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Abstract
Sequential probability ratio testing (SPRT), which usually is applied in situations requiring a
decision between two simple hypotheses or a single decision point, is extended to include
situations involving k decision points and [(k + 1)-choose-2] sets of simultaneous, simple
hypotheses, where &£ > 1. The muitiple-decision point or multiple-category SPRT procedure can
be used to classify examinees into & + | categories using computer adaptive methods. Computer
simulations utilizing a 200-item pool of previously calibrated test items show that the multiple-
category SPRT method controls misclassification error rates adequately, provided that the number

of decision points is not too large.




Multiple-Category Classification Using a Sequential Probability Ratio Test
Wald's (1947) sequential probability ratio testing (SPRT) procedure has been used with cognitive
tests to classify examinees into one of two categories (e.g., pass/fail, master/nonmaster,
certified/noncertified) (Reckase, 1983). In other words this procedure is useful for determining
whether an examinee more likely belongs to one of two states or conditions: either an individual
has ability or latent trait greater than or equal to some minimum value, & or that same individual
has ability less than the minimum value, 8. The value, 8, is frequently called a passing score or
decision point.

One way to test the composite hypothesis that either the examinee has latent ability less
than & versus that the examinee has latent ability greater than or equal to 3, is to consider simple
hypotheses. H, or H,, regarding the unidimensional latent trait or ability (8,) of the examinee

taking the test. These simple hypotheses can be written as

H,: 6, =6,
VS,
H;: 6,=90,,

where 6, is an unknown parameter of the distribution of the dichotomous response to a particular
test item, X (Silvey, 1975). Usually, 8, and 6, represent decision points that correspond to lower
and upper limits, respectively, of the passing criterion or threshold, 8, where 6, < 8 < 6,. The
SPRT can then be used to test the composite hypotheses, Hy: 8, < 8 versus H,: 6, > & by
considering two weaker hynotheses, say w, = {0:0<8,} and w, = {6:026,} (Silvey, 1975; Wald,
1947).

In the case of cognitive testing, X can be assumed to follow a binomial distribution. If
P(8)) is the probability that examinee i responds correctly to an item, and Q6,) =1 - P(@®,) is the
probability of an incorrect response from examinee i, then, for this single item, the random
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variable, X, represents a single Bernoulli trial and is distributed as Bin{P(6,),1}. Then,
n(6,) = Prob(X = x|8 = §) = P(6,)* Q(©)"*,
where

1, correct response x =
(), incorrect response .

For this test item, the probability of observing X = x under the alternative hypothesis is nt(8,).
Under the null hypothesis, the probability of observing X = x is n(6,). The functions, n(6,) and
n(6,). are called likelihood functions of x, and a ratio of these two func:tions. L(x) = m(6,)/n(8,).
is called a likelihood ratio.
Two error probabilities, o and B, can be defined, where
Prob(choosing H, if H, is true) = o
and
Prob(choosing H, if H, is true) = .
Wald (1947) stated that even though the nominal error rates, & and P, are established prior to
testing, the actual error rates observed in practice, o" and B°, are bounded from above by
functions of the nominal rates, or o' < o/(1-B) and B < B/(1-0t). Wald (1947) also defined *wo
likelihood ratio boundaries that are functions of o and . These boundaries are A and B, where
the lower boundary= B 2 B/(1-at) and the upper boundary = A < (1-B)/o.
According to Wald’s SPRT, item responses are observed in sequence, X,. X3, ..., X,, and
following each observation, the likelihood ratio, L(x;, X, ,..., X,]0,.0,), is computed. assuming
conditional independence. where

m,(8,) m,(8,) ... T, (6,)
L(x;, xg o0y X,10,.8) =

T,(6) T,(8y) ... 7,(65)




The likelihood ratio is then compared to the boundaries, A and B. If

L(v,. Xa .o X,]80.0,) = A, then H, is accepted and the examinee is classified as 6, 2 8. If
L3, X5 ooy X, ]00.0,) € B, then H, is accepted and the examinee is classified as 6, < 3. If

B < L{x}, v+ ..., X,16,.0,) < A, no decision is made and another item response must be observed
if a decision is to be made with the specified error rates.

