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Abstract

Either linear or quadratic rules may be used to derive

classification equations in discriminant analysis for the purpose

of predicting group membership. Generally, the decision about

which rule to use is governed by the degree to which the separate

group covariance matrices are unequal. An example is presented

that supports the superior internal classification hit rate of

quadratic rules under conditions in which the sample matrices are

unequal. The superiority of quadratic internal classification

results provided by SAS relative to those provided by SPSS-X is

also demonstrated. Finally, it is suggested that the potential

external generalizability of the classification results also must

be considered when deciding whether to use linear or quadratic

rules to derive classification functions.
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Quadratic Versus Linear Rules in

Predictive Discriminant Analysis

Classification functions, used for group prediction in

discriminant analysis (DA), may be based on linear or quadratic

rules. Essentially, the only procedural difference between these

approaches lies in the covariance matrix that is chosen to derive

the classification functions (prediction equations). If the

covariance matrix is derived by pooling across the groups, the

resulting functions are called linear; the functions are

quadratic if the separate covariance matrices are used for the

derivation of the prediction equations.

In general, DA assumes multivariate normality of the data,

and equal covariance structures across groups if a linear rule is

used. This latter assumption of the equality of group dispersion

matrices should be tested, using Box's M or a Chi-square provided

by standard statistical packages, before the equality of group

means is tested. If the assumptions of multivariate normality

and equal covariance structures across groups are met, a linear

classification rule may be employed with relative confidence.

However, even assuming multivariate normality, if the condition

of equal covariance structures across groups is violated, a

quadratic classification rule is often suggested as the more

appropriate alternative.

Effects of Assumption Violations

There has been some debate about the effects of multivariate
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normality assumption violations on DA results. This assumption

is important for both tests of significance and for

classification based on probabilities of group membership

(Klecka, 1980, p. 61). It has been argued that deviations from

normality may affect the results of quadratic classification much

more than those of linear classification (Anderson & Bahadur,

1962; Johnson & Wichern, 1982). However, Eisenbeis and Avery

(1972, p. 37) suggested that data that are not multivariate

normal may be used in DA without biasing results to a noteworthy

degree.

Inequality of the group dispersion matrices can have

implications for tests of the equality of group means. Violation

of this assumption results in a bias toward acceptance of the

null hypothesis, which increases with the number of variables and

the degree of inequality of the dispersions, and decreases in

sample size (Holloway & Dunn, 1967). This is the case for both

the chi-square test and F-test, because both are based on the

formation of Wilk's lambda assuming multivariate normal

populations with equal dispersion matrices. When the group means

are close enough together so that the groups overlap, the

differences between linear and quadratic classifications are

particularly important; and these differences are likely to

increase with the number of groups and the degree of group

overlap (Eisenbeis & Avery, 1974). Since the power of the tests

of group differences may be very low when the covariance matrices

are different, it is important to test for the equality of the
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dispersion matrices before testing for the equality of group

means.

Why Quadratic Rules May Improve Classification

With fixed distances between group means, as the differences

between group covariance matrices increases, the relative

predictive ability of linear rules decreases, as compared to

quadratic rules. This happens because linear rules use a common

within-groups matrix that is computed by pooling the separate

group covariance matrices. As a result, any function derived in

this fashion will bias the results away from classification into

groups with smaller variances in favor of those groups whose

dispersions are larger (Eisenbeis & Avery, 1974). Klecka (1980,

p. 61) notes that when group covariance matrices are unequal, the

use of linear rules can result in distorted classification

equations that do not provide maximum separation among groups,

thereby distorting the probabilities of group membership.

With fixed distances between group variable means, as the

number of variables increases, so will the discriminatory power

of quadratic rules (Van Ness, 1979). This occurs because

quadratic rules take advantage of the information provided by the

different group covariances when making group classifications.

That is, there are more variables with variance discrepancies to

be utilized in deriving the classifications (Gilbert, 1969).

This is particularly important in situations in which there is

little distance between group variable means because, in these

situations, the group variances provide most of the
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discriminatory information, and provide all of it when group

means are identical (Van Ness, 1979).

