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Abstract
The purpose of the study was to investigate the relationships among types of errors

observed during probability problem solving. Subjects consisted of 50 graduate students
enrolled in a first course in probability and statistics at a large urban university. Errors were
classified into four main categories: text comprehension, conceptual, procedural, and arithmetic
errors. Canonical correlation analysis was conducted on the frequencies of specific types of
procedural and conceptual errors. The first canonical correlation was significant (p=.02).
Variables loading on the first canonical pair suggest that "general ability" is a factor in successful
probability-problem solving. Next, additive trees were fit to the correlation matrix for procedural
and conceptual errors, with an r2=.70. Salient clusters identified on the additive tree provided a
visual correspondence to the results of the canonical correlation analysis. Additive trees were
also used to investigate the structure of the correlation matrix for errors in all four main
categories (r2=.62).

Results indicate that difficulties in text comprehension and poor arithmetic skills are
responsible for a considerable proportion of observed errors in probability problem-solving. To
work towards improved student learning in this domain, greater emphasis must be placed on
developing these prerequisite skills, as well as on fostering an appreciation for the probability
concepts themselves. Suggestions for teaching probability problem-solving are presented,
including a model of normative performance which could be taught to students in an effort to
build more efficient schemas for probability problem solving.
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INTRODUCTION

The National Council of Teachers of Mathematic's current vision of mathematics

teaching and learning, as presented in Curriculum and Evaluation Standards for School

Mathematics (1989), is a shift from a quantitative approach to education, which concentrates on

getting the right answer or passing the class, to an approach that is more qualitative or peNcess-

oriented, where concentration is placed on the nature of students' understanding of the material.

In fact, NCTM suggests that, "good reasoning should be rewarded even more than students'

ability to find correct answers" (p. 6). This change in focus from quantitative outcomes of

learning to more qualitative outcomes directs a great deal of attention on how people learn, as

well as on the extent of student preconceptions and misconceptions in a subject domain

(Wittrock, 1991). Certainly, NCTM's Standards suggest strategic changes in the mathematics

curriculum which are applicable to all grade levels, including college instruction.

There has been a great deal of recent interest and research in the area of diagnostic

teaching, which involves qualitative analysis of the kinds of errors students make and attempts to

adapt instruction so as to eliminate such errors. Studies in domains such as algebra (Matz, 1982;

Sleeman, 1982), physics (Chi, Feltovich and Glaser, 1981), geometry (Anderson, Boyle and

Yost, 1985), computer programming (Anderson and Reiser, 1985), and subtraction (Brown and

Burton, 1978; Brown and VanLehn, 1980; VanLehn, 1982) have all focused on the errors or

misconceptions that students exhibit or acquire as they are learning a new skill. Additionally,

extensive research documents the existence of biases in people's reasoning about probability and

probabilistic events (Tversky and Kahneman, 1974, 1983; Konold, 1989), as well as some of the

conceptual difficulties students have when learning elementary probability (Hansen, McCann,

and Myers, 1985; Garfield and Ahlgren, 1988).

The assessment of what a student knows versus what the teacher would like the student to

know is an important part of the learning process. However, the ability to create such a "model"

of student knowledge (i.e., a representation of what the student knows and does not know) can be
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extremely difficult, particularly in complex domains. According to Payne (1988), the generation

of a student model must be based upon "a theory of cognitive skill and its acquisition: a theory

which determines how knowledge in the target domain is represented, at various levels of

expertise; and how it changes from one level to another, under what conditions" (p.69).

A particular challenge to understanding the cognitive structure of student's knowledge is

the determination of the relationship between different kinds of misconceptions in a domain.

Modeling of a student requires the ability to determine both correct and incorrect concepts or

procedures which the student holds. Most of the information about knowledge and

misconceptions in a domain can be obtained through the use of verbal or written protocols of

student or expert work, or through the use of diagnostic tests that can be designed to elicit

predicted errors (Ginsburg, Kossan, Schwartz and Swanson, 1983; Brown and Burton, 1978).

However, it is not enough to recognize only surface errors. An investigation of the relationships

among misconceptions is critical if instruction is to benefit from knowledge of common, or

uncommon, student errors.

In the case of probability problem-solving, an in-depth investigation of the learning

process will be aided by an understanding of how misconceptions are related, as well as how

they might influence or build upon one another. Such information would provide an opportunity

for the design of better instructional strategies in Order to help students improve their knowledge

of probability and their ability at problem-solving in the domain of probability.

Misconceptions in probability problem-solving may be manifested as errors in

comprehension of questions concerning probability, as errors due to misunderstanding of basic

concepts, as errors resulting from misguided application or use of particular formulas or rules, or

as errors in arithmetic and computation (O'Connell and Corter, 1992). In this paper, the results

of two different statistical techniques, canonical correlation analysis and hierarchical clustering

using additive trees, are presented in an attempt to determine the relationship among observed

errors in the domain of probability problem-solving. Although the focus of this research was on

observable errors, a thorough investigation of the relationships among observable errors,
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particularly among conceptual and procedural errors, provides valuable information as to how

flawed conceptual knowledge may impede the correct application of probability formulas and/or

rules, and suggests a starting point for the development of pedagogical strategies aimed at

improving instruction of probability concepts and procedures.

METHOD

Subjects for this study were 50 graduate students enrolled in a first semester course in

probability and statistics at a large urban university in New York City. A detailed coding scheme

was used to classify observed errors in these student's written work into four broad categories:

Text comprehension errors (T), conceptual errors (C), procedural errors (P), and arithmetic errors

(A). A fifth code (X) was used to identify an incorrect solution for which the error could not be

determined or classified. Only 5.7% of the total errors observed for this group of students were

classified as X. The coding scheme is presented in Appendix A.

The coding scheme was developed during a comprehensive hand analysis of the written

work of 180 students at three different universities in New York City, who attempted to solve a

total of 93 different problems in probability (O'Connell, 1993). All students received the same

basic curriculum, however, not all students solved the same problems. Students were instructed

to show all their work during solution to a problem. Inter-rater reliability of the coding scheme

was determined in terms of percent agreement for identification of errors from each category,

with the following results: T (84%), C (93%), P (82%), and A (89%).

