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Abstract

This paper reports the results of using a three-layer backpropagation artificial neural

network to predict item difficulty in a reading comprehension test. Two network structures

were developed: one with the sigmoid function in the output processing unit and the other

without the sigmoid function in the output processing unit. The data set which consisted of

a table of coded test items and corresponding item difficulties was partitioned into a

training set and a test set in order to train and test the neural networks. To demonstrate

the consistency of the neural networks in predicting item difficulty, the training and

testing runs were repeated four times starting with a new set of initial weights.

Additionally, the training and testing runs were repeated by switching the training set and

the test set. The mean squared error values between the actual and predicted item

difficulty demonstrated the consistency of the neural networks in predicting item difficulty

for the multiple training and testing runs. Significant correlations were obtained between

the actual and predicted item difficulties and the Kruskal-Wallis test indicated no

significant difference in the ranks of actual and predicted values.
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I Introduction

This paper focuses on developing an artificial neural network (ANN) approach to predict item

difficulty in a standardized reading comprehension test. The rationale for the study was

motivated by many considerations which can be generally categorized into two broad areas:

(1) reading research and (2) the ability of ANNs to outperform traditional statistical

i.echniques such as multipl regression in prediction studies.

Reading research

Identifying the variables which uniquely account for significant variance in the percent

correct obtained by examinees for each item in a standardized, group administered reading

comprehension test is a major focus in reading research for the following reasons. There

are many potential sources of difficulty in a reading comprehension test which may derive

from the way in which the prose passages and the reading comprehension questions are

constructed (Scheuneman, Gerritz, and Embretson, 1989). Test item writers do not usually

control nor quantify the sources of difficulty and reading researchers are unsure of what

factors account for the observed item difficulty in a multiple-choice reading comprehension

test (Embretson and Wetzel, 1987). Researchers have noted that content and test development

experts cannot reliably estimate the difficulty of a test item (Bejar, 1983).

ANN versus traditional statistical techniques

There is growing literature that suggests that ANNs outperform traditional statistical
procedures such as multiple regression in prediction studies. Studies in which traditional

statistical methods and ANNs have been compared show a favorable advantage for ANNs in

time/forecasting (Sharda and Patti, 1992), processing control (Nelson and Illingworth,

1991), signal processing (Lapedes and Farber, 1987), and predicting an AIDS risk index

(Lykins and Chance, 1992). A reason which has been offered to account for the better

performance of ANN over multiple regression is that backpropagation networks (one type of

ANN) are a form of nonlinear regression and are not bound to the functional fitting inherent

in multiple regression which utilizes the least-mean-squared error to determine the best

representative function in a data set (Lyktns and Chance, 1992).

The validity of the studies in which multiple regression is used to predict item

difficulty is not high. Perkins and Brutten (1991) correlated 24 variables with the item

difficulty indices from a standardized reading comprehension test and obtained correlation



coefficients ranging from 0.603 to -0.011. Only five variables correlated significantly at

the 0.05 level with item difficulty, and these five variables were retained for a stepwise

multiple regression analysis in which item difficulty was the dependant variable. Only four

of the five variables uniquely accounted for significant variance and the entire model

accounted for 72.49 percent of variance in the test. When only four of 24 variables account

for significant variance in item difficulty, the validity of a multiple regression study is

not high. It is hypothesized that using variables in combination and introducing forms of

non-linearity might improve the validity of item difficulty studies. Combining variables

and introducing non-linearity can be accomplished in an ANN by manipulating the input

variables and by employing the non-linear transfer functions of the neurons in an ANN.

Thus, the purpose of the study reported in this paper was to train an ANN to predict item

difficulty in a reading comprehension test and to compare the actual item difficulties with

the predicted item difficulties in order to determine whether the two sets of values were

statistically similar or different.

11 Artificial neural networks

Interest in artificial neural networks as an alternative to conventional algorithmic

techniques has grown rapidly in recent years. Artificial neural networks attempt to emulate

sophisticated brain-like functions such as learning and generalization. Researchers from

diverse fields such as engineering, science, statistics, and mathematics are actively

involved in developing and applying artificial neural net models to solve problems in

pattern recognition, signal processing, biological system modeling, data analysis, and

optimization.

