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ABSTRACT

The nature of percentile ranks scores is explored using concrete

heuristic examples. It is explained why arithmetic operaticns

require measurement on equal-interval scales, and that percentile

ranks are not measured on equal-interval scales and therefore may

not be added or averaged. The consequences of inappropriately

adding percentile ranks are explored from the perspectives of

various textbook authors. The discussion is couched in the context

of the legal requirements for high-stakes testing. The information

presented herein is not new or previously unknown, rather the

distinguishing characteristics of the position paper hopefully

include clarity and concreteness of presentation.
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"In its broadest sense," wrote Stevens (1951, p. 1, emphasis

added), "measurement is the assignment of numerals to objects or

events according to rules." For example, when we assign numerals to

objects based on the correspondence of their heights to a stick

marked off in units, we are engaged in measurement. Although all

measurement results in the assignment of numerals, it is absolutely

essential to remember that numerals do not always contain the same

amount of information or meaning. It is the nature of the rules we

employ during measurement that determines how much information a

resulting set of numerals will contain.

The present paper is an essay about measurement. It is argued

that percentile rank scores are ordinally scaled numerals that

should not be added. Although some authors use the term

"percentile" and "percentile rank" interchangeably, I will use the

term "percentile rank" to refer to the scores defined thusly by

Mehrens and Lehmann (1991, p. 231, emphasis in original):

A percentile rank gives a person's relative position

or the percentage of students' scores falling below

his obtained score. For example, let us assume that

John has a raw score of 76 on an English test

composed of 100 items. If 98 percent of the scores

in the distribution fall below a score of 76, the

percentile rank of the score of 76 is 98...

To make the discussion concrete, we will presume that a

hypothetical university has adopted an admissions policy requiring

that GRE percentiles be added together to create a "criterion



score". The admissions policy might invoke an algorithm, for

students holding only baccalaureate degrees, in the form:

CRITSCOR = (50 x Undergraduate GPA) + GRE Verbal %tile +

GRE Quantitative %tile

Hypothetically, the university might require that a student must

have a criterion score of 220 in order to be admitted without

"exceptional" further justification.

The remainder of the paper is divided into six major sections.

First, why the mathematics of addition require measurement on

"equal-interval" scale is explained (readers with more background

may skip this section without serious loss of continuity). Second,

three measurement levels of scale are explained, including some

which will not and one which will allow meaningful addition.

Third, the nature of percentile ranks is explored. Fourth, various

scholars' views on adding (or performing other arithmetic

operations with) percentile ranks are elaborated. Fifth, the legal

requirements for "high stakes" testing are explored. Finally, by

way of summary, the reasons why a university might adopt and

enforce a graduate admissions policy that inappropriately requires

the addition of GRE percentile rank scores are briefly considered.

Although the discussion is couched in terms of the addition of GRE

percentile ranks, the conclusions fit equally well as regards the

addition of percentile ranks from all sorts of measures.

Why Addition Requires Eaual-Interval Measurement

Long, long ago, people measured the heights of their horses

using the lengths of their hands, because of the convenient
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availability of our hands. However, it soon came to be recognized

that, because different people have hands of different lengths, all

horses measured as being x hands tall were not necessarily equally

tall. So that the information contained in the numerals would be

more useful, it was recognized that it would be advantageous to

employ measuring units of a fixed, standard length.

Measuring height with units of varying lengths is somewhat

related to creating rulers marked off in non-standardized units.

For example, we might wish to create units of height called,

"thumbs", analogously to the original "hands" with which the

heights of horses were traditionally measured. Ruler A presented

in Figure 1 was created by marking the ruler using the thumb width

of 10 different people of different ages who, not surprisingly, had

somewhat different widths of thumbs. Ruler B was created by marking

the ruler in equal-interval units representing the approximate

average thumb width of adults.

Figure 1

Two Rulers and Their Use in Measuring Sets of Books

1- 2 -3 4 -5 6 7- 8 9- 10 Ruler A

xx Book #1 xx Sideview of Book #1

YYYYYYYY Book #2 YYYYYYYY Sideview of Book #2

xx Book #1 x4cx Book #1 xx 2 Copies of Book #1

Ruler B

Ruler A does have some utility. For example, as seen in Figure

1, if we measure the thicknesses of two book in these units of

"thumbs", starting from the leftmost side of Ruler A, we are
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entirely correct in assuming that numerals of 3 and 6,

respectively, would indicate that the second book is thicker than

the first one. Unfortunately, what we cannot say is that the

second book is 3 (6 - 3) "thumbs" thicker than the second book.

This is because non-standardized units are not meaningfully

additive. As Siegel (1956, p. 19) put it:

The variables involved must have been measured in at

/east an interval scale, so that it is possible to

use the operations of arithmetic (adding...,

findings means, etc.) on the scores.

It seems counterintuitive to many persons, even to some

educated people with terminal degrees serving on faculty at world-

class universities, that some numbers simply cannot be added [or

subtracted, since subtraction actually is addition, via the

addition of negative numbers]. The problems inherent in _adding

numerals from nonstandardized measurement can be difficult to see,

because of paradigm influences.