The 50 students chosen for this research constituted all students from one class in the

original group of 180. These 50 students were assigned a total of 13 problems, consisting of 39

individual questions. The problems were given at the completion of the probability sequence of

the introductory probability and statistics course. Each question was analyzed separately, and the

type of error made on each question was recorded. One difficulty with this type of analysis is

that when a problem contains several different questions, an error on one part may affect the
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solution to a subsequent part of the same problem. With this understanding, the following

guidelines were adhered to during the error analysis.

1. If a student made an arithmetic error in one part of the problem which affected the solution to

any of the remaining questions, the arithmetic error was coded only once. If, however, the

student made an error in text comprehension or a procedural or conceptual error which affected

the correct solution to subsequent questions, the error was coded each time it affected the

solution. This approach is justified because such errors of understanding "carry over" from

problem to problem in a manner that is vastly different from a simple calculational or arithmetic

error.

2. Often, one student's solution process contained several different errors. All of the observed

errors for a solution process were coded according to the coding scheme described above.

3. If a student attempted the problem in more than one way, only the first solution attempt was

coded.

Table 1 describes the types of errors which were classified under each of the above four

main categories, and provides the frequency of each error type observed in the sample of 50

students. Appendix A describes the specific errors which were included under each error type.

For example, several different conceptual errors concerning mutually exclusive events constitute

one tan of conceptual error, each distinct error was coded individually and errors of the same

class or type were combined. For each student, a frequency score on each error type was

computed by summing over the frequencies of errors on all 39 problems. Three students made

no errors on any of the problems. Hence, the relationships among different kinds of errors was

assessed using the frequencies of error types for the remaining 47 students.

The relationships among procedural and conceptual errors were assessed using two

techniques: (1) canonical correlation, and (2) hierarchie..d clustering using additive trees. Only

error types with a frequency greater than two were used for these analyses. Correlations between

these variables are reported in Table 2. All of the error types used in the analyses were inspected

for redundancy to determine if two types of errors were consistently coded together as a pair in a
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Table 1
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A 1. 1 t Ilta . e i t t A i f l a i s s . s O i l s 11 JI* I 'O qs

of T_
le,xt Comprehension Errors

Label FrYc,_T;1.
T Missassigtung stat- . pro sast ity v ue
T2 Incorrect specification of goal (equality) 13 9.4
T3 Choosing pairs instead of triples/singles, etc. 0 0
T4 Misinterpretations of inequalities 16 11.6
T5 Selection with vs. without replacement 2 1.4
T6 Real world knowledge errors 1 0.7
77 Incorrect model of experiment descrlied in problem 42 30.4
T8 Interference from another (previous) problem 11 7.8
Total 138 (23.1)*

Conceptual Errors
Type Label Freq. % of C

.7'1 Misconceptions: defn. of probability sample space/n(S) 0
C2 Misconceptions: frequency vs. probability 2 1.8
C3 p>1.0 11 10
C4 p<0 0 0
C5 P(S)*1.0 0 0
05 formal language of probability 7 6.4
C7 Misconceptions: equally likely events 63 57.3
C8 Misconceptions: mutually exclusive events 17 15.5
C9 Misconceptions: independence 4 3.6
C10 Misconceptions: mutually exclusive vs. independence 5 4.5
C11 Misconce tions: corn let= events 1 0.1

0 1 (1: )

Procedural Erm
Type Label Freq. % of P
P1 Procedural errors in determining sample/event space 9 3.3
P2 Incomplete/unfinished 19 7.0
P3 . General use of formulas 11 4.1
P4 Procedural errors involving independence 96 35.4
P5 Procedural errors involving mutual exclusiveness 27 10.0
P6 Procedural errors involving sequential experiments 6 2.2
P7 Procedural errors involving use of tabled data 45 16.6
P8 Procedural errors involving conditional probability 34 12.5
P9 Procedural errors involving complementary events 11 4.1
P10 Inventing incorrect procedures or rules 13 4.8
Total 271 (45.4)*

AdthuxtigEnm
T A. Label Fr 6.11

A Totals: Arithmetic errors

Unclassified Errors
T Label

o s: nc ass errors

* Percent of total errors (total=597)

7

54 (9.0)*

IV. %
(5.7)*
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Table 2

Correlations anion2allernar types (frequency greater than twol

T1
Ti

1.000
T2 T4 T7 T8 C3 C6 C7 C8 C9 CIO

T2 .162 1.000
T4 -.081 .41013 1.000
T7 .017 -.140 -.094 1.000
T8 .011 -.087 -.113 -.118 1.000
C3 -.050 .164 .374b -.067 -.105 1.000
C6 .003 .302a -.126 -.005 -.059 -.168 1.000
C7 .051 .129 -.100 -.185 -.091 -.036 .064 1.000
C8 -.004 370 .262 -.054 -.115 -.056 .325a -.044 1.000
C9 .164 -.017 .070 -.157 -.070 .158 -.078 .015 .163 1.000 .-

C10 .120 .303a .018 -.106 .075 .067 -.053 -.048 -.103 .233 1.000
P1 .167 -.202 -.177 -.116 -.083 .147 .045 .137 -.069 .46411 -.074
P2 .238 .251 .208 -.224 -.114 ,383b .142 .208 .363a .400 -.102
P3 .271 .0d0 .135 -.210 -.064 .115 .097 .029 .343a .306a .147
P4 .104 -.042 -.055 .615b -.052 -.150 .010 -.229 .239 -.034 -.114
P5 -.008 A43b .204 .010 -.129 .229 .391b .090 .491b .275 .045
P6 -.029 .030 .186 .066 -.060 .050 -.067 -.110 .110 -.080 -.054
P7 .083 -.128 .281 .029 -.010 .230 -.085 -.087 -.007 .142 -.099
P8 .405b -.015 -.121 -.046 -.108 .108 .029 -.043 -.058 .270 .227

