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Abstract

This paper reports the results of using a three-layer backpropagation artificial neural
network to predict item difficulty in a reading comprehension test. Two network structures
were developed: one with the sigmoid function in the output processing unit and the other
without the sigmoid function in the output processing unit. The data set which consisted of
a table of coded test items and corresponding item difficultiecs was partitioned into a
training set and a test set in order to train and test the neural networks. To demonstrate
the consistency of the neural networks in predicting item difficulty, the training and
testing runs were repeated four times starting with a new set of initial weights.
Additionaily, the training and testing runs were repeated by switching the training set and
the test set. The mean squared error values between the actual and predicted item
difficulty demonstrated the consistency of the neural networks in predicting item difficulty
for the multiple training and testing runs. Significant correlations were obtained between
the actual and predicted item difficulties and the Kruskal-Wallis test indicated no
significant difference in the ranks of actual and predicted values.




I Introduction

This paper focuses on developing an artificial neural network (ANN) approach to predict item
difficulty in a standardized reading comprehension test. The rationale for the study was
motivated by many considerations which can be generally categorized into two broad areas:
(1) reading research and (2) the ability of ANNs to outperform traditional statistical

icchniques such as multipl regression in prediction studies.

Reading research

Identifying the variables which uniquely account for significant variance in the percent
correct obtained by examinees for each item in a standardized, group administered reading
cormnprehension test is a major focus in reading research for the following reasons. There
are many potential sources of difficulty in a reading comprehension test which may derive
from the way in which the prose passages and the reading comprehension questions are
constructed (Scheuneman, Gerritz, and Embretson, 1989). Test item writers do not usually
control nor quantify the sources of difficulty and reading researchers are unsure of what
factors account for the observed item difficulty in a multiple-choice reading comprehension
test (Embretson and Wetzel, 1987). Researchers have noted that content and test development

experts cannot reliably estimate the difficulty of a test item (Bejar, 1983).

ANN versus traditional statistical techniques
There is growing literature that suggests that ANNs outperform traditional statistical
procedures such as multiple regression in prediction studies. Studies in which traditional
statistical methods and ANNs have been compared show a favorable advantage for ANNs in
time/forecasting (Sharda and Patil, 1992), processing control (Nelson and Illingworth,
1991), signal processing (Lapedes and Farber, 1987), and predicting an AIDS risk index
(Lykins and Chance, 1992). A reason which has been offered to account for the better
performance of ANN over multiple regression is that backpropagation networks (one type of
ANN) are a form of nonlinear regression and are not bound to the functional fitting inherent
in multiple regression which utilizes the least-mean-squared error to determine the best
representative function in a data set (Lykins and Chance, 1992).

The validity of the studies in which multiple regression is used to predict item
difficulty is not high. Perkins and Brutten (1991) correlated 24 variables with the item

difficulty indices from a standardized reading comprehension test and obtained correlation
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coefficients ranging from 0.603 to -0.011. Only five variables correlated significantly at
the 0.05 level with item difficulty, and these flve varlables were retained for a stepwise
multiple regression anaiysis in which item difficulty was the dependant variable. Only four
of the five variables uniquely accounted for significant varlance and the entire model
accounted for 72.49 percent of variance in the test. When only four of 24 variables account
for significant variance in item difficulty, the validity of a multiple regression study is
not high. It is hypothesized that using variables in combination and introducing forms of
non-linearity might improve the validity of item difficulty studies. Combining variables
and introducing non-linearity can be accomplished in an ANN by manipulating the input
variables and by employing the non-linear transfer functions of the neurons in an ANN.
Thus, the purpose of the study reported in this paper was to train an ANN to predict item
difficulty in a reading comprehension test ancl to compare the actual item difficulties with
the predicted item difficulties in order to determine whether the two sets of values were
statistically similar or different.

IO Artificial neural networks
Interest in artificial neural networks as an alternative to conventional algorithmic
techniques has grown rapidly in recent years. Artificial neural networks attempt to emulate
sophisticated brain-like functions such as learning and generalization. Researchers from
diverse fields such as engineering, science, statistics, and mathematics are actively
involved in developing and applying artificial neural net models to solve problems in
pattern recognition, signal processing, biological system modeling, data analysis, and
optimization. |

An artificlal neural network is a large parallel information processing network
composed of many simple non-linear processing elements. Information is stored in a
distributed fashion throughout the interconnections of the network. Artificial neural nets
are- specified by the network topology, node characteristics, and the training or learning
rules. A variety of artificial neural net models have been developed and these include
backpropagation nets (Werbos, 1974; Parker, 1982; Rumelhari & McClelland, 1986), associattve
memory nets (Hopfield & Tank, 1985), adaptive resonance nets (Grossberg, 1987), self-
organizing nets (Kohonen, 1988), and counterpropagation nets (Hecht-Nielsen, 1987). The
networks differ in that they operate on binary/continuous valued inputs, use




unsupervised/supervised training, and perform classification, clustering or optimization
tasks.

