
DOCUMENT RESUME

ED 365 524 SE 053 907

AUTHOR Clark, Kevin Andrew
TITLE Constructing and Implementing Algorithms for the

Teaching of Propositional Calculus by Computer.
PUB DATE [91]

NOTE 35p. -
PUB TYPE Reports Research/Technical (143)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Algorithms; *Calculus; College Mathematics; *Computer

Assisted Instruction; Computer Uses in Education;
Higher Education; *Mathematical Logic; Mathematics
Education; *Mathematics Instruction; Mathematics
Skills; Programming; *Proof (Mathematics); *Skill
Development

IDENTIFIERS *Propositional Logic

ABSTRACT
The objectives of this research were to review

existing computer-assisted instruction systems for propositional
calculus proofs or elementary logic and to develop an instructional
computer program that guides students in the valid construction of
propositional calculus proofs. The system is unique in that it
provides assistance at each step of the proof evaluation. This
assistance exists in the form of correcting user input and giving
hints that will lead to the correct evaluation of the proof. The
program also has the ability to suggest the correct axiom to use in a
line of proof. The program is able to evaluate any proof that uses
the elementary rules of logic, such as logical equivalence, logical
implication, and rules of inference. (Author)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

r-

CONSTRUCTING AND IMPLEMENTING ALGORITHMS

FOR THE TEACHING OF PROPOSITIONAL CALCULUS

BY COMPUTER

by

KEVIN ANDREW CLARK

U.S. DEPARTMENT OF EDUCATION
Oft, of Educational Rasearch and Improvement
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
)6:1 This document has bean rprOduCed as

received from the person or organization
originating

O Minor changes have Wan mad* to improve
reproduction quality

Points of view or opinions slated in this Elmo-
menf do not nocessanly rapriment official
OEM position or policy

1

BEST AVAILABLE

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Kevin A. Clark

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

ABSTRACT

The objectives of this research are to review

existing computer-assisted instruction systems for

propositional calculus proofs or elementary logic and to

develop an instructional computer program that guides

students in the valid construction of propositional

calculus proofs.

The system is unique in that it provides assistance

at each step of the proof evaluation. This assistance

exists in the form of correcting user input and giving

hints that will lead to the correct evaluation of the

proof. Not only does the program provide logical

assistance in the form of hints, but the program also has

the ability to suggest the correct axiom to use in a proof

line. The program is able to evaluate any logic proof that

uses the elementary rules of logic; such as logical

equivalence, logical implication, and rules of inference.

2

3

INTRODUCTION

When students enter college, many are vaguely

familiar with mathematical proofs. Most of them first

encounter proofs in their high school geometry class, and

frequently it is not a pleasant experience. Students

think that solving proofs is difficult because there is no

exact formula or unique path to follow in order to arrive

at a valid logical proof.

When students take discrete mathematics in

college, they are confronted with the topic of

propositional calculus. In propositional calculus, logic

proofs are generated statement by statement using

previous statements and a set of axioms. Because of the

multitude of approaches that can be used in constructing

a proof, students tend to get discouraged and frustrated.

One cause of this frustration is the fact that a line in a

proof can be logically correct, but in no way apply to the

valid construction of the proof itself. Another

frustrating aspect is that an early error can go

undetected while the student continues to generate new

statements which are invalid because of the earlier

error. It would be helpful to the student to know that all

3

of the previous steps of the proof are valid before

proceeding to the next step of the proof.

A logical statement whose value is either true or

false is a proposition; propositions are either compound

and simple. A compound proposition is a proposition that

can be decomposed into other propositions. A simple

proposition is a proposition in which no part of it can be

reduced into another proposition. In propositional

calculus, letters are used to denote simple propositions.

These letters are combined with logical connectives to

form compound logical statements. The logical

connectives used in propositional calculus are: n (and),

u (or), (implication), --, (negation), and <=> (equivalence).

