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Generalized SERE Model

Abstract

In the last decade, several attempts have been made to relate item response theory (IRT) models

to latent class analysis (LCA) models. One of these attempts is the solution-error response-error

(SERE) model; a LCA model in which the structure of the latent class probabilities is explained

by a one-dimensional loglinear Rasch model.

In this paper the SERE model will be generalized to models for polytomously scored

latent states that may be explained by a multidimensional latent space.

1
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Generalizations of the

Solution-Error Response-Error Model

Introduction

For measuring individual differences, a distinction can be made between measurements on a

discrete qualitative latent trait and measurements on a continuous quantitative scale. The latent

class analysis (LCA) model, where it is assumed that subjects belong to different latent classes,

belongs to the first case (Bartholomew, 1987; Lazarsfeld & Henry, 1968; Mooijaart, 1978).

Whereas, the item response models (IRT) belongs to the second case. Some well known

examples of IRT models are the Rasch (1960/1980) model and the two and three-parameter-

logistic or normal ogive models (Lord, 1980; Lord & Novick, 1968). In the last decade, several

attempts have been made to relate IRT models to LCA models (Bock & Aitkin, 1981; Dayton &

Macready, 1980; Formann, 1985; Kelderman, 1988a, 1989; Kelderman & Macready, 1990;

Mislevy & Verhelst, 1990; Yamamoto, 1987, 1988). In this paper one of these attempts will be

discussed: the solution-error response-error (SERE) model of Kelderman (1988a).

In the SERE model a distinction is made between a "Know" state in which the subject

has complete knowledge of the answer and a "Don't know" state. The probability that the subject

is in the "Know" state is assumed to be govemeJ by the Rasch model. Further, it is assumed that

if the subject is in the "Don't know" state, the subject will choose an alternative, where the

attractiveness may be different for different alternatives, including the correct one. The SERE

model can be formulated as an (incomplete) LCA model, whem each latent class corresponds to

an idealized response pattern. The relations between these idealized responses are explained by

the loglinear version of the Rase% model (Cressie & Holland, 1983; Duncan, 1984; Kelderman,

1984; Tjur, 1982).
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All SERE models considered in Kelderman (1988a) deal with a one-dimensional

continuous latent trait. In many testing situations, however, we may have to deal with a two - or

more - dimensional latent space. For example, consider a version of the American Society of

Clinical Pathologist (ASCP) Microbiology-Test. In Appendix A.1 some items of this test are

presented. Content experts have hypothesized that although each item of this ASCP test has one

correct alternative, incorrect responses might often be chosen after cognitive activities similar to

those necessary to arrive at the correct response. They presumed further that "Applying

Knowledge", "Selecting Action", "Calculating", "Correlating Data" and "Evaluating Problem"

are the involved cognitive processes in answering the items. For instance, it was assumed that for

item 11 of Appendix A.1 the correct answer (d) involved two applications of knowledge,

whereas answer c only one. For giving the correct answer c on item 20 it was assumed that the

subject had to use the cognitive process "Evaluating Problem" two times and the cognitive

processes "Applying Knowledge" and "Selecting Action" ones.

So, in general, producing one answer may require quite another ability from the

examinee than to produce another answer. Or some responses may require the repeated

application of an ability, whereas others may require only a single application of the same

ability. In this paper the SERE model will be generalized to models for polytomously scored

latent states that may be explained by a multidimensional latent space. Maximum likelihood

estimates of the parameters of this generalized SERE (GSERE) model can be obtained by

solving the likelihood equations by the iterative proportional fitting (IPF) algorithm of Goodman

(1974b).

In what follows, the GSERE model will be formulated. The estimation method and

goodness-of-fit tests are described, and the question of identifiability is discussed.
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The Generalized Solution-Error

Response-Error Model

Suppose that each subject, randomly drawn from a population of subjects, responds to k test

items, where the answer to item j may be any of the rj responses, denoted by yj (yi=1 , ri). Let

xi (xj=0,...,si) indicate the latent state of the subject. For example, all the items of the ASCP

Microbiology Test have four possible responses (i.e., rj=4) and may have three latent states:

"Don't know", "Partial knowledge" and "Complete knowledge". It is assumed that if the subject

is in the "Don't know" state (xj=0), (s)he will choose one of the alternatives. If the subject is in

the "Partial knowledge" state (xj=1), (s)he will choose one of the alternatives that might be right

given the subject's partial knowledge of the answer. If the subject is in the "Complete

knowledge" state (xj=2), (s)he will choose the right alternative. The random variables with

values yj and xi are denoted by Yi and Xi (j=1 k). The relationship between the latent state xj

and the observed response yj is described by the conditional probability

( 1 )
XY p(y.=y.