As defined by Gage (1963, p. 95), "Paradigms are models,

patterns, or schemata. Paradigms are not the theories; they are

rather ways of thinking...." But even highly educated scientists

usually do not consciously recognize the influence of their

paradigms. As Lincoln and Guba (1985, pp. 19-20) note:

If it is difficult for a fish to understand water

because it has spent all its life in it, so it is

difficult for scientists... to understand what their

basic axioms or assumptions might be and what imoact
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those axioms and assumptions have upon everyday

thinking and lifestyle.

Even though researchers are usually unaware of paradigm influences,

paradigms are nevertheless potent influences in that they tell us

what we need to think about, and also the things about which we

need not think. As Patton (1975, p. 9) suggests,

Paradigms are normative, they tell the practitioner

what to do without the necessity of long existential

or epistemological consideration. But it is this

aspect of a paradigm that constitutes both its

strength and its weaknesses--its strength in that it

makes action possible; its weakness in that the very

reason for action is hidden in the unquestioned

assumptions of the paradigm.

Most of us have paradigms about numbers that were

unconsciously formulated, typically in the primary grades of

elementary school. When we are given several numerals, we are used

to presuming that we can add them up. Few of us were ever

admonished that we can only add numbers when the numerals represent

data derived using an equal interval measurement ruler. In fact,

few of us consciously recognize that addition itself does presume

equal-interval measurement.

Our two rulers measuring "thumbs" can be used to illustrate

that addition does require equal-interval measurement. If we stack

two copies of Book #1 on top of each other, and measure the stack,

a ruler will have been used legitimately for comparative purposes
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only if the resulting measurement honors our perception of reality.

Ruler A tells us that Book #1 is 3 "thumbs" tall, while Ruler A

indicates that Book #2 is 6 "thumbs" tall. If Ruler A is an equal-

interval measurement, then we can add numerals from the measurement

protocol and obtain results that correspond with the reality being

measured.

The facts that Book #2 is 6 "thumbs" tall according to Ruler

A, while Book #1 is 3 thumbs tall, suggest that adding a second

copy of Book #1 on top of a first copy of Book #1 should yield a

stack that is exactly the same height as one copy of Book #2, since

+ 3 = 6. Unfortunately, as we can see from Figure 1, two copies

of Book #1 create a stack slightly larger than Book #2 alone. The

failure of our measurement to yield results that correspond to

perceived reality alerts us to the fact that our addition is not

sensible, and since the problem is not in the process of addition

itself (we have correctly followed the rules of addition), the

problem must then be with the numerals from our measurement.

Of course, we can always add up numbers/numerals, but even if

we correctly implement the mathematical process, our answer will

only make sense or be meaningful if our numbers have sufficient

information to make the process of addition itself sensible for our

numerals. The fact that we can implement a mathematical process

while correctly following its procedural rules does not imply that

the resulting answer will necessarily be sensible. Even fewer

people see this now than used to, because computers will promptly

mathematically manipulate any numbers we give them, and persons
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associating omniscience with computers presume that computers would

certainly be helpful enough to know vicariously how much

information is in our numbers and would doubtless kindly warn us

whenever our numerals cannot meaningfully be added/subtracted.

Of course, physical scientists may most tend to assume that

all numerals are intervally scaled, because most of the phenomenon

that they investigate are indeed measured with "rulers" that are

demarcated with equal intervals (e.g., centimeters, grams). But

things get more complicated when psychological constructs, such as

academic achievement or aptitude, are measured, as with the

Graduate Record Exam (GRE).

The Levels of Scale

Stevens (1946, 1951, 1968) proposed the concept of levels of

scale to help us describe how much information is in given sets of

numerals, and therefore what mathematical operations we may

sensibly perform on our numerals. Three of the levels of scale will

be described here.

The first level of scale is the nominal (or what some call the

"categorical") level of scale. Variables measured at this level of

scale contain the information (1) that people in the same category

of the variable (e.g., male) are considered identical with respect

to the variable being measured (e.g., gender), and (2) that people

in different categories of the variable are different with respect

to the variable being measured (e.g., males are different than

females with respect to the variable, gender).

When we measure gender, we may assign any numerals we wish, as
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long as we do not distort the two pieces of information available

to us. Thus, we may assign all males a -3 and all females +1, or

vice versa, or we may assign +2 and .967, respectively. However,

whatever number we pick for males, for example, we must assign all

males that number. Furthermore, whatever number we pick to assign

to all the males, though we have infinitely other legitimate

choices, we may not assign that particular number to the females.

Say that our sample of subjects included William, Dean,

Robert, Dan and Sallie. Say that we choose to assign +1 to males

and +2 to females. We could apply the algorithm for the mean, by

adding up the scores from our measurement, and then dividing by the

number of people. Though the mathematics are possible, the

resulting answer makes no sense. It is not meaningful to say that

the mean amount of gender in our sample was 1.2.

We can see the senselessness of the mean for nominal data when

we recognize that we can change the meaningless result by changing

our arbitrary measurement system. We could have just as reasonably

assigned +.5 to females and +100 to males. The mean for the same

data becomes 80.1. But the mean itself has no meaning when the

measurement scale is not delineated by equal intervals. Certainly

we could not correctly conclude that the same 5 people now have

more of the variable gender because the mean score on gender is now

larger. Instead, we would not compute a mean for nominal data,

because we cannot sensibly add numbers on a variable measured at

the nominal level of scale.