An artificial neural network is a large parallel information processing network

composed of many simple non-linear processing elements. Information is stored in a

distributed fashion throughout the interconnections of the network. Artificial neural nets

are specified by the network topology, node characteristics, and the training or learning

rules. A variety of artificial neural net models have been developed and these include

backpropagation nets (Werbos, 1974; Parker, 1982; Rumelhari & McClelland, 1986), associative

memory nets (Hopfleld & Tank, 1985), adaptive resonance nets (Grossberg, 1987), self-

organizing nets (Kohonen, 1988), and counterpropagation nets (Hecht-Nielsen, 1987). The

networks differ in that they operate on binary/continuous valued inputs, use
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unsupervised/supervised training, and perform classification, clustering or optimization

tasks.

The backpropagation neural network

The neural network model selected for the item difficulty prediction problem addressed in

this paper is the backpropagation network. A backpropagation network implements a

modifiable function which maps a set of inputs to a set of outputs. The functional form is

modified by adjusting the adaptable interconnection weights by means of the backpropagation

training algorithm. Since the item difficulty prediction problem essentially involves

determining the functional mapping between the 24 variables (input) and the item difficulty

(output), a backpropagation neural network can be designed to solve the mapping of the 24

variables to the corresponding item difficulties (p-values).

Network architecture

The backpropagation network is a hierarchical feed-forward network system consisting of two

or more fully interconnected layers of processing units (artificial neurons). A N-H-M

backpropagation network refers to a three-layer network with N, H, and M processing units in

the first, second, and third layers respectively. A N-H-1 backpropagation network is shown

in Figure 1. The first, second, and third layers illustrated in this figure are the input

layer, the hidden layer, and the output layer respectively. Each processing unit is

represented by a circle and each interconnection between processing units by an arrow. Each

interconnection is weighted by an adaptive coefficient called the interconnection weight

(not marked in the figure). The input to the network is represented by the N-dimensional

vector U=(u1,u2 uN) and the output by y. For convenience, the outputs of the processing

units in the input and hidden layers are labelled in the circles representing the processing

units. By using a training algoritlhm to adapt the interconnection weights, the

backpropagation network has the ability to implement a wide range of responses to the

patterns in a given training set.

6

'5



HIDDEN
LAYER

Fig. 1 A three-layer backpropagation neural network

Fig. 2 A processing unit
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Processing unit

Figure 2 shows a typical processing unit which consists of a summing unit and a non-linear

sigmoidal activation function fr.]. The output y of the processing unit is given by

y = SS], where

S = tic and

SS) = 11(1

That is, the processing unit first computes a weighted sum S of its inputs and then computes

a function SS/ of the weighted sum to give the activation level y (output) of the

processing unit. Due to the sigmoidal function, the output y is limited to values between 0

and 1.

Network design issues

The design of a backpropagation network for a particular problem involves determining:

(1) The number of layers.

(2) The number of processing units in each layer.

(3) The format of the input to the network.

The backpropagation approximation theorem (Hecht-Nielsen, 1991) proves that three layers are

generally enough to approximate the functional mapping required for most practical problems

and, therefore, a backpropagation network with three layers is a good choice when no prior

knowledge of the mapping is assumed. The number of processing units in the input layer is

generally governed by the input dimension. No theory or rules exist to select the number of

processing units in the hidden layer, therefore, the number of hidden layer units is

determined empirically. The number of processing units in the output are problem-dependent;

for example, pattern classification problems require the output layer to have one processing

unit per pattern class (Gupta, Sayeh, & Tammana, 1990) or one processing unit per pattern

feature (Gupta & Upadhye, 1991; Gupta et al., 1993). The prediction problem addressed in

this paper requires one processing unit in the output layer. The input to the

backpropagation network is a vector of real numbers and due to the fixed structure of the

network, the input vector must have a fixed dimension.

Network training

The multilayer perceptron is trained under supervision using We backpropagation algorithm

(Rumelhart & McClelland, 1986). The network is presented with pairs of vectors: the input
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vector to the network and the desired network output vector for the input pattern vector.

The network functions in two stages during training: a forward pass and a backward pass. In

the forward pass, the input vector is presented to the network and the outputs of the units

are propagated through each upper layer until the network output is generated. The

difference (error) between the network output and the desired output is computed for each

output unit and during the backward pass. a function of the error is fed back through the

network layers to adjust the interconnection weights in order to minimize the error. The

forward and backward passes are repeated until the network converges, that is, until a

measure of the error is acceptably small. During training, the network gradually learns to

produce the desired outputs. The backpropagation training algorithm is an iterative

gradient algorithm designed to minimize the mean square error between the desired network

output and the actual network output. The backpropagation algorithm applied to train the

neural network shown in Figure I is summarized below.

