7,8. So the whole one
would be in between. These two are not
the same.

I: They're not the same, right. 3/8 and
6/12 ... we've knocked out because ...
now what did you do? [ have to tell the
machine what you did. You put your
hand over the last four of those circles.

T: Yes, because there's 12 here, but if 1 put
my ... hand over there to show that was
8 and 3/8 would be there and it isn't the
same as that [pointing to 6 circles]. Try
6/11, is the same (counts from left hand
side of circles and gets to same point).

1. Aswhat...
T: Er...6/12

A common exhortation of teachers, seen
during the research, was to those pupils
who found it difficult to find and remember
the rule or algorithm. They were told to
return to the concrete materials. This
however requires them to invent the
modelling procedure unaided. Urged to take
out the bricks 'to help’, those children who
did so simply used them as objects for
counting.

A significant part of the belief in this
type of teaching is that the child's
understanding is stronger because the
discovery is his. Three months after the
teaching the children in the CMF swdy,

when asked how they had come to know a
formula, said that their teacher had told
them or that a clever person had invented
it. They did not say 'we discovered it'.
They seemed to make no connection between
the work with concrete materials and the
formula they used in calculations. If one
considers the most important features of a
rod (a commonly used manipulative), they
are: the material of which it is made
(wood or plastic), its colour, i3 weight,
length or volume. To the teacher, who is
using this rod for a particular
mathematical purpose, its outstanding
quality may be that when put end to end
with another the two are the same length
as a third. The mismatch between the two
conceptions is obvious.

Further research built on the CMF
results, has pursued the idea that since the
materials and mathematical formalisation
were so different in nature, a transitional
phase (a bridge) was nceded. This 'bridge’
could be in the form of diagrams, tables,
graphs or discussion and should be distinct
from both types of experience but linking
them. More forms of the 'bridge’ are being
tried but the first results were
disappointing because often the teachers
who were asked to put 'bridge’ activities
into their teaching gave very littie time to
them (five or six minutes) or in some cases
put this activity after the formalisation.

Concrete materials are of course used by
teachers for other purposes. Teachers of
younger children very often use
manipulatives to convey the basic
principles of a topic. Research results from
the early 70's for example tended to show
that the idea of a fraction being a region
could be effectively taught when children
cut and folded rectangles of paper.

Teaching experiments

The philosophic and {heoretic frameworks
adopted by most researchers within PME
have led to an interest in monitoring
'‘processes’ and problem-solving skills
rather than investigating performance in
computation. Usually many variables are
at work in the classroom and it is difficult
to apportion effectiveness to the efforts of
the teacher, the nature of the material
(text, concrete materials or computer) or the
fact that the contents are process-
orientated. Harrison et al. (PME, 1980)
reported on teaching experiments in
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Calgary in which ‘process' enriched
material on Fractions was taught to 12-13
year olds. The teaching took about eleven
and a half weeks and control groups were

always good results when they teach
congruence? [s this pattern of success the
same for other teachers? Is it the teacher or
the topic which is the crucial variable?

Test or Subtest Max. | Experimental | Regular Probability
Score | Mean Score Mean Score (Evs R)

Number of Students N=207 N=179
CSMS Fractions Pre 84 35.85 (43%) 34.75 (41%)

Post |84 51.57 (61%) 47.76 (57%) <0.01
Problems Pre 46 9.95 (21%) 9.35 (20%)

Post |46 16.40 (36%) 14.39 (31%) 0.01
Computation  Pre 12 3.15 (26%) 2.43 (20%)

Post |12 6.68 (56%) 5.68 (47%) 0.34

Fig. 6 Teaching Experiment (Harrison et al., PME, 1980)

taught from the current textbooks in the
usual manner. The results are shown in fig. 6
above.

The experimental groups perform
slightly better than the control groups at
the end of the teaching. The enthusiasm of
the children was greater after working
with the process-enriched material,
however. Perhaps what is more significant
is how little gain there is after the
teaching. If the teacher's best efforts over
13weeks still leaves the children

performing at only 60 per cent success level,
perhaps we should reconsider what we
expect of the pupils. Research teaching
experiments are of necessity short-term and
usually for less time than the Calgary study
and often the teaching matter is given to
children without consideration of their
previous knowledge of pre-requisite ideas.
Before the topic is taught the pre-test is
administered in order to find out how much
of the specific teaching points they already
know. This is very seldom nil. The pupils
usually have quite a lot of knowledge to
start with but seem to acquire less than
expected during a focussed teaching
sequence. A worth-while long term study
which could be carried out by teachers in
their own classrooms is that of analysing
exactly which sections of their teaching are
successful. Do they always get poor results
when they teach addition of fractions and
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Should we not be more concerned about
matching the material to the child's level
of knowledge?

The computer

The computer used as a teaching aid in the
classroom has gained considerable
prominence since 1980, the emphasis in
research being on how children's thinking
skills or deeper understanding have been
improved. Tall and Thomas (PME, 1988) for
example quoted a study in which children
aged 12-13 years were given a "dynamic
algebra module". This provided a "maths
machine” which evaluated formulae for
numerical values of the variables. The
teacher, however, was a vital component of
the work. Results tended to show that the
Control group performed better on skill
based questions, for example:

Simplify 3a+4+a
Exp.38% Control 78%

On questions which required higher levels
of understanding the experimental group
performed better, for example:

The perimeter of a rectangle 5 by F.
Exp.50%. C.29%.

Again we see that the teaching experiment
has produced success but half of the
children are still not successful.




The use of LOGO in classroom computer
work has been increasingly reported. The
microworlds are often used as a basis for
discussion of what children say and the
interpretation they place on situations.
Comparison of performance between
children in a LOGO environment and those
in a control group seldom provides an
overwhelming success on the side of the
experimental group. Often closer scrutiny of
individual marks shows a greater degree of
progress for some of the LOGO group.
Hoyles (PME, 1987) in a review, of PME
presented papers described three areas of
rescarch within the context of 'Geometry
and the Computer Environment'.

[ Research which explores the
development of children's
understandings of geometrical and
spatial meanings and how
progression (for example, from
globality to increased differ-
entiation) might be affected by
computer “treatments”.

II. Research which investigates the
“training” influence of computer
environments on different spatial
abilities.

[1I: Research which takes as a starting
point the design of geometric
computer-based situations which
confront the students with specific
“"obstacles” and seeks to identify
student/ computer strategies, the
meanings students construct and
how these meanings relate to the
representations made available for
the computer "tools".  Such
research more or less explicitly
uses the computer to create
didactical tools to facilitate the
acquisition of specific
mathematical conceptions or
understandings.”

More recently Hoyles' group have been
reporting on particular topic work carried
out with small groups of children, for
example the concept of a parallelogram. It
seems possible that children are assisted in
learning by the use of the computer but it is
not a panacea.

Illustrations and their use

Textbooks used in mathematics lessons are
now extensively illustratcd with pictures,
diagrams and graphs. It is worthwhile
considering why we use these devices and
what benefit they are to the children. Do

teachers buy colourful, heavily illustrated
books because their pupils learn from them
more effectively or because they, the
teachers, like the look of them?

By ‘illustration’ we mean non-word
material. This includes various categories:

1) Line diagrams which are:
a) the objects themselves - a
triangle;

b) representing an object so a conven-
tion is involved;

c) representing actions or steps, such
as a flow diagram;

d) representing by a picture.

2) Pictures which show reality as seen by
the artist.

3) Photographs.

4) Recording diagrams, tables, graphs,
matrices, Venn diagrams.

(The children will be required to draw
these themselves later.)

The illustrations can be used:

1) To convey information which is not best
conveyed in any other way.

2) To presenta problem in non-verbal form.

3) To convey information when the
recipient cannot have access to
knowledge through words, for example
those who cannot read.

4) To provide a focus for discussion so that
the children can all give their views
about the same thing. (It can also be
used to assess).

5) To present the exercise in context e.g.
shopping.

6) To form a bridge between reality and
abstraction.

7. To record data in a more effective way.
8. To make the books attractive.
9. To (perhaps) motivate.

Children do not automatically realise
how to use a diagram or what its intended
message is. Its special features need to be
taught just as other aspects of mathematics
need to be taught. The distinction betwceen
diagrams which show a relationship (such
as a graph) and a picture which represents
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reality, is lost on many children. For
example time-distance graphs such as that
shown in figure 7 are interpreted not as
representative of a journey but as showing
hills and plateaus. This was so in about 14
per cent of cases in the CSMS study.
(Sample n = 1396)

Distance
from home
in miles

Fig. 7

Often teachers use a diagram to add
weight to an argument. Thus when teaching
about fractions they are likely to draw,
freechand on the blackboard, a circle
divided into sections. The purpose of this is
difficult to see, since ii the pupils were not
already knowledgeable of fractions and
their equivalents, the diagram would
confuse rather than help. For example,
unless drawn accurately it cannot provide
evidence that 3/8 = 6/16.

The CMF researchers found that
children provided the same inaccurate
diagrams when trying to convince the
interviewer of equivalence, as seen in this
effort of Joe.

a) Matt's diagram for 3/4 = 6/8

0
6.00 6.30 7.00 7 30 2.04 8.30 9.00

b) Joe's diagram for 3/5 +7/10=10/15

Fig. 8

Textbooks are nowadays often lavishly
illustrated, yet there is scarcely any
research on the effect these pictures have on
the learning of the mathematics. Shuard
and Rothery (1984) provided a review of
the existing research on reading
mathematics. In so doing they analysed
pages from textbooks where information
was partly given in the picture, partly in
the text and sometimes on lists which
appeared beside the picture. For example
in shopping questions which are essentially
testing addition, there are pictures of the
articles which can be bought, perhaps
labelled with prices, a shopping list and
then a sentence or two in the text. The eye
movement needed to obtain the necessary
information is excessive.

There is some research in science
education on the use of illustration in text
books and other types of teaching material
but very little in mathematics.Much of
Geometry is said to be concerned with the
improvement of children's spatial
visualisation, yet little of it positively
addresses this issue. There has been some
recent research, resulting in books for
children, which attempts to improve
pupils' view of three dimensional objects
and their interpretation in two dimensions.
One study was part of 'The Middle Grades
Mathematics Project' from Michigan State
University (Winter et al., 1986).

The Spatial visualization instructional
material includes ten carefully sequenced
activities. The activities involve
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representing three-dimensional objects
(buildings made from cubes) in two-
dimensional drawings and vice versa,
constructing three-dimensional objects from
their two-dimensional representations.
Two different representation schemes are
used for the two dimensional drawings.
First an "architectural" scheme involving
three flat views of the building-base, front
view and right view. After students are
comfortable with this scheme, they are
introduced to isometric dot paper and hence
to a representation consisting of a drawing
of what one sees looking at a building from a
corner. Similarities, differences, strengths
and inadequacies of the two schemes are
explored.

It was concluded from the analysis of
the pre-post data that after the instruction:

(1) sixth, seventh, and eighth grade boys
and girls performed significantly
higher on the spatial visualization
test; however, no change in attitudes
toward mathematics occurred;

(2) boys and girls gained similarly from the
instruction, in spite of initial sex
differences;

(3) seventh grade students, regardless of
sex, gained more from the instruction
than sixth and eighth graders.

In addition, the retention of the effects
of the instruction persisted; after a four-
week period, boys and girls performed
higher on the spatial visualization test
than on the post test.

Conclusion

We now know, through research in
mathematics education, that certain topics
are difficult for children to learn because
they contain many different aspects each of
which brings its own degree of complexity so
that the total is composed of layers of
difficulty. Proportion is such a topic. It
seems wise to write materials which build
up the different understandings rather than
produce the topic all at once. It is also wise
to illustrate and give examples which
require the use of the idea or method and
cannot be casily solved by lesser and more
naive strategies. There is then an incentive
for the child to take on the more powerful
tool.