P9 .296b -.096 .147 -.203 -.115 .037 -.127 .060 .188 .172 -.103
P10 .287 .275 .033 -.243 .312a -.003 .073 .144 .236 -.015 .125

A .206 .037 .187 .183 -.061 .309a -.060 -.188 .104 .4.rob .338a

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 A
P1 1.000
P2 .263 1.000
P3 .147 .434b 1.000
P4 .040 -.058 -.039 1.000
P5 .188 .3821' .229 .023 1.000
P6 -.094 -.023 -.119 -.154 -.019 1.000
P7 -.021 .197 .088 .106 -.104 -.065 1.000
P8 .155 .208 .144 .095 -.027 -.088 -.040 1.000
P9 .161 .363a .301a -.147 .074 -.037 .057 .196 1.000
P10 .113 .378b .3841) -.070 .056 -.054 -.049 -.048 .166 1.000
A .276 41913 441b -.187 .066 .004 .208 .218 .193 .193 1.000

a p<0.05

b p<0.01

8
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solution containing multiple errors. No reciprocal redundancy was found, which means that for

the case of multiple errors in a single solution, the errors involved were also observed for

different students on different problems. Results of the analyses are presented and compared

below. Relationships among types of errors in all four main categories (T, C, P, and A) were

also assessed using additive trees.

RESULTS

Canonical Correlation Analysis

The relationships among specific types of conceptual and procedural errors was

investigated using canonical correlation, which invoices searching for the number of ways in

which two sets of variables are related, and identifying the strength and nature of these

relationships. Canonical correlation seeks to determine weighted linear combinations of each of

two sets of variables which maximizes the correlation between these combinations. These linear

combinations of variables, taken from each set, make up a pair of canonical variates, and the

correlation between the pairs is the canonical correlation. Canonical correlation generally

requires 10 cases for each variable used, unless the reliability is quite high. Although the

reliability of the coding scheme was fairly strong, the analysis was used for descriptive purposes

only; significance of the canonical correlations was noted but greater emphasis was placed on

interpretability of the resulting pairs of canonical variates.

All ten types of procedural errors were included in the analysis. Six types of conceptual

errors had a frequency greater than 2: C3, C6, C7, C8, C9, and C10,- Inspection of the

correlation matrix between conceptual and procedural errors after removal of the low frequency

variables showed no correlations greater than .62, indicating that multicollinearity was not an

issue. The determinant of the correlation matrix for the two sets of variables was low (.02), but

for the conceptual errors alone the determinant was calculated as .71, and for the procedural

errors, the determinant of the correlation matrix was .28. Bartlett's test of sphericity on the

9
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correlation matrix for conceptual and procedural errors together was significant (p=.02),

suggesting that reliable canonical variates between the two sets could be expected.

The canonical correlation analysis was conducted with the ten procedural errors as

dependent variables and the six conceptual errors as covariates. The overall test for the existence

of any linear relationship between the two sets of variables was statistically significant ( Wilk's A

= .106, F(60, 167.46) = 1.49, p=.02). The first pair ofcanonical variates correlated .78; 61% of

the variance in the variates from the first set (P) could be explained by variates in the second set

(C). The second pair of canonical variates correlated .71, with 50% of the variance shared

between variates of the two sets. The third canonical pair correlated .54, with 29% of the

variance in the set 1 variates explained by the variates in set 2. In total, six canonical pairs were

extracted, corresponding to the number of variables in the smaller set (C).

Based on Wilk's criteria, dimension reduction analysis indicated that only the first

canonical correlation was significant (Wilk's A = .106, F(60, 167.47) = 1.49, p=.02). However,

the first three canonical pairs were judged interpretable. Table 3 gives the canonical correlations,

correlations of the variables from each set with the first three canonical variates, percent of

variance explained in each set by their corresponding canonical variates, and redundancies

(percent of variance in the other set explained by the canonical variates).

A cutoff correlation of .30 was used for interpreting the canonical pairs. A canonical

variate that has a strong positive correlation with an error type can be taken to indicate that a high

frequency of occurrence for that error type is important to the interpretation of the canonical pair.

Similarly, a variate that has a strong negative correlation with a specific error type indicates that

its absence, or low frequency of occurrence, is important to the interpretation of that pair.

For the first canonical variate pair, nearly all the loadings were negative, suggesting that

this first pair could be interpreted as indicating "general ability" at probability problem-solving.

Students with a low frequency of procedural errors would have a low score on the first

procedural variate; low frequencies on the conceptual error types would also produce a low score

on the firs: conceptual variate. Therefore, results suggest that general ability at understanding



Table 3

9

;$11 et' .$0, tip' .$01 .0.11 , 1 .161 .1i. .1 .1.1

explained and redundancies for procedural and conceptual error variables

Canonical
Variate

8econ
Canonical

Variate

turd
Canonical

Variate

Procedural corn. % var. corr. % var. corr. % var. totals

P1 -.458 .450 .012
P2 -.833 -.173 -.145

P3 -.433 -.326 .201

P4 .067 -.341 -.273

P5 -.631 -.477 .323

P6 .030 -.215 -.252

P7 -.252 .112 -.308

P8 -.205 .174 .391

P9 -.263 -.125 -.366

P10 -.078 -.368 .204

(same set) % var. 17.7% 9.3% 7.3% 34.3%

redundancy 10.7% 4.6% 2.1% 17.4%

Conceptual

C3 -.564 .098 .045

C6 -.288 -.249 .515

C7 -.226 .156 .129

C8 -.411 -.873 -.086

C9 -.739 .241 .135

C10 .105 -.067 .787

(same set) % var. 11.9% 7.6% 4.4% 23.9%

redundancy 19.6% 15.3% 15.5% 50.4

Canonical Corr. .779 60.7% .705 49.7% .536 28.7%

1.1
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concepts in probability problem solving is paired with general procedural ability in solving these

kinds of problems.