Network Dimensions:

Let the dimension of the input training vector and the network input layer be N and let H be

the dimension of the hidden layer.

Network Initialization:

Set all the interconnection weights to small random values with zero mean. Typically, the

weights are initialized to take random values between -0.5 and 0.5.

Apply Input and Set Desired Net Outputs:

Assume that the network is designed to predict M values and let utm, t=1,2 N represent

a N dimensional training vector for the mth value. Let dm be the desired network output for

the input u The presentation of the input may be done in several ways. One approach

is to apply the input training vector tit set the desired network output dm' and not

change the training vector during the training iterations (an iteration is a forward pass

and a backward pass) until the network converges to the desired output. The process is

repeated for the remaining training vectors. Alternatively, the training vectors can be

rotated cyclically from iteration to iteration. The desired network output must, therefore,

be also set from iteration to iteration.

9
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Compute Actual Unit Outputs (forward pass):

The processing of the outputs are carried out sequentially from the input layer to the

output layer. The output of the jth unit in the input layer is given by:

u. =SEN wij 1sj N.
= 1

The outputs of the input layer are the inputs to the hidden layer and the output of the kth

unit in the hidden layer is given by:

2 N 1 1uk =SE w u 1 ks H.
= 1

,k

The outputs of the hidden layer are the inputs to the output layer and the network output in

response to the input u is given by:

H 2 2
ym wk

k= 1

In the above equations, ft J is the sigmoidal function, that is,

Sal = I/fI+ej

2and w, wj and wk are the connection weights between the network input and the input

layer, input and hidden layer, and ihe hidden layer and the output layer, respectively.

Update Weights (backward pass):

Hidden layer - Output layer interconnection weights:

The interconnection weights are updated sequentially from the output layer to the input

layer. If w(t) is the interconnection weight between kth unit in the hidden layer and the

output layer unit at time t, then the weight at time (t+ 1) is given by:

2
wk(t+1) = w2(t) + u2m k

where



8 = y (1-y )(d -y ).m m mmm

8m is the error for the output of the unit in the output layer when the input is ut.m and 11

is a gain term which controls the learning (adaptation) rate of the network. The gain term

is typically assigned values between 0 and 1. however, the actual value selected between 0

and 1 is application-dependent. The gain term controls the convergence rate and the

stability of the network and in practice, 1 is adjusted for fast adaptation and for
obtaining stable estimates of the interconnection weights.

Input layer - Hidden layer interconnection weights:

The updated weights between the input and hidden layers are given by:

where

to1 (t+1) = (t) + T18 u1 ,
,k ,k k j

2 2 M 2
5 =

k
(I-u..K )(E 8m tuk,m).k m=1

8k is the error for the output of unit k in the hidden layer,

Input - Input layer interconnection weights:

The updated weights between the input and input layer are given by:

where

w (t+1)= w. + 718.u.
iLI

,
4./ j 4m

1 1
8j =

1u )(E
H

8k ,k).
k= /

8 is the error for unitJ in the input layer.

The training set generally consists of a set of representative prototype vectors.

The training prototypes could be a vector representation of the raw input data or a feature

vector computed from the raw data. Network convergence can be tested in several ways (Gupta

et al., 1992). The most practical test for network convergence is the error limit test,

i.e., test if the absolute difference e between the desired response and the response of

each output unit is below a small specified error limit. Alternatively, training could be

1 1
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terminated when the sum of the squares of the errors for all output units is below a
specified limit.

Network testing

In the testing stage, the vector representing the input to be tested is presented to the
input of the trained network and the network outputs are computed using one forward pass.

In neural networks designed for classification problems, the input test pattern is assigned

to the class of the network output that yields the maximum value (maximum response rule).

For the prediction problem involving a single network output, the network is trained to

predict m values. The value of the network output during testing is, therefore, the

predicted value.

III Purpose and design of the study

The specific data set to be analyzed in this paper comes from a study by Perkins and Brutten

(1991). Three classes of variables were examined: (1) various counts of text surface

structure (Drum, Calfee, and Cook, 1981), (2) propositional analysis of the passages and

item stems (Scheuneman and Gerritz, 1990; Scheuneman, Gerritz and Embretson, 1989) and (3)

cognitive demand (Scheuneman, Gerritz and Embretson, 1989).