We might assign 0 to females and +1 to males, and use the
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algorithm for the mean to obtain a result of .8. The mean of a

dichotomously scaled nominal variable coded 0 and +1 does correctly

advise us of the proportion of people in the group scored +1, but

we should not conclude even here that the mean itself has become

sensible. Rather, we should recognize that counting the number of

people in a given group is possible for this level of scale, that

we can sensibly determine the proportion of people in a given

group, and that for dichotomous variables scored in this manner we

can coincidentally determine the proportion of people in the group

scored +1 if we employ the algorithm for the mean. But this result

derives its meaning as a proportion, and not as a mean per se.

Data measured at the ordinal (or the "ranked") level of scale

contain the information (1) that people in the same category of the

variable are considered identical with respect to the variable

being measured, (2) that people in different categories of the

variable are different with respect to the variable being measured,

and (3) that the people we have measured have a certain meaningful

ordering with respect to the variable being measured. For example,

presume that William, Dean, Robert, Dan and Sallie went to the same

high school, and that they graduated valedictorian, saluditorian,

3rd, 4th and 5th in class rank, respectively.

For this variable we may again assign any numerals we wish, as

long as our measurement model does not distort the information we

believe is available, given our model of reality. The measurement

model and the model of reality must always correspond. For example,

we can assign the subjects the numerals 1, 2, 3, 4, and 5,
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respectively. But we could also order the categories from the

opposite end of ranking, and assign the numerals 5, 4, 3, 2, and 1;

this would only mean that a larger number would now reflect a

higher high school grade point average.

However, since we have no information available about how far

apart our subjects were with respect to their GPA's, we could just

as legitimately assign the numerals 1, 1.5, 8, 9, and 700,

respectively. Of course, if William and Dean had had exactly the

same average, we would have assigned them both the same numeral, as

we would have done with nominally-scaled variables as well.

Since our class rank numerals are not based on numerals

assigned using a "ruler" marked off with equally-spaced intervals,

if all we are given is class rank information, we cannot add our

numerals or compute a meaningful mean with our numerals. We could

do the computations, but the result would not be sensible.

The third level of scale is the interval (or continuous) level

of scale. Here we know that (1) that people in the same category of

the variable are considered identical with respect to the variable

being measured, (2) that people in different categories of the

variable are different with respect to the variable being measured,

(3) that the people we have measured have a certain meaningful

ordering with respect to the variable being measured, and (4) that

there are meaningful distances of the categories from each other

that we have ascertained with some "ruler" that has been demarcated

with equally-spaced units. Of course, the last conditi.on does not

mean that all the people are equally spaced (e.g., 58" tall, 59"
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tall, and 60" tall), but only says that every unit on our

measurement "ruler" is equally spaced (e.g., every inch on a

yardstick represents exactly the same distance).

Again, we can measure our variable in any way we wish, as long

as we honor all the information available, and do not distort the

relationship between our presumptive model of reality and our

measurement model or protocol. We can measure in inches, in

centimeters, or in "thumbs" using Ruler B in Figure 1, as we chose.

But if William and Dean are exactly equally tall, among other

things we must assign them the same numeral on the variable of

height. And if Dan are Sallie are equally tall, and if Dan stands

on top of Sallie's head and together they are exactly as tall as

William, among other things we must assign William a numeral that

is the sum of the numerals we assigned to Dan and to Sallie.

The Ordinal Nature of Percentile Ranks

Percentile Ranks for Flat ("Rectangular") Score Distributions

The calculation of percentile ranks will first be illustrated

with respect to what statisticians call a "rectangular" score

distribution. This is a symmetrical score distribution with an

equal number of persons in each score interval. Figure 2 presents

the histogram for a heuristic example involving the number of right

answers of 10 people on a 120 item spelling test.

Figure 2

Histogram of Scores of 10 People on a 120-Item Spelling Test

* * * * * * * * * *

0---1---2---3---4---5---6---7---8---9---1---1---1
0 0 0 0 0 0 0 0 0 0 0 1 2

0 0 0
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Note. Each asterisk represents one person, as
follows: William, 100 rights answers; Dean, 90;
Robert, 80; Dan, 70; Sallie, 60; Jane, 50; Jon, 40;
Mike, 30; Larry, 20; Bruce, 10.

The percentile rank for William's score of 100 is 95, because 90%

of the 10 people scored lower than his score, and because

conventionally half the number of people in a given score interval

is then added to that percentage, e.g., 90 + (.5 x 1) = 95. The

percentile ranks for the remaining test takers are, respectively:

Dean, 85; Robert, 75; Dan, 65; Sallie, 55; Jane, 45; Jon, 35; Mike,

25; Larry, 15; Bruce, 5.

For any distribution, percentile ranks and raw or related

scale scores (e.g., GRE or IQ scales) order people in exactly the

same order. Thus, for example, the person with the highest GRE

will always have the highest percentile score, and so forth.

Futhermore, for a rectangular score distribution, and only for

a rectangular score distribution with scores that are equi-distant,

percentile ranks and raw or related scores contain the same

information, but are merely scaled differently (i.e., may have

different means and/or standard deviations). Thus, the Pearson

correlation coefficient between rectangularly-distributed raw or

scale scores and percentile ranks will always be +1.0.