Kathleen Hart is visiting professor of Mathematics Education at King's College, London, England.
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mathematics materials for the age range 11-16 years. Her mathematics education career started
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prior to taking the post of director of the Nuffield project she was an inspector of schools. She has
two doctorates in mathematics education, one from Indiana, and the other from London. Her first
degree is in mathematics, and she also has a London M.Phil obtained from research with seven
year-olds who were said to have a mental block against mathematics.
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The Role of the Teacher in Children's Learning of Mathematics

Stephen Lerman

There is no doubt that the teacher plays a
major part in creating the environment in
which children can best learn mathematics.
This is not to claim too much for the role of
the teacher. Stronger claims have been made,
for example the linguistic philosophers of
education would want to say that unless
learning is taking place one cannot be said to
be teaching. Certainly governments in many
countries count teachers as solely responsible
if there is evidence of children not learning.
Thus the statement that begins this chapter
is relatively minimal and uncontroversial.
Nevertheless, there are many issues to be
investigated, and the questions begin when
one attempts to establish what part the
teacher plays, what is the best environment
and how can one create it, and what teachers
understand about children's learning of
mathematics. In this context, therefore, it is
interesting that it is only in recent years that
one finds a growing body of research that
focuses on the teacher. For example, at the
Tenth Meeting of PME in 1986, there were no
more than a small handful of research reports
concerning teachers, but by the Fourteenth
Meeting in 1990 there were three Working
Groups and a Discussion Group, and at least 20
research reports.

There are perhaps two major reasons for
the relatively late interest in the role of the
teacher. The first is the dominance of the
notion that if we can specify how children
learn, and produce the most appropriate
learning materials informed by that
knowledge, the teacher's role becomes
largely that of an intermediary in the process
of transmission. If, further, we can specify
what the classroom should look like, how
long children should study, and various
affective factors, we can tell the teacher
what to do to achieve the goal of children
learning mathematics. Many would claim
that a paradigm which incorporates these is
no longer tenable. The transmission metaphor
is no longer seen as adequate, and, indeed, the

nature of the learning process is seen as less
and less determinate. The affective and the
cognitive may not be simply separable
categories as was previously claimed, and
this has led to research on the social context
of the classroom which has considerably
confused and enriched our observations and
ideas. In all of these issues, the teacher is a
central figure.

The second reason that research on
teachers has only recently playing a
significant part on the agenda, is the nature
of that research. This is an issue that is the
subject of on-going debate (Scott-Hodgetts, in
press, b). Most research questions that are
concerned with teachers will not be
analysable by significance tests. As Mason
and Davis (PME, 1989) suggest, “As with our
previous work, validity in our study lies, for
us, in the extent to which it resonates with
experience, and to which it awakens
awareness of issues which they might
otherwise have overlooked" (p.280-281).

There are some studies that draw on
reasonably sized populations for quantitative
analysis, such as those examining pre-service
tcachers' knowledge of aspects of
mathematics (e.g. Vinner and Linchevski,
PME, 1988). In the main, however, the
rescarch method: most used are qualitative,
based often on only a small number of teachers
(Jaworski, PME, 1988, Lerman and Scott-
Hodgetts, PME, 1991, in press), and the
methodology and generalisable outcomes of
such research are not accepted by all in the
mathematics education community.

This is a theme which will arise
frequently in this chapter, namely the kinds
of methods that are most informative for
research on the teacher's role. Two aspects in
particular will be emphasised, firstly that a
holistic perspective of interactions in the
classroom is more fruitful than a fragmented
one, and secondly, that case studies, perhaps
stimulated by findings from quantitative
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studies, provide information that resonates
widely with teachers and other researchers.

Expectations of the fruitfulness of
research on teaching vary considerably. In a
recent volume (Grouws et al., 1988) one finds
both the positivist expectations of Grouws:
"No longer can we uncritically rely on the
folklore of the classroom; rather we must sort
out fact from myth and begin to build
conceptual networks that will help us to
understand and improve the complex process
of teaching” (Grouws, 1988 p.1), as well as
the sceptical thoughts of Bauersfeld: "...
there seems no prospect of arriving at
universal or overall theory of teaching-
learning processes that we will all accept”
(Bauersfeld, 1988 p.27).

However, as can be seen by the growing
interest in the role of the mathematics
teacher in research reports at PME meetings,
the research community is now engaging with
these issues, and the themes which will be
reviewed in this chapter will indicate some
of the important ideas emerging.

Following this introduction, the chapter
is divided into four sections. In the first
section we will examine some aspects of the
teacher's work, including notions of effective
teaching, the teaching of problem-solving
processes and the role of meta-cognition, the
power relationships in the classroom, some
remarks on textbooks, and on what
constructivism, an alternative theory of the
way people learn, might imply for teaching.
As with the remainder of the chapter, the
review will draw, in the main, on research
reported at PME meetings as well as on other
widely available literature.

One of the major themes that emerges
from the review is the significance of
teachers' beliefs about mathematics, and
about mathematics tcaching, and the
influences of school and socicety on teachers'
actions in the classroom. In some senses, this
theme is fundamental. Whether one is
considering society's influences on the
classroom, textbooks or other teaching
materials, cultural influences, curriculum
change, technology or whatever, they will
all be mediated through the teacher, and
specifically through the teacher's beliefs
about her role in her students' learning of
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mathematics. Work in this area will be
reviewed in the second section.

At the same time, the teacher is an actor
in a particular setting, within which the
relationships and dynamics are constructed
by the actors, but in turn the actors and their
roles are constructed by the classroom
relationships and dynamics. Therefore, in
the third section we will look at the teaching
and learning of mathematics in the context of
the language and practices of the classroom.

In the final section, we review research
on teacher education, including action
research, and tcachers' knowledge of
mathematics. The concluding remarks will
return to the issue of the nature and role of
research on teaching, and will attempt to
highlight major themes for future research.

Aspects of the work of the mathematics
teacher

Effective teaching

It may seem that the most appropriate place
to begin any survey of the actions of the
teacher is to attempt to characterise what is
effective teaching, as well as which aspects
of teaching make the teacher ineffective. If
this is possible, one could design pre-service
and in-service courses so as to bring about
development and change in those areas.
Albert and Friedlander (PME, 1988) reported
on an in-service course focused on counselling,
and commenced their paper with an analysis
of the flaws in unsuccessful teaching and a
definition of effective teaching, the latter
including "good class management, clear and
correct mathematical content, well-planned
lessons resulting in a feeling of learning, good
.carning environment ..." etc. (p.103). There
is the danger that ar. analysis of the actions
that identify an effective teacher can become
merely a list of <osirable attributes, without
any recal evidence that such attributes
contribute significantly to school students’
learning of mathematics. Also, phrases such
as "good learning environment” are used
which themselves require claboration.

Some researchers have thought it more
appropriate to make one's characterisation
more general, and to offer it in terms of broad
goals. Peterson (1988), in discussing teaching
for higher-order thinking, offers such a list:




“@ a focus on mecaning and
understanding mathematics and on
the learning task;

(b) encouragement of student
autonomy, independence, self-
direction and persistence in learning,
and

(c) teaching of higher-level cognitive
processes and strategies” (p.21)

and in the same volume Berliner et al. (1988)
go cven further in broadening the
characterisation of effective teaching,
almost to the point of stating the obvious:

. there are two separate domains of
knowledge that require blending in order
for expertise in teaching to occur. These
are (1) subject matter knowledge and (2)
knowledge of classroom organization and
management, which we call pedagogic
knowledge.” (p.92)

It may be a more fruitful approach to focus on
what happens in the classroom, in the context
of the goals set. Hanna (PME, 1987)
approaches the problem by attempting to
identify those tecaching strategies “that
seemed to have contributed most to greater
achievement gains" (p.274) amongst cighth
grade students, and concludes that these
were:

“(a) an extremely organized approach to
teaching, wherein material is taught
until the teacher feels it is mastered,
thus reducing the nced for frequent
review, and

(b) an approach in which every
presentation of material is followed
by extensive practice in applying the
new material to new situations.”
(p.274)

Steinbring and Bromme (PME, 1988) have
developed a technique to monitor the process
of knowledge development in the classroom,
and present this pattern graphically,
enabling comparisons over time, student
group, teachers etc. Kreith (1989) presents
the idea of master teachers acting as role
models and working with intending teachers
as interns, an issue to which we will return
when considering teacher education,

There are dangers of hidden assumptions
when one focuses on the effective teacher, or

the master teacher. Nickson (1988), for
example, suggests that "the notion of the
‘expert' is a contentious one and means
different things to diffcrent people.” (p.247)
One cannot talk about 'effective’ without
determining what it is that one values in the
teaching of mathematics.  Classroom
management, for example, is one kind of
notion when one is teaching a piece of content,
in a transmission model, and quite another
when the focus is on group problem-posing
work. Again it means quite different things if
one is teaching a class of 60, with little or no
resources, and quite another with a group of
20 in a well-resourced situation.

We may also, in the end, have doubts
about the value of breaking down classroom
activities into tecachers' actions, students’
actions and affective conditions, when what
is taking place is a complex process of
interactions, intentions, relationships of
power, expectations, and so on (Porter et al.,
1988). Bishop and Goffree (1986) make a
similar point when they argue for a shift
from what they call the 'lesson frame' to the
'social construction frame'. The former is
characterised as follows:

"(the mathematics lesson) is construed as
an 'event’ with a definite beginning, an
claboration and a definite end. It has a
fixed tinmwe duration. Typically all children
will be engaged in the same activities which
are planned, initiated and controlled by the
teacher.” (p.311)

They indicate that research, dissatisfaction
with outcomes, and alternative constructivist
theories of the way children learn have led
to a widening of the frame:

"This orientation (social construction frame)
views mathematics classroom teaching as
controlling the organisation and dynamics
of the classroom for the purposes of sharing
and developing mathematical meaning.”
(p.314)

They include in their list of features of the
frame notions such as “(2) it emphasises the
dynamic and interactive nature of teaching;
...(4) it recognises the 'shared' ideca of
knowing and knowledge, reflecting the
importance of both content and context;”
(p.314).
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Studies based in the classroom provide
perhaps the most fruitful approach for
research in the area of effective teaching,
since an essential component is the recognition
of the theory-laden nature of describing an
effective teacher, and thus of the need to
build suitable research methods in the light
of this.

For instance, the teacher might develop
her notion of student achievement, and
criteria of successful teaching, relevant to the
specific context. Through action research, or a
collaborating observer in the classroom,
teacher strategies that appear to help the
students and the teacher to realise that
achievement might then be identified.
What is important here is that 'desirable
attributes' become something specific to the
particular teacher, in relation to her own
values, and change is seen as an individual's
progress in her own terms, rather than
something that teacher-educators or
researchers do to others.

An illustration of this approach can be
seen in the following extract from the
reflections of a teacher, who had been
critically examining his teaching in the light
of some reading he had done, and some
subsequent observations of his students
(Lerman and Scott-Hodgetts, PME, 1991, in
press):

“So my reflections led me to this point. 1|
began to believe that if the didactic
approach was not good enough for Claire, it
was not good enough for any pupil; that
instruction and explanation by the teacher
had its place in outlining the problem, but
not somchow giving mathematical ideas.”