Only one conceptual error, misconceptions involving mutually exclusive events, is

strongly correlated with the second canonical variate, with a negative loading. Five procedural

errors are strongly correlated with the second canonical variate, although only one, procedural

errors in determining the sample or event space, has a positive loading. Conceptual errors with

the strongest positive loadings on the second canonical variate include misconceptions of equally

likely events and misconceptions involving independence. The combination of conceptual and

procedural errors most important to the interpretation of this canonical pair indicates that those

students harboring misconceptions about equally likely events and independence tend to exhibit

procedural errors when determining the correct sample or event space for a problem. In

particular, these types of conceptual errors could lead a student to neglect to include

permutations of outcomes in a sample or event space. Additionally, such students may

experience difficulty if a question involves determining the outcomes or probabilities of

outcomes included in an event space when such an event is dependent on any given prior event

or outcome in the sample space.

Nearly all the conceptual errors are positively correlated with the third canonical variate.

Interpreting the variables with the strongest positive loadings on this third variate, we see that

misconceptions involving the distinction between mutually exclusive and independent events and

confusion about the formal language of probability are related to procedural errors involving

mutually exclusive events and difficulty working with conditional probability. In particular, it

was observed that students often interpret the word "and" as "addition", with the following

sequence of procedures ensuing: P(A and B) ==> P(A + B) =--> P(A) + P(B), an inappropriate

procedure for Any two events, regardless of whether or not they are mutually exclusive or

independent. This term, P(A and B) also forms the numerator of the formula for determining

conditional probability.

12
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Hierarchical Clustering using Additive Trees .

Hierarchical clustering was used to discern a more natural structure to the set of

conceptual and procedural errors. The regular Pearson correlation provided a measure of

proximity between distinct error types. As with the canonical correlation analysis, only those

error types with a frequency greater than two were included in the analysis. The ADDTREE/P

program (Corter, 1982), based on Sattath and Tversky's (1977) algorithm for fitting additive

trees, was used to investigate the hierarchical cluster structure of the proximity matrix.

Additive trees provide a convenient visual representation of the relationships among a set

of variables, in terms of their cluster hierarchy as well as for interpretation of the unique and

common features of items in the tree. Unlike traditional hierarchical clustering schemes, which

measure cluster distances in terms of average inter-cluster distances, or in terms of the furthest or

nearest neighbor algorithms, additive trees are more faithful to the original distances among the

items. In an additive tree, the distance between items in two different clusters is no longer

represented as equal for all items in the two clusters; instead, the original distance relation is

preserved.

According to Sattath and 'fversky (1977), each arc on an additive tree "defines a cluster

which consists of all the objects that follow from it. Thus, each arc can be interpreted as the

features shared by all the objects in the cluster and by them alone. The length of the arc can thus

be viewed as the weight of the respective features, or as a measure of the distinctiveness of the

respective cluster" (p. 330). The additive tree analysis for the set of conceptual and procedural

error types resulted in three identifiable clusters of procedural and conceptual errors (see Figure

1). A correlation of .83 was obtained between the estimated and the original proximities,

explaining 70% of the variance.

The first cluster on the additive tree indicates that conceptual difficulties in working with

the formal language of probability (which includes difficulty working with the algebra of sets

versus the algebra of real numbers) are related to misconceptions and procedures involving

mutually exclusive events. Due to the long arc emanating from this cluster, this is also one of the

3



Figure 1

Additive tree for conceptual and procedural error types

C6 Formal Language (f-7)

C8 M.E. Concepts (f -17)

p5 M.E. Procedures (f -27)

C9 Independence concepts (f4)

12

in Proc. Errors determing S/event space
(f -9)

C10 H.E. vs. indpendence, concepts
(f-5)

1,8 conditional probability procs. (f -34)

C3 P 1.0 (E=11)

P6 Saquential exp. (f-6)

p4 Proc. errors independence
(f-96)

P7 Proc. error., from table (f-45)

C7 Equally likely concepts (f.63)

P2 incomplete/unfinished (f -19)

p3 General use of formulas (f 1)

P10 Inventing incorrect procs. or rules (f13)

stress formula 1 = 0.0860
stress formula 2 = 0.4721
r(monotonic) squared=0.7771
r-squared (p.v.a.f.)=0.6988

P9 Proc. errors, complementary events (f11)

BEST COPY AVAILABLE
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more prominent relationships observed. As mentioned above during the discussion of the third

canonical variate, some students tend to interpret the word "and" as implying "addition", which

may lead them to apply the rule for determining the union of two mutually exclusive events

when they have actually been asked to find the intersection of two events.

The second cluster identified on the additive tree includes several combinations of

conceptual and procedural errors. Taken together, the items in this cluster seem to indicate a

very general relationship between misconceptions of independence, conceptual difficulty in

distinguishing between independent and mutually exclusive events, and procedural difficulty in

solving probability problems which require some knowledge of independent versus non-

independent events, such as conditional probability and working with data in table form.

The third cluster on the tree can be identified as procedural difficulty in working with

formulas in general. The errors in this cluster include unfinished solution attempts, inventing

procedures or rules to "fit" one's understanding of a problem, and difficulty working with

formulas for complementary events, which are often confusing for students, particularly if

determining the complement of an event is required as a first step towards solution.

One item which appears to stand alone in relation to the other clusters is the concept of

equally likely events. This item, then, is relatively unique, although it is clustered together with

difficulty working with formulas in general. The assumption thatevents are equally likely,

whether justified or not, makes the computation involved in many probability problems easier.

Therefore, students who have difficulty working with formulas in general may also feel

comfortable relying on this assumption simply to reduce the complexity of the solution process.

Overall, the additive tree suggests the following clustering scheme for the relationship

among conceptual and procedural errors: (1) concepts/procedures involving mutually exclusive

events, (2) concepts/ procedures involving independent events and related formulas, and (3)

general use of formulas.