Any test administered with the SPRT procedure is, by its very nature. adaptive in that
examinees with different abilities (i.e., different values of 6;) could have different expected test
lengths, n,, the number of items that must be administered before a classification is made.
Typically, those examinees with 0, < 6, or 0, 2 8, will have shorter expected test lengths than
those with 6, < 6, < 0,.

To facilitate the SPRT procedure for criterion-referenced testing, the value of d usually
corresponds to a minimum proportion, p(8), of m items in the item pool that an examinee is
expected to answer correctly in order to be classified as 0, 2 0,. If p(d) is known « priori, then
d can be found by solving for  in the expression, p(8) = 1/m L P(6), j = 1, 2, ..., m. The item
functions, P,(8), are typically expressed as 3-parameter logistic item response functions with
known (i.e.. calibrated) item parameters.

Values for 6, and 0, are selected according to the precision that is desired. Values of 6,
and O, that are close to each other imply high precision, while greater differences in 6, and 0,
imply less precision. Normally, 6, and 6, are selected to be equidistant from J, although this is
not a necessary condition for the SPRT procedure. The region from 6, to 0, is known as the
indifference region because there is usually an amount of indifference associated with the
classification made for individuals within that region. The distance, |6, - 6,], is the width of

the indifference region. Test length is a function of this region; for fixed values of o and f, a




larger indifference region results in shorter expected test lengths for all examinees (Reckase,
1983: Spray & Reckase, 1987).

Within the context of an adaptive test, the m items in the item pool are usually ranked
! through m on the basis of item information at the decision point, p(8) or equivalently, 8, and
then administered in sequence to each examinee. Therefore, many examinees could receive some
of the same items as all other examinees taking the sequential test. Because this is usually
undesirable from a test security standpoint, some randomization scheme can be employed to
assure that item-exposure rates (i.e., the number of times that any item is presented to examinees)
are controlled.

Ir addition there is usually some maximum number of test items or maximum test length
(MTL), that, from a practical standpoint in terms of testing time, can be presented to a single
examinee. Frequently, a forced classification is made once this maximum number of items has
been reached and no classification under the likelihood ratio test has occurred. Typically, after
reaching this maximum test length, log{L(x,, x,, ..., X,,,,)} is compared to the log of the SPRT
boundaries, A and B. Classification is then made according to some distance rule, for example
by MIN{[logL(x,, X5 ..., Xy )-logA|, |logL(x,, x,, ..., x,.)-logB|}. For tests where MTL. is
fairly small, forced classifications can occur for many examinees. The effect of forced
classification on the SPRT procedure is to alter the actual classification error rates, & and B’
reducing the classification accuracy.

Multiple Categories
When a testing situation requires classification into more than two categories, such as into

one of a number of entry level courses. a modified SPRT procedure can be used {Wetherill,




1975). The purpose of this paper is to describe one such multiple-category modification and to
report on the results of computer-simulated SPRTs requiring multiple classifications.
A Sequential Probability Ratio Test Involving Two Decision Points

Suppose that the purpose of a SPRT is to classify an examinee into one of k+1 categories
te.g.. hierarchically ordered mathematics courses), where k is the number of decision points
required. For the following discussion, it is assumed that & = 2. The three categories of possible
mutually exclusive classification are 6, < 8,, 9, £6, <9, or 0, = §,. The values of 8, and 6,
are established or known « priori. However, because the usual SPRT tests hypotheses about
single values of 6, defined by the endpoints of the indifference region, such a region must be
constructed around each decision point. One such endpoint can be chosen midway between 9,
and 9, or (8, + MIDIST) where MIDIST = (9, - §,)/2. This 0 value is labeled 8,, while another
© value (0,) can be chosen, such that 8, = 8, - MIDIST. This result gives an indifference region

around 9, of size

08, - 0,|, =2 X MIDIST. A similar indifference region can be constructed
around 9, using 0, and 6, as indifference region endpoints, where 8, = 8, + MIDIST. These
three values of @ form the set {0, 0,, 6,}, where 6, < 8, < 0,. Once these values of 0 are
established, three sets of SPRT hypotheses can be formulated:

H;:0,=6, H,:0,=6, H,:0,=0,
H;:0,=0, H;:0,=0,’ H;:0,=0,

All three sets of hypotheses are tested after each item response is obtained, and the
following decisions are made, based on the results of these tests:

Decision 1 is made (0; < 8,) when H, and H, are both accepted.

Decision 2 is made (3, <6, < 8,) when H; and H, are both accepted.
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Decision 3 is made (8, 2 8,) when H; and Hjz are both accepted.
Otherwise, testing continucs.

For each SPRT, test items can no longer be ranked for sequential administration by item
information at a single decision point because there is more than one such point. A reasonable
compromise is to rank items by item information at the decision point that is closer to un
estimate of the examinee’s ability based upon the responses to previous items. For this study,
4 Bayes estimate of 0, is obtained (Owen, 1975) for each examinee after each item response, and
the viable test items remaining in the pool are then ranked, by item information. at this decision
point and administered. The process continues untit a decision is reached for each examinee.

Establishing error rates. In order to test the set of three hypotheses given above, desired
error rates must be provided. These are used to derive the ctitical values for the likelihood ratio
tests. Let py; designate the probability that © = 8, is accepted, given that © = 8, is correct, h =
2.3 j=1.2,3 The power of any single SPRT is p,, or p;. and for simplicity, let py,
= py, for all A and j. It makes intuitive sense to allow the error rates, py,. h # j, to vary as a
function of the distance between 6, «..d ;. Specifically, the desired error rate should be iess
when the distance between 6, and 6; is greater. If d,; represents the distance (i.e., the absolute
difference) between 6, and 6, & # j, then [D,| = Z 1/d,;, summed over j, represents the norm
of these distances. Then a possible set of error rates with these properties are

Py = (1= Dyp) ([lhj/|1)h|' h#j.

Establishing likelihood ratio boundaries. The likelihood ratio boundaries used to make

one of the three decisions mentioned above follow straightforward from the simple SPRT

procedure involving two categories. In order to test Hy: 6 = 0, versus H,;: 6 = 6, the upper

boundary is p;/p;, and the lower boundary is PofPom h=1,2.3,7=1,2,3: h#].




In particular, for the case involving two decision points and three categories,
i Ly, Xy e X,10,0,) S pyypyy and Ly, X, 5,00,09) S py/pys Decision 1(8<0)) s
made;
if L0, Xy o %,]0,80) € po/pyp and Lixg, X, o, X,16,0,) 2 pyy/py,, Decision 2 (8,56,<8,)

is made; and

v

if L a0 o X,16,80) 2 Py and Lxg, X o X,1658,) 2 pyofpyy, Decision 3 (68,28;) is
made.
A Sequential Probability Ratio Test Involving k Decision Puints

In general, suppose that the purpose of an SPRT is to classify an examinee into one of
k + 1 categories, where 4 is the number of decision points required. For the following discussion,
it is assumed that & 2 2. The k + 1 categories of mutually exclusive classification are 6; < 9,
5,£60,<9,,06,<86,<90, ..., 0 2 8§. Once again, the values of 8, 8,, 8,, etc. are established
a priori. These might represent the criteria for receiving class grades A, B, C, and so on. In
order to perform the necessary SPRTs, & + 1 values of 6 must be established in the manner
described previously (i.e., the values of 0 represent midpoints between adjoining decision points).
These 8 values are used to test [(k + 1)-choose-2] simple SPRTs of the form, 6, versus 6,, 6,
versus 0, ..., 0, versus le+1, 0, versus 6, ..., 0, versus 6,,,. Error rates, p,;, and likelihood ratio
bounduries remain the same as described previously.