The operations performed on propositions make up most

of the section of mathematical logic called propositional

calculus. Propositional calculus describes only those

logical inferences for which one does not use the

internal logic structure of the elementary propositions

(Ross & Wright, 1988).

The goal of this paper is to design a computer

program that will help students acquire the skills

necessary to construct proofs using propositional
O

calculus. This goal is in direct contrast with theorem

proving because the students themselves are developing

4

theorems by using their own methods and distinct paths.

In theorem proving, the students would have to determine

the correct algorithm to use in order to construct a valid

predetermined logical proof.

The program receives given statements and a

conclusion from the user. The user is then asked to enter

logic statements, compound or simple, that will logically

lead to the conclusion. Each logic statement is evaluated

at each step to assure that it is correct before

proceeding to the next step of the proof. This procedure

is different from theorem provers because of three

functions. One, the program allows students to construct

a valid proof using any logical method or path. Secondly,

the program monitors and validates each step of the

proof construction as the user progresses. And lastly,

the program gives feedback at each step, when an error

occurs, the program gives the user information that is

specific and helpful to the nature of that error.

The program created through this research is

similar to a program created at Stanford University

under the direction of Patrick Suppes. Both programs

provide user flexibility in constructing proofs and error

correction feedback.

C

This paper encompasses three major research

areas: computer-assisted instruction, mathematical

logic and propositional calculus. All of these areas have

a multitude of published research literature, but the

specific area of computer-assisted proof evaluators has

a very limited amount of published research literature.

Much of the published literature centers around the

research and development of computer-assisted logic

proof programs in the late 1960's and throughout the

1970's.

The majority of the significant research and

development of computer-assisted materials that

pertained to the evaluation of logic proofs was conducted

at Stanford University. A pioneer in the field of

computer-assisted instruction and the leader of many of

the research efforts in this area was Patrick Suppes of

Stanford University. In 1963, the Institute for

Mathematical Studies in the Social Sciences was

established at Stanford University under the direction of

Patrick Suppes and Richard Atkinson (Suppes, 1981). The

institute started a program of research and development

in the area of computer-assisted instruction, which later

dealt specifically with computer-assisted proof

evaluating. Although there was an abundance of

6

,-,
r

literature detailing the research efforts during the

1960's and 1970's, there was very little literature in the

1980's and 1990's.

In the literature concerning the implementation of

computer-assisted mathematical logic programs,

credence is given to the notion that logic as a

mathematical concept can be taught in the early years of

schooling. According to Inhelder and Piaget, children

begin to develop a capacity for hypothetical reasoning by

the age of eleven (Suppes & Binford, 1965). These

findings have been used by educators to upgrade the

mastery of mathematics in students. In the Suppes and

Binford article, there are three ways in which educators

try to upgrade the students mastery of mathematics: 1)

they revised the high school curriculum to include

calculus and analytical geometry. 2) they raised the

level of mathematics achievement prior to entering high

school. 3) they started teaching deductive techniques to

gifted elementary school children (Suppes & Binford,

1965). Because of these findings, Suppes introduced the

possibility of teaching logic at the elementary and high

school levels. Suppes says that by exposing students to

mathematical logic earlier it may help them develop

better mathematical skills (Suppes & Binford, 1965).

7

L)

In December of 1963, the first operational

instructional program available to students dealt with

elementary logic. The program was geared toward high

achieving sixth grade students and was later expanded to

include high achieving fifth grade students. The purpose

of this instructional program is to guide students

through the valid construction of propositional calculus

proofs.

One of the most important aspects of this

instructional propositional calculus program was that it

accepted any logically valid statement. Because of this

feature, the student was not restricted to a limited

number of solutions nor were they restricted to a unique

solution. In an experiment in which elementary school

children were taught mathematical logic, Suppes showed

that the upper 25% of the students could master

conceptual and technical aspects of mathematical logic

at a level of 85-90% achieved by comparable college

students (Suppes & Binford, 1965). Furthermore, the goal

of this experiment was to deepen and extend the

mathematical experience of the elementary students to

the broadest level of mathematics which pertains to

methodology and proof theory. Even more specific,

Suppes hoped that the experiment would teach

8

mathematical logic to fifth and sixth graders (Suppes &

Binford, 1965).