Percentile Ranks for Non-Rectangular Score Distributions

Although the conversion of non-rectangularly distributed

(e.g., normally-distributed GRE) scores into percentile ranks does

not change the ordering of people, the conversion does usually

change everything else characteristic of the initial score

distribution, including the shape of the distribution. Kirk (1984,
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p. 221) notes this necessity using the language of the

statistician:

We can see from the figure that the transformation

of scores to percentile ranks has altered four

characteristics of the distribution: (1) central

tendency, (2) dispersion, (3) skewness, and (4)

kurt-sis. The only characteristic that isn't changed

by the transformation [of non-rectangularly

distributed scores] is the rank order of scores

within the distribution.

The reason why percentile ranks always change the shape of a

non-rectangular distribution of original scores is because

distributions of percentile ranks are always rectangular, by

definition. As Eichelberger (1989, p. 137) notes, "Percentiles

[always] form a rectangular distribution." Each centile will

always have an equal number of subjects at that given percentile

rank, specifically, 1/100th of the people in the score set. Thus,

since percentile ranks are always rectangularly distributed, when

any non-rectangularly-distributed set of scores is changed into

percentile ranks, the shapes of the two distributions will always

differ.

Table 1 pr.,sents a data set that can be used to illustrate

these dynamics. The Table 1 data are normally distributed. The

table presents the ID numbers of the 100 subjects, and the number

of right answers they got on a verbal ability test. The table alsc

presents the Z (Y = 0, SD = V = 1) and the GRE scale score (R =

13
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500, SD = 100) equivalents of these raw scores. Finally, the table

presents the percentile ranks for a given set of raw, Z and GRE

scores, e.g., in this score set the percentile rank of 8 right

answers, a Z score of -2.6, and a GRE score of 240, is 1.

INSERT TABLE 1 ABOUT HERE.

Table 2 presents a conversion table for these data. The

example presented in the note to Table 2 also makes dramatically

clear that percentile ranks, unlike the GRE scores for which they

are derived, are not equal interval scores.

INSERT TABLE 2 ABOUT HERE.

Figure 3 presents a histogram of the GRE scores for these 100

subjects. The figure indicates that the distribution is not

rectangular. In fact, this particular set of scores is very nearly

normally distributed (Bump, 1991). Therefore, the conversion of

these 100 GRE scores into percentile ranks will honor the ordering

of the GRE scores, but will rescale the scores and will also change

the shape of the score distribution.
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Figure 3
Histogram of GRE Scores (n = 100)

I***
I***
I*****
I********
I**************
I****************
I***********************
I**************************
I******************************
I******************************
I**************************
I***********************
I****************
I**************
I********
I*****
I***
I***

0 4 8 12 16
Histogram frequency

Note. One asterisk equals approximately .40 occurrences.

The fact that percentile ranks are always rectangularly

distributed means that percentile ranks are not linear

transformations of non-rectangularly distributed raw or scale

scores. Adding (or subtracting) +2 to all scores, or multiplying

(or dividing) all scores by -3, are examples of linear

transformations. There are several ways to illustrate that the

conversion of non-rectangular scores to percentiles ranks is not

linear.

First, an index of linear relationship, the Pearson

correlation coefficient, can be computed for each possible pair of

scores. Scores that are linear transformations of each other will

15
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be perfectly correlated; scores that are not linear transformations

will not be perfectly correlated.

Table 3 presents the correlation coefficients for the Table 1

data. The correlation coefficients between pairs of the variables,

number of right answers, Z score of number of right answers, and

GRE score equivalent of number of right answers, are all perfectly

correlated, as expected. The percentile rank equivalents of these

scores are less than perfectly correlated with these three scores,

because the percentile ranks are not linear transformations of raw

or scale scores. Furthermore, the percentile rank scores have

exactly the same correlation coefficients (all +.9775) with the

three scores, again because the three scores are only linear

transformations of each other.

Table 3

Correlation Coefficients for the Table 1 Data

(n=100)

VRIGHT
VERBZ
GREV
VPER

VRIGHT

1.0000
1.0000
.9775

VERBZ

1.0000
.9775

GREV VPER

.9775

Note. Bolded entries involve pairs of variables that
are linear transformations of each other.

Second, the non-linear transformation required to convert

normally-distributed scores into rectangularly-distributed scores

can be illustrated graphically. Figure 4 presents a scattergram

plot of the 100 GRE scores and the equivalent percentile ranks. The

fact that the plotted data do not yield a straight line indicates

that one set of scores is not a linear transformation of the other.

16
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INSERT FIGURE 4 ABOUT HERE.

The fact that the correlation coefficient (r = +.9775, r2 =

.9555) between the GRE scores and the associated percentile rank

scores is so high might suggest to a naive reader that there are

differences in the two sets of scores, but that these differences

are minor and that focusing on them might merely represent the

traditional statistician's nit-picking.

However, it is very important to note that most of the 100

scores are in the middle of the distribution, by definition, given

that the GRE scores are normally distributed. This is reflected in

Figure 4 by the large number of 3's and 4's in the middle of the

plot. This is the area within the plot that most closely fits a

linear pattern, as indicated by the regression line plotted in

Figure 4.