The number of tests necessary for acceptance before a decision is made (i.e., before an
examinee is classified into one of the & + 1 categories) is k. As before, if item administration
is terminated before a classification is made (e.g., MTL is reached), then the region of
classification containing an estimate of the examinee’s ability, 6,, can be obtained and used to

place the examinee into one of the k + 1 categories. The same situation applies in the & 2 2 case




as it did in the 2-category case, in terms of the effect of forced classification on the SPRT
procedure and the actual error rates. Classification into categories is not as accurate when item
administration ends when the | (L value is reached.

All [(k + 1)-choose-2] sets of hypotheses are tested, and the following decisions are made,
based on the results of these tests:

Decision 1 is made (8; < 8,) when the k tests of H: 8, = 8, are accepted.

Decision j is made (Sj,,

< 6, < §)) when the & tests of H: 8, = 6;, j = 2. 3, ... . k. are
accepted:

Decision & + 1 is made (8, = &,) when the & tests of H: 6, = 6,,, are accepted.

Results of Computer Simulations

Computer simulations were conducted to determine if the multiple-category SPRT
pracedure produced classifications that were characteristic of a simple, one-decision-point SPRT.
In other words, did the multiple-category SPRT produce classification error rates and average test
lengths that were greatest at the decision points? Would the error rate appear to be controlled
appropriately by the specified power, and if so, by what amount? -

A calibrated 200-item pool was used to simulate multiple-category SPRT classific;tions
via computer. Items were calibrated with the BILOG computer program (Mislevy & Bock,
19¥4). Mean estimates of the a-, b-, and c-parameters for the item pool were 1.18, .48, and .16,
respectively. Four computer simulations were performed. Simulation I (the simple SPRT)
required a single decision point £ = 1,{8 = .05, or p(d) = .43} with 3 sizes of the indifference
region: (-.20, .30), (-.45, .55), and (-.95, 1.05) with power (i.e., p,, = p;;) = .90. Simulation
I1 consisted of 2 decision points of §, = -1.05 and 8, = 1.05, or p(3,) = .23 and p(J,) = .75,

respectively, again with .90 power.




Simulation I consisted of 3 decision points at -.93, 0.05, and 1.05, or ;(3,) = .24, p(3,)
= .43, and p(d;) = .74, also with power = .90. Finally, simulation iV required 4 decision points
at -1.05, -.55. .55, and 1.05, or p(d) = .23, .31, .58, and .75, 1 = 1,2,3,4, with .90 power. For
each simulation, 3 different vaiues of MTL, the maximum test length or maximum number of
items to be administered before a forced classification was made, were used. These were 10), 20,
and 50. For any single set of simulation conditions, a sequential test was administered 100 times
to an examinee with known ability, 8, where 6, varied systematically from -3.0 to +3.0 in
increments of .25.

Two outcome measures were tabulated over each set of 100 replications. Classification
Error Rate {CE Rate) was the number of times that a simulated examinee with a known ability.
0, was misclassified, either before MTL items were presented or after MTL items were
administered and a forced classification was made. Average Test Length (ATL) was the average
number of test items administered before an examinee was classified.

Sinudation 1. Figures 1, 2, and 3 show CE Rates for Simulation I (k = 1) for three sizes
of the indifference region, respectively; (-.20,.30); (-.43, .55); and (-.95, 1.05), respectively. for
the three values of MTL. Figures 4,5, and 6 show ATL for the same conditions, also
respectively.

CE Rate peaked at or near the single decision point, 8 = (.05, regardless of the value of
MTL (See Figures 1. 2, and 3). Classification Error was slightly greater for the largest
indifference region and was also greater for lower values of © (See Figure 3). For all three
indifference regions, CE Rate decreased as MTL increased. The ATL function reached a peak

at or near 6 = .05. As expected, values of ATL increased when MTL increased and when the
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width of the indifference region decreased. Slightly elevated ATL levels in the upper ability
region of 8 were noted under all conditions. See Figures 4, 5, and 6.