In the academic year 1969-70, researchers at

Stanford University used the experience gained from the

first operational instructional program to prepare and

test an introductory college course in elementary

mathematical theories. The purpose of this course was

to familiarize students with the theory of logical

inference that emphasizes proving theorems. The course

was taught solely by computer and the students were

encouraged to try different paths or methods of proving

theorems. At this time, the focus of research concerning

computer-assisted instruction of mathematical logic

slowly turned from pre-secondary applications to post-

secondary applications. In an article by Goldberg and

Suppes, they discuss an instructional program (which is

written in Lisp) that is used to teach mathematical logic

to college students (Goldberg & Suppes, 1974). The

program determined whether the student had completed

an exercise, provided a complete report on the axioms

selected and which axioms and lemmas were needed to

prove the theorem. This program covered topics such as:

indirect proofs, truth tables, identities, axioms,

theorems, translation, quantifiers, interpretation and

9

i0

finding axioms. This instructional program was the only

type of instruction used to teach the course. No human

interaction was used except for graduate students who

answered questions about the system.

There are some distinct differences between the

program that was created in this research and the

program that was created at Stanford University. This

program is more user friendly (i.e., using formats and

symbols that are familiar to its users). Also this

program evaluates proofs using a truth table in addition

to a set of axioms. Axioms and propositional statements

are used to construct proofs using any logically valid

method. In short, the two programs have similar

objectives but different methods of achieving them.

IMPLEMENTATION

The implementation of this program encompasses

three areas: presentation, logic, and evaluation. In the

presentation portion, the program uses normal logical

connectives and variables. The user is given the

flexibility of using any letter as a variable while the

program itself uses the variables p,q,r and s. Also

imperative to the presentation of the program is the

layout of the screen. The screen is organized such that

the user has all of the pertinent information on the

screen. In evaluating a proof by hand, most students use

the conventional two column format. This format

designates one column for the proof statement and the

other column for the reference lines and axiom. This

format is especially useful because it makes provisions

for all of the information needed in the evaluation of the

proof. It is because of the students familiarity with this

format and its concise presentation of the information

that this program emulates the two column proof

evaluation format.

The logic aspect of the program implementation

gives the student more flexibility in the construction of

11

12

the proof and it makes it possible for the program to

provide specific feedback for logic errors and syntactic

mistakes. The logic of this program is handled in four

ways. First, logic statements are compared to determine

their logical value. Then, the number and type of

operators are determined. Both the type and number of

operators must correspond to that of the other logic

statement being used in the logical comparison. Thirdly,

the order of the variables is obtained. The order of the

variables in one statement must match exactly with the

order of variables in another statement except in cases

of commutation. Lastly, an exact match can be

performer to determine whether the conclusion matches

the final statement of the proof, thereby, validating the

proof.

The final aspect in the implementation of the

program is the evaluation. Once the logical value of a

statement has been determined, the program must then

evaluate the statement and all the statements that apply

to determine the validity of that entire step in the proof.

If the step is invalid then feedback in given pertaining to

the nature of the error and the program may provide

assistance in correcting the error. Because of the way

the program evaluates the logical statements, the

12

13

program gathers information that is very useful in

providing the user with feedback that is relative to the

error. Through the implementation of this system, the

user is be able to evaluate proofs that have multiple

lines, is able to make partial line substitutions, and is

able to evaluate proofs using direct and indirect

methods. While the user is evaluating a proof, the

system guides them through the proof informing them of

any input mistakes or logical errors. In addition to

informing the user of errors, the system provides useful

information that is helpful in the valid construction of

the proof.