The backpropagation neural network

The neural network model selected for the item difficulty prediction problem addressed in
this paper is the backpropagation network. A backpropagation network implements a
modifiable function which maps a set of inputs to a set of outputs. The functional form is
modified by adjusting the adaptable interconnection weights by means of the backpropagation
training algorithm.  Since the item difficulty prediction problem essentially involves
determining the functional mapping between the 24 variables (input) and the item difficulty
(output), a backpropagation neural network can be designed to solve the mapping of the 24
variables to the corresponding item difficulties (p-values).

Network architecture

The backpropagation network is a hierarchical feed-forward network system consisting of two
or more fully interconnected layers of processing units (artificial neurons). A N-H-M
backpropagation network refers to a three-layer network with N, H, and M processing units in
the first, second, and third layers respectively. A N-H-1 backpropagation network is shown
in Figure 1. The first, second, and third layers illustrated in this figure are the input
layer, the hidden layer, and the output layer respectively. Each processing unit is
represented by a circle and each interconnection between processing units by an arrow. Each
interconnection is weighted by an adaptive coefficient called the interconnection weight
(not marked in the figure). The input to the network is represented by the N-dimensional
vector U=(u 1,u2,...,uN) and the output by y. For convenience, the outputs of the processing
units in the input and hidden layers are labelled in the circles representing the processing
units. By using a training algorithm to adapt the interconnection weights, the
backpropagation network has the ablility to implement a wide range of responses to the
patterns in a given training set.
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Fig. 1 A three-layer backpropagation neural network
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Processing unit

Figure 2 shows a typical processing unit which consists of a summing unit and a non-linear
sigmoidal activation function f[.]. The output y of the processing unit is given by

y = fIS], where

S= ‘r‘ w, U, ang

fISl=1/(1+e").
That is, the processing unit first computes a weighted sum S of its inputs and then computes
a function f[S] of the weighted sum to give the activation level y (output) of the

processing unit. Due to the sigmoidal function, the output y is limited to values between O
and 1. '

Network design issues
The design of a backpropagation network for a particular problem involves determining:

{1) The number of layers.

(2) The number of processing units in each layer.

{(3) The format of the input to the network.
The backpropagation approximation theorem (Hecht-Nielsen, 1991) proves that three layers are
generally enough to approximate the functional mapping required for most practical problems
and, therefore, a backpropagation network with three layers is a good cheice when no prior
knowledge of the mapping is assumed. The number of processing units in the input layer is
generally governed by the input dimension. No theory or rules exist to select the number of
processing units in the hidden layer, therefore, the number of hidden layer units is
determined empirically. The number of processing units in the output are problem-dependent;
for example, pattern classification problems require the output layer to have one processing
unit per pattern class (Gupta, Sayeh, & Tammana, 1990) or one processing unit per pattern
feature (Gupta & Upadhye, 1991; Gupta et al., 1993). The prediction problem addressed in
this paper requires one processing unit In the output layer. The input to the
backpropagation network is a vector of real numbers and due to the fixed structure of the

network, the input vector must have a fixed dimension.

Network training

The multilayer perceptron is trained under supervision using the backpropagation algorithm
(Rumelhart & McClelland, 1986). The network is presented with pairs of vectors: the input
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vector to the network and the desired network output vector for the input pattern vector,
The network functions in two stages during training: a forward pass and a backward pass. In
the forward pass, the input vector is presented to the network and the outputs of the units
are propagated through each upper layer until the network output is generated. The
difference (error) between the network output and the desired output is computed for each
output unit and during the backward pass, a function of the error is fed back through the
network layers to adjust the interconnection weights in order to minimize the error. The
forward and backward passes are repeated until the network converges, that is, until a
measure of the error is acceptably small. During training, the network gradually learns to
produce the desired outputs. The backpropagation training algorithm is an iterative
gradient algorithm designed to minimize the mean square error between the desired network
output and the actual network output. The backpropagation algorithm applied to train the
neural network shown in Figure 1 is summarized below.