The worst fit to the linear regression line plotted in Figure

4 is for the more extreme scores. When one converts normally-

distributed scores into rectangularly-distributed scores,

differential (i.e., non-linear) conversion is applied at different

points along the continuum of the nonrectangularly-distributed raw

or scale scores. As Thorndike, Cunningham, Thorndike and Hagen

(1991, p. 65, emphasis added) explain:

Thus, percentile units are typically and

systematically unequal relative to raw score units.

The difference between being first or second in a

group of 100 is many times as great as the

17



difference between being 50th and 51st. Equal

percentile differences do not, in general, represent

equal differences in amount of the trait in

question. Any interpretation of pe-zentile ranks

must take into account the fact that such a scale

has been pulled out at both ends and squeezed in the

middle.

Blommers and Forsyth (1977, p. 64, emphasiS added) describe

the non-equal-interval nature of percentiles ranks in this context,

by noting that:

...deciles, or for that matter quartiles or

[per]centiles, cannot be regarded as units in the

usual sense. The actual score distances between them

fluctuate [at various points along the original

score continuum].

Kirk (1984, pp. 221-222, emphasis added) emphasizes the same point,

noting that

the interpretation of a 10-point difference between

percentile ranks depends on where the difference is

on the 0-100 scale.

Ahmann and Glock (1981, p. 221, emphasis added) describe the

situation thusly:

Percentile norms have "rubber units"--units of

varying sizes. The extent to which the units have

been "rubberized" depends on the nature of the

distribution of the raw scores. If that distribution
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is normal or nearly normal, the amount of distortion

is large....

Hinkle, Wiersma and Jurs (1979, P. 28, emphasis added) note

that

...in the center of the distribution, the use of .

percentile scores tends to exaggerate small, nearly

nonexistent differences. On the other hand, in the

tails of the distribution, the use of percentile

scores tends to underestimate actual differences.

Asher (1976, p. 91, emphasis added) characterizes these features of

percentile ranks as distortions:

The percentile rank scoring system systematically

distorts differences between scores near the center

of a distribution, making them appear larger, while

also distorting differences between scores at either

extreme by making them appear much smaller than when

they are scored in most other measurement systems.

In general, when only percentile rank scores are

available for a variable, it is good practice to use

a conversions table to change them back to raw

scores.

Ahmann and Glock (1981, p. 221, emphasis added) offer a

similar view:

Certainly the percentile ranks are hiding large

differences between raw scores when they occur at

either the high or low extremity of the raw-score
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distribution, and also are enlarging small

differences between raw scores when they occur near

the center of the distribution.

Thus, Crocker and Algina (1986, P. 441) note that the nonlinear

conversion implicit in conversion to percentile ranks can cause

people to misinterpret these scores:

Most misinterpretations arise when test users fail

to recognize that the percentile rank scale is a

nonlinear transformation of the raw score scale.

Simply put, this means that at different regions on

the raw score scale, a gain of 1 point may

correspond to gains of different magnitudes on the

percentile rank scale.

Figure 5 presents the analogous scattergram for the 26 people

below the 25 percentile for the Table 1 data. The fact that there

is the least linearity in score conversion at the extremes of the

scores distribution is indicated by the less linear pattern present

in this plot. Cunningham (1986, p. 68) notes that most of the raw

and scale score distributions we encounter induce distortions in

conversions to percentile rank scores:

Because most distributions that we encounter are

likely to approximate a normal rather than a

rectangular distribution, the intervals between

percentiles will be quite different from the

intervals between raw scores....

20

23



INSERT FIGURE 5 ABOUT HERE.

The fact that there is the least comparability or linearity in

conversion at the extremes of the score distribution is troubling

in the context of our admissions example, because this is exactly

the region of the score distribution at which we are generally

working in making decisions about admissions to graduate school for

students who are on the decision margins. For example, given our

hypothetical admissions policy, a student with Verbal and

Quantitative GRE percentile ranks of 20 and 20 would have had to

have had an undergraduate GPA of 3.6, and a student with a 3.4

average must have percentile ranks, for example, of 25 and 25, or

2 and 48, or 10 and 40.

Views on the Use of Percentile Ranks in Mathematical Operations

Textbook authors wno speak to the issue are unanimous in their

view that percentile ranks "are not equal interval scores" (Carey,

1988, pp. 383-384) . Gronlund and Linn (1990, p. 349) offer yet

another perspective focusing on why percentile ranks are not

intervally scaled:

A percentile difference of 10 near the middle of the

scale (e.g., 45 to 55) represents a much smaller

difference in test performance than the same

percentile difference at the ends (e.g., 85 to 95),

because a large number of pupils receive scores near

the middle, whereas relatively few pupils have

extremely high or low scores. Thus, a pupil whose
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raw score in near average can surpass another 10

percent of the group by increasing the raw score

just a few points. On the other hand, a pupil with a

relatively high score will need to increase the raw

score by a large number of points in order to

surpass another 10 percent, simply because there are

so few pupils at that level.