To shed more light on the relationship between conceptual and procedural errors, a

second additive tree was fit to the correlation matrix for error types in all four categories. The

1 5
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data for this analysis consisted of correlations between 5 text comprehension errors, the 10

procedural and 6 conceptual error types, and 1 class representing errors in arithmetic. The

resulting additive tree is shown in Figure 2. Six clusters were identified, as labeled in the Figure.

The correlation between the observed and estimated proximities is .79, accounting for 62% of the

varianc:. The fit of this second additive tree is not as good as the fit of the additive tree to the

matrix of conceptual and procedural errors alone, possibly due to low frequencies for some of the

items. However, some useful information is obtained about the factors which may influence a

student's tendency to exhibit certain conceptual and procedural errors.

In particular, errors in arithmetic are clustered together with procedural errors in the

general use of formulas (cluster 6), suggesting that poor arithmetic skills may be one reason why

students are often unsuccessful at probability problem-solving. Difficulty in assigning a given

probability value to the correct event forms a cluster (cluster 5) with procedural errors involving

both conditional probability complementary probability. This is not surprising, since many

students tend to interpret sentences such as "the probability is 1/20 that a female student will be

taking a science course" as a conjunction (i.e., P(F and Science)=1/20) instead of a conditional

probability (P(Science I F)=1/20). Similarly, if the text of a problem supplies complementary

probabilities, such as the probability of an elevator ngi working, misinterpretation of the given

information is likely to occur.

Cluster 4 indicates that interference with information given in a previous problem may be

a factor in the tendency to invent procedures or rules, as well as in the tendency to assume that

events arc equally likely. This clustering suggests that the wording of traditional probability

problems, as well as their contextual placement in a set of problems, may be confusing to some

students.

The third cluster identified on the additive tree combines one text comprehension error

and three procedural errors. Those students who have difficulty representing a situation as

described in the text of a problem also have a tendency to exhibit procedural errors involving

independence (i.e., applying the formula for the intersection of two independent events without

16
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verifying that the events are indeed independent), have difficulty working with tabled data,

particularly in representing the given information in table form, and have difficulty working with

sequential experiments, especially in setting up tree diagrams. Assisting students in the correct

interpretation of text information may help to alleviate many of these procedural errors.

Cluster 2 contains two related text comprehension errors: incorrect specification of the

goal of a probability problem and difficulty interpreting inequality statements. These two errors

are combined with misconceptions about the formal language of probability and mutually

exclusive events, and procedural errors concerning mutually exclusive events. Those students

who exhibit a poor assessment of the quantity requested in a probability problem also tend to

have difficulty with these particular concepts and procedures. The first cluster combines

unfinished solution attempts with misconceptions concerning the validity of a probability value

greater than one, suggesting that students who tend to accept probability values greater than one

also have difficulty following a solution strategy through to completion.

DISCUSSION

This study was an investigation into the nature of observed errors in the domain of

probability problem-solving. The error analysis was based on the written work of a sample of 50

graduate students enrolled in a first course in probability and statistics. Written protocols of

students' problem-solving attempts are helpful in identifying associations among specific types

of errors, and comprehensive analyses of these kinds of protocols yield valuable suggestions for

the improvement of teaching and learning.

Results of this research have shown that specific relationships exist among conceptual,

procedural, arithmetic and text comprehension errors in probability problem-solving. The

techniques used to investigate the relationships among errors in each of these categories

(canonical correlation analysis and additive trees) constitute a new approach to investigations of

misconceptions in the domain of probability problem-solving. Results of the three analyses are

18



17

similar in their identification of some of the relationships among the errors, but each provides a

different perspective as to hoz these errors are related.

Probability problem-solving involves both an appreciation for probability concepts and

an understanding of the terminology and procedures (equations, formulas, rules and their

interrelationships) that are used to represent these concepts. From an educators perspective, a

student's understanding of probability is recognized by the ability to work within this formal

system of concepts and procedures. However, as this research has shown, the ability to correctly

solve probability problems is often hindered by poor arithmetic skills and difficulty translating

textual information into appropriate probability statements. Stressing normative learning of

concepts and procedures is not necessarily enough to promote good problem-solving skills in this

domain. Pre-requisite arithmetic skills and the ability to understand information presented in

words, as well as in symbols, are crucial to students' development of appropriate cognitive

models for probability problem-solving.

As a result of the inter-relationships among the errors, the addiive tree fit to the

correlation matrix for error types in all four main categories seems to provide the most useful

information in terms of implications for teaching and learning probability. In particular, it was

shown that poor arithmetic skills are related to difficulties in working with formulas in general.

One suggestion for improving instruction, then, is to encourage a prerequisite course in

arithmetic and basic algebra before students are allowed to enroll in a first course in probability

and statistics. This is especially pertinent for graduate students who may not have had a math

course for quite some time. A refresher course in basic mathematical concepts may also help to

alleviate the difficulty which some students have in working with inequalities.

Due to the high proportion of errors which could be attributed to text comprehension

difficulties (23%), especially regarding translation of probabilities given in the text of a problem

and the identification of the goal of a probability problem, students should be given practice at

reading and interpreting word problems in probability. Students need the ability to relate natural

language to the language of probability. Since many probability problems require understanding

19
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of relational operators such as "less than", "at least", etc., students should also be given practice

in representing these phrases in set notation. This should be done at the same time that specific

procedural methods are being taught.

Incorrect interpretation of the information contained in a problem should not be a primary

reason for a student's difficulties. Probability problem-solving involves reasoning about the

question being asked; this is a skill teachers cannot assume as prerequisite knowledge in all of

their students. In fact, instruction in probability problem-solving should also be approached as

instruction in reasoning about probability.

In this research, several specific relationships between text comprehension errors,

conceptual errors, and procedural errors were described. Some of the more interesting

combinations arc briefly re-examined here. In particular, difficulty in determining what a

question is asking for (the "goal") was found to be related to difficulty working with sets (formal

language of probability), misconceptions about mutually exclusive events and procedural errors

involving mutually exclusive events and related formulas. Perhaps students who have trouble

understanding the question being asked choose a convenient alternative: assume events are

mutually exclusive, and "add" probabilities , whether appropriate or not.