Another perspective on the issuc of
effective teaching, is given by Scott-Hodgetts
(1984), (discussed also in Hoyles et al., 1985),
in a paper that describes her research on
childrens' ideas of what is a good teacher. In
a paired-comparison test of characteristics
that go to make a perfect teacher, the
ranking emerged as follows:

"is able to explain the maths clearly and
thoroughly;

has a patient and understanding attitude
when people find the work difficult;

is prepured to spend a lot of time with
people who need more help;

has a relaxed friendly relationship with the
pupils;

keeps up to date with each pupil's work, and
lets them know how they are getting on;

makes the lesson interesting and enjoyable;
knows the subject really well;
has a good sense of humour.”

Alibert (PME, 1988) found that first year
university students valued aspects of the
teachers' work that differ from those that
the teachers might value. In her study, 52%
of the students considered that a good
mathematics teacher is first "interesting,
convincing, clear, quiet" and in only 11% of
answers were there such things as "helps
students to reflect, to participate” (p.114).
Two of the most interesting aspects of these
studies are the following: first, students
emphasise quite different aspects of 'good’
teaching than teachers themselves might
emphasise, and this information could be a
valuable stimulus for reflection and research
by teachers, and second, that the hidden
messages of one's beliefs are often conveyed to
students, and reflected in what they value
most in their teacher.

Meta-cognition and teaching mathematical
‘processes’

One of the major changes in the role of
the teacher during the last decade or so, has
been brought about by the shifting of the focus
of attention to the introduction of problem-
solving work into the classroom. It has raised
many questions and engendered many debates.
An carly question was: what are problems,
and how do they differ from puzzles and
investigations? In fact we often use all three
words during any particular piece of work.
We may start by being interested in a
problem, and begin to investigate it. On the
way we solve several puzzles, become stuck on
many more, and generate new problems to
investigate! Different interpretations of the
term 'problem-solving' remain, however, as
shown in the study described below.

The issue of 'process’ versus ‘content' has
been discussed, in the literature and at
confelte'nces, and we have become aware that
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we are at least partly discussing the
philosophy of mathematics. To some extent,
for the formalists, mathematics is its content
and its structure, whereas for the quasi-
empiricists (Tymoczko, 1985) mathematics is
its processes. In recent years v’e have been
developing ways of assessing students' work
on investigations, in particular in Britain
where schnol students have to submit a
number of individual course works for the
General Certificate of Secondary Education
(GCSE), a national examination for 16 year
olds. There is still, however, the issue of
how one avoids assessment-led investigation
work in classrooms (Lerman, 1989a), that is
whether the potential for creativity and
engagement disappear under the need to have
problems whose answers can be 'marked’.

Problem-solving has led on to problem-
posing (Brown, 1984), and opened up the
activity to the wide and stimulating
possibilities of ethnomathematics,
empowerment and critical mathematics
(Frankenstein, 1990). But where does it fit in
to the school mathematics curriculum? Is it to
be added on at times, or can one teach the
main part of the curriculum through s*ich
work? The nature of mathematics is the
essence of the problem here, and it finds
expression through the process/content
debate. All these questions are the foci of
current research work in mathematics
education, and we will examine some of them
here, as they impinge on the role of the
teacher.

In a study of teachers' ideas of what is
problem-solving and how to teach it, Grouws
et al. (PME, 1990) found that teachers were
using four categories of meanings:

"(1}  Problem-solving is word problems;

(20  Problem-solving is finding the
solutions to problems;

(3}  Problem-solving is solving practical
problems; and

4) Problem-solving is solving thinking
problems.” (p.136)

In their survey of 25 teachers, they found
that 6 identified with the first definition, 10
with the second, 3 with the third and 6 the
fourth. However, their lesson goals and
related instructional methods did not relate

to their definitions, and neither did the
format of their lessons. Teachers felt that
there was not enough time for problem-
solving instruction, standardized testing
being a major interference. Students had low
success and little self-confidence. Grouws et
al. conclude:

"We now know that we must carefully
describe what is meant when a teacher
gives critical importance to problem-solving
and its instruction in her classroom.” (p.142)

To some extent, aspects of the study are
probably culture-specific since in many
countries problem-solving would not be
considered to mean word problems. Teachers
may well respond by offering the other
definitions, however, and many of the other
findings may well be supported widely. The
final comments of Grouws et al. are an
important caution to researchers and a
reminder of the influence of teachers' beliefs
about mathematics and mathematics
teaching. One must also take into account the
tendency to respond to certain jargon words,
particularly 'problem-solving’, which has
been a major theme of the 1980's. In this
context it is therefore particularly significant
to find both that teachers have quite
different ideas of what it is, and that their
teaching often bears little relationship to
those ideas.

Flener (PME, 1990) reported on a study of
the consistency among teachers in evaluating
solutions to mathematical problems, and of
their reaction to solutions showing insight.
Hypothetical students’ solutions to
mathematical problems were sent to 2200
teachers, of whom 446 responded. Flener
found a wide range of evaluations, that
teachers credited methods that were taught
in school and not problem-solving ability at
all, and in general teachers gave no credit for
insight or creative solutions. Morgan (1991),
presented experienced teachers with three
hypothetical solutions to a particular
problem: the first, (labelled PV) used
diagrams and full verbal description, using
spoken rather than written language; the
second (ND) used numbers and diagrams and a
table, with text that presented the work in
the order in which it was done, and the third
(BS) was concise and symbolic, with words
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only as labels, without sentence structure. All
the teachers placed ND the highest, and
most placed PV second. This is in marked
contrast with the usual presentation of pure
mathematics in academic journals, and
suggests that teachers are developing
particular and specific ways of assessing
school mathematics problem-solving. She
suggests that teachers are developing criteria
for what constitutes schoo! mathematics,
rather than mathematics in general, and
that these criteria are not made explicit
either amongst teachers or to school students.

Again, we are led to consider what
teachers understand by mathematics, in the
context of problem-solving. This issue will be
discussed further below, but whatever
teachers and researchers understand by
problem-solving, a major interest for
mathematics educators is the question of
whether problem-solving skills can be
taught. There are two inter-related and
interacting levels to be considered, heuristic
methods and meta-cognition. Hirabayashi
and Shigematsu (PME, 1986, PME, 1987, PME,
1988) have developed a powerful metaphor
for meta-cognition: that of the Inner Teacher.
They suggest that the teacher acts as the
inner self of the students and thus the task of
teachers is to encourage the growth of
students' own inner teacher. Mason and
Davis (PME, 1989) indicate how useful they
find this metaphor for thinking about the
shifts in attention required in problem-
solving and in mathematics education in
general. In discussing some theoretical
aspects of teaching problem-solving,
Rogalski and Robert (PME, 1988) suggest that
it is possible to "design methods related to a
specific conceptual field", and they go on to
outline how and when such instruction is
appropriate:

“... such methods can be taught to students
as soon as they have some available
knowledge and the ability to make explicit
meta-cognitive activities in a precise way,
and to take them as object for thought, and
(3) that students benefit from such a
teaching. Didactical situations which
appear as good 'candidates' for supporting
such a methodological strategy involve:
work in small groups, open and sufficiently
complex problems and a didactical
environment giving a large place to

students' meta-cognitive activities such as
discussion about knowledge and heuristics,
and elicitation of meta-cognitive
representations on mathematics, problem-
solving, on learning and teaching
mathematics." (p.534)

The importance of making knowledge of
heuristics and self-reflection explicit to
students is a theme developed by a number of
researchers. In a study specifically on
heuristics teaching, van Streun (PME, 1990)
concludes that "Explicit attention for
heuristic methods and gradual and limited
formulating of mathematical concepts and
techniques in mathematical education
achieve a higher problem-solving ability
than implicit attention for heuristic methods
and late and little formulating of
mathematical concepts and techniques.”
(p.99) Mason and Davis (PME, 1987) argue for
the introduction of particular and specific
vocabulary, such as 'being stuck’ and
'specialising’, in helping the process of
learning mathematics. They also claim a
connection between “the effectiveness of
teachers' discussions of their teaching” and
"of students' discussions of their learning"
(p-275). This notion of the analogy of the
teacher's reflections and the student's will be
developed in the final section of this
chapter.

Lester and Krol (PME, 1990) examine the
"relative effectiveness of various teacher
roles in promoting meta-cognitive behaviour
in students and the potential value of
instruction involving a wide range of types of
problem-solving activities" (p.151). These
roles are: the teacher as external monitor, as
facilitator and as model. They observed the
teaching and learning of students in seventh
grade classes, and drew the following
conclusions:

“Observation 1: Control processes and
awareness of cognitive processes
develop concurrently with the
development of an understanding of
mathematical concepts.

Observation 2: Problem-solving instruction,
meta-cognitive instruction in partic-
ular, is likely to be most effective when
it is provided in a systematically
organized manner, on a regular basis,
and over a prolonged period of time.
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Observation 3: In order for students to view
being reflective as important, it is
necessary to use evaluation techniques
that reward such behaviour.

Observation 4: The specific relationship
between teacher roles and student
growth as problem solvers remains an
open question,

Observation 5: Willingness to be reflective
about one's problem-solving is closely
linked to one's attitude and beliefs."
(p.156-157)

These studies highlight many important
issues, such as how to evaluate problem-
solving work and how to develop the inner
teacher. They also leave open many
questions, including what teachers
understand by ‘problem-solving’ and how
their interpretation influences the way they
teach, and how problem-solving fits into the
the whole task of teaching mathematics.
Answers to these questions are often implicit
unstated assumptions of teachers and
researchers, but they are crucial factors. For
example, a study designed te examine
students’ feelings about problem-solving,
where that activity is an occasional one in
the classroom and when regular textbook-
driven mathematical work is set aside, is
likely to lead to one set of responses from
students. Where that activity is the style of
learning that is usually used by the students
in their learning of mathematics, one may
well find quite different responses.
Similarly, concerning teachers' attitudes to
problem-solving, the 'hidden messages'
conveyed by the teacher of the importance or
significance of problem-solving are picked up
by students (Lerman, 1989a).

All the studies emphasise making
heuristics and reflection explicit to students,
which can be expressed in a rich way as the
deveiopment of the Inner Teacher. 1t is
interesting to reflect on the role of the
teacher in this. It has been argued
(Kilpatrick, PME, 1987) that the
constructivist view of children’s learning does
not offer anything new in the sense of
research methods, or teaching methods. This
may be a difficult point to argue when one
focuses on childrens' learning of particular
content « ¥ mathematics, [although both sides
are argued (e.g. Kilpatrick, PME, 1987; Steffe

and Killion, PME, 1986)] but an interpretation
of each student's construction of her own Inner
Teacher, in its fullest sense, may be seen as
more aifficult to formulate outside of a
constructivist programme. For example, if one
is considering a child learning the procedure
of adding two fractions, it could be described
as the child constructing concepts and
processes that ‘fit' the situation, i.e. give the
expected answers, make sense in relation to
other concepts, can be coherently explained to
others etc., or it could be described as the
child internalising something taught by the
teacher and therefore ‘matching' an
established schema. Both interpretations
could be descriptiuns of what takes place, and
the relative merits of the two descriptions
could be argued. From a constructivist view,
the ‘Inner Teacher' notion will by its very
nature have a different meaning for cach
individual; it has no explicit identity that
the teacher could teach, and it will be a
meaningful notion to the extent to which it
works for the individual. It is a very 'fuzzy’
notion, involving specifiable aspects, such as
generalising, but also unspecifiable aspects,
such as recognising that one is tiring, or stuck,
etc. The Inner Teacher notion can of course be
specified in a cognitive psychology
perspective, and measured against
developing schema, as a sort of 'external’
teacher replaying its voice in the
individual's head. However, if a teacher is
considering how to develop the inner teacher
in her students, seeing learning as a
constructive process may well provide a
depth of meaning that other theories do not
adequately offer.