Network Dimensions:

Let the dimension of the input training vector and the network input layer be N and let H be
the dimension of the hidden layer.

Network Initialization:

Set all the interconnection weights to small random values with zero mean. Typically, the
weights are initialized to take random values between -0.5 and 0.5.

Apply Input and Set Desired Net Outputs:
Assume that the network is designed to predict M values and let u, , =1,2,....N represent

tm
a N dimensional training vector for the mth value. Let dm be the desired network output for
the input ui.m The presentation of the input may be done in several ways. One approach

is to apply the input training vector U set the desired network output dm' and not

change the training vector during the training iterations (an iteration is a forward pass
and a backward pass) until the network converges to the desired output. The process is
repeated for the remaining training vectors. Alternatively, the training vectors can be
rotated cyclically from iteration to iteration. The desired network output must, therefore,
be also set from iteration to iteration.




Compute Actual Unit Outputs (forward pass):

The processing of the outputs are carried out sequentially from the input layer to the
output layer. The output of the jth unit in the input layer is given by:

u =ff w ui,m]’ IsjsN.

The outputs of the input layer are the inputs to the hidden layer and the output of the kth
unit in the hidden layer is given by:

ui:ﬂz w u1], IsksH.

The outputs of the hidden layer are the inputs to the output layer and the network output in

response to the input u m is given by:

L

In the above equations, fI.] is the sigmoidal function, that is,

fla]= 1/[1+€7]

and wiJ’ wjl I and w‘: are the connection weights between the network input and the input
layer, input and hidden layer, and ihe hidden layer and the output layer, respectively.

Update Weights (backward pass):

Hidden layer - Output layer interconnection weights:

The interconnection weights are updated sequentially from the output layer to the input
layer. If w‘Z{tJ is the interconnection weight between kth unit in the hidden layer and the
output layer unit at time ¢, then the weight at time (t+1) is given by:

2 2 2
wk(t+1) = wk(tJ + nﬁmuk .

where




8 = Y1y v )

8m is the error for the output of the unit in the output layer when the input is ut.m and n
is a gain term which controls the learning (adaptation} rate of the network. The gain term
n is typically assigned values between 0 and 1, however, the actual value selected between- 0
and 1 is application-dependent. The gain term controls the convergence rate and the

stability of the network and in practice, n is adjusted for fast adaptation and for
obtaining stable estimates of the interconnection weights.

Input layer - Hidden layer interconnection weights:

The updated weights between the input and hidden layers are given by:

1 1 1
wj.k(tﬂ)-wj,k(t) +n§kuj .
where
2. 2 M 2
Sk = uk(l-u‘J(i.‘.n= 18mwk'm).

Sk is the error for the output of unit k in the hidden layer.

Input - Input layer interconnection weights:

The updated weights between the input and input layer are given by:

wu(t+1) = wu(t) + nsjui.m

where

1 1, H 1
Sj— L_Lj (I-U:j )(;Yc= 18k wj ;J

5 d is the error for unit j in the input layer.

The training set generally consists of a set of representative prototype vectors.
The training prototypes could be a vector representation of the raw input data or a feature
vector computed from the raw data. Network convergence can be tested in several ways (Gupta
et al.,, 1992). The most practical test for network convergence iIs the error lmit test,
ie., test if the absolute difference ¢ between the desired response and the response of

each output unit is below a small specified error imit. Alternatively, training could be

11

10




terminated when the sum of the squares of the errors for all output units is below a
specified limit.

Network testing

In the testing stage, the vector representing the input to be tested is presented to the
input of the trained network and the network outputs are computed using one forward pass.
In neural networks designed for classification problems, the input test pattern is assigned
to the class of the network output that yields the maximum value (maximum response rule}.
For the prediction problem involving a single network output, the network is trained to

predict m values. The value of the network output during testing is, therefore, the
predicted value.

I Purpose and design of the study

The specific data set to be analyzed in this paper comes from a study by Perkins and Brutten
(1991). Three classes of variables were examined: (1) varlous counts of text surface
structure (Drum, Calfee, and Cook, 1981), (2) propositional analysis of the passages and
itern stems (Scheuneman and Gerritz, 1990; Scheuneman, Gerritz and Embretson, 1989) and (3)
cognitive demand (Scheuneman, Gerritz and Embretson, 1989).