Because measurement scholars uniformly posit that percentile

ranks are not intervally scaled, they are also uniform in their

view that percentile ranks should not be added, averaged or

othPrwise mathematically manipulated. For example, Mehrens and

Lehmann (1991, p. 232) note that:

Percentile ranks have a disadvantage in that the

size of the percentile units is not constant in

terms of raw-score units2. [2Except in the unusual

case where the raw-score distribution is

rectangular.] For example, if the distribution is

normal, the raw-score difference between the 90th

and the 99th percentiles is much greater than the

raw-score difference between the 50th and the 59th

percentiles.... Of course, the ordinal nature of the

percentile rank units means that one cannot treat

them further statistically.

These considerations bear directly upon the merit of graduate

admissions policies requiring that GRE percentile ranks be added,

as in an algorithm in the form:
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CRITSCOR = (50 x Undergraduate GPA) + GRE Verbal %tile +

GRE Quantitative %tile

Hinkle, Wiersma and Jurs (1979, P. 28, emphasis added), with

respect to adding percentile ranks, note that:

Percentiles are unequal units of measurement and

hence should not be arithmetically manipulated.

Thus, there is no justification for summing or

combining them, averaging them or manipulating them

in ways we would manipulate scores that are equally

spaced on a scale.

Similarly, Hills (1981, p. 239, emphasis added) notes that:

...[I]t is not sound to add percentiles or to

average them. If you take two scores and obtain

their percentiles [percentile ranks] and then

average the percentiles [percentile ranks], the

result will not be the same as that found by

averaging the scores first and then obtaining the

percentile [rank] for the average.

Thorndike, Cunningham, Thorndike and Hagen (1991, p. 65,

emphasis added) concur:

One of the consequences of this inequality of units

in percentile scale is that percentiles cannot be

treated with many of the procedures of mathematics.

For example, we cannot add two percentile ranks

together and get a meaningful result. Th?. sum or

average of the percentiles of two raw scores will
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not yield the same result as determining the

percentile rank of the sum or average of the two

scores directly.

Appendix A presents a supplementary cascade of quotations from

scholars regarding the entirely dubious innovation of adding

percentile ranks.

Percentile ranks present helpful information about scores,

i.e., what percentage of test takers in a given normative group

obtained a lower score on the test. But the utility of percentile

ranks is limited. The question might then be posed as to why

percentile ranks are used so often. One answer is that "percentile

[rank] scores are useful because they are easily understood by the

layperson" (Borg & Gall, 1989, p. 248, emphasis added). Wike

(1985, p. 72, emphasis added) concurs, noting that:

Percentiles [percentile ranks] are readily_

understood by real people like bartenders,

undertakers, used car salespersons, and bankers.

That is an advantage.

However, hopefully laypersons and bartenders never add percentile

ranks, and nor would highly trained academics ever do so.

Legal Requirements for "High Stakes" Testing

Measurement specialists have come to call tests that have

serious consequences for individuals or institutions, "high stakes"

tests. Examples are licensure exams, or statewide exams that high

school students must pass to graduate with a diploma. It could be

argued that graduate school admissions decisions have "high stakes"
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for applicants. And as Mehrens and Popham (1992, p. 265) have

observed:

When tests are used for high-stakes decisions, there

is a strong possibility that individuals for whom an

unfavorable decision is made will bring a legal suit

against the developer and/or user of the test.

The notion of high stakes testing evolves out of the common

law traditions of remedy. As a general principle of law, the

remedies that are fashioned on behalf of injured plaintiffs are

developed to put the plaintiffs as nearly as possible back in the

conditions they would have enjoyed had they not been unlawfully

injured. Of course, in certain cases punitive damages may also be

added on top of these nonpunitive damages.

Various courts have interpreted or created law related to test

use. For example, in Groves et al. v. Alabama State Board of

Education et a/. the court held that the ACT may not be used as an

absolute criterion for admission into colleges of education. But in

United States v. LULAC (1986) the court upheld the use of a

standardized test in making college admissions decision, because

here a relationship was shown between what was tested and what was

required in the training program.

Courts have also generally held that judgment may be exercised

in establishing criterion cut-off scores (e.g., Tyler v. Vickery,

1975). But courts have differed over what legal standards must be

met in establishing criterion cut-off scores, and at times have

found that cut scores are too high, even when evidence regarding
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the validity of the cut scores is available (e.g., Richardson v.

Lamar County Board of Education, 1989). It appears that at a

minimum the test user must be able to offer some reasons for the

selection of cut scores, although this judgment may rest only on

"analyzing the test results to locate a logical 'break-point' in

the distribution of scores" (Byham, 1983, P. 107).

One very important source of law relevant to test use is the

U.S. Constitution's 14th Amendment due process requirements.

Basically, tests must be used in ways that are substantively and

procedurally fair. It might be expected that these requirements

would pose serious dangers to those about the business of adding

percentile ranks when making admissions decisions.

In general, policy must not lead to arbitrary and capricious

judgments that negatively impact people. Policy requiring the

adding of percentile ranks are fraught with arbitrariness, because

one is inherently invoking "rubberized" measurement scales in

making these judgments, as emphasized earlier. Such "rubberized"

scales will arbitrarily penalize one applicant with a given profile

of scores, while arbitrarily benefiting another test taker whose

profile is in a different portion of the distribution.

A separate, and equally worrisome, aspect of arbitrariness is

introduced by the mere process of adding percentile ranks.

Percentile ranks are inherently confusing to persons without

advanced measurement training. Given paradigm influences, these

decision-makers will therefore presume that all numbers can always

be added to obtain a meaningful result, and will incorrectly think
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that the criterion scores they derive are meaningful.