In the research literature, one does come
across doubts about whether problem-solving
methods as such can be ‘taught'. Such doubts
are expressed often by researchers from
outside of mathematics education when
investigating mathematical problem-
solving. The recent debate in the Journal For
Research in Mathematical Education is an
illustration of those concerns (Owen and
Sweller, 1989, Lawson, 1990, Sweller, 1990).
Owen and Sweller (1989) make a case for the
lack of evidence of the effectiveness of
teaching heuristics. They suggest that the
failure of students to use newly learned
principles intelligently to solve problems
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may not be due to their lack of problem-
solving strategies, but what they call "a lack
of suitable schemas or rule automation”
(p-326). In any event, they claim that there
is no evidence that learning problem-solving
strategies actually helps in further problem-
solving, i.e. are transferable. Lawson (1590)
argues to the contrary, that there are small
but growing signs of evidence to support the
“consideration of different types of problem-
solving strategies ... in mathematics classes’
(p-409).

In his reply, Sweller (1990) reveals what
may be the essence of the differences
expressed in the debate, in reviewing the
work of Charles and Lester (1984). Sweller is
looking for the transfer of problem-solving
strategies, and where researchers such as
Charles and Lester have found enhanced
problem-solving ability after instruction, but
have not looked for Sweller's interpretation
of transfer, he considers his case reinforced.
The issue seems to be what is meant by
domain-specific knowledge and skills, and
transferability. We would probably argue
that the strategies Charles and Lester
worked upon, “such as trying simple cases,
creating a table, drawing diagrams, looking
for patterns, or developing general rules”
(Lawson, 1990, p.404) are broad enough to
apply to the domain of mathematical
problem-sclving and at the same time focused
enough to be achievable. Since Sweller is
dissatisfied with the transferability of these
skills, one can only assume that he expects
transfer outside of mathematics, to everyday
life, or to other school subjects. However,
mathematics is a language game, with its
own meanings, styles, concepts and so on. One
can perhaps articulate a notion of general
problem-solving skills in this wide
interpretation, but only in the sense of task
orientation strategies, or executive strategies
(Lawson, 1990, p.404). We would support
Lawson in claiming that there is a growing
body of research suggesting that within
mathematics, problem-solving strategies are
a fruitful focus for work in the classroom, and
have a positive effect at least on further
problem-solving work in mathematics..

In the problem-solving literature, there
is some mention of the role of algorithmic
methods, that is to say precisely defined

procedures for solving problems. A typical
example would be solving linear equations by
appropriate steps such as ‘cross-multiply’ or
‘take to the other side and change the sign'.
Van Streun (PME, 1990) suggests that "Being
more successful in problem solving is attended
by more frequently employing algorithmic
methods” (p.98). Sfard (PME, 1988) discusses
the distinction between operational and
structural methods:

"People who think structurally refer to a
formally defined entity as if it were a real
object, existing outside the human mind.
Those who conceive it operationally, speak
about a kind of process rather than a static
construct.” {p.560}

Sfard demonstrates that teaching concepts
through operational methods via aigorithms
can have some success e.g. with the learning
of induction. There are dangers in the
reliance on algorithmic teaching (Lerman,
1988, Kurth, PME, 1988, Steinbring, 1989) but
its role as an heuristic is in need of further
research.

Finally, there remains the question of
how problem solving shculd be integrated
into the whole mathematics curriculum. To
some extent this is a curriculum issue, which
may be manifested in the particular textbook
or scheme used in the school, and there are
m -~y countries and schools where the
ir...vidua! teacher does not have a choice. In
those countries and schools where perhaps
the content is specified but not the way it is
taught, or where there is the goal of a
standard to be reached, but the style of work
is dependent upon the teacher, how and when
problem-solving appears is a matter of
choice. As with sc many questions in
mathematics education this really depends
on the teacher's view of the nature of
mathematics, and of the process of learning.
If the teacher sees mathematics as identified
by ways of thought, ways of looking at the
world, as prccesses, then mathematics should
be learned through problem solving. If on the
other hand, mathematics is thought of as a
body of knowledge, a specified amount of
which students must acquire, and then apply
in problem solving situations, then the
teacher will have to find a suitable time and
place to teach problem solving processes.
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An important element in any discussion
about the role of problem-solving in learning
mathematics, and one that will perhaps
ensure that the debate will remain, is the
difficulty of comparison. It is fundamental
that if one intends to design some research to
compare achievement in mathematics
through the two different approaches, one
has to make the tests appropriate to the kind
of mathematical work. Lester and Krol
(PME, 1990) emphasise this issue of the
difficulty of comparing different styles of
learning in their third observation, precisely
because they require different styles of
assessment. Again, the most fruitful research
may well come from studies by teachers, of
children engaged in problem solving work of
different kinds, in the context of the learning
goals set by the teachers and the school.

The power relationships in the classroom

The classrnom is characterised by power
struggles and domination. This is not always
in the teacher's favour, as most starting
teachers will report. Indeed Walkerdine
(1989) reports on a situation in which a
woman teacher is suddenly dominated by two
littie boys aged 4 or 5, using sexually abusive
language:
"Annie takes a piece of Lego to add to a
censtruction she is building. Terry tries to
take it away from her to use himself ... The
teacher tells him to stop and Secan tries to
mess up another child’s construction. The
teacher tells him to stop. Then Secan says:
‘Get out of it, Miss Baxter paxter.’

TERRY: Get out of it, knickers Miss Baxter.
SEAN: Get out of it, Miss Baxter paxter.

TERRY: Get out of it, Miss Baxter the
knickers paxter knickers, bum.

SEAN: Knickers, shit, bum.

MISS BAXTER: Scan, that's enough. You're
being silly.

SEAN: Miss Baxter, knickers, show your
knickers.

TERRY:  Miss Baxter, show off your bum
(they giggle).

MISS BAXTER: I think you're being very
silly.

TERRY: Shit, Miss Baxter, shit Miss
Baxter.

SEAN: Miss Baxter, show your knickers
your bum off.

SEAN: Take all your clothes off, your
bra off..." (p.65-66)

Walkerdine adds: "People who have read
this transcript have been surprised and
shocked to find such young children making
explicit sexual references and having so much
power over the teacher. What is this power
and how is it produced?" (p.66)

In the main, however, the imbalance is in
the teacher's favour, and as Bishop (1988)
comments:

“The first and most obvious principle is that
the teacher's power and influence must be
iegitimately used - perhaps we can say that
it should be used and not abused” (p.130).

Hoyles (1982) for example gives instances
of both:

"l What happened then?

P: Well the teacher was always picking on
me.

I Picking on you?

P:  Yes, and in one lesson she jumped on
me; I wasn‘t doing anything but she
said come to the board and do this sum
- fractions it was. My mind went blank.
Couldn’t do nothing, couldn't even
begin.

I What did you feel then?

P:  Awful, shown up. All my mates was
laughing at me and calling out. I was
stuck there. They thought it was great
fun. I felt so stupid [ wanted the floor to
open up and swallow me. It was casy
you know. The teacher kept me there
and kept on asking me questions in
front of the rest. 1 just got worse. I can
remember sweating all over."

"P. Yes, once, in the second year (and) we
had this teacher, she was a really good
teacher, maths it was, and I've never
becn any good at maths. She never
pushed you or nothing but let me get
on with it at my own pace.

I.  What do you mean exactly when you
say she never pushed you?
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P. Well, she was nice. I had tried and she
realised it and didn't keep picking on
me. [ used to try really hard in her
lessons and just get on with it...

I  Can you tell me how you felt during her
lessons? What did you feel inside?

P Well really good, it was really nice to be
there." (p.353)

It is of course too simplistic to present the
classroom situation as one where the
autonomous teacher exercises control, and can
choose the power to be benevolent or despotic.
The extent to which the discursive practices
of the classroom construct the relationships of
power is discussed more fully in the section on
the language and practices of the classroom
below. The rclationship to mathematical
knowledge is the key factor that will be
discussed here.

Mathematics has a special role in
society. It is seen as cultural capital for the
individual, that is, success in mathematics
suggests financial success in the future. It is
also used by society to legitimate policies and
decisions. Whether it be the billions of
dollars of international debt of one nation, or
the high rate of inflation of another, the
figures become indisputable and can be used to
justify policies that make the lives of the
majority miserable. This places teachers of
mathematics in a unique position, one that
can result in reinforcing the powerlessness of
the individual in modern society, or can
enable people to question and challenge
information given. The alternatives can be
called 'empowerment’ and ‘disempowerment’.
Cooper (1989) claims that "There is evidence
that teachers sce mathematics as a crucial
subject for reproducing existing social values,
and that they modify mathematics
curriculum material accordingly” (p.150).
Cooper's point is that teachers accept the
status quo tacitly, and this results in negative
power "where actions that are not in the
interest of those in charge are suppressed,
thwarted, and prevented from being aired
without the elite having to initiate or
support any actions or exercise any powers of
veto" (p.153). Perhaps the most developed
alternative curriculum for mathematics, one
that aims to empower students, is that by
Frankenstein (1990). She draws on Freire's
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distinction between a problem-posing
curriculum and a ‘banking’ metaphor, where
the individual is thought to store knowledge
for retrieval. She offers situations, such as
statistical data on employment according to
ethnic group in the USA, and invites students
to pose questions to investigate mathe-
matically.

Robinson (1989) takes the notion of
empowerment into the area of teacher
education, and compares two competing
models for bringing about teacher-change, the
management paradigm and the empowerment
paradigm:

"Rather than seeing change in schools as a
finite process with externally specified
objectives, as the management paradigm
does, the empowerment paradigm sees
change as an on-going activity generated
within the school by teachers, parents and
students as part of an organic process of
professional renewal.” (p.274)

Teachers are significant people in the
lives of children, and the effects of teachers'
expectations on individual children is an
aspect of the teacher's power that is a focus
for research, particularly in the field of
gender, ethnicity or class bias. In this
context, an important aspect of the impact of
teachers' expectations of children is the
range of factors to which teachers attribute
students' success or failure in mathematics.
Fennema et al. (1990), for example, make
some strong claims about such impact:

"(1) A teacher's causal attributions are
important because perceptions of
why his/her students succeed or fail
in achievement situations has an
impact on the teacher's expectancies
for students’ future achievement
success.

(2) Teachers' attributions influence
students’ attributions through
teacher behaviour”. (p.57)

There has been one study (Kuyper and
van der Werf, PME, 1990) reported at a
meeting of PME which 'releases’ teachers
from the responsibility for such influence.
They claim:

...the differences in achievement,
attitudes and participation cannot be
attributed to (characteristics of) individual
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math teachers. There is some evidence,
however, that the gender of the teacher
influences the perception by girls and boys
of their teacher's behaviours in a way that
might be labelled ‘own sex favouritism'.
The observed teacher behaviours do not
influence this perception.” (p.150)

They end their study by suggesting “In our
opinion the results fit very nicely into a
general pattern, which can be verbalized as
follows: the gender differences in math are
not the teacher’s fault" (p.150). Their study
involved more than 5800 students and
teachers, and clearly the limitations on the
size of papers for PME proceedings did not
permit a full description of their
methodology and results. Their claim that
the teacher behaviours do not influence
students perceptions, however, is focused on
the individual. Some of their own evidence
highlights factors that are significant for
teachers in general. They found that
teachers attribute tidiness more to girls, for
example, and industriousness too, whereas
'disturbing order' is more typical of boys in
their view. Scott-Hodgetts (PME, 1987)
points out that these teacher perceptions and
the resulting teacher behaviours have
significant cognitive effect, and are not
merely affective observations. They serve to
reinforce serialist strategies, i.c. a step-by-
step approach, which more girls than boys
are predisposed to adopt. The result is that
more boys tend to develop a broad range of
learning styles, whereas more girls remain as
serialists. There is substantial evidence in
support of the Fennema et al. (1990) claims,
as Hoyles et al. (1984) describe (p.26).