Within the confines of this paper, the following

terms must be defined: proof statement, reference line,

axiom number and proof line. The proof statement is a

logical proposition that is the result of previous proof

statements and their application to a system axiom. The

reference lines are previous proof lines that are referred

to by a proof statement in order to create another proof

statement. Axioms are assertions that are used without

having to construct a proof. The proof line is the line of

a proof that contains a proof statement, reference lines

and an axiom. For example, in line 4 of Figure 1,

13

14

I

,(ia Li d), is the proof statement. The number 3 under the

reasons column specifies the reference line used in the

proof line and rule 21 implication specifies the axiom

used in the proof line. All of the elements on line 4 make

up the proof line. At the beginning of the program

execution, the program receives preliminary input from

the user which consists of the hypotheses, the

conclusion and the type of proof that the user chooses to

evaluate. The statements that are entered as the

hypotheses are automatically listed as proof statements

of the proof and have 'GIVEN' listed as their statement

reason. If the user decides to evaluate an indirect proof,

the negation of the conclusion automatically appears

below the 'GIVEN' statements (e.g., as shown in Figure 2).

If the user chooses to evaluate a direct proof then only

the hypotheses are automatically written into the proof

table (e.g., as shown in Figure 3). After the preliminary

input has been received, the user enters the proof

statement, reference lines and the axiom. Because the

user can use any letter as a logical variable, the program

must substitute its variables for the user's variables.

This variable substitution occurs through two steps:

14

15

GIVEN: a -4 b, c -+ d, -,(a -4 d)

STATEMENTS

1. a --) b GIVEN

2. o .-> d GIVEN

3. -,(a -3 d) GIVEN

4. -A-a u d) 3 rule 21 implication

PROVE b n-,c

REASONS

Figure 1. The components of a proof line.

15

16

first, each substitute field that appears in the proof

statement will be replaced by a unique character. The

reason that the substitution fields are changed to unique

characters is to eliminate inadvertent substitution.

Inadvertent substitution occurs when a substitution is

made that is correct according to the substitution

procedure but incorrect according to the intent of the

user. Once all of the substitutions are made, the system

evaluates the proof line to determine its logical value

and syntactic correctness.

One of the first stages in determining the logical

value of a proof line is to evaluate at the reference lines.

If the current proof statement has only one reference

line, the logical correctness of the statement is

determined in the following way: first the logical value

of the left side of the axiom (which refers to the left

side of the equivalence or implication operator) must be

logically equivalent to the left side of the reference line.

Both of these statements are logical steps that lead to

the desired logical result. The logical results in this

case are the right side of the axiom and the current proof

statement. Secondly, the right side of the axiom must be

identical, in both variables and operators, to the current

16

17

GIVEN: a -4 b,c d)

STATEMENTS

1. a -4 la GIVEN

2. c d GIVEN

3. (a d) GIVEN

4. --,(b n Negation of conclusion

PROVE: b n

REASONS

Figure 2. Indirect proof example.

17

s

GIVEN: a -- b, c -9 d, --i(a . d) PROVE: b nio

STATEMENTS REASONS

1. a -9 b GIVEN

2. c --4 d GIVEN

3. i(a -9 d) GIVEN

Figure 3. Direct proof example.

18

!S

proof statement. This means that the two statements

must have the same number of variables and operators

appearing in the same order. An example of this can be

shown in line 4 of figure 1. Given the substitutions for p

and q at the bottom of the figure, line 3, (a -*d), must be

equal to the left side of the chosen axiom, (p -q). Line 4,

d), must be equal to the right side of the chosen

axiom, (--ip u q). The negation symbol at the beginning of

both statements in lines 3 and 4 is not evaluated because

this is a partial line substitution. In the case of partial

substitutions, much of the system implementations

remain the same; the only difference is that the axiom

only applies to part of the proof statement. When the

system makes the necessary substitutions into the proof

statement, it searches for the right side of the axiom in

the proof statement. If the right side of the axiom

appears in the proof statement, the statement is

evaluated to be logically correct. The program evaluates

every other part of the proof line as if it were a proof

line with total substitution being applied.