JJIX;=x;) ,JJx y
J J

This conditional probability will be referred to as the attraction parameter of itein j.

In the generalized solution-error response-error (GSERE) model it is assumed that the

latent states are not governed by the Rasch (1960/1980) model, but by the more general

multidimensional polytomous latent trait model (MPLT) by Kelderrnan (1988b). In the MPLT

model it is assumed that the subject must perform certain cognitive operations to produce a score

x on item j. See for instance the example in the previous section. Each operation depends on a

certain proficiency on a latent trait. Let Big(x) be a non-negative weight associated with the

dependence of response x on item j on the latent trait q. Furthermore, let Etig(x) be the difficulty

parameter of the response x on item j related to latent trait q (q=1.,v), eq be a value of the
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subject on the latent ability continuum and 0 = (01 ..... 0v) be the vector of ability values. The

probability that the subject has a response xi on item j can be written as (Kelderman, 1988b)

(2)

exp(l (0, - Sici(xj))Big(xj)}
9

P(xi10) =
I exp(I ( 0, - Sig(z))Bici(z)}
z q -1

Assuming local independence of Xi and Yi given the latent trait vector 0 and Xj, respectively,

the probability of choosing response yj is equal to

(3) P(yi10) = P(yilxi, 0) P(xj10)

X.Y.
= I f 4) i J} exp( I (0 - S. (x.))B (x.)} C(0,5i)-1

xi xi yi q q A J .19 J

where Si = (Sii,...,Siv),

C(0,S;) = I exp ( I (0, - Sig(z))Big(z)}
J z q '

As Kelderman (1988b) has shown, by specifying the scoring weights Bjc/(.), different models can

be chosen for the dependence of the latent states on the latent traits. To illustrate the main idea of

this paper, in the following one specific MPLT model will be considered; the multidimensional

partial credit (MPCM) modeL However, it may be clear that the contents of this paper is also

valid for other kinds of MPLT models.

The scoring weights for a MPCM model, where each step depends on a different latent

trait, are depicted in Figure 1(a).

1 0
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Insert Figure 1 here

The "Complete knowledge" state (x=2) has scoring weight Bii(2) = I on the first trait and

scoring weight Bi2(2) = 1 on the second. The "Partial knowledge" state (x=1) has scoring weight

Bi1(1) = 1 on the first trait, whereas the "Don't know" state (x)) has scoring weights zero.

Using (2) and the scoring weights NO of Figure 1(a), the probability that the subject has a

latent staw on item j can be written as

(4)

x.
exPi E (0g - Si (Xj))

q=1

exp( E (0g - öjg(z)))
z q=

Adding a constant c to SAW and subtracting it from SA(l') (151Pzi) does not change the

model in (4). By setting the difficulty parameters of the same response equal to each other (i.e.,

Sici(xi) = Sig for xi = 0,1,2 and all q), this indeterminancy can be removed (Kelderman, 1988b).

From (4) and the assumption of local independence of the Xi's given the latent trait vector 0, it

follows that the simultaneous distribution of X given 0 is

(5)

where

P(x10) = expi I (0, t, - Big(xi) Sin)) 11 C(0,89-1
J

co,sp =I exp (eq - sjo
z q=
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As all other MPLT models, the MPCM model is a exponential family model and t=(t1,...,tv) is a

sufficient statistic for the latent trait vector 0 (Kelderman, 1988b).

Let Z mean the summation over all possible latent state patterns x=(x1,...,xk). Using (1),
x

(5) and the assumption of local independence of the observed responses yj, the marginal

probability of y given 0 can be written as

(6) P(y10) = i P(ylx, 0) P(x10)

XJI'.
= 1: ( 1;1 (1) J } exp( E (0 t- - U. (x.) 8. )) rl . -1

9 -9 J9 J 19 C(6'83)x j xjyj 9 J J

Rearranging the terms of (4) and letting F(0) be the distribution function of the latent ability

vector 0, the marginal probability of the observed responses y can be written as an incomplete

LCA model in the sense of Haberman (1979)