This brief discussion is an example of an
issue to which we will return in the final
section, namely to what extent does research
reach teachers and offer them the possibility
of changing their work? Some teachers,
having read literature that suggests that
teachers, irrespective of their gender, spend
much more time answering and dealing with
the boys in their class than the girls, have
been stimulated to examine their own
practice (Burton 1986). It should be of some
concern if such research remains in learned
journals to which most teachers do not have
access (Lerman 1990a).

Textbooks

The school mathematics text book is a
familiar element in our work, as is well
illustrated in Hart's chapter in this volume.
However, the teacher's use and dependence
on the textbook is a well known phenomenon,
but is under-researched in the teaching of
mathematics. Laborde (PME, 1987) has
looked at students reading texts, and Grouws
et al. (1990) mention that the textbook is the
most important factor influencing students'
attitudes. Van Dormolen (1989) demonstrates
how texts can play a role in reflecting real
life situations in the classroom, and
Frankenstein (1990) takes this further,
focusing on the potentially emancipatory role
of the material offered in class. But the effect
of the dominance of textbooks in mathematics
teaching has not been well investigated.
When the standard mathematics lesson
begins with some initial teacher exposition
and is followed by the students working
through an exercise in their textbook, and
homework is a further exercise from the book,
the text, the textbook and the textbook
writers constitute an authority in the
classroom. Teachers often talk of "they are
asking you to..." when attempting to clarify a
question that appears in the text, and that
students do not understand, and it is
interesting to consider what the relationship
is between the teacher and the text that is
conveyed by this expression.

Social messages that are hidden in texts
are unquestioned by teachers and students,
partly because the textbook is an illustration
and manifestation of the authority implicit
in the classroom. This is particularly the
case in mathematics, perhaps because the
sterile axiomatic form of the presentation of
academic mathematics papers reinforces the
authority and status of the mathematical
text. In the study of history, for example,
students are encouraged to draw from a
number of sources, highlight the ways in
which those textbook writers disagree with
each other, and even to explain the context in
which different writers hold competing
views (this is not the case in all countries of
course!). It is quite the opposite in the
mathematics classroom. There are also more
overt reasons for textbooks being
unchallenged in the mathematics classroom,
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as mathematics is seen by many teachers as
“... a crucial subject for reproducing existing
social values" (Cooper, 1989 p.150).

An illustration of the hidden messages of
school mathematics textbooks, and a
suggestion of ways that teachers could
challenge those assumptions, was given by
Lerman (1990b). There are different ability
level texts in the most popular series in use in
British schools, the School Mathematics
Project, where the same topic, paying income
tax, is dealt with by asking the top ability
students to calculate tax on an income of
£50,000 whereas the bottom ability text
requires calculations for only £9,000. The
authors are assuming, and thus are conveying
the message to the students that low ability
in mathematics, whatever that may mean,
correlates with low intelligence, and/or poor
career prospects etc. Lerman suggests that the
dynamics of the classroom may well change if
students were encouraged to critically
examine their textbooks, and the examples
used, by comparing the pages from the two
books. The author has offered such a notion
to teachers on an in-service course, and one
teacher commented that it would be too
dangerous (Lerman, 1990b), perhaps because
it threatens the safety of the authority
which the textbook establishes in the
classroom.

Is the relationship to 'authority’ in
mathematics any different if the teacher uses
a workcard individualised scheme, or
individual worksheets? What would be the
implications and outcomes of developing
materials as and when they are needed,
perhaps by the students themselves? Mellin-
Oisen (1987} proposes classroom work based
on projects:

“A dormitory town outside Bergen. High,
grey concrete blocks of flats. The arca was
declared ready for occupation as soon as
the garages had been built. It was not
thought scandalous until later it was
discovered that they had forgotten to
provide the children with leisure areas.

The teachers of three classes (age group 10)
preparcd a project. What can we do about
the situation?” (p.218)

There are of course implications for the
empowerment of students in an example like
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this, especially when contrasted with a
common investigative task on a similar
theme, to make a model of a bedroom or
classroom.  Frankenstein gives many
examples of projects for use in mathematics
classrooms (Frankenstein 1990). Brown and
Dowling (1989) propose what they call a
research-based approach as an alternative to
the textbook, for teachers to use in the
classroom:

"Our method has been to propose a
question - say "who docs the best at
school?” - as the basis for a research
project.” (p.37)

These aspects of the use of texts and their
influence on students, and the dependence of
teachers on texts, is in need of considerable
rescarch and investigation. It will be
interesting to follow reports of tcachers' use
of the innovative, perhaps revolutionary
ideas of Mellin-Olsen, Frankenstein, Brown
and Dowling and others, in changing the
function of the text.

Constructivism and the teacher

As a learning theory, constructivism is
described in Hart's chapter in this volume,
and there are many important research
programmes that draw on the paradigm of
constructivism, that have been reported in
the literature. In this section we are
concerned with what the theory might
suggest for the role of the teacher.

The Eleventh Annual Conference of FME,
held in Montreal in 1987, has been the only
such annual meeting to be centred on a theme,
that of constructivism. The term
‘constructivism' had appeared in carlier
meetings, and it was presumably felt that the
mathematics education resecarch community
in general were unsure of the meaning and of
the relevance and/or implications for
mathematics education. Consequently that
theme was chosen for the PME meeting, to
encourage debate on the issue. In his plenary
presentation, Kilpatrick (PME, 1987)
challenged the claim that constructivism is
an alternative paradigm for learning, and
suggested that the putative outcomes of
constructivist rescarch and teaching are
consistent with cognitive psychology. Since
that meeting, many papers presented at PME
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conferences have been couched in the
language of constructivism, and drawn on
methodologies of research and teaching, as
well as theoretical frameworks, that claim
to have distinct interpretations in the
constructivist paradigm. The critique,
however, has been only infrequently
continued (Goldin, PME, 1989), and this is
perhaps to the detriment of the debate, since
we can only develop our understanding of the
links between theory and practice, and in
particular alternative learning theories and
the consequences for teaching mathematics,
through critical discussion.

In relation to the role of the teacher,
there have been a number of research reports
concerned with the preparation of
constructivist teachers (e.g. Simon, PME,
1988). However, the implications of
constructivist learning theories for the role of
the teacher, and for the kinds of activities
that the teacher might initiate as a
consequence of a constructivist view of
learning, have still not been clearly
elaborated, and certainly not well tested,
either through theoretical critique or
through classroom case studies of teachers.
This makes talk of 'constructivist teachers'
less meaningful than might be the case were
there to be some elaboration of what that
implies. There is also the question of the
distinction that has been made between
‘'weak constructivists’ and ‘strong
constructivists’, the former being those that
subscribe only to the first hypothesis quoted
by Kilpatrick (PME, 1987), and the latter
being those that subscribe to both:

“(1)  Knowledge is actively constructed by
the cognizing subject, not passively
received from the environment.

(2) Coming to know is an adaptive
process  that organizes one's
experiential world; it does not
discover an independent, pre-
existing world outside the mind of
the knower.” (p.3)

It was suggested at the PME meeting in
1987 that everyone could subscribe to
hypothesis (1). There have been some
attempts to discuss the implications of both
positions. Lerman (1989b) and Scott-Hodgetts
and Lerman (PME, 1990) have suggested that

it is difficult to see how one can accept the
first hypothesis and not the second. They
also maintain that the second hypothesis,
far from leaving one unable to say anything
about anything, as Kilpatrick suggested in
his presentation (PME, 1987), is an
empowering position, in the sense that ideas
are continually open to negotiation and
development and we do not expect to arrive at
ultimate truths. However, it is clear that
more debate and research are needed.

Teachers' beliefs about mathematics

Ideas such as 'the teachers' values', 'what
the teacher believes about problem solving'
and so on, have occurred often in the review
above. The issue of the influence of teachers'
beliefs on their actions has been and continues
to be of great interest and importance in
mathematics education. Nesher (PME, 1988)
discusses the effects of teachers' actions and
also reveals her own beliefs, in her plenary
lecture at the twelfth meeting of PME. In one
part of her paper she focuses on the ways
that the behaviour of the teacher can have
an effect on the child's conception of the
nature of mathematics, and she warns of the
danger of the teacher being the ultimate
judge of whether the child is correct or not:

“This does not let the child construct for
himself the mathematical notions and
concepts. Nor does it enable him to realize
that the truths of mathematics are objective
and necessary.” (p.63)

Thom's often quoted claim that "all
mathematical pedagogy, even if scarcely
coherent, rests on a philosophy of
mathematics” (1972, p.204) was one of the
factors that stimulated interest amongst
educators in epistemologies of mathematics
and their influence on teaching, and in the
past ten years there have been a number of
studies in this area. There have been two
different directions of research: a 'top-down
approach’, so-called because it starts from a
consideration of the current state in the
philosophy of mathematics and the possible
alternative perspectives of the nature of
mathematics (e.g. Lerman, 1983; Ernest,
1989), and a 'bottom-up’ approach, which
begins with teachers' views and behaviour,
as in the work of Thompson (1984) for
example.
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The 'top-down' approach recognises the
role of implicit theories, not only in teacher
behaviour, curriculum development etc., but
also in research perspectives, hypotheses and
methods. Thus it aims to reveal the implicit
epistemological perspectives which underlie
curriculum decisions (e.g. Nickson, 1981),
influence the practice of teaching
mathematics (e.g. Lerman, 1986), and also
determine research directions. As Hersh
(1979) wrote:

"The issue then, is not, what is the best way
to teach, but what is mathematics really all
about ... controversies about high school
teaching cannot be resolved without
confronting problems about the nature of
mathematics.” (p.33)

Scott-Hodgetts (PME, 1987), in her
discussion of holist and serialist learning
strategies, demonstrates the significance of
the teacher's philosophy of mathematics to
the extension of various learning strategies.
In their study of mathematicians and
mathematics teachers views, Scott-Hodgetts
and Lerman (PME, 1990) set their analysis of
psychological /philosophical beliefs in a
radical constructivist perspective, and
propose that it provides a powerful
explanatory potential:

"What A has been engaged in, without
doubt, is what is described as “an adaptive
process that organises one's experiential
world". In doing this he has brought to bear
different models of the nature of
mathematics, picking and choosing in order
best to ‘fit' his particular experiences at
different times." (p.204)

Siemon (1989a) suggests that "what we
do ... is very much dependent on what we
know and believe about mathematics, about
the teaching and learning of mathematics,
and about the nature of our particular task as
mathematics educators” (p.98). Dougherty
(PME, 1990), in an on-going study of the
influence of tecachers' beliefs on problem-
solving instruction, characterises teachers'
cognitive levels, a set of psychological
attributes, on a concrete-abstract continuum,
from A, the most rigid, concrete formalism,
through B, social pluralism, and C,
integrated pluralism, to D abstract
constructivism. In interviews and
observations of 11 teachers, all on problem-
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solving lessons so as to standardise the lesson

content, Dougherty placed 8 in A and 1 in

each of the other categories, and she found
strong connections between these positions and
conceptions of problem solving.

Methods of analysing and interpreting
teachers' actions in the classroom, that
engage with the issue of teachers' beliefs
about mathematics, have been reported in
the literature. Jaworski (PME, 1989)
discusses students developing a 'principled’
understanding of mathematical concepts,
when comparing the inculcation of
knowledge, as against its elicitation. She
says:

"Successful teaching of mathematics

involves a teacher in intentionally and

effectively assisting pupils to construe, or

make sense of mathematical topics.”
(p.147)

She demonstrates the dangers of 'ritual
knowledge' in a wonderful example of the
reasoning of a child who regularly achieves
good marks in mathematics.