The most important aspect of partial substitution

is that the correct substitutions must be entered for the

system variables p, q,r and s. The user must be certain

that they only enter the part of the proof statement that

is relevant to the axiom and the proof statement. In the

proof statement, the user enters the entire statement as

it appears in the reference line. The user only changes

the part of the statement where the axiom applies.

Only the variables and operators are considered in

the evaluation of logical values for proof lines since

parentheses do not change the logical value of a

statement. If only one reference line is sited and the

user inputs the substitutions for the system variables,

the two statements should be identical. After

substitution, both of these conditions also apply the

right side of the rule and the proof statement of the

current proof line.

If more than one reference line is sited, the system

performs a Iogicai .:onjunction of the reference lines and

compares their logical value with the logical value of the

left side of the axiom. Logically, this means that the

logical value of all of the reference lines conjuncted

together is equal to the logical value of the left side of

the axiom. In addition, the operators used in the

reference lines and in the left side of the axiom should

appear the same number of times. This is necessary

because a statement may have the same logical value as

another statement, but the statement may use totally

20

21

different operators. In the case of multiple reference

lines, we do not check for frequency or order of variables

because there may be a variety of variables used within

the different reference lines. Because of this, the

program allows statements to be evaluated as being

equal if the only difference is the order of the variables.

For example, (p n q) and (q n p) may be evaluated as equal

statements.

The logical value of a statement is obtained

through the following algorithm. First, the statement is

simplified from a compound logic statement into a

simple logic statement. For example, in line 1 of the

compound statement shown below, the statement itself

is shown along with the levels of simplification that

occur as the statement is being simplified.

1. (p n ((q>r) u s))

2. (p n a)

3. (b u s)

4. (q > r)

Line 2 is the first level of simplification, and in line 2,

'a' is substituted for ((q>r) u s) in line 1. Line 3 is the

second level of simplification, where 'b' is substituted

for (q--) r). Finally, we reach the last line of

simplification where the logical value of (q-4 r) is

determined. The logical value of line 4 is substituted

into line 3 as the variable 'b'. Then after the logical

value of line 3 is obtained, it is substituted into line 2

as the variable 'a'. The logical value that is obtained in

line 2 is the logical value of the entire compound logic

statement. Once a compound statement is simplified, the

logical value of the variables is obtained and the

statement is evaluated according to the type of logic

operator.

The variables take on values that are produced from

all combinations of a four variable truth table. A truth

table is generated for the givens, the conclusion, and

each line of a proof to determine the logical correctness

of the statement . After the value of the variable has

been obtained, the logical operator generates the

appropriate output value for each statement. For

example, when the values of 'p' and 'q', in the statement

(p v q), are determined a logic operation is performed

according to the 'or' operator. This means that the value

of 'p' or 'q' must be equal to one (or a logical value of

true). If this is not true then the value of the statement

is evaluated to zero (or a logical value of false).

22

23

After the user has entered the reference lines, they

may use the help key to view the program axioms. The

unique aspect of this option is that the program will

attempt to find the axiom that applies to the proof line

and have it appear among the first five axioms displayed

on the screen. In Figure 4 , the user has entered the

proof statement, b, and the reference lines, 1 & 7 (after

which the help key is pressed and the first set of axioms

to appear on the screen are axiom 31 through 35). The

axiom that applies to this proof line is axiom 31. There

are instances when the program is unable to find the

axiom that is applicable to the proof line. These

instances are partial substitution, an incorrect logical

statement and some cases of variable substitution. In

these cases, the axioms appear on the screen starting

with axiom number one.

Once the axiom is chosen, the user is given the

option of symmetricizing the axiom if it is an

equivalence relation. Symmetricizing allows the user to

transpose sides to assure that the appropriate part of

the axiom will be compared with the appropriate part of

the proof statement and reference lines. Prior to

symmetricizing the axiom, the axiom appears as it is in

figure 5, (p-3q)<=>(-, p u q). After symmetricizing, the

23

24

axiom appears as it does in figure 6, (-, p u q)a(p-->q).