However, Van Ness (1979) found that the quadratic functions

will begin to lose power as the number of variables increases to

very large numbers, even with normal distributions and unequal

covariance matrices, because sample covariance matrices become

unreliable when there are too few research participants per

variable. Huberty and Blommers (1974) also suggested that, with

the existence of systematic biases toward or against groups,

larger sample sizes will result in less accuracy when separate

group covariances are used.

When Quadratic Rules May Impair Classification

Classification results often are determined "internally,"

meaning that objects or people are classified according to rules

that. were developed based on those objects or people. That is,

internal classification results use existing information about

group membership and variable scores to develop classification

functions, and then test these same functions for accuracy by

using them to reclassify the same individuals into groups.

Internally developed classification functions based on quadratic

rules are likely to result in a higher number of

misclassifications when applied to subsequent samples than those

based on linear rules, especially for small samples (Huberty &

Wisenbacker, 1992; Michaelis, 1973). The more sample-specific

information we use in prediction, the more accurate our sample-

specific classification will be, but it is less likely that so
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many features of our sample data will be replicated, resulting in

less predictive accuracy of the same predictive equations in

future samples. Michaelis (1973) found that, in most samples

external quadratic classification gave better results than linear

classification even with smaller sample sizes; however, the

differences between internal and external DA are greatest with

smaller sample sizes. Huberty (1975) discusses a study in which

he found that in a "comparison of rules based on linear and

quadratic equations using seven different data sets, internally,

the quadratic rule was superior for all seven examples. However,

the linear rule did as well if not better than the quadratic rule

in an external sense" (p. 572).

In general, an important ultimate goal of science is the

generalizability of theory and results across samples, settings,

and time. Results derived using linear rules enjoy a number of

advantages over those developed using quadratic rules in terms of

generalizability to future samples. In general, the relative

parsimony of linear classification functions is its greatest

asset for generalizability. Because the quadratic rules use

separate group covariance matrices, as contrasted from the one

pooled-covariance matrix used by linear rules, there are more

parameters to be estimated, and thus more opportunities for

differences to occur from sample to sample. A related advantage

of linear rules is that the use of one pooled covariance matrix

results in the utilization of less sample-specific information,

such as tne variances of a particular group, thereby reducing
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internal classification hit rates, but also decreasing the

likelihood of external misclassifications.

A powerful technique for improving the generalizability of

internally derived classification functions is the jackknife

procedure. The leave-one-out (L-0-0) jackknife method classifies

each subject based on a classification rule derived excluding

that particular subject while using all of the remaining

subjects. Unfortunately, none of the current statistical

packages provides the L-0-0 technique for the derivation of

quadratic classification results (Huberty & Wisenbaker, 1992),

thereby further limiting their potential generalizability.

Linear Vs. Quadratic Rules: A Heuristic Comparison of Internal

Classification Results

Studies comparing quadratic and linear rules in the

development of internal classification functions for different

data sets have found quadratic rules co be superior (see Huberty,

1975), or as good if not better (Eisenbeis & Avery, 1974) than

linear rules. Eisenbeis and Avery (1972) illustrate an example

in which the overall performance (classification hit rate) for

both rules was fairly comparable (in fact, the linear rule did

slightly better); however, there were differences in the hit

rates for particular groups. That is, the linear rule correctly

classified more of the good loans for a bank whereas the

quadratic rule correctly classified more of the bad loans. These

differences would have potentially important consequences for the
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bank because the identification of bad loans is far more critical

than identifying good loans.

For illustrative purposes, the current paper presents

comparisons of linear and quadratic classification results using

the Sesame Street data base (Stevens, 1992, p. 578). These data

were collected in a study conducted by the Educational Testing

Service designed to see whether the television program taught

preschool-related skills to members of five populations: 1) three

to five year old inner-city disadvantaged children, 2) four year

old advantaged suburban children, 3) advantaged rural children,

4) disadvantaged rural children, and 5) disadvantaged Spanish

speaking children. The current analyses used the sampling site

as the class variable, and the dependent variables were

difference scores computed by subtracting the posttest from

pretest scores on the various tests of knowledge of body parts,

letters, forms, numbers, relations, and classification skills and

scores on the Peabody Picture Vocabulary Test.