"I know what to do by looking at the
examples. If there are two numbers |
subtract. If there are lots of numbers | add.
If there are just two numbers and one is
smaller than the other it is a hard problem.
I divide to see if it comes out even and if it
doesn't | multiply.” (p.148)

Ainley (PME, 1988) has looked at
teachers' questioning styles, noting the pcwer
relationships, by analogy with the
parent/child or drill sergeant/recruit. She
suggests that assuming mathematics answers
are right or wrong is a danger for the teacher
in using questioning, and that teachers assume
that questioning is better than exposition. In
her study, she looked at the different
perceptions of the children and the teachers,
of the teachers’' questions. She classified
questions into: pseudo-questions; genuine
questions; testing questions, and directing
questions, the latter sub-divided into
structuring, opening-up and checking. Her
focus on the language of the classroom is
further discussed in the following section.

Various studies show that there are a
number of variables that mediate, in an
investigation of the influences of teachers'
beliefs. Thompson (1984) and Lerman (1986)
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and other researchers report how the ethos of
the school is a major element in the teacher's
approach in the classroom. Siemon (1989b)
illustrates this with comments from teachers
who, when asked "What are the main
pressures on you as a mathematics teacher?"
replied:

"School policy...you can't just be the one to
break the system ... if you give all your
students an A you will be questioned on
it...you can't. You've got to work within the
system as such.

The kids have their activity book. If the
parents look at that at the end of the year
and they haven't done one activity ... they're
going to question it and the Principal’s
going to question whether you are following
the program.” (p.261)

Noss et al. (PME, 1990), in discussing a
study of teachers on an in-service course in
computer-based mathematics learning,
comment that:

”

. the extent to which a participant was
able to integrate the computer into his or
her mathematical pedagogy (theoretically
and/or practically) appeared more related
to the direction in which a participant's
thinking was alrcady developing and with
his or her commitment to change, rather
than the style of teaching approach, view of
mathematical activity, or rationale for
attending the course.” (p.180)

A global view of factors affecting the
teaching of mathematics reveals clearly the
major influence of the conditions and resources
in the schools in different countrics. Nebres
(1989) calls these the Macro problems, as
against the Micro problems which are
internal to mathematics education:

”

. in many developing countries, the
problems that merit most thought and
research are those due to pressures from
outside society. The purpose of study
regarding these pressures is to provide
some scope and freedom for the
educational system so that it can attend to
the internal problems of mathematics
education.” (p.12)

Nebres emphasises the importance of the
role of cultural values, in understanding both
the Macro and Micro environments in
mathematics education, and suggests that his
awareness oOf that perspective is focused by
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the "sharp contrast of traditions and cultures
in East Asia" (p.20). He writes:

“... we have realized that questions like the
status and salaries of teachers are not
simply a function of the economy but also
of cultural values. Similarly the rise of what
we might call the internal force of genius,
wherein mathematics talent springs up
even under difficult economic
circumstances, seems to be fostered by the
cultural environment.” (p.20)

Suffolk (1989) gives a detailed study of
the situation in Zambia, as seen through the
role of the teacher. Most such studies, quite
naturally, focus either on the children or on
the situation of the schools, and more studies
of the effect on the teacher are needed. One
approach, as a consequence of a recognition of
these variables, as reported by Nolder (PME,
1990), is to undertake a detailed analysis of
the mathematics teachers in one particular
school which is undergoing some curriculum
changes, in an attempt to reveal the nature of
these influences. She found, for instance, that
such changes led to the teachers experiencing
a good deal of uncertainty, which affected
their perceptions of their competence and
confidence. Stephens et al. (1989) report on
mathematics education reform programmes,
and state the following principle for
involving teachers:

"Teachers involved in change initiatives
need to know where they have come from,
where they are going, why they are going
there, and should have access both to the
best professional thinking of their
colleagues, and to theoretically sound,
supportive environments,” (p.245)

These studies indicate that ‘change’ is
always socially embedded, and cannot be
isolated from the cultural context, from the
political milieu, from the social context of
schools and certainly not from the teachers in
the classroom. Ignoring any of these elements
mitigates against any improvement in the
teaching of mathematics.

A stimulus in the development of a social
perspective of the nature of mathematics has
come from teachers working in situations of
deprivation and /or oppression. If one tends to
think of mathematics as value free, and much
the same all over the world, the work of some
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of these researchers and teachers provide a
strong case for rethinking. Fasheh (1989), in
describing mathematics education in schools
on the West Bank in Israel, argues that what
matters is "... whether math is being learned
and taught within the perspective of
perceiving e’ .cation as praxis or within the
perspective of perceiving it as hegemony"
(p.84). Gerdes (1985) demonstrates how
mathematics education in Mozambique
changed from pre-revolutionary colonial
domination to post-independence construction
of a socialist society:

“During the Portuguese domination,
mathematics was taught, in the interest of
colonial capitalism, only to a small minority
of African children ... to b able to calculate
better the hut tax to be paid and the
compulsory quota of cotton every family
had to produce ... to be more lucrative
"boss-boys™ in South African mines ... Post-
independence ... Mathematics is taught to
"serve the liberation and peaceful progress
of the people”. (p.15)

D'Ambrosio (1985), in developing the
idea of ethnomathematics, sets the growth of
mathematics in a social context, and aligns
the development of modern science and, in
particular, mathematics and technology
with colonialism. There is a growing body of
work in the area of ethnomathematics, at the
macro level and at the micro level, with
profound implications for teachers in
mathematics classrooms, both in the so-
called developed world, and also the under-
privileged world, that engages with ideas of
empowerment and liberation.

The language and the practices of the
classroom

Recently, there has been an interest in
the discursive practices of mathematics
teaching (e.g. Keitel, et al., 1989; Weinberg
and Gavalek, PME, 1987), influenced in the
main by the work of Walkerdine (1988, 1989,
PME, 1990). The focus of this critique is a
shift away from the individual to the social,
and is thus a critique of psychology, which
can be characterised as an individualistic
way of interpreting people's actions.
Investigating the interactions in the
classroom (aspects such as discussion between
students, teachers' questions, open-ended

questions, the teacher's response to novel
interventions from students), leads one
rapidly into aspects of the power
relationships of the classroom. Pimm (1984),
for example, talks about the use of the word
‘we’, and indicates just how much is actually
being said and construed and structured by the
use of that small word:

"Given a class of pupils all doing something
incorrectly, a teacher can still say, ‘No, what
we do is ...” Who is the community to whom
the teacher is appealing in order to provide
the authority to impose the practices which
are about to be exemplified?" (p.40)

Of course the dominant paradigm within
which research, testing, and theorising on
the meaning of understanding takes place is a
psychological one. Understanding is seen as
some process that the individual undergoes,
some transition from not understanding a
concept to understanding that concept. There
are two elements in this transformation from
a pre-understanding state to a state of
understanding, the individual and the
concept. The latter is scen as an objective,
external element which in the educational
environment is usually 'possessed’ or held in
some way, by the teacher. The teacher is
seen to perform the intermediary role of
introducing the concept, attempting to enable
and facilitate its transmission from teacher
to student, and measuring the outcome, - that
is whether the state of 'understanding' has
been achieved. The former element, the
individual, is largely a closed unit to the
teacher, making the business of determining
whether the transformation has taken place
or not, a very difficult one. As Balacheff
(1990) points out:

"It is not possible to make a direct
observation of pupils' conceptions related
to a given mathematical concept; one can
only infer them from the observation of
pupils’ hehaviours in specific tasks, which is
one of the more difficult methodological
problems we have to face.” (p.262)

Research in this area in education thus
focuses either on interpretations of behaviour
that might constitute evidence of the
processes of concept acquisition, or on the
conditions that will bring about
'understanding'.




Mathematics is seen as hierarchical, and
conflated with this is the notion that
learning mathematics is hierarchical too,
from the basic notions of one-to-one
correspondence, setting and combining sets, to
more abstract levels of, for example, the
calculus. It is seen by educationalists as 'very
difficult' (Hart, 1981). Other research
shows, however, that children's unrestricted
ar:d undirected thinking does not follow the
supposed hierarchy (e.g. Lave, 1988;
Carraher, PME, 1987). It may just be the case
that our assumptions about the nature of
mathematics and the nature of the learning
process become self-fulfilling. We interpret,
theorise, teach, test, assume, expect, measure
and thus confirm our initial expectations of
children.

The psychological model of learning,
which can be characterised as a process of
transformation from a pre-understanding
state to a state of understanding, determines
the style and intention of the various stages
of the educational process. The process begins
with the teacher assessing the initial
cognitive state of the individual. This is
followed by the prepared lesson, whose
content is determined by research into
hierarchies of mathematical knowledge and
levels of difficulty of understanding, and
whose method is determined by large-scale
tests using well-established quantitative
procedures. Research on affective factors
influence the classroom setting, the
appearance of the text, etc. On-going
assessment enables the identification of
misconceptions, misunderstandings or partial
understandings. These can be corrected by
suitable re-explanations, reinforcement
materials and so on. The final stage is the
test that measures the successful acquisition
of the particular skill or concept, that is
interpreted as understanding, and again that
test will have been trialled over large groups
of students, in well-established ways.

Whilst the above is somewhat of a
caricature, the intention is to highlight the
manner in which the psychological paradigm
dominates and determines the whole
structure of the educational process. It is the
essentially private nature of the
psychological interpretation of
understanding that pervades the educational

process from this perspective. Teachers are
left to try as best they can to recognise when
that process has occurred, and in the case of
the recent development of a National
Curriculum in Britain, with a long list of
attainment targets and levels to be assessed,
tick the appropriate box to register that
achievement target for the student.

At the same time, there is an assumption,
usually implicit, that we all arrive at the
same understanding of particular things,
because of the absolute nature of those things,
whether physical objects, such as tables, and
unicorns, or mental objects such as circles, or
‘three’. A critical analysis, therefore, needs
to work on both aspects of the understanding
process in the psychological paradigm,
namely the notion of the individual, and also
the notion of knowledge and its posited
absolutist nature.

In the psychological paradigm, the major
focus of attention is in how the individual,
the subject, functions in discourses. However,
subject is simultaneously the apparently
autonomous self-constituted individual who
articulates a discourse and also the subject of
that discourse. That is to say, the individual
is constituted by a discourse.  Thus, for
example, in the classroom we are
simultancously the teacher, who initiates
and perpetuates a discourse, and at the same
time we are constituted by that discourse, and
by the relations of power that pertain. To
some extent this has been looked at above,
specifically related to the power of the
teacher. It may appear, though, from that
section, that teachers consciously choose
positions of power and can reject them. In
analysing the discourse of the classroom one
can begin to see the subtle historically-rooted
relationships and meanings carried by the
interactions in the classroom. Pimm's (1984)
discussion of the use of 'we’, and the position
in which the accepted and unchallenged role
of the mathematics textbook places the
teacher and students are examples of the
insights that can be gained from an analysis
of the discursive practices of the classroom.

An analysis of how languages operate
within discursive practices indicates the way
in which knowledge, understanding, meaning
and oursclves as subjects are constituted in and
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bounded by our language, and that language is
specific to discursive practices. Meaning is
about use, no less but also no more. In
Walkerdine's analysis of the home practices
in which the notions of 'more' and 'less' occur
(Walkerdine, 1988), she demonstrates the
context in which those words have meaning
for those children, and the practices through
which those meanings are constructed. The
classroom teacher who is unaware of the
meanings the children are bringing with
them into the classroom may well make
judgements about children's ‘abilities’ that
are entirely inappropriate.