Academic departments housing people who know that percentile

ranks are "rubberized" will make admission decisions that pay less

attention to criterion scores, when such flexibility is allowed.

Other departments housing less enlightened faculty will blithely

add percentile ranks, and pay attention to their results when

making their admissions judgments. This process is systematically

structured to yield admissions results that are largely random

across various admissions committees.

Of course, it might be argued that the degree of arbitrariness

is minimal. For example, GRE scale scores and percentile ranks are

highly correlated, as indicated in Table 3. It might be suggested

that percentile ranks are "rubberized", but that maybe they're not

"rubberized" a whole lot.

The problem with this argument is that the distortions

introduced by adding percentile ranks are entirely gratuitous.

There simply is no reason to introduce these distortions. It would

be one thing to accept the cost of a distortion if some greater

good offset this penalty. But there is no such benefit establishing

any balance against the distortions that percentile ranks

unavoidably create. The only reason for using percentile ranks is

ignorance, and it is questionable whether a defense of ignorance

will be viable.

Furthermore, it is simply embarrassing to have an admissions

policy that requires adding percentile ranks, since it is clear

from the previous discussion that there is no psychometric basis
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for adding percentile ranks. And it would be the ultimate

embarrassment to see one's colleagues with measurement training

called by the droves tc be qualified as expert witnesses and then

have to testify under oath that their university's admissions

policy is nonsensical. It would be especially embarrassing if one

had to acknowledge that these problems were all described before

the admissions policy was than adopted anyway.

The Etiology of Bad Academic Policy Formulation

Many naively believe that the strength of the academy is its

dedication to knowledge. But because members of university

communities so highly value knowledge, these same folk are also

very hesitant to give up prior claims to knowledge or insight, and

may be hesitant to seek contrary views or to perceive and respond

to reasoned objection. Thus, discovering that the earth revolves

around the sun can lead to excommunication, whether or not this new

knowledge is important and true. When I have vested my career in a

certain set of beliefs, it requires extraordinary character to say

that the beliefs I represented as knowledge for many years were

wrong.

Fortunately, the academy does have a special strength. That

strength is not the intrinsic wisdom of those who people its

faculty, and are purely human. Rather, the academy's strength is

its fundamental dedication to protecting the free exchange of

ideas. In the atmosphere of free discussion, the truth will usually

ultimately out.
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Table 1

ID VRIGHT

Hypothetical Data for

VERBZ GREV VPER

100 Subjects

ID VRIGHT VERBZ GREV VPER
1 8 -2.6 240 1 51 112 .0 500 50
2 24 -2.2 280 2 52 112 .0 500 50
3 32 -2.0 300 3 53 116 .1 510 54
4 40 -1.8 320 4 54 116 .1 510 54

5 44 -1.7 330 5 55 116 .1 510 54

6 48 -1.6 340 6 56 116 .1 510 54

7 52 -1.5 350 7 57 120 .2 520 58

8 56 -1.4 360 8 58 120 .2 520 58

9 56 -1.4 360 8 59 120 .2 520 58
10 60 -1.3 370 10 60 120 .2 520 58

11 60 -1.3 370 10 61 124 .3 530 62
12 64 -1.2 380 12 62 124 .3 530 62
13 64 -1.2 380 12 63 124 .3 530 62

14 68 -1.1 390 14 64 124 .3 530 62

15 68 -1.1 390 14 65 128 .4 540 66

16 72 -1.0 400 16 66 128 .4 540 66
17 72 -1.0 400 16 67 128 .4 540 66

18 76 -.9 410 18 68 128 .4 540 66
19 76 -.9 410 18 69 132 .5 550 70
20 76 -.9 410 18 70 132 .5 550 70

21 80 -.8 420 21 71 132 .5 550 70
22 80 -.8 420 21 72 136 .6 560 73

23 80 -.8 420 21 73 136 .6 560 73

24 84 -.7 430 24 74 136 .6 560 73
25 84 -.7 430 24 75 140 .7 570 76
26 84 -.7 430 24 76 140 .7 570 76
27 88 -.6 440 27 77 140 .7 570 76
28 88 -.6 440 27 78 144 .8 580 79