Another interesting combination of conceptual, text, and procedural errors concerns the

assumption of equally likely events, interference from information given in a previous problem,

and the tendency to invent incorrect procedures or rules. Additionally, procedural errors in

working with conditional probability was related to a tendency to inaccurately assign the

probability values provided in the text of a problem to the appropriate event.

Due to the structure of the relationships identified in this research, instruction in

probability problem-solving needs to address ability in three areas concurrently: text

comprehension; an understanding of basic concepts, including set notation and the formal system

used to express probability concepts; and the application and manipulation of specific formulas.

Instruction should proceed with: (1) knowledge of the relationships among te.Y.A, conceptual and

procedural errors; (2) knowledge of which types of errors are frequently observed in student

e) 11
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work; and (3) knowledge of the conceptual determinants of common as well as uncommon

procedural errors, such as interpreting the word "and" as implying "addition". Procedural

knowledge should be integrated with conceptual knowledge and the ability to accurately discern

information contained in the text of a pkoblem. The formulas typically taught in a first course in

probability must be taught with greater emphasis on Eta certain formulas are appropriate and in

what situations, as well as how to computationally execute these formulas.

Interpretation of many of the relationships uncovered in this study are consistent with

current discussions about the nature of problem solving and the relationships, between different

kinds of knowledge. For example, Riley, Greeno and Heller (1983) describe three types of

knowledge necessary for successful problem solving: a problem schema, for understanding a

word problem; an action schema, for relating the representation of the problem to procedures;

and strategic knowledge, for planning a solution. These researchers state that "conceptual

knowledge can influence which actions get selected" (pg. 188).

It is believed that helping students develop a more efficient schema for solving

probability problems would improve their performance on such problems. The following model

for normative performance in probability problem-solving is offered as a guideline for how

people might typically work towards a successful solution in probability problem-solving. This

model provides a framework for the knowledge required and the steps typically involved in

successful solution to many different types of probability problems. A description of each of the

seven steps included in the model is given below, although the steps do not need to be followed

in the particular order given.

1. Understand the given information.

In order to understand the information provided and develop an appropriate representation of the

problem, as well as to interpret the given information as a mathematical ov probabilistic

expression, the student needs to have adequate knowledge of the natural language of probability,

as well as an understanding of the concept of probability itself.

2. Identify what is being asked (the goal).
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Identifying the goal statement involves the ability to translate the question being asked into a
probability statement suitable for solution to the problem. The student needs to distinguish

between the following possibilities: is the question asking for a numerical solution to a problem,
for the verification of an assumption, for a particular quantity (i.e., complementary probability,

joint or conditional probability), etc.? In addition, the student must know the meaning of "at

least", "at most", "no more than" and other relational operators.

3. Develop notation for the given information and the goal statement.

This step requires successful completion of steps one and two above, as well as an understanding
of the formal, symbolic language of probability in terms of events being described as sets of
outcomes. The student must correctly develop a notation for expressing the given information

and the relationship between the given information and the goal.

4. Identify the correct sample space for the problem.

The student needs to review possible assumptions or the state of events given in the problem,

such as: are the events equally likely or not, are the events independent, are they mutually

exclusive? This requires some real world knowledge about events (cards, coins, elevators that

work independently, electrical components in series, people's opinions given independently,

etc.). In addition, the student requires an understanding of when to assume that a concept

(equally likely, mutually exclusive, independent) holds, and how to verify that it is true, if
necessary.

5. Select a method of solution.

There may be many different methods of solution appropriate for any particular problem.

Successful solution rests on choosing an appropriate method, such as the use of equations, tree

diagrams, contingency tables, or Venn diagrams. Successful solution also depends on the ability

to switch to a different method if the first does not offer a helpful path towards the desired goal.

Recognizing problem types will facilitate the choice of a particular method of solution.

Therefore, recall of a method of solution used for a similar problem has an important impact on

problem solving ability.

6. COMPlilingth=h111Q11.

The procedure chosen for determining the solution depends on both the problem involved and

the solution method decided upon. Generally, these fall into four categories: using equations

only, the use of tree diagrams, contingency tables, and/or Venn diagrams. Occasionally,

problems may be solved with a combination of these four methods. Besides knowledge specific
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to the application of each of these four strategies, computing a solution requires basic

computational and arithmetical skill, as well as ability at manipulating specific formulas to solve

for an unknown quantity.

7. Is the solution reasonable?

Evaluating the feasibility of a solution is one of the most important steps in successful

probability problem-solving. It requires real world knowledge, and also an appreciation for the

basic tenets of probability theory, i.e., that probability is never negative or larger than one. The

solution found for any particular problem should "make sense" to the problem-solver.

To encourage the development of a problem-solving schema, this model for probability

problem-solving could be taught to students as a form of "meta-instruction". Normative

performance on a problem is highly dependent on the specific type of problem a student is

requested to solve, because some problems are by nature more difficult than others, and may

require qualitatively different kinds of knowledge. Familiarity with problem types, and how

different types of problems might be solved using the above model, should also lead to improved

problem-solving schemas, thereby enhancing performance in probability problem-solving.

Probability problem-solving is a difficult task, both to teach and to learn successfully.

The major contribution of this research has been in the identification and description of specific

associations among text comprehension errors, conceptual error and procedural errors in this

domain. Future research based on the results of this study can take many interesting directions,

and will help to refine our understanding of the process of probability problem-solving. Several

suggestions for the improvement of teaching and learning in this area were presented. My hope

is that the results of this study will further stimulate research in the area of probability problem-

solving.
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APPENDIX A: SUMMARY OF ERROR CODES

Text Comprehension Errors

T1 Assigning the probability value provided in the text of a problem to the wrong event.

(f=53, 38%)

T2 Incorrect specification of the goal (when expressed as an equality), i.e., answering a

question that is different from the one requested. (f=13, 9%)

T3 Choosing pairs of outcomes when question asks for only one selection, or vice versa, etc.