(7)
T Xi Xk XI Y1 XkYk

P(y) = E 4) 4) ... 4) 4) ... 4)
x t x 1 xk x 1 y 1 xkyk

_I. 2

v
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4)T = fexp(
q

t
g

) c(8,8.y.
q

X.
= exp( E

ci=1 J'i

In this model, each value of the latent state vector x represents a latent class. Maximum

likelihood estimates of the parameters of the GSERE model can be obtained by solving the

maximum likelihood equations by the iterative proportional fitting (IPF) algorithm

(Bartholomew, 1987; Goodman, 1974b; Haberman, 1979; Hagenaars, 1990). The overall

goodness-of-fit of a model can be tested by the Pearson statistic or the likelihood-ratio statistic

(see Haberman, 1979). Together with the question of identifiability, these two issues will be

discussed in the next sections. But first, some applications of the GSERE model will be

discussed.

Applications of the GSERE Model

In the previous section a GSERE model was formulated, where the parameters of the model were

unrestricted, except for the usual restrictions pertaining to probabilities and conditional

probabilities. In the present section, it is discussed how to modify the GSERE model in order to

make it suitable for special applications.

Generally, for each specific GSERE model we may defme the weights BA(.) and certain

constraints on the attraction parameters for each item j. The choices of the weights may depend

on the required latent trait abilities for the correct response. For example, the item "20-5-6=?"

requires two subtraction operations for the correct response, so that we can choose the one-

1 3
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dimensional partial credit model as depicted in Figure 1(b). But, for the item "4(169-25)=?",

where the two abilities are subtraction and taking the square root, we can choose the two-

dimensional partial credit model as depicted in Figure 1(a). In Kelderman (1988b) other possible

choices of the scoring weights for the dependence of the latent states on latent traits are

discussed.

Insert Figure 2 here

By specifying the attraction parameters (1) as free, equal to each other or fixed to a certain value,

a particular GSERE model is specified (Kelderman, 1988a; Westers & Kelderman, 1992). In

Figure 2 some examples of the attraction parameters for the GSERE model are depicted. Figure

2(a) describes the situation of a perfect response process; the subject answers the item correctly

(y=1) if (s)he can solve the problem (x=1) and gives a wrong answer (yj=2) if (s)he cannot solve

the problem (x=0). One case, where the items are not necessarily answered incorrectly if the

subject cannot solve the problem, is with multiple choice items. If the subject doesn't know the

answer, (s)he will guess the most attractive alternative. The attraction parameters for this

situation are depicted in Figure 2(b). In Figure 2(c) the situation is depicted for the case where

more then one alternative is correct. Generally, it is assumed that if the subject can solve the

problem formulated by the item, (s)he will give the correct answer. But, a subject may fail to

produce a correct answer, even if the subject was able to solve the problem. On the other hand, if

(s)he is not able to solve the problem, it is impossible to produce the correct answer. Such a

situation is depicted in Figure 2(d), where 13 is the so-called omission error. In the case of the

MPCM model, we may assume that the attraction parameters are specified as depicted in Figure

2(e).

14
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Identifiability

Whether the maximum likelihood estimates of the parameters of the GSERE model are unique

depends on the identifiability of the model. A necessary condition for identifiability is, of course,

that the number of independent parameters to be estimated does not exceed the number of cell

frequencies minus one (i.e., (11 rj)-1). Furthermore, if the MPLT model is not (locally)

identifiable, then the GSERE model is also not (locally) identifiable.

Generally, in MPL models identifying restrictions must be put on the model parameters

Therefore, in the paper of Kelderman (1988b) conditions are formulated, which ensures that the

difficulty parameters of the MPLT model are not linearly dependent upon each other and upon

the proportionality constants, respectively.

Since the (G)SERE model can be formulated as an (incomplete) LCA model, Goodmans

(1974a) sufficient condition for identifiability can be used for the identifiability of the GSERE

model. Let M be the matrix consisting of the derivatives of the function (7) with respect to the

parameters of the GSERE model. The number of rows of the matrix M is equal to (II rj)-1 and

the numbe: of columns is equal to the number of parameters of the GSERE model. By direct

extensions of a standard result about Jacobians, the GSERE model will be locally identifiable if

the rank of the matrix M is equal to the number of columns. The rank of the matrix M can be

evaluated by numerical methods.

When the parameters of the GSERE model are not identifiable, various kinds of

restrictions can be imposed upon the attraction parameters and/or the item parameters in order to

make the GSERE model identifiable. For instance, by specifying the attraction parameters to be

equal to each other or to be fixed at a certain value.