Text structure

The varlables describing the structure of the texts included passage content (humanities,
nonhumanities), the number of paragraphs per passage, the numbe: of lines per passage, the
number of test items per passage, the number of words per passage, the number of content
words per passage, the number of sentences per passage, a passage word/sentence ratio. and

the percent of content words per passage.

Propositional analysis

The following propositional counts were conducted for both the test passages and the item
stems separately: the number of arguments, the number of modiflers, the number of
predicates, arguments density (the number of arguments divided by the number of sentences),

modifier density, predicate density, and combined density (the total number of propositions
divided by the number of sentences).
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11




Cognitive demand
Scheuneman, Gerritz and Embretsor:, (1989) used five cognitive process categories in their
analysis which were modified as follows for the study reported herein:

0= identify, recognize, name, discern, locate, match, exemplify, or illustrate

a concrete plece of relevant information in the text which was given in an

item stem.

1= non-identification

- support/weaken a claim, procedure, or outcome; substantiate, demonstrate,
prove, confirm, verify a result; negate, critique, contradict, or disprove
a claim, procedure or outcome

-infer, conclude, induce, deduce, diagnose, distinguish, differentiate,
contrast

- generalize, plausibly universalize, find common ground, transfer,
apologize, apply, carry over

- problem/solve, calculate, inquire, experiment, evaluate, appraise, weigh,
compare

(adapted from Scheuneman, Gerritz and Embretson, 1989, pp. 14-14).

If a test item required the reader to conduct a cognitive operation on a concrete, verbatim

plece of information in the text, it was coded 0. All other cognitive requirements were
coded 1.

IV Method

Subfects

Seventy students enrolled in intensive English classes participated as subjects for this
study. The distribution of native languages was the following: Japanese, sixteen; Chinese,
thirteen; Arabic, twelve; Korean, eleven; Spanish, nine; Thai, two; Turkish, two: Urdu, two:

Hebrew, one; Indonesian, one; and Wolof, one.

Instrumentation
The elicitation instrument consisted of 29 reading comprehension items from the Test of

English as a Foreign Language, Form 3LTFG (Educational Testing Service, 1990).
13
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Data coding

Each of the twenty-nine reading comprehension test items was coded according to three sets
of variables: text structure, propositional analysis of passages and stems, and cognitive
demand. The two researchers coded the items independently and anonymously. Disagreements
were adjudicated by a third party, and the consensus was recorded. Pearson correlations for
the continucus variables and percentage agreement for the categorical variables were used to
determine coding stability consistency. The coefficients ranged from 0.85 to 0.93. The

item difficulty of each item was calculated as the proportion of correct responses.

Networlk training and testing

The data available consisted of the 29 reading comprehension coded test items shown in Table
1. Two sets: a training set and a test set were created from the available data set. In
order for the training set to be representative, iterns were selected by picking the first
item and every other item in the table to give a total of 15 items in the training set. The
remaining 14 items constituted the test set. A three-layer backpropagation network was
designed with 24 input units (one for each of the 24 input variabies) and I output unit for
the predicted item difficulty (p-value). The number of units in the hidden layer was
empirically determined to be 17. The input data were normalized to take values between O
and 1 by dividing each variable by its highest value in the table. Two variants of the 24-
17-1 networks were implemented: one with the sigmoid function in the output processing unit
and the other without the sigmoid function in the output processing unit. The rationale for
implementing the network without the sigmoid function in the output unit was to determine
the effect, if any, of the sigmoid function compressing heavily large and small input
values. All processing units in the input and hidden layers used the sigmoid function. The
gain termn n used in training was 0.2 and the error Umit test with ¢=0.05 was used to test

for network convergence.

V Results

The neural networks were trained using the backpropagation training algorithm to output the
desired p-values in the training set. The I4 items In the test set were tested and the
results (Run 1) are shown in Tables 2 and 3. In order to demonstrate the consistency of the

neural networks in predicting item difficulty, the two networks were trained starting with a
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Table 2 Predicted p-values with the sigmoid function (original training set and test set)