The alternative view of 'understanding’
is one that sees the process as social, rather
than psychological. That is to say, the
individual does not go through some
transformation from pre to post state of
understanding in isolation, acquiring a given
well-formed concept in some hidden way. It
is necessarily an interaction of the child and
his/her multitude of meanings, through
language, with others and with experiences.
That process of interaction may be largely
silent, a shift taking place without being
openly articulated, but this does not mean
that it is in some way 'private’. Sometimes
the understandings do not fit with those of
others, including the teacher, and only talk,
discussion, suggestions and conjectures and
refutations, through cognitive conflict, or
shifts of thought through resonance, enable
further growth.

In the literature of mathcematics
education, one finds an emphasis on providing
a context for mathematical concepts, and
clearly this is essential if mathematics is to
be about something. There are two aspects to
‘context’, however. It is a matter, not only of
attempting to embed mathematics in
situations that may be 'relevant’ or
‘'meaningful’ for students, but also an analysis
of the discursive practices within which
mathematical terms and concepts appear,
both for students in their own experiences and
for the mathematical community.

The language used in the mathematics
classroom, particularly in relation to
bilingualism, has been an important focus of
study for a number of years (Dawe, 1983;
Zepp, 1989). Most such studies have been
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concerned with children, and their learning.
Once again, the role of the teacher, and here
particularly the language of the teacher, has
only recently become an issue, as researchers
and teachers have come to realise the
function that language serves in deep aspects
of classroom interactions. Khisty et al. (PME,
1990), for example, reported on an
exploratory study of the language of the
teacher, in a bilingual classroom, to
investigate the reasons for the
underachievement of Hispanic students in the
USA. They review the language factors that
might play a part, emphasising an
interactionist perspective, which attempts to
bring together the cognitive and social
dimensions of learning. They refer to how the
use of language structures the classroom, the
development of a mathematics register,
syntactic and semantic structures in
mathematics, and context. They conclude
their introduction as follows:

“The imporiance of these points is that
language issues in the teaching and
learning of mathematics may be more
crucial than previous research would
suggest.” (p.107)

As reported above, Ainley (PME, 1988)
has looked at the implications of teachers'
questions, and revealed both a wide range of
purposes, and also a discrepancy between
children's perceptions of the teacher's
question and that of the teacher. Wood
(PME, 1990) focused on discussion in the
classroom, and highlights the all too
frequent consequences of what may be called
'teacher-centred’ learning:

“The patterns of interaction become
routinized in such a way that the students
do not need to think about mathematical
meaning, but instead focus their attention
on making sense of the teacher's
directives.” (p.148)

In a different direction of attention, Bliss
and Sakonidis (PME, 1988) looked at the
technical vocabulary of algebra, and the
everyday language that is sometimes
substituted for these terms, in an attempt to
discover whether it helps or hinders
communication of algebraic ideas.

Analyses of the language of the classroom
also make connections between the concepts




within the 'language game' of mathematics
and in everyday use. Pimm (PME, 1990)
discusses metonymic and metaphoric
connections, and in doing so highlights a
ceniral aspect of the ways mathematical
language and thought work. For example,
metaphoric links are those which would
highlight the meaning of 50% in different
contexts, whereas metonymic links would be
those between 50% and 0.5 and 1/2 and 4/8
etc.

"Being aware of structure is one part of
being a mathematician. Algebraic
manipulation can allow some new property
to be apprehended that was not visible
before - the transformation was not made
on the meaning, but only on the symbols -
and that can be very powerful. Where are
we to look for meaning? Mathematics is at
least as much in the relationships as in the
objects, but we tend to see (and look for) the
objects ...

Part of what [ am arguing for is a far
broader concept of mathematical meaning,
one that embraces both of these aspects
(the metaphoric and the metonymic foci for
mathematical activity) and the relative
independence of these two aspects of
mathematical meaning with respect to
acquisition.” (p.134-135)

One can expect significant further
research in the deconstruction and
reconstruction of the langrage and practices of
the mathematics classroom.

Teacher education

Many educational researchers in most
countries of the world are involved in teacher
education, either pre-service or in-service or
both, and many, if not all of the issues
concerning teaching apply equally to teacher
educators. Students on a SummerMath
programme were reported by Schifter (PME,
1990) as demanding: "We need a math course
taught the way you're teaching us to teach.”
(p-198) Jaiji et al. (1985), in an article whose
main focus is on providing pre-service
teachers in Zimbabwe with a repertoire of
roles from which to choose, rather than
replicate the ways in which they were
taught, offer this transcript of a teacher
educator in action:

"Now what I am about to say is very
important. It will almost certainly come up
in the Examinations, so I suggest that you
write it down.

(The group took out their pens ...).
In the new, modern approach to teaching ...
(They wrote it down as she spoke ...).

In the new, modern approach to teaching,
we, as teachers, no longer dictate notes to
children. Instead we arrange resources in
such a way as to enable children to discover
things for themselves.” (p.153)

If we are to suggest that teachers should
become involved with research on their
practice, as will be discussed below, teacher
educators are teachers too and one would
expect that teacher educators would be
involved in research on their own practice.
One can in fact see evidence of a small but
growing interest in research on teacher
education in recent meetings of PME.

A further consequence of the analogy
between students in schools learning
mathematics and research on that, and
student teachers learning to teach
mathematics and research in that area, is
that just as we cannot ialk of making students
learn mathematics, so we cannot talk of
making teachers change their teaching. One
does however come across such discourse in
the literature, in particular in relation to in-
service courses. As teacher educators we can
offer ideas and possibilities, with activities
that encourage reflection and awareness and
personal growth (Jaworski and Gates, PME,
1987; Lerman and Scott-Hodgetts, PME, 1991,
in press), but to try to impose teacher change
is both unrealistic and perhaps arrogant.

There are other reasons for reflecting on
the practice of teacher education. In Britain,
and probably many other parts of the world
too, teacher education programmes are at a
turning point, under the influence of political
pressures. There is a strongly held view that
teachers can best learn "on the job" rather
than in college, with the metaphor of
apprenticeship in training held to be more
appropriate than the combination of theory
and practice that might be implied by the
metaphor of a profession. According to this
view, at secondary age in Britain, (students
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aged 11 to 18) anyone can teach, provided one
has a degree in a suitable subject, given an
appropriate system of apprenticeship. That
such a system is vastly less expensive than
spending between one and four years in a
college is almost certainly the main but
unstated rationale. Whatever the motives,
teachers and teacher-educators must be clear
about the nature of the process of teaching,
and therefore of teacher education. There is
no doubt that one can learn a great deal by
watching other teachers, and not necessarily
‘master-teachers’, which is a designation
used in some countries. Given a theoretical
framework in which to critically evaluate
and assimilate one's observations, observing
others can be an essential and valuable aspect
of learning to become a teacher. But learning
to become a successful teacher is not a matter
of copying someone who has been designated
an expert. Itis a matter of finding one's own
way of teaching, developing ways in which
one can identify what is happening in the
classroom, and of drawing on experience and
theory to make decisions on action, followed
by reflective evaluation of those actions.
There are frequently conflicting demands on
the teacher (Underhill, PME, 1990), and
research on factor. that help prospective
teachers to develop their own understarding
of teaching (e.g. Brown, PME, 1986; Dionne,
PME, 1987) are needed.

In what follows we will look first at the
mathematical content of teacher education
courses, and the content/process debate as it
manifests itself at this level. A brief review
of some of the main issues that arise in the
development of in-service courses
appropriate to the needs of teachers will
then be followed by a development of the
notions of the teacher as reflective
practitioner and as rescarcher.

There have been a number of studies that
have focused on prospective teachers' or
practising teachers' misconceptions of topics
in mathematics. Concerning teachers of
clementary age children, Linchevski and
Vinner (PME, 1988) looked at naive concepts
of sets, Vinner and Linchevski (PME, 1988) on
the understanding of the relationship
between division and multiplication, Tierney
et al. (PME, 1990} on area, Simon (PME, 1990)
on division and Harel and Martin (PME,
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1986) on the concept of proof held by
elementary teachers. In the high school age
range, Even (PME, 1990) has examined mis-
conceptions in understanding of functions.

What are we to make of these findings,
and what might be the possibilities for
improving the situation? It is probably the
case that most people have negative
experiences of learning mathematics at
school, and as in the main, prospective
elementary teachers are not mathematics
specialists, they too are generally at least
unconfident about mathematics. If pre-
service courses teach mathematics in the
same way that those people lecarned
mathematics at schools, patterns of lack of
confidence, under-achievement and feelings
of failure are likely to remain into their
teaching career (Blundell et al., 1989). Since
children's early experiences of mathematics
occur in interaction with elementary
teachers, this is a major problem for
mathematics education. Ways of breaking
this cycle must clearly be developed, and one
significant element, as mentioned above, is
for students to be taught the way that we
expect them to teach. Schifter (PME, 1990),
who came across that demand from her
students, reports on a programme of in-service
education which attempts to effect such a
transformation:

“... the notion of "mathematics content” as
the familiar sequence of curricular topics is
reconceived as “mathematics process™: at
once the active construction of some
mathematical concepts - e.g. fractions,
exponents - and reflection on both cognitive
and affective aspects of that activity. The
work of the course is organized around
experiences of mathematical exploration,
selected readings, and, perhaps most
importantly, journal keeping." (p.191)

The journal writing is a most effective
way of demonstrating the changes that the
teachers felt themselves to have gone
through, during the course. The main
intention of the journals, however, is to
encourage and enable the reflective process
that is an essential component of breaking out
of the repetitive cycle of lack of success. It is
not that such reflection will guarantee that
no misconceptions in mathematical
understanding will occur, but that where
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cognitive conflicts arise in teachers’
experience of mathematical activities and
concepts, or a recognition of aspects of
mathematics that they do not understand,
they are more likely to be able to confront
them, rather than remain with their
misconceptions.

Blundell et al. (1989) also draw on
students’ reflections as expressed in journals,
in their evaluation of the nature of their
students' experiences and learning, through
the course. In this study the course was a pre-
service one for prospective primary
(elementary) school teachers, and as in the
Schifter (PME, 1990) study, the focus was on
mathematical processes and learning
processes. They describe the aims as follows:

"The fundamental belief which underlies
this course structure is that a recognition
and mastery of these general concepts and
strategies will enable students to approach
any new content area with confidence and
competence, and that the efficient
acquisition of meaningful mathematical
knowledge is thus facilitated. Furthermore,
this acquisition is not dependent upon the
skills of the "teacher”, but rather upon those
of the "learner” - leading to much greater
independence and self sufficiency.” (p.27)

Thus the other aspect of 'being taught the
way we want them to teach' is that when
studen. teachers focus on their own learning
reflectively, during the course, they become
aware of what their school students are going
through in their learning too (Waxman &
Zelman, PME, 1987). As the student teachers
gain confidence, independence and self
sufficiency, they can recognise the potential
for their own school students to do the same.
The students commented on their early
learning experiences, and then on their recent
growth as mathematics learners:

"The only maths teacher 1 remember,
although only vaguely, is the one who kindly
allowed me to spend most of my time
outside the classroom door ..."

"September 1965. I hate maths ... I recall
heading a page of my maths book “funny
sums”. For this | was sent to stand outside
the class, told I was a "bloody imbecile” and
that | was the worst student he had ever had
the misfortune to teach ..." (p.27)

"We're never afraid of anything now are
we? Whatever you give us we'll jump in
and have a go.”