Unidentifiability can be discovered by estimating the parameters a second time, this time

using different initial estimates. In the case of unidentifiability both runs will give different

parameter estimates.
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Estimation Method

Let mxyt be the expected number of subjects with latent state x, observal response y and

sumscore t. As Kelderman (1988a), and Westers and Kelderman (1992) have showed, the

parameters of the SERE model can be estimated by applying the iterative proportional fitting

(IPF) algorithm. For the GSERE the IPF algorithm can also be used. One of the differences with

the SERE model is that, depending on the number of the latent state categories, the number of

latent classes may be quite large. Since the number of attraction parameters depends on the

number of latent state categories and the number of item response categories, this number may

also be quite large.

The maximum likelihood estimates of the parameters of the GSERE model can be

obtained by solving the maximum likelihood equations by a two-step algorithm. In the first step

of each iteration (i.e., the outer iteration), the attractiveness of the alternatives and the expected

frequency distribution of the latent classes will be estimated. For the GSERE model the first step

is similar to the first step of the estimation method for the parameters in the LCA model

(Goodman, 1974b). In the second step of each iteration (i.e., the inner iteration), the estimated

expected distribution of the latent classes is fitted to the postulated loglinear model. From this

distribution the difficulty parameters can be estimated.

5 1 Outer Iteration

As indicated before the GSERE model can be formulated as a LCA model, where each latent

class represents a latent state vector x. Let

(8) P(y) =1 P(x) 11x) KYkix)
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where P(x) is the probability of getting latent state vector x and P(yjlx) is the conditional

probability of choosing response yj given the latent state vector x. The model in (8) is a LCA

model in the sense of Goodman (1974b), which means that the IPF algorithm for the general

latent structure model, where the parameters in the model are unrestricted, can be used for

estimating the expected frequency distribution of the latent classes and the attractiveness of the

alternatives.

As mentioned before, in the GSERE model it is assumed that the observed response yj

depends only on the latent state xj, therefore the conditional probabilities P(yjlx) are restricted in

the following manner

P(yjlx) = P(ylx ') = X.Y-
(I) J J

J xj yj

for all latent state vectors x and x' with components x' r xj. The eCY can be obtained by

taking a weighted average of the estimates P(yjlx) obtained from the 1PF algorithm, using

weights proportional to 1:1(x) (Goodman, 1974b). So

X.Y. A A A

= P(x) P(Tix)} E, p(x)} ,xj yj xt J x

where E means the summation over all latent state vectors X=x with X.=x.
x' J J'

5 2 Inner Iteration

As assumed in the second section of this paper, the latent probabilities P(x) are restricted in such

a way that they satisfy an MPCM model. Knowing that the MPCM model is an exponential

family model and that the sum score t is a sufficient statistic for the latent ability parameter 0

(Kelderman, 1988b), the conditional distribution of X given t is by

4
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P(x1t) = exp { 9i(xj) 1 / g(t,9),

g(t-.9) = exp{ Z 9(x)},
xlt

where I means summation over those values of the latent state vector x for which
xlt

(I Bji(x),...,E13iv(x)) is equal to t, and the vector p = (91(x1),...,(pk(xk)) denotes the weighted

sums over latent traits of the difficulty parameters

9(xi) = - 8 ia(xi) Bjci(xj).
q=f

Letting mxt be the estimated expected number of subjects with latent state x and sum score t we

have

(9) log mxt = at + cpj(xj)

where at = - log( g(t,9)/Nt) is a fixed normalizing constant, Nt is the number of subjects with

sum score 1. For the MPCM model the parameters 9(xj) are specified by 9j(1) = 8ji and

9(2) = -8 ji - j2, respectively.

The model in (9) is a quasi-loglinear model for an incomplete item response 1 x...x item

response k x score 1 x...x score v contingency table. The table is incomplete since for certain

given values of X. only one t is possible. Maximum likelihood estimates can be obtained by

solving the maximum likelihood equations of the MPCM model. These equations can be solved

by 1PF (Kelderman, 1988b). The latent probabilities P(x) are then adjusted to these maximum

1 8
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likelihood estimates. In this way new latent probabilities P(x) are obtained that satisfied the

postulated MPLT model and are used again in the next outer iteration.