(f3)
T4 Misinterpretations of statements which define sets of outcomes using verbal descriptions of

inequalities. (Overall f=16, 12%)

T4.1 Confusing "at least" with "greater than", "equal to", etc. (f=16, 12%)

T4.2 Confusing the word "neither" with "both", "either", etc. (f=0)

T5 Confusing drawing with replacement and drawing without replacement. (f=2, 1%)

T6 Real world knowledge errors. (f=l, 1 %©)

T7 Setting up an incorrect model of the experiment presented in the text of the problem.

(f=42, 30%)

T8 Interference from another problem, i.e., using information which was provided in a

previous, distinct problem. (f=11, 8%)

Conceptual Errors

Cl Misconceptions involving definitions of probability, sample space or outcomes in a sample

space. (Overall f4))

C1.1 Confusing probability with the sample space. (f)

C1.2 Confusing the sample space with the number of outcomes included in the

sample space. (f)
C1.3 Confusing the probability of an event with the description or list of outcomes

making up that event. (f)
C1.4 Confusing the probability of an event with the number of outcomes or the

number of ways of selecting an outcome. (f4,1)

C2 Not making/recognizing a distinction between frequency of an outcome and probability.

(f=2, 2%)

C3 Accepting a probability value greater than 1.0 as valid. (f=11, 10%)

C4 Accepting a negative probability value as valid. (f4l)

C5 Accepting P(S) ;61.0 as valid where S represents the sample spa-e. (f)
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C6 Confusion about the formal language of probability or the distinction between algebra of

sets and algebra of real numbers. (f=7, 6%)

C7 Misconceptions involving equally likely events. (Overall f=63, 57%)

C7.1 Incorrect definition of equally likely vs. non-equally likely events. (f=0)

C7.2 Assuming that all outcomes in the sample space are equally likely without

appropriate justification. (f=63, 57%)

C8 Misconceptions involving mutually exclusive events. (Overall f=17, 15%)

C8.1 Incorrect definition of mutually exclusive events, or the inability to distinguish

between mutually exclusive vs. non-mutually exclusive events. (f=9, 8%)

C8.2 Believing that a single event can be mutually exclusive or not mutually

exclusive. (f=6, 5%)

C8.3 Claiming events are mutually exclusive when the intersection of these events is--

either provided or observable from data in a table. (f=2, 2%)

C8.4 Not recognizing that the intersection of mutually exclusive events is null, so

that the probability of their intersection is zero. (f))
C9 Misconceptions involving independence: Incorrect definition of independence of events or

inability to distinguish between independent vs. non-independent events. (f=4, 4%)

C10 Confusion between mutually exclusive events and independent events. (f=5, 5%)

C11 Incorrect definition of complementary events. (f=1, 1%)

Procedural Errors
P1 Procedural Errors when determining sample space/event space. (Overall f=9, 3%)

P1.1 Lack of closure when describing sainpleievent space -- forgetting outcomes,

missing specific permutations, repeating pairs or triples, etc. (f=1, 0.4%)

P1.2 Incorrect construction of the sample space as defined in the problem. (f4,I)

P1.3 Incorrect construction of the event space as defined in the problem. (f=0)

P1.4 Omitting outcomes or including incorrect outcomes in an event space. (f=0)

P1.5 Miscounting or omitting one or more outcomes when determining the

probability of an event, such as neglecting permutations of outcomes. (f=8, 3%)

P1.6 When determining the outcomes contained in the union of two events, common

outcomes are repeated. (f4)
P2 Incomplete or unfinished solution attempts. (Overall f=19, 7%)

P2.1 Omitting a step in the solution process. (f)
P2.2 Unfinished strategies. (f=19, 7%)

P3 Procedural errors involving general use of formulas. (Overall f=11, 4%)

P3.1 Substituting the wrong values into the correct formula. (f=5, 2%)
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P3.2 Using outcomes in a procedural-formula in place of probabilities. (f=0)

P3.3 Expressing a probability formula with frequencies of events in place of

probabilities of these events. (f=0)

P3.4 Confusing formulas for union and intersection of events. (f=1, 0.4%)

P3.5 Circular modifications of a formula. (f=5, 2%)

P4 Procedural errors involving independent events or formulas for independent events.

(Overall f=96, 35%)

P4.1 Determining the probability of the intersection of two events by multiplying the

probabilities of the simple events, without verifying independence. (f=59, 22%)

P4.2 Using the relationship P(A I B) = P(A) without checking or verifying if the two

events are independent. (f=1, 0.4%)

P4.3 Incorrect procedures when investigating independence of events. (f=1, 0.4%)

P4.4 Using the multiplication rule for independent events to show that two events are

not mutually exclusive. (f=0)

P4.5 Assuming independence to prove independence (i.e., applying the same

multiplicative relationship on both sides of an equation to 'prove' independence). (f=4,

1.5%)

P4.6 Claiming that events are independent/not independent without mathematical

verification, when data is in table form. (f3)

P4.7 Claiming that events are independent/not independent without mathematical

veiification, when data is presented verbally in the text. (f=10, 4%)

P4.8 Incorrect formulas: 'or' (or union) of events implies multiplication of

probabilities. (f=17, 6%)

P4.9 P(AIB) = P(A) * P(B). (f=4, 1.5%)

P5 Procedural errors involving mutually exclusive events or formulas for mutually exclusive

events. (Overall f=27, 10%)

P5.1 Incorrect formulas: 'and' (or intersection) of events implies addition of

probabilities. (f=22, 8%)

P5.2 Determining the probability of the union of two events by summing the

probabilities of the simple events, without verifying if the simple events are mutually

exclusive. (f=5, 2%)

P6 Procedural errors resulting from a sequential experiment. (Overall f=6, 2%)

P6.1 Each Wit or gage in a sequential experiment is described with its own sample

space. (f=4, 1.5%)

P6.2 Misreading the tree diagram when determining sample space or probabilities.