After this step, the user must enter the substitutions for

the system variables. The system will only prompt the

user for those system variables that appear in the axiom.

After the substitution step, the proof line is evaluated to

determine if it is logically and syntactically correct. If

the proof line is not valid, the user will receive a

message pertaining to the nature of the error. If the

proof line is valid, the user has the option to enter

another proof line or to validate the entire proof.

To validate a proof means to show that the entire

proof is correct and complete. The validation of a proof

is accomplished by comparing the last proof statement

and the user specified conclusion. For a direct proof, the

final proof statement and the conclusion must be

identical in the order and frequency of its operators and

variables (e.g., as shown in line 12 of Figure 7). For an

indirect proof, the last proof statement is evaluated; and

if it is a contradiction the proof is validated. A

contradiction is a statement that is always false (such

as (p n 1p)). In line 10 of figure 8, a contradiction exists

because --,(a>d) from line 3 and (a-*d) from line 9 are

both occurring within the same p-oof. Because this is

GIVEN: a -4 b, c > d, ,(a > d)

STATEMENTS

PROVE: b n ic

REASONS

1.

2.

a > b
c > d

GIVEN
GIVEN

3. ,(a ---> d) GIVEN

4. ,(-,a L) d) 3 rule 21 implication
5. (,--,a) . id 4 rule 18 DeMorgan
6. a . id 5 rule 1 double negation
7. a 6 rule 29 simplification
8. b 1,7

31 (p n (p>q))q modus ponens
32 ((p-->q) k..) -,q).--,p modus tollens
33 ((p u q) n 113)q disjunctive syllog
34 p(q>(p n q)) disjunctive special
35 (p* -> q) n (q<---> r) (p <--> r) transitivity

Figure 4. The display of axioms.

25

26

GIVEN: a > b, c > d, ,(a > d) PROVE: b n --,c

STATEMENTS REASONS

1. a > b GIVEN
2. c > d GIVEN

3. ,(a > d) GIVEN

4. --,(-,a k..) d) 3 rule 21 implication

(p*q)<=>(,p u q) implication

Figure 5. Before the axiom is symmetricized

26

27

GIVEN: a -3 b, c d, >

STATEMENTS

PROVE: b

REASONS

1. a -3 b GIVEN

2. c --> d GIVEN

3. -,(a --> d) GIVEN

4. u d) 3 rule 21 implication

u q)<=>(p-3q) implication

Figure 6. After the axiom is symmetricized

27

28

not possible, line 10 is said to be a contradiction. Since

the proof includes the negation of the conclusion, the

conclusion itself must be valid. The reason both proof

validation methods focus on the last line of the proof is

because all of the previous proof lines have been

validated before proceeding to the next step in the proof.

If the proof is not validated, the system prompts the

user to enter the next proof line. The system continues

to evaluate proof lines until the entire proof is validated.

;z.

28

29

GIVEN: a -4 b, c -+ d, d) PROVE: b

STATEMENTS REASONS

1.

2.

a b

c-->d
GIVEN
GIVEN

3. --,(a d) GIVEN

4. d) 3 rule 21 implication
5. --,d 4 rule 18 DeMorgan
6. a n 5 rule 1 double negation
7. a 6 rule 29 simplification
8. b 1,7 rule 31 modus ponens
9. n a 6 rule 4 commutative
10. -id 9 rule 29 simplification
11. 2,10 rule 32 modus tollens
12. b 8,11 rule 44 conjunction

THIS IS A VALID PROOF

Figure 7. Validation of a direct proof.