Actual Predicted p-value

p-value Run 1 Run 2 Run3 Run 4

0.90 0.897 0.907 0.905 0.859

0.90 0.925 0.933 0.942 0.901

© 0.66 0.713 0.725 0.739 0.753
0.91 0.830 0.866 0.844 0.867

0.67 0.601 0.685 0.651 0.619

0.49 0.709 0.719 0.718 0.754

0.71 0.708 0.692 0.694 0.671

0.53 0.242 0.161 0.284 0.208

0.53 0.606 0.579 0.585 0.594

0.19 0.407 0.398 0.396 0.399

0.33 0.433 0425 0.413 0.387

0.76 0.585 0.577 0.633 0.675

0.30 0272 0.261 0276 0.279

0.4 0.295 0291 0.313 0.331

0.27 0.195 0.183 0.191 0.169

MSE 0.0165 0.0197 00134 00172

1? =523, ns., 0.01 level, df 4

Table 3 Predicted p-values without the sigmoid function (original training set and test set)

Actual Predicted p-value

p-value Run 1 Run2 Run 3 Run4
050 0.837 0886 0.878 0.889
0.90 0924 0.987 0.955 0.983
0.66 0.691 0717 0.698 0.747
091 0.868 0.905 0863 0856
067 0.587 0.678 0.635 0.597
0.49 0.688 0.685 0.678 0.751
071 0.704 0.686 0.704 0.679
0.53 0.288 0233 0392 0257
0.53 0.583 0.550 0.512 0.528
0.19 0411 0410 0.401 0402
0.33 0423 0.435 0420 0.401
0.76 0.628 0.547 0.561 0635
0.30 0313 0277 0.284 0346
0.34 0323 0302 0.286 0.348
027 0.229 0.178 0.167 0.191
MSE 00128 | 00169 00112 | 00161

2 = 5.362, n.s., 0.01 level, df 4
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new set of initial weights taking random values between -0.5 and 0.5. This form of training
was repeated three times and the results of testing the 14 items are also shown in Tables 2
and 3 (Runs 2-4). Additionally, the training set and test set were switched i.e. the new
training set consisted of the 14 items in the original test set and the new test set
consisted of the 15 items in the original training set. 7The training of the two networks
was repeated using exactly the same set of initial weights used in the original 4 runs and
the test results are shown in Tables 4 and 5. The mean squared error (MSE) computed from
the actual and predicted p-values are also shown for each run in Tables 2-5. The MSE
provides a measure for evaluating the consistency in the performance of the networks for the
multiple training runs and also provides a measure for comparing the performances of the two
networks. The small MSE values and the little difference in the MSE values obtained not
only demonstrate how effective the networks are in predicting the item difficulty but also
the consistency in the predictions from run to run. The average of the MSE values obtained
for the networks with and without the sigmoid function (0.0129 and 0.0133 respectively) also
show that the performance of the network with the sigmoid function is marginally superior to
that of the network without the sigmoid function.

A correlation analysis and the Kruskal-Wallis test were also employed to assess how
accurately the neural network predicted the item difficulty values. The correlation
matrices corresponding to the runs in Tables 2-5 are shown in Tables 6-9 and all correlation
coefficients reported in the tables are significant at the 0.01 level for a one-talled test.
The Kruskal-Wallis test, a nonparametric alternative to the one-way amnalysis of variance,
was utilized to determine whether there was a difference between the actual p-values and the
predicted p-values for different test runs. The Kruskal-Wallis test was selected because
neither normality of distribution nor homogeneity of variance for the groups of p-values
under study could be assumed. The Kruskal-Wallis test statistic is calculated from the sums
of ranks for the differenst samples of p-values, and the interpretation in this paper is that
of a hypothesis of equal means. For df 4 at the 0.01 level, the critical tabled value for
the chi-square statistic is 13.277. For Tables 2-5. the calculated statistic for each table
of values is smaller than the tabled value; therefore, it can be concluded that no
significant difference in the ranks has been established and further that the predicted p-
values are statistically equal to the actual p-values.
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Table 4 Predicted p-values with the sigmoid function (switched training set and test set)

Actual Predicted p-value

p-value Runl Run 2 Run3 Run 4
0.76 0.7713 0.818 0814 0.775
0.87 0.887 0.878 0.882 0.908
0.90 0.862 0.780 0.739 0.769
0.51 0.526 0.357 0491 0.512
0.70 0.68€ 0.644 0.622 0.651
0.60 0.581 . 0.597 0.547 G613
0.67 0.716 0.699 0.693 0.737
0.56 0.637 0.600 0.535 0.584
0.44 0.239 0.224 0.232 0236
043 0.292 0.302 0267 0284
0.39 0.323 0.341 0.312 0.330
0.16 0.267 0.336 0.298 0.332
0.50 0.407 0433 0418 0439
0.59 0.689 0.677 0.542 0.619
MSE 0.0074 0.009%6 00102 0.0091