(M))
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P6.3 Believing that when constructing a tree diagram, the immediately prior event
cannot be repeated, even when drawing with replacement. (f=0)

P6.4 Omitting branches, non-systematically, on a tree diagram. (f=r))
P6.5 In a sequential experiment, only one possible outcome is considered during the

first stage of the experiment. (M)

P6.6 In a sequential experiment, each sequence ofevents is described as a separate
sample space. (f4)

P6.7 In a tree diagram, and when drawing more than once without replacement from

the same population, the denominator after each selection remains the same, while the
number of possible outcomes for the numerator decreases by one. (f))

P6.8 In a tree diagram, frequencies are used in place of probabilities to label branches
at each step. (f4))

P6.9 In a tree diagram, selection and/or probabilities are determined from an
individual stage (trial) of the experiment, instead of from the entire experiment. (f=0)

P6.10 Using the conditional probabilities obtained on the last step of the sequence as
if they were joint probabilities. (f=1, 0.4%)

P6.11 Writing the probabilities obtained at the end of the experiment as conditional
probabilities instead of joint probabilities. (f=1, 0.4%)

P6.12 Incorrect construction of tree diagram or incorrect sequencing of events. (f=0)
P7 Procedural errors involving data presented or compiled in a table. (Overall f=45, 17%)

P7.1 Incorrect determination of simple probabilities or frequencies when reading data
from a table. (f=11, 4%)

P7.2 Incorrect determination of intersection of events or conditional probability when
reading data from a table. (f=4, 1.5%)

P7.3 Ignoring the probabilities of simple events as provided in the problem, while
using incorrect substitution of conditional probability as a joint probability to complete
the cells of a table. (f=30, 11%)

P7.4 Incorrect determination of complementary probability when reading data from a
table. (f4J)

P8 Procedural errors concerning conditional probability. (Overall f=34, 13%)
P8.1 Using incorrect denominator when determining a conditional probability. (f=8,

3%)

P8.2 Using the formula for conditional probability when determining the union of
two independent events. (f4))

P8.3 P(A1B) =--> P(A and B) * P(B) or P(A 1B) .---> P(A and B) * P(A). (f=1,
0.4%)
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P8.4 The 'given' sign in a conditional probability statement implies division of the
two probabilities. Form is P(A I B) = pP(47, (f=8, 3%)

P8.5 Incorrect formula when attempting to use Bayes Rule: Incorrect numerator or
incorrect denominator. 2%)

P8.6 P(A) ==> P(A I M) + P(A I F) or P(A) => P(M I A) + P(F I A). (f=6, 2%)

P8.7 P(A I B) =--->
P(A)

P(B and A' r (f=2, 1%)

P8.8 P(A I B) ==> P(B I A). (f=0)

P8.9 P(A I B) =--> P(A) + P(B). (f))
P8.10 P(A and B) => P(A I B) * P(A). (f=3, 1%)

P9 Incorrect procedures involving complementary events. (Overall f=11, 4%)

P9.1 Using the complementary probability of an event as if it were the probability of
that event. (f.))

P9.2 The complement of an event is the other event specified in the problem. (f=0)

P9.3 P(not A) > p(AP)(i-AP)(Br (f=13)

P9.4 P(A or not B) => P(A) => 1-P(B). (f))
P9.5 Incorrect procedures involving conditional complementary events. (f=2, 1%)
P9.6 Not recognizing the importance of parentheses when describing a set,

particularly involving complementary events or probabilities. (f=4, 1.5%)

P9.7 Neglecting to take the complement of an event when it is necessary as the final
step in the solution. (f=1, 0.5%)

P9.8 Given four events, A B C D: P(A' ) => P(B) + P(C) + P(D) - P(A). (f=3,
1%)

P9.10 The union of two events is the complement of their intersection. (f=1, 0.4%)

P10 Inventing incorrect procedures or rules. (Overall f=13, 5%)

P10.1 Using the number of sequential steps or selections as the frequency when

determining probability. (f=2, 1%)

P10.2 When the probabilities of an event A, conditional on several other events B,

are provided in the text of a problem, the sum of these probabilities is used to determine

P(A). (N.))

P10.3 Dividing the probabilities determined or given in the problem by the number of

events or selections (an average probability). (f=7, 3%)

P10.4 When the set of mutually exclusive outcomes of S are given, multiply

probabilities of the outcomes to find the probability of any event of S. (f))

P10.5 When events are not independent or not mutually exclusive, multiply

probabilities. OA
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P10.6 When all but one of the probabilities of individual outcomes are provided,

subtract the given probabilities from each other to calculate the missing probability.

(M)
P10.7 P(A or B) ==> P(A n B) - P(A B). (f41)

P(B)P10.8 P(A and B) > P(A or B) (f44)

P10.9 P(A and B) ==> P(A) - P(B). (f=1, 0.4%)
(A1B

P10.10 P(A or B) or P(A and B) ==>
P )

. (f=1, 0.5%)

P10.11 Adding and subtracting successive probabilities when determining the

probability of the union of more than two events. (f=1, 0.4%)

P10.12 Choosing an answer from one of the probabilities provided in the problem.

(f=1, 0.4%)

Arithmetic or Algebra Errors
Al Incorrect cancellation of similar terms in numerator and denominator. (f=1, 2%)

A2 Transcription or copy errors. (f=10, 19%)

A3 Arithmetic miscalculation. (f=38, 70%)

A4 Arithmetic error in division: Ta;. b + a . (f41)

A5 Skipped a digit when writing down answer. (H))

A6 Switching variable names in the middle of a solution, switching +1- signs in the middle of

a solution. (f=1, 2%)

A7 Writing probability as a percent without moving the decimal point correctly, or vice versa.

(M)
A8 Miscalculation when writing probability as a percent. (f4), 0%)

A9 Moving the decimal point (f=3, 6%)

A10 Given two values, setting a=b when in fact a*b. (f=1, 2%)

A 11 Dividing by 100 without moving the decimal point. (f=0)

A 12 Wrote = but multiplied, wrote + but subtracted, etc. (f4))
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