Text structure

The variables describing the structure of the texts included passage conteat (humanities,

nonhumanities), the number of paragraphs per passage, the numbei of lines per passage, the

number of test items per passage, the number of words per passage, the number of content

words per passage, the number of sentences per passage, a passage word/sentence ratio, and

the percent of content words per passage.

Propositional analysis

The following propositional counts were conducted for both the test passages and the item

stems separately: the number of arguments, the number of modifiers, the number of

predicates, arguments density (the number of arguments divided by the number of sentences),

modifier density, predicate density, and combined density (the total number of propositionE

divided by the number of sentences).

11



Cognitive demand

Scheuneman, Gerritz and Embretson, (1989) used five cognitive process categories in their

analysis which were modified as follows for the study reported herein:

0 = identify, recognize, name, discern, locate, match, exemplify, or illustrate

a concrete piece of relevant information in the text which was given in an

item stern.

1 = non-identification

support/weaken a claim, procedure, or outcome; substantiate, demonstrate,

prove, confirm, verify a result; negate, critique, contradict, or disprove

a claim, procedure or outcome

- infer, conclude, induce, deduce, diagnose, distinguish, differentiate.

contrast

- genera ltze, plausibly unive rs a lize, find common ground, transfer,

apologize, apply, carry over

- problem/solve, calculate, inquire, experiment, evaluate, appraise, weigh,

compare

(adapted from Scheuneman, Gerritz and Embretson, 1989, pp. 14-14).

If a test item required the reader to conduct a cognitive operation on a concrete, verbatim

piece of information in the text, it was coded 0. All other cognitive requirements were

coded I.

IV Method

Subjects

Seventy students enrolled in intensive English classes participated as subjects for this

study. The distribution of native languages was the following: Japanese, sixteen; Chinese,

thirteen; Arabic, twelve; Korean, eleven; Spanish, nine; Thai, two; Turkish, two; Urdu, two:

Hebrew, one; Indonesian, one; and Wolof, one.

Instrumentation

The elicitation instrument consisted of 29 reading comprehension items from the Test of

English as a Foreign Language, Form 31,TFG (Educational Testing Service, 1990).

12



Data coding

Each of the twenty-nine reading comprehension test items was coded according to three sets

of variables: text structure, propositional analysis of passages and stems, and cognitive

demand. The two researchers coded the items independently and anonymously. Disagreements

were adjudicated by a third party, and the consensus was recorded. Pearson correlations for

the continuous variables and percentage agreement for the categorical variables were used to

determine coding stability consistency. The coefficients ranged from 0.85 to 0.93. The

item difficulty of each item was calculated as the proportion of correct responses.

Network training and testing

The data available consisted of the 29 reading comprehension coded test items shown in Table

1. Two sets: a training set a.nd a test set were created from the available data set. In

order for the training set to be representative, items were selected by picking the first

item and every other item in the table to give a total of 15 items in the training set. The

remaining 14 items constituted the test set. A three-layer backpropagation network was

designed with 24 input units (one for each of the 24 input variables) and 1 output unit for

the predicted item difficulty (p-value). The number of units in the hidden layer was

empirically determined to be 17. The input data were normalized to take values between 0

and 1 by dividing each variable by its highest value in the table. Two variants of the 24-

17-1 networks were implemented: one with the sigmoid function in the output processing unit

and the other without the sigmoid function in the output processing unit. The rationale for

implementing the network without the sigmoid function in the output unit was to determine

the effect, if any, of the sigmoid function compressing heavily large and small input

values. All processing units in the input and hidden layers used the sigmoid function. The

gain term i used in training was 0.2 and the error limit test with E=0.05 was used to test

for network convergence.

V Results

The neural networks were trained using the backpropagation training algorithm to output the

desired p-values in the training set. The 14 items in the test set were tested and the

results (Run 1) are shown in Tables 2 and 3. In order to demonstrate the consistency of the

neural networks in predicting item difficulty, the two networks were trained starting with a

114
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Table 2 Predicted p-values with the sigmoid function (original training set and test set)