29

30

GIVEN: a ---> b, c ---> d, ,(a ---> d) PROVE: b n---ic

STATEMENTS

1. a --) b
2. c --> d
3. ,(a > d)
4. ,(b n ---,c)
5. ,b L.) ---,--ic

6. ib u c
7. lo-->c

8. b-->d

9. a.-->d

10. --,(a --> d) n (a --4 d)

REASONS

THIS IS A VALID PROOF

GIVEN
GIVEN
GIVEN

Negation of conclusion
4 rule 19 DeMorgan
5 rule 1 double negation
6 rule 21 implication
2,7 rule 36 transitivity
1,8 rule 36 transitivity

3,9 rule 44 conjunction

Figure 8. Validation of an indirect proof

30

31

1

CONCLUSION

The goal of designing and developing an

instructional computer program pertaining to the topic

of propositional calculus proofs has been accomplished.

In accordance with the original objectives, the system

uses the two column format and provides students with

feedback at each step of the proof construction.

However, the parameters obtained during the evaluation

of each line of the proof can be further used to enhance

the amount of inferences and hints that the system

provides to the user. In addition, the experience gained

from using this program in the student environment will

lead to a significant improvement in the pedagogical

approach.

The concepts expressed through this research can

also be applied to other aspects of propositional calculus

and elementary logic, such as set theory and quantifiers.

There exist software packages that deal with these

topics. Discrete Math, which is produced by True Basic,

is a computer program that deals with topics in

elementary logic such as truth tables and Venn diagrams.

Tarski's World, which is produced by the Center for the

Study of Language and Information (CSLI), is a computer

31

32

program that deals with quantifiers and set theory. In

addition to topics in propositional calculus, this program

can be used as a vehicle of exploration '1 other topics

such as geometric and mathematical proofs.

Finally, the data gathered through the

implementation and use of this program can be analyzed

to determine the effectiveness and validity of the claims

set forth in this paper.

32

33

REFERENCES

Barwise, J. and Etchemendy, J. Tarski's World 3.0
(Software): Language of First-Order Logic. Center
for the Study of Language and Information (CSLI).
Stanford, California, 1990.

Goldberg, A. and Suppes, P. Computer-Assisted
Instruction in Elementary Logic at the University
Level. Educational Studies in Mathematics, 1976,
Volume 6, pp. 447-474.

Goldberg, A. Design of a Computer-Tutor for Elementary
Logic. Information Processing (IFIP), 1974,
pp. 884-888.

Goldberg, A. and Suppes, P. Computer-Assisted
Instruction in Elementary logic at the University
Level. Institute for Mathematical Studies in the
Social Sciences: Technical Report #239, November
1974, Stanford, California.

Kemeny and Kurtz. Discrete Math (Software). True Basic,
Inc. West Lebanon, New Hampshire, 1988.

Larsen, I., Markosian, L. Z., Suppes, P. Performance
Models of Undergraduate Students on Computer-
Assisted Instruction in Elementary Logic.
Instructional Science, 1978, Volume 7, pp. 15-35.

Ross, K. and Wright, C. Discrete Mathematics (2nd
Edition). Prentice Hall. Englew000d Cliffs, New
Jersey, 1988.

Stolyar, A. Introduction to Elementary Logic. MIT Press.
Cambridge, Massachusetts, 1970.

33

34

Suppes, P. and Binford, F. Experimental Teaching of
Mathematical Logic in the Elementary School. The
Arithmetic Teacher, 1965, Volume 12, pp. 187-195.

Suppes, P. and Hill, S. Mathematical Logic for the
Schools. The Arithmetic Teacher, 1962, Volume 9,
pp. 396-399.

Suppes, P. and Hill, S. First Course in Mathematical
Logic. Blaisdell Publishing Company. New York,
New York, 1964.

Suppes, P. Computer-Assisted Instruction at Stanford.
Man and Computer: Proceedings of the First
International Conference on Man and Computer.
Bordeaux, 1970.

Suppes, P. University-Level Computer-Assisted
Instruction at Stanford: 1968-1980. Institute for
Mathematical Studies in the Social Sciences,
Stanford, California, 1981.

34
35