In addition, both SPSS-X and SAS statistical programs were

used to analyze the data so that the results provided by each

could be compared. This comparison is important because it has

been argued that SAS is the only major statistical software

package that provides accurate internal quadratic classification

results (Huberty & Wisenbaker, 1992). The basic commands and

subcommands used to perform the predictive DA's and develop the

classification functions in both SAS and SPSS-X are provided in

Table 1.
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Insert Table 1 about here

In SAS, the rule used to derive the classification functions

is evoked after "POOL =" and is indicated by either NO, TEST, or

YES. When POOL = NO is chosen, the individual group covariance

matrices (quadratic rule) are used to classify cases into groups.

The default, POOL - YES, uses the pooled covariance matrix to

compute linear functions from which cases are classified. POOL =

TEST provides a statistical significance test of the homogeneity

of the within group covariance matrices using Bartlett's

likelihood ratio. This test is unbiased but not robust to non-

normality (SAS, 1990). To use this, the option METHOD = NORMAL

must be used rather than METHOD = NPAR (which is the default).

The program then uses either a quadratic or linear rule to

compute the classification functions depending on the outcome of

the test.

In SPSS-X, the rule to be used in deriving the

classification functions is evoked by the subcommand "CLASSIFY ."

and is indicated by POOLED or SEPARATE. POOLED, which is the

default, calls for the program to use the pooled covariance

matrix to compute the linear functions for group classification.

The SEPARATE routine uses the individual within-group covariance

matrices for classification but does not provide mathematically

correct quadratic results because the cases are classified based

on the discriminant functions and not the observed variables

(Huberty & Wisenbaker, 1992; SPSS, 1988; Tatsuoka, 1971).
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Results

The results of the chi-square provided by SAS (using POOL =

TEST) and Box's M provided by SPSS-X are both significant (chi-

square (112 DF) = 171.97, p < .05; Box's M (40 DF) = 60.71, p <

.05), indicating that, for these data, the within-group

covariances are not constant across groups and thus, that

quadratic rules may be appropriate. Classification functions

were derived using quadratic and linear rules in both SPSS-X and

SAS. The hit rates using linear rules for both statistical

packages, the quadratic results from SPSS-X, and the quadratic

results provided by SAS may be found in Tables 2, 3, and 4

respectively.

Insert Tables 2, 3, and 4 about here

As reflected by the overall percentages of correct group

classification in each of these tables, the hit rates improved

with the use of quadratic rules. SAS and SPSS-X provide

identical internal linear classification results; however, as

could have been expected, the quadratic classification results

provided by SAS were different from those given by SPSS-X. Since

only SAS yields mathematically correct internal quadratic

classification results (HubeL:y & Wisenbaker, 1992), it was not

surprising that the overall hit rates using quadratic rules in

the SAS analyses were higher than the quadratic results provided

by the SPSS-X analyses. As also may be observed in the tables,

the number and percent of cases classified into each group
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(whether correctly or incorrectly) changed according to whether

linear rules, SAS quadratic rules, or SPSS-X quadratic rules were

used.

The only group for which quadratic rules resulted in

slightly fewer correct classifications was Group 1, and there was

one less correct classification in SAS than in SPSS-X. Quadratic

rules improved the classification rates for the other four groups

and the quadratic results provided by SAS improved the

classification rates for Groups 2, 3, and 5 beyond the

improvements provided by the SPSS-X quadratic results.

Discussion

The presently reported results further support the

superiority of internal quadratic classification results and are

concurrent with other studies which have found them to be

superior (see Huberty, 1975), or as good if not better (Eisenbeis

& Avery, 1974) than internal linear classification results. The

analyses also exemplify the differences between the internal

quadratic classification results provided by SAS and SPSS-X,

reflecting the mathematical inaccuracy of the SPSS-X results

(Huberty & Wisenbaker, 1992) and the improved hit rates from

quadratic classification using SAS. Since Sesame Street was

specifically targeted to help disadvantaged children, the

improved internal classification rates for Groups 4 and 5 using

quadratic rules (especially for Group 5 using SAS) and only

slight decrement for identifying Group 1 members, provide further

evidence of the technique's power. Also, it should be noted
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that, regardless of hit rates, many individual cases were

classified into different groups depending on which rules were

used, including whether quadratic classification was performed in

SAS or SPSS-X. Thus, the choice of technique can have a large

impact on the internal classification results.

When group covariance matrices are unequal, as in this

example, quadratic rules result in better internal classification

than linear rules because they utilize the extra information

provided by the differences among the group covariance matrices.