Goodness-of-Fit Test

The overall goodness of fit of the GSERE model can be tested by the Pearson statistic or the

likelihood-ratio statistic. Both statistics are asymptotically distributed as chi square with degrees

of freedom equal to the difference between the number of cells in the observed contingency table

and the number of estimable parameters. However, if the expected counts become too small, the

approximation of the distribution of the goodness-of-fit statistics by a chi-square distribution

becomes bad (Koehler, 1977; Lancaster, 1961; Larnz, 1978).

Using the difference in the likelihood-ratio test statistics for two models (Bishop,

Fienberg, & Holland, 1975; Rao, 1973), it can be tested whether an alternative model yields a

significant improvement in fit over a special case of this alternative model.

If two GSERE models are not proper subsets of each other, then Akaike's (1977)

information criterion (AIC) or Raftery's (1986a, 1986b) Bayesian information criterion (BIC)

can be used. AIC is defmed as

AIC =02 - (In 2) d

where 02 is the likelihood-ratio test statistic and d is the number of independent parameters in

the GSERE model. The BIC index has In N (i.e., the sample size) instead of In 2, but is otherwise

identical. For both indices, the ftrst term is a measure of badness of fit, whereas the second term

is a correction for overfhting due to the increasing bias in 02 as the number of parameters in the

SERE model increases. The GSERE with the minimum AIC or BIC value will be chosen to be

19
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the best fitting model. Computer programs by Hagenaars and Luijkx (LCAG, 1990) and

Kelderrnan and Steen (LOGIMO, 1988) can be used to fit the model.

Example

For numerical reasons, the GSERE model is difficult to be routinely applied in large testing

programs yet. Not the number of parameters of the model causes the problems, but the number

of latent classes and the tables of observed and expected counts become too large for computer

storage. One solution to this problem may be the use of the Division-by-Item (DBI) principle of

Westers (1992). In this paper a maximum likelihood estimation method for the one-dimensional

SERE model for a large set of items was described. This method was based on dividing the

whole item set in several subsets. The computational problem boils down to the simultaneous

estimation of the parameters of a set of smaller SERE models. This could be done because one of

the properties of the SERE model was the collapsibility of the model. Since this property is also

valid for the GSERE model (Appendix A.2), we can also use the DBI-principle for the

estimation of the parameters of the GSERE model. However, before the GSERE model can be

widely applied, further research is required to reduce the amount of computer storage. But if the

generalization to the multidimensional latent spare is ignored, then, for a small number of items,

the parameters of the GSERE model can still be estimated by the combined of the programs

LCAC and LOGIMO. In this section this will be demonstrated with an example.

The authors were allowed to analyse four one-dimensional four-choice items from a

protected data base of the ASCP Medical Laboratory Test. ASCP produces tests for certification

of paramedical personnel. The items in the Medical Laboratory Test measures the ability to

perform medical laboratory tests. The test score is obtained by adding the number of correct

items.

20
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Content experts from ASCP have hypothesized that the cognitive process "Applying

Knowledge" was involved in answering these four items. According to the assumptions of the

Insert Table 1 here

content experts, we postulated that there are three latent states: "Don't know", "Partial

knowledge" and "Complete knowledge", with scoring weights equal to zero, one and two,

respectively. This means that it is assumed that the latent states are governed by the one-

dimensional partial credit model (OPCM) as depicted in Figure 1(b). Table 1 shows the

hypothesized weights that content experts gave for each of the item responses on the cognitive

Insert Figure 3 here

process "Applyirg Knowledge". Those hypothesized scoring weights are translated into

specificatior,s of the attraction parameters, which are depicted in Figure 3(a) through (d), where

x=0 indicates the "Don't know" state, x=1 the "Partial knowledge" state and x=3 the "Complete

knowledge" state, respectively.

In this example the hypothesized model (H) will be compared which three alternative models.

The first model (A1) is a GSERE model, where for each item all the attraction parameters are unequal to

zero (Figure 4). Model A2 is the same as Model A1, but where it is assumed that the correct alternative

will be chosen if the subject is in the "Complete knowledge" state. Model A3 has notonly the same

assumptions as Model A2, but it also assumes that oti=13i (i=1,...,4). The specifications of the attraction

parameters of Models A2 and A3 are also depicted in Figure 4.

o I



Generalized SERE Model

17

Insert Figure 4 here

In Table 2 the Likelihood-ratio test statistics, the Akaike's information criteria and Raftery's

Bayesian information criteria for the four models are given. From the G2 and AIC values it is

seen that the hypothesized model fits the data better then the alternative models. Furthermore,

Model A2 fits the data better than Model A3, which means that there may be a significant

difference between the attraction of the alternatives for a subject in the "Don't know" state and a

subject in the "Partial knowledge" state. The better fit of Model A2 relative to Model A1 may

indicate that a subject in the "Complete knowledge" state would make no mistake choosing the

right alternative.