Simulation II. Figures 7 and 8 show Classification Error Rate and ATL for Simulation
Il (k = 2) for the three values of MTL. The decision points were 8, = -1.05 and &, = 1.05. or
p(8,) = .23 and p(8,) = .74. The errors once again tended to peak at or near the two decision
points and were minimized in the tails and in between the two decision points. There was a
tendency for the error to be higher at the lower decision point, 8,. Values of the ATL also
reached maximums at or near the decision points, although there were some exceptions for very
low values of 6.

Simulation 111. For Simulation 111 (k = 3), Figures 9 and 10 show CE Rate and ATL.
again for the three values of MTL. These figures are consistent with the & = 2 situation, in that
CE Rate and ATL reached maximums at the three decision points. Once again, the error at the
lowest decision point, 8,, tended to be slightly higher than at the remaining two decision peints.
Misclassification was greatest for the shortest test (i.e., when MTL = 10). The ATL peaked
dramatically at the lowest decision point for ATL = 50, and, to a lesser extent, when MTL = 20).
The average length of the test increased considerably with the added decision point (see Figure
10) versus 8).

Simulation 1V. Figures 11 and 12 show Classification Esror Rate and ATL for this
simulation condition.  The error plot shows the familiar patterns in which the greatest
misclassification occurred at the three decision points. The ATL was greatest at the two lowest

decision points but peaked again at &, and J,, as expected.
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Compurisons dcross simulations

In order to compare the two outcome measures better across simulations, expected values
of CE and ATL were computed by assuming that 8 was distributed as N(0,1). Note that this
assumption was not necessary in order to conduct the multiple-category SPRT simulations. The
results appear in Table 1. This tabie shows that classification error rate and average test length
usually increased with the number of decision points. The exception was the £ = 2 case where
MTL = 20 and 50.

Summary and Conclusions

The extension of the SPRT procedure to multiple decision points for classification appears
to work as expected. Error rates appeared to be controlled, for the most part, for values of 0
away from the decision points in a manner similar to the £ = 1 case or simple SPRT. Recall that
in the simple case, the SPRT procedure guarantees that classification errors, o + B, will be
bounded by functions of ¢ and . By specifying power a priori, the classification error rate is
controlled for k = 1. Likewise, it would appear that specifying power also controls the
classification errors in the multiple-category situation. However, it is obvious from these results
that, as & increases, the number of items required to meet the specified classification error rates
also increases. In a practical testing situation, these large numbers of items may not be practical
to administer. Thus, the multiple-category SPRT extension may have limited benefits beyond

use with a relatively small number of decision points.
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TABLE 1

Expected CE Rate and ATL

k MTL E(CE Rate) E(ATL)
1 10 077 1.883
largest indifference 20) 074 1.879
region 50 073 1.880)
1 10 044 3.319
medium indifference 20 041 3.435
region 50 .040 3.464
1 10 040 5.404
smallest indifference 20 .029 6.075
region 50 027 6.676
10 127 4.580
o 20 119 4.758
50 126 5.012
10 163 7.568
3 20 110 9.577
: 50 103 10.767
10 209 9.546
4 20 .146 15.048
50 127 22.546




Figure Captions
Figure 1. Classification Error Rate for £ = 1, Smallest Indifference Region: (-.20..30)
Figure 2. Classification Error Rate for & = 1, Medium Indifference Region: (-.45..55)
Figure 3. Classification Error Rate for & = 1, Largest Indifference Region: (-.95.1.05)
Figure 4. ATL for & = 1, Smallest Indifference Region: (-.20,.30)
Figure 5. ATL for k = 1, Medium Indifference Region: (-.45..55)
Figure 6. ATL for k = I, Largest Indifference Region: (-.95,1.05)
Figure 7. Classification Error Rate for k = 2
Figure 8. ATL for k = 2
Figure 9. Classification Error Rate for £ = 3
Figure 10. ATL for k = 3.
Figure 11. Classification Error Rate for £ = 4

Figure 12. ATL for k = 4.
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Figure 10
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Figure 12