1% = 5.234,n.5.,0.01 level, df 4

Table 5 Predicted p-values without the sigmoid function (switched training set and test set)

Actual Predicted p-value

p-value Run 1 Run 2 Run 3 Run4
0.76 0.829 0.852 0.864 0.805
0.87 0.361 0.863 0843 | 093
0.90 0.846 0.729 0628 | 0662
0.51 0.553 0.569 0.486 0.539
0.70 0.687 0.666 0.625 07
0.60 0.605 0.592 0.501 0.576
0.67 0.724 0713 0.696 0.717
0.56 0.606 0.652 0.553 0.488
0.44 0.238 0222 0.221 0.200
0.43 0301 0.323 0.286 0.254
0.39 0332 0.351 0.333 0299
0.16 0.267 0.341 0294 0.315
0.50 0.394 0.439 0.425 0.441
0.59 0.534 0.613 0.433 0464
MSE 00072 | 00107 | 00158 0.0154

x? = 6.016, n.s., 0.01 level, df 4
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Table 6 Correlation matrix with the sigmoid function (original training set and test set)

1 2 3 4 5
1 | Actual p-value - 0.850 0.836 0.879 0.726
2 | Predicted p-value, Run 1 - 0.991 0.995 0.987
3 | Predicted p-value, Run2 - 0.991 0.987
4 | Predicted p-value, Run 3 - 0.991
5 | Predicted p-value, Run 4 -

all correlations are significant for df 13, p<0.01 for a one tailed test

Table 7 Correlation matrix without the sigmoid function (original training set and test set)

1 2 3 4 5
1 | Actual p-value - 0.879 0.856 0.896 0.856
2 | Predicted p-value, Run 1 - 0.890 0.981 0.989
3 | Predicted p-value, Run 2 - 0.983 0.984
4 | Predicted p-value, Run 3 - 0.975
5 | Predicted p-vaiue, Run 4 -

all correlations are significant for df 13, p<0.01 for a one tailed test

Table 8 Correlation matrix with the sigmoid function (switched training set and test set)

Predicted p-value, Run 4

1 2 3 4 5
1 | Actual p-value - 0.919 0.877 0.898 0.888
2 | Predicted p-value, Run 1 - 0.987 0.969 0.982
3 | Predicted p-value, Run 2 - 0.984 0.991
4 | Predicted p-value, Run3 - 0.991
5

all correlations are significant for df 12, p<0.01 for a one tailed test

Table 9 Correlation matrix without the sigmoid function (switched training set and test set)

Predicted p-value, Run 4

1 2 3 4 5
1 | Actual p-value - 0.922 0.857 0.839 0.845
2 | Predicted p-value, Run 1 - 0.977 0.952 0.953
3 | Predicted p-value, Run 2 - 0966 | 0.961
4 | Predicted p-value, Run 3 - ! 0.976_
S

all correlations are significant for df 12, p<0.01 for a one tailed test
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VI Discussion

The ability of the neural network to predict the p-values is highly dependent on the
training set. The training set must be large enough to be representative of the data in
order to approximate the desired input/output mapping during training. In the experiments
conducted, the training set was relatively small: nevertheless, the prediction of the item
difficulties was quite reasonable. A significant improvement in the prediction of the p-
values by the neural networks can, therefore, be expected when a larger training set becomes
available. No prior assumptions of the functional mapping between the 24 variables and the
corresponding p-values, the significance of the variables, or the relationships between the
variables were made. The functional mappng was approximated by the network during training
with a part of the available data.

The next phase of our research will involve the identification of variables or types
of varlables for which predictions are most sensitive. By dropping variables and comparing
the magnitude of change in predicted item difficulty, it should be possible to drastically
reduce the number of predictor varlables from 24 to a more manageable number and still

maintain close concurrence between the actual and predicted values.

VII Conclusion

This paper focused on developing a neural network approach to predict item difficulty in a
standardized reading comprehension test. The results obtained from the two backpropagation
neural networks designed for the prediction problem clearly demonstrate that the networks
can consistenily predict item difficulty with a high degree of success. The results of
training an ANN to predict item difficulty in a reading comprehension test have direct
application to pretesting and provide application to other items. The use of ANNs should
further inform the testing community of what determines item difficulty and provide a basis
for generalizing about how selected variables affect item difficulty.
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