"l really love doing maths. I really look
forward to Tuesdays and Fridays. All this
time I've been going on thinking I'm no
good at maths - and now I'm doing it."
(p-29)

The authors reflect on their own learning
as teacher educators, from this analysis:

“Clearly the students have gained in
confidence by this stage of the course, but it
is not yet an unequivocal confidence. It
scems as though they are still ambivalent,
feeling confident when they focus on their
process abilities, but doubting when
concentrating on content in mathe-matics

However, they do not overtly
acknowledge and value the acquisition of
process skills to the extent to which we
might have hoped.” (p.30)

Journal writing as an empowering
activity in reflection, whether it be on one's
mathematical work or on one's learning
during a course is itself the subject of study
(e.g. Brandau, PME, 1988; Hoffman and
Poweil, 1989; Frankenstein and Powell, 1989).

In-service courses provide the
opportunity for teachers to meet with others,
reflect on their experiences, re-interpret their
work in the light of theories which they may
meet during the course and develop areas of
their expertise. Fahmy and Fayez (1985)
attempt to outliie guidelines for in-service
education based on their work in Egypt. They
emphasise the profcssionalization of teacher
education, orientation towa:ds self-education
and research activities and careful
consideration of the mathematical needs of
the teachers. There are situations in which
the in-service programme has to be geared
towards major curriculum developments, and
thus are firmly focused on these needs.
Xiangming et al. (1985} describe a network of
in-service courses in institutions throughout
China to implement a 12 year programme
from a 10-year one in schoois. Similarly,
Roberts (1984) describes a programme of
school-based teacher education in
Swaziland, balanced with in-college
scssions, and Vila and Lima (1984) a
distance-learning programme in Brazil.
Eshun et al. (1984) pick up on the problems
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that these latter experience, and emphasise
the constraints for in-service courses for
primary teachers that result from the large
numbers involved, and the few higher
education institutions that can provide that

support.

An increasingly recurring theme in these
and other literature concerning teacher
education is the notion of teachers as
'reflective practitioners’. Lerman and Scott-
Hodgetts (PME, 1991, in press) discuss Schdn's
characterisation of the nature of teaching
and develop his interpretation:

"Schén ... maintains that teaching is
reflective practice, in his discussion of the
unsatisfactory distinction drawn between
theoreticians and practitioners.

In describing his notion of reflection-in-
action, Schén ... starts from what he calls
the practitioner's knowledge-in-action:

“It can be seen as consisting of strategies of
action, understanding of phenomena, ways
of framing the problematic situations
encountered in day-to-day experience.”

When surptises occur, leading to
"un..scainty, uniqueness, value-conflict”,
the practitioner calls on what Schén terms
reflection-in-act'on, a questioning and
criticising function, leading to on the spot
decision-making, which is "at least in some
degree conscious”.

In our situation, we would suggest that we
are extending the idea of the reflective
practitioner. We would agree with Schon
that recognising that a teacher is much
more than a practitioner is essential, both
for teachers themselves (and ourselves),
and for teacher educators, administrators
and others. However, when we use the term
reflecxive practitioner, we are also
describing meta-cognitive processes of, for
instance, recording those special incidents
for later evaluation and self-criticism,
leading to action research; consciously
sharpening one's attention in order to
notice more incidents; finding one's
experiences resonating with others, and/or
the literature, and so on. We are
corcerned with the transition from the
reflective practitioner in Schén's sense, to
the researcher (Scott-Hoedgetts 1990), who
has a developed critical attention, noticing
interesting and significant incidents, and
turning these into research questions. By
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analogy with some recent views of the
nature of mathematics (e.g. Lerman 1986;
Scott-Hodgetts PME, 1987), 'Mathematics
Education' is most usefully seen, not as a
body of external knowledge, recorded in
articles, papers and books, that one reads
and uses, but as an accumulation of work
upon which a teacher can critically draw, to
engage with those questions that concern
and interest her/him (Scott-Hodgetts, in
press, a)."

The notion of teacher as researcher,
although around the education world for
some years, has only recently appeared in the
literature of mathematics education (e.g.
ATM 1987; Scott-Hodgetts 1988; Fraser et al.,
1989). An early statement of the potential of
bringing together research and teaching was
given by the Theme Group on the Professional
Life of Teachers at the Fifth International
Congress on Mathematical Education (Cooney
et al., 1986):

"It was emphasised that the desirability of
having teachers participate in research
activities may extend beyond the question
of what constitutes research and relate to
the professional development of the
teacher by virtue of engaging in such
activity. That is, not only can the teacher
contribute to the creation of grounded
theory but the teacher can mature and
elevate his/her own expectations and
professional aspirations by participating in
a reflective research process.” (p.149)

Research is often seen as the prerogative
of full-time people based in institutions of
higher education. This is to misunderstand
the nature of teaching and the educational
experience. There is no doubt that full-time
researchers have had the opportunity to
develop skills and perspectives in research
that class teachers have not had, but the
scparation of research from practice is one of
the major factors that leads to suspicion of
researchers by teachers, and the well-known
phenomenon mentioned early in this chapter,
that the findings of research do not often
reach teachers (Scott-Hodgetts, 1988;
Lerman, 1990a). In a comparison study of
teachers' perceptions of their classrooms, and
pupil perceptions of the same classrooms,
Carmeli et al. (PME, 1989) found that there
were statirtically significant differences,
with the teachers being far more positive




that their pupils. There was no mention in
the report of whether the teachers were
shown the outcome of the study, and what
effect that may have had on their own
practice, although that may of course have
taken place later. Research on teachers,
carried out by outsiders, and then reported in
the academic literature, is of much less value
than research in which the teachers are
involved, and which they can use in their
own growth as teachers.

Conclusion

There are of course many questions about
the influence of the role of the teacher in
childrens' learning of mathematics, and in
this chapter we have described attempts to
engage with some of those questions, and
answer them. Two fundamental problems
remain, which were referred to in the
introduction to this chapter: what do
‘answers' look like, in this domain, and what
kinds of research methodologies are most
suitable to investigate those questions?

As with so many issues in mathematics
education, the place to commence this
discussion is with attitudes and beliefs. For
example, one of the most systematic and
developed methodologies for examining the
practices of the teacher, in order to achieve
children's understanding of mathematics is
that developed by the group engaged in
recherches en didactique des mathématiques
in France. It is interesting to examine the
assumptions about the nature of classroom
interactions that underpin their system, and
to see how the alternative view described in
this chapter offers another methodological
approach. Brousseau, Chevallard, Balacheff
and others have developed notions of the
didactical process, theory of didactical
situations, didactical transposition etc.
Balacheff (1990) describes his basic
assumptions and the fundamental problem, as
he conceptualizes it:

"So if pupils’ conceptions have all the
properties of an item of knowledge, we have
to recognize that it might be because they
have a domain of wvalidity. These
conceptions have not been taught as such,
but it appears that what has been taught
opens the possibility for their existence.
Thus, the question is to know whether it is
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possible to avoid a priori any possibility of
pupils constructing unintended
conceptions...

I have suggested that pupils' unintended
conceptions can be understood as
properties of the content to be taught or the
way that it is taught.” (p.262-263)

This approach to research on teaching is
a positivist one, which anticipates the
possibility of solving these problems. It is
one which focuses on the individual's
construction, in the light of the content and
what the teacher does. At the same time, it
appears that the construction is to be of an
object that exists in some a priori sense. The
methodology that Balacheff describes
assumes that it is possible to specify all the
conditions of the classroom, the mathe-
matical content, and so on. Brousseau (1984)
recognises the enormity of the task and
despairs of the possibility of success:

“"Research into didactics is itself doomed to
naiveté and /or failure, since it is becoming
more and more difficult, as the body of
knowledge concerned with didactics grows
steadily more complicated and technical,
for a good student of mathematics to
devote enough time to absorbing it before
he sets out to break fresh ground in this
field." (p.250)

A methodology of research on teaching
would look different from a perspective
which focuses on the construction of
knowledge within an analysis of discursive
practices, knowledge as signs that are
slippery, not fixed, that is signs that appear
clear and certain, but shift when analysed
and then shift again. If we cannot specify all
aspects of the teaching situation in advance,
it is essentially because the actors in that
setting bring with them their cultural
experiences, in the widest sense. These
experiences are not ‘private’, just not
compietely specifiable. And of course the
classroom itself is a whole new social
siruation with all its own practices. As a
consequence, the teaching process is best seen
as one which creates situations in which
students construct their own knowledge, and
where students’ constructions are valued, even
if they are unintended. There are conceptions
and misconceptions, but there are also
partial-conceptions and other-conceptions




too. Valuing these contributions recognises
that learning is what an individual does for
herself, not something the teacher does to the
student, and also places responsibility or: the
student for her own learning. It also avoids
the student dependence on the teacher as
judge, and enables the development of self-
critical skills in students. All conceptions
offered can be brought into the 'objective’
arena of the classroom for examination, to
search for 'proofs and refutations'.

In the context of research methods, one
learns something important about
mathematics teaching when one discovers
that in a survey of 32 teachers and 1338
pupils the teachers had a significantly more
positive view of a number of elements of the
classroom environment (Carmeli et al.,, PME,
1989). One learns much more, perhaps, in a
case study of a teacher who takes that
information and attempts to modify and
develop the relationships, communication,
discussion and other interactions in her
classroom, and develop ways of evaluating
the changes and the consequences for herself
and her students, through action research.
Thus, qualitative research is perhaps most
useful when it provides insights that
stimulate research by teachers themselves,
and where the generalisability is found
through other teachers and researchers
recognising, and reflecting on, the
implications for their own work. That is to
say, 'proof’ by resonance, where an idea or an
analysis of a classroom experience or event
‘resonates' with the experience of the reader
or listener, may be more fruitful and more
widely applicable than ‘'proof' by
significance testing, at least in relation to
teaching.

As mentioned above, there are many
questions for research and investigation about
teaching that have been identified in this
chapter that can generate valuable insights
into the teaching of mathematics. Some
recommendations of important areas for
research and investigation follow, and
pursuing the theme of the final section, there
is an overlap of the concerns of the teacher,
the researcher and the teacher educator.
Thase concerns will be emphasised by people
according to their needs and interests as well
as circumstances, rather than their particular

task in mathematics education. As they
have been elaborated in the body of the
chapter, they will be merely listed here.:

(1) the influence of the language and the
practices of the mathematics classroom
on learning;

(2) ways of rooting the mathematical
activities of the classroom in the
experiences of the children, whilst at the
same time finding ways of drawing them
into mathematical discourse;

(3) identifying teachers' beliefs and the
influence of those beliefs on practice.
There are methodological problems, such
as the impact of society's demands, the
particular school ethos, mathematics
education jargon, and there are
theoretical frameworks being developed
in which to set such studies;

(4) developing the Inner Teacher, the meta-
cognitive functioning that is an essential
part of learning and mathematising;

(5) the nature of problem-solving and
problem-posing, the influence of teachers’
perceptions of problem-solving, the
teaching of problem-solving processes and
the relationship between the teacher's
role and student growth as problem-
solvers;

(6) classroom-based studies focusing on how
teachers define and attempt to realize
the goals that they set, through action
research;

(7) if\vestigations on the implications of
alternative learning theories for
teaching and teacher education;

(8) the role of the textbook in the social
relations of the classroom, and the
relationships to mathematical
knowledge, and alternative forms of text;

(9) the study of the practice of teacher
education in an analogous way to that of
the teacher in the classroom.

The mathematics classroom is a confusing
but rich environment. Students bring their
worlds into it, and express those worlds
through language. Our role as teachers is to
enable them to interact with and integrate
the language game of mathematics, in a
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manner that empowers rather than makes the science of mathematics teaching

disempowers, and that enables them to just like all sciences, an open-ended and
continue to keep mathematics as their own, exciting process of experimentation and
not to see it as belonging to us, the teachers theory-building.

and the authority. It can be maintained that
not being able to arrive at absolute and
certain answers to how that can be done,
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