Actual
p-value

Predicted p-value

Run I Run 2 Run 3 Run 4

0.90 0.897 0.907 0.905 0.859

0.90 0.925 0.933 0.942 0.901

0.66 0.713 0.725 0.739 0.753

0.91 0.830 0.866 0.844 0.867

0.67 0.601 0.685 0.651 0.619

0.49 0.709 0.719 0.718 0.754

0.71 0.708 0.692 0.694 0.671

0.53 0.242 0.161 0.284 0.208

0.53 0.606 0.579 0.585 0.594

0.19 0.407 0.398 0.396 0.399

0.33 0.433 0.425 0.413 0.387

0.76 0.585 0377 0.633 0.675

0.30 0.272 0.261 0.276 0.279

0.34 0.295 0.291 0.313 0.331

0.27 0.195 0.183 0.191 0.169

MSE 0.0165 0.0197 0.0134 0.0172

X2 = 5.23, n.s., 0.01 level, df 4

Table 3 Predicted p-values without the sigtnoid function (original mining set and test set)

Actual
p-value

Predicted p-value

Run 1 Run 2 Run 3 Run 4

0.90 0.837 0:886 0.878 0.889

0.90 0.924 0.987 0.955 0.983

0.66 0.691 0.717 0.698 0.747

0.91 0.868 0.905 0.863 0.856

0.67 0.587 0.678 0.635 0.597

0.49 0.688 0.685 0.678 0.751

0.71 0.704 0.686 0.704 0.679

0.53 0.288 0.233 0.392 0.257

0.53 0.583 0.550 0.512 0.528

0.19 0.411 0.410 0.401 0.402

0.33 0.423 0.435 0.420 0.401

0.76 0.628 0.547 0361 0.635

0.30 0.313 0.277 0.284 0.346

0.34 0.323 0.302 0.286 0.348

0.27 0.229 0.178 0.167 0.191

MSE 0.0128 0.0169 0.0112 0.0161

X2 = 5.362, n.s., 0.01 level, df 4

1 6
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new set of initial weights taking random values between -0.5 and 0.5. This form of training

was repeated three times and the results of testing the 14 items are also shown in Tables 2

and 3 (Runs 2-4). Additionally, the training set and test set were switched i.e. the new

training set consisted of the 14 items in the original test set and the new test set
consisted of the 15 items in the original training set. The training of the two networks

was repeated using exactly the same set of initial weights used in the original 4 runs and

the test results are shown in Tables 4 and 5. The mean squared error (MSE) computed from

the actual and predicted p-values are also shown for each run in Tables 2-5. The MSE

provides a measure for evaluating the consistency in the performance of the networks for the

multiple traimng runs and also provides a measure for comparing the performances of the two

networks. The small MSE values and the little difference in the MSE values obtained not

only demonstrate bow effective the networks are in predicting the item difficulty but also

the consistency in the predictions from run to run. The average of the MSE values obtained

for the networks with and without the sigmoid function (0.0129 and 0.0133 respectively) also

show that the performance of the network with the sigmoid function is marginally superior to

that of the network without the sigmoid function.

A correlation analysis and the Kruskal-Wallis test were also employed to assess how

accurately the neural network predicted the item difficulty values. The correlation

matrices corresponding to the runs in Tables 2-5 are shown in Tables 6-9 and all correlation

coefficients reported in the tables are significant at the 0.01 level for a one-tailed test.

The Kruskal-Wallis test, a nonparametric alternative to the one-way analysis of variance,

was utilized to determine whether there was a difference between the actual p-values and the

pred1cted p-values for different test runs. The Kruskal-Wallis test was selected because

neithe:r normality of distribution nor homogeneity of variance for the groups of p-values

under study could be assumed. The Kruskal-Wallis test statistic is calculated from the sums

of ranks for the different samples of p-values, and the interpretation in this paper is that

of a hypothesis of equal means. For df 4 at the 0.01 level, the critical tabled value for

the chi-square statistic is 13.277. For Tables 2-5, the calculated statistic for each table

of values is smaller than the tabled value; therefore, it can be concluded that no
significant difference in the ranks has been established and further that the predicted p-

values are statistically equal to the actual p-values.

1.7

16



Table 4 Predicted p-values with the sigmoid function (switched training set and test set)

Actual
p-value

Precticte4 p-value

Run I Run 2 Run 3 Run 4

0.76 0.773 0.818 0.814 0.775

0.87 0.887 0.878 0.882 0.908

0.90 0.862 0.780 0.739 0.769

0.51 0.526 0.357 0.491 0.512

0.70 0.686 0.644 0.622 0.651

0.60 0.581 0.597 0.547 0.613

0.67 0.716 0.699 0.693 0.737

0.56 0.637 0.600 0.535 0.584

0.44 0.239 0.224 0.232 0.236

0.43 0.292 0.302 0.267 0.284

0.39 0.323 0.341 0.312 0.330

0.16 0.267 0.336 0.298 0332

0.50 0.407 0.433 0.418 0.439

0.59 0.689 0.677 0.542 0.619

MSE 0.0074 0.0096 0.0102 0.0091

z2 = 5.234, n.s., 0.01 level, df 4

Table 5 Predicted p-values without the sigmoid function (switched training set and test set)