29 88 -.6 440 27 79 144 .8 580 79

30 92 -.5 450 30 80 144 .8 580 79

31 92 -.5 450 30 81 148 .9 590 82

32 92 -.5 450 30 82 148 .9 590 82

33 96 -.4 460 34 83 148 .9 590 82

34 96 -.4 460 34 84 152 1.0 600 84

35 96 -.4 460 34 85 152 1.0 600 84

36 96 -.4 460 34 86 156 1.1 610 86
37 100 -.3 470 38 87 156 1.1 610 86

38 100 -.3 470 38 88 160 1.2 620 88

39 100 -.3 470 38 89 160 1.2 620 88

40 100 -.3 470 38 90 164 1.3 630 90

41 104 -.2 480 42 91 164 1.3 630 90

42 104 -.2 480 42 92 168 1.4 640 92

43 104 -.2 480 42 93 168 1.4 640 92

44 104 -.2 480 42 94 172 1.5 650 93

45 108 -.1 490 46 95 176 1.6 660 94

46 108 -.1 490 46 96 180 1.7 670 95

47 108 -.1 490 46 97 184 1.8 680 96

48 108 -.1 490 46 98 192 2.0 700 97

49 112 .0 500 50 99 200 2.2 720 98

50 112 .0 500 50 100 216 2.6 760 99



Table 2
Score Conversion Table for the Table 1 Data

GRE A GRE %tile A %tile
240 1

280 40 2 1

300 20 3 1

320 20 4 1

330 10 5 1

340 10 6 1

350 10 7 1

360 10 8 1

370 10 10 2

380 10 12 2

390 10 14 2

400 10 16 2

410 10 18 2

420 10 21 3

430 10 24 3

440 10 27 3

450 10 30 3

460 10 34 4

470 10 38 4

480 10 42 4

490 10 46 4

500 10 50 4

510 10 54 4

520 10 58 4

530 10 62 4

540 10 66 4

550 10 70 4

560 10 73 3

570 10 76 3

580 10 79 3

590 10 82 3

600 10 84 2

610 10 86 2

620 10 88 2

630 10 90 2

640 10 92 2

650 10 93 1

660 10 94 1

670 10 95 1

68n 10 96 1

700 20 97 1

720 20 98 1

760 40 99 1

Note. The non-linear non-equal-interval nature of percentile ranks
is indicated by the table. Going from a GRE score of 240 to 280, a
40 unit change in GRE score, results in a change of 1 percentile,
while going from 500 to 540, also a 40 unit change in GRE score,
results in a change of 16 percentile rank units!
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Figure 4
Scattergram of GRE scores by Equivalent Percentile Ranks
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Note. The numbers with the scattergram indicate the number of
people at a given Cartesian coordinate, e.g., 1 person had a
percentile rank of 1 and the associated GRE score of 240, while 4
people had GRE scores of 500 and the associated percentile rank of
50.
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Figure 5
Scattergram of GRE scores by Equivalent Percentile Ranks

for the 26 Subjects Below the 25th %tile
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APPENDIX A
Additional Quotations from Authors Noting

That Percentile Ranks May Not Be Added or Averaged

"[Percentile rank] equivalents should not be used in data analyses
involving descriptive or inferential statistics, however. The
reason for not using equivalents in these analyses is that they
have unequal units. For example..., if the mean of a test is 50 and
its standard deviation is 10, a person with a score of 50 and a
person with a score of 40 would be about 35 percentiles different
from each other. However, two other persons with the same raw score
difference of 10, but having raw scores of 40 and 30, would only be
about 13 percentiles different from each other." (Borg & Gall,
1989, p. 340)

"Arithmetic and statistical computations of percentile rank scores
cannot be meaningfully interpreted in some situations.... This can
be seen from a simple example with data from Table 19.2; suppose
group A consists of two examinees with raw scores 12 and 20, and
group B consists of two examinees with raw scores 15 and 17. Both
group A and group B have a raw score mean of 16, yet the means of
their corresponding percentile rank scores are considerably
different (40.5 for group A and 24.5 for group B)." (Crocker &
Algina, 1989, pp. 441-442)

"For all the clarity and simplicity of percentile scores, they do
not lend themselves to many statistical operations such as
averaging and correlating scores. The difference in actual measured
heights [in the example] between two men at the 50th and 52nd
percentiles is very much smaller than the height difference between
two men at the 97th and 99th percentiles.... Or, in IQ units P50 and
P52 differ by less than one IQ point, whereas Pr differs from P99 by
almost seven points. Standard scores avoid this problem and lend
themselves readily to meaningful summary statistical calculations."
(Glass & Hopkins, 1984, p. 66).

"The inequality of units requires special caution when using
percentile ranks. First, a difference of several percentile points
should be given greater weight at the extremes of the distribution
than near the middle. In fact, small differences near the middle
of the distribution generally can be disregarded. Second,
percentile ranks should not be averaged arithmetically." (Gronlund
& Linn, 1990, p. 349)

"The main limitation of percentile norms is that the percentile
units are not equal on all sections of the scale.... Two
implications of the unequal unit nature of percentiles should be
remembered. One is that percentile ranks that are averaged
arithmetically--by calculating a mean score--do not result in a
meaningful value, hence should be discouraged.... The second
implication is that small differences in percentile rank scores
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near the middle of the distribution are not very meaningful."
(Moore, 1983, P. 219)

"Researchers should be cautioned against the use of percentiles as
variables in statistical analyses that require interval data [i.e.,
any analysis in which scores have to be added, subtracted,
multiplied or divided as part of calculations] because the
nonlinear transformation is likely to introduce distortions into
the results. Even though most analysis procedures can be applied to
data that deviate somewhat from being of an interval scale, the
magnitude of the deviation from interval scale introduced by the
use of percentiles [percentile ranks], coupled with the complete
violation of the assumption of normality that accompanies their use
[when parametric tests of statistical significance are conducted],
could render the conclusions of such studies suspect." (Cunningham,
1986, p. 69)

"In short, percentile norms [ranks] are ordinal scales, not
interval scales.... [Therefore...,] percentiles and percentile
ranks as such cannot be treated arithmetically [e.g., added] and a
meaningful product obtained." (Ahmann & Glock, 1981, p. 221)
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