Since this information is augmented as more variables are added

to the analyses, the differences between the quadratic and linear

internal classification results would likely be even greater if

more variables were added to these analyses, as explained

previously.

However, although the analysis of this information results

in the superiority of quadratic rules in an internal sense, it

also reduces their parsimony by increasing the number of

parameters to be estimated, and thus greatly impairs their

external generalizability. Therefore, if the researcher's

ultimate goal is to use DA to classify members of future samples

into groups, it is recommended that a linear rule be applied in

the development of the classification functions. If a quadratic

rule is to be used in such situations, and as long as the L-0-0

jackknife method is unavailable for the derivation of quadratic

functions, then it is recommended that the classification

functions' external hit rate be estimated using a holdout sample
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initially excluded during the derivation of the functions.

Future efforts should focus on improving the external validity

of quadratic classification results. One possible direction for

improvement would be the development of L-0-0 jackknife methods

for the development of internal quadratic classification

functions in major statistical packages.
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Table 1

Basic Commands and Subcommands Used to Obtain Classification
Results

SAS Commands and Subcommands

PROC DISCRIM POOL = NOITEST1YES <other options;
CLASS <group classification variable;

SPSS-X Commands and Subcommands

DISCRIMINANT GROUPS = <group class. variable (low,high value)).
/CLASSIFY = POOLEDISEPARATE
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Table 2

SPSS-X and SAS Internal Linear Classification Results

Number and percent classified into each group
Actual group n 1 2 3 4 5

Group 1 60 15 10 11 13 11
25.0% 16.7% 18.3% 21.7% 18.3%

Group 2 55 9 32 0 6 8

16.4% 58.2% 0.0% 10.9% 14.5%

Group 3 64 8 4 24 18 10
12.5% 6.3% 37.5% 28.1% 15.6%

Group 4 43 8 6 10 15 4

18.6% 14.0% 23.3% 34.9% 9.3%

Group 5 18 1 4 2 3 8

5.6% 22.2% 11.1% 16.7% 44.4%

Percent of correct group classifications: 39.17%
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Table 3

SPSS-X Internal Quadratic Classification Results

Actual
group n

Number and percent classified intrs each group
1 2 3 4 5

Group 1 60 14(-1) 9(-1) 12(+1) 16(+3) 9(-2)
23.3% 15.0% 20.0% 26.7% 15.0%

Group 2 55 4(-5) 34(+2) 3(+3) 3(-3) 11(+3)
7.3% 61.8% 5.5% 5.5% 20.0%

Group 3 64 5(-4) 3(-1) 30(+6) 14(-4) 12(+2)
7.8% 4.7% 46.9% 21.9% 18.8%

Group 4 43 2(-6) 3(-3) 8(-2) 25(+10) 5(+1)
4.7% 7.0% 18.6% 58.1% 11.6%

Group 5 18 0(-1) 4(+0) 0(-2) 4( +l) 10(+2)
0.0% 22.2% 0.0% 22.2% 55.6%

Percent of correct group classifications: 47.08%

Note. The values in parentheses represent the change in number of

cases classified to each group when the quadratic rule is used

instead of the linear rule.
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Table 4

SAS Internal Quadratic Classification Results

Actual
group n

Number and percent
1 2

classified into each group
3 4 5

Group 1 60 13(-2) 9(-1) 17(+6) 15(+2) 6(-5)
21.7% 15.0% 28.3% 25.0% 10.0%

Group 2 55 5(-4) 40(+8) 4(+4) 2(-4) 4(-4)
9.1% 72.7% 7.3% 3.6% 7.3%

Group 3 64 5(-3) 4(+0) 36(+12) 8(-10) 11(+1)
7.8% 6.25% 56.25% 12.5% 17.2%

Group 4 43 2(-6) 2(-4) 7(-3) 25 ( +10) 7(+3)
4.55% 4.65% 16.3% 58.1% 16.3%

Group 5 18 0(-1) 0(-4) 0(-2) 1(-2) 17(+9)
0.0% 0.0% 0.0% 5.6% 94.5%

Percent of correct group classifications: 54.58%

Note. The values in parentheses represent the change in number of

cases classified to each group when the quadratic rule is used

instead of the linear rule.
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