Actual
p-value

Predicted p-value

Run I Run 2 Run 3 Run 4

0.76 0.829 0.852 0.864 0.805

0.87 0.861 0.863 0.843 0.936

0.90 0.846 0.729 0.628 0.662

0.51 0.553 0.569 0.486 0.539

0.70 0.687 0.666 0.625

0.60 0.605 0.592 0.501 0.576

0.67 0.724 0.713 0.696 0.717

0.56 0.606 0.652 0.553 0.488

0.44 0.238 0.222 0.221 0.200

0.43 0.301 0.323 0.286 0.254

0.39 0.332 0.351 0.333 0.299

0.16 0.267 0.341 0.294 0.315

0.50 0.394 0.439 0.425 0.441

0.59 0.534 0.613 0.433 0.464

MSE 0.0072 0.0107 0.0158 0.0154

X2 = 6.016, n.s., 0.01 level, df 4
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Table 6 Correlation matrix with the sigmoid function (original training set and test set)

1 2 3 4 5

1 Actual p-value - 0.850 0.836 0.879 0.726

2 Predicted p-value, Run 1 - 0.991 0.995 0.987

3 Predicted p-value, Run 2 - 0.991 0.987

4 Pred icted p-value, Run 3 0.991

5 Predicted p-value, Run 4 -

all correlations are significant for df 13. p<0.01 for a one tailed test

Table 7 Correlation matrix without the sigmoid function (original training set and test set)

1 2 3 4 5

1 Actual p-value . 0.879 0.856 0.896 0.856

2 Predicted p-value, Run 1 - 0.890 0.981 0.989

3 Predicted p-value, Run 2 - 0.983 0.984

Predicted p-value, Run 3 - 0.975

Predicted p-value, Run 4 -.
-

all correlations are significant for df 13, p<0.01 for a one tailed test

Table 8 Correlation matrix with the sigmoid function (switched training set and test set)

1 2 3 4 5

1 Actual p-value - 0.919 0.877 0.898 0.888

2 Predicted p-value, Run 1 - 0.987 0.969 0.982

Predicted p-value, Run 2 - 0.984 0.991

Predicted p-value, Run 3 - 0.991

5 Predicted p-value, Run 4 -

all correlations are significant for df 12, p<0.01 for a one tailed test

Table 9 Correlation matrix without the sigmoid function (switched training set and test set)

1 2 3 4 5

1 Actual p-value - 0.922 0.857 0.839 0.845

2 Predicted p-value, Run 1 - 0.977 0.952 0.953

3 Predicted p-value, Run 2 - 0.966 0.961

4 Predicted p-value, Run 3 - 0.976

5 Predicted p-value, Run 4 -

all correlations are significant for df 12, p<0.01 for a one tailed test
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VI Discussion

The ability of the neural network to predict the p-values is highly dependent on the

training set. The training set must be large enough to be representative of the data in

order to approximate the desired input/output mapping during training. In the experiments

conducted, the training set was relatively small; nevertheless, the prediction of the item

difficulties was quite reasonable. A significant improvement in the prediction of the p-

values by the neural networks can, therefore, be expected when a larger training set becomes

available. No prior assumptions of the functional mapping between the 24 variables and the

corresponding p-values, the significance of the variables, or the relationships between the

variables were made. The functional mappng was approximated by the network during training

with a part of the available data.

The next phase of our research will involve the identification of variables or types

of variables for which predictions are most sensitive. 13y dropping variables and comparing

the magnitude of change in predicted item difficulty, it should be possible to drastically

reduce the number of predictor variables from 24 to a more manageable number and still

maintain close concurrence between the actual and predicted values.

VII Conclusion

This paper focused on developing a neural network approach to predict item difficulty in a

standardized reading comprehension test. The results obtained from the two backpropagation

neural networks designed for the prediction problem clearly demonstrate that the networks

can consistently predict item difficulty with a high degree of success. The results of

training an ANN to predict item difficulty in a reading comprehension test have direct

application to pretesting and provide application to other items. The use of ANNs should

further inform the testing community of what determines item difficulty and provide a basis

for generalizing about how selected variables affect item difficulty.
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