Lisert Table 2 here

In Table 3 the estimates of the attraction parameters for the alternatives of each item are

presented for the hypothesized model. These results indicate that a subject in the "Partial

knowledge" state is more likely to choose the correct alternatives to Items 1 and 4 than a subject

in the "Don't know" state. Most likely, a test constructor would never expect that a subject in the

"Don't know" state is more likely to choose the correct alternative than a subject in the "Partial

knowledge" state, as has happened for Item 2. The attraction parameter of the correct alternative

of Item 2 in the first state is five times as large as the associated parameter in the second state.

However, in both states the probability of choosing the right alternative is very low. In the

"Partial Knowledge" state alternative A is almost always chosen, whereas in the "Don't know"



Generalized SERE Model

18

state alternative D is often chosen. Therefore, Item 2 has the advantage of being possible to

distinguish between subjects who exactly knew the solution of the problem imposed by Item 2

and those who did not. The attraction parameters for the correct alternatives of Item 3 are

approximately the same for both states.

From Table 3 it can be seen that some of the attraction parameters are smaller than .05.

An interesting question for these cases is if these attraction parameters are really unequal to zero

or happen to yield estimates unequal to zero by chance. Although it is bad practice to formulate

an alternative model post hoc after looking at parameter estimates and test it on the sample

sample, we have tried to find an answer to the above mentioned question by fitting a fourth

alternative model (A4), which had the same assumptions as the hypothesized model (H). It was

also assumed that all the attraction parameters with estimated value smaller than .05 in the

hypothesized model were equal to zero. This alternative model showed a slightly improved fit

Insert Table 3 here

compared to the hypothesized model (see Table 2). It also followed that the alternative model fits

the data better than all the other alternative models. In Table 4 the estimated attraction

parameters for Model A4 are given. From this table it can be seen that the estimated attraction

parameters in the case of Model A4 do not differ much from the estimated attraction parameters

of the hypothesized model.

Insert Table 4 here

3
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At this point we have considered only the attraction parameters of the four items from the ASCP

Medical Laboratory Test. In the remaining part of this section we will take a closer look at the

difficulty parameters of the items. In this example it was assumed that the latent states were

governed by the one-dimensional partial credit model. Using the scoring weights for this model

as depicted in Figure 1(b) and omitting the latent trait index q, the one-dimensional version of

Model (2) becomes

(10) P(x10) =
exp (( 0 - Si(x))x)

E exp (( - 8j(z))z)

exp( E (0-xtrip))
g=1 "

E exp( E (8-wig))
z g=1 '

where wix = x Sj(x) - (x-1) 6j(x-1) describes the diffict: j of step x in item j, because each latent

state may be seen as the result of a series of subsequent steps, each of which has to be passed. In

Table 5 the values of the wix parameters for the four items of the ASCP Medical Laboratory Test

in the case of the hypothesized model H are given.

Insert Table 5 here

From Table 5 it follows that the difficulty of the steps changes positively for the items 1, 3 and 4.

Meaning that it is more difficult to do the last step than the first step. On the other hand, for item

2 it is difficult to take the first step, but if the first step is reached than the second step is very

7d
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easy. Following Verhelst and Verstralen (1991), two remarks have to be made. First, as

Molenaar (1983) showed, the parameter value of a particular step depends on the parameter

values for the other steps in the item. Therefore, the parameter value of a step cannot be

interpreted as a measure of its difficulty. Second, it cannot be known in advance that the items

allow for a sequential solution as assumed in the partial credit model.

Finally, some surprising results which are found during the analyses will be discussed.

First from the 3370 subjects in the study no one had responded complete wrong to the four items.

However, in the case of the hypothesized model it was estimated that 68 subjects had no

knowledge of the solution of the problems imposed by all four items. On the other hand, almost

32% of the subjects responded complete right to all four items, whereas it was estimated that 2%

really knew all the solutions to the problems.

Discussion

In this paper a loglinear item response theory (IRT) model with latent classes was proposed that

related polytomously scored item responses to a multidimensional latent space. The proposed

model is a generalization of the solution-error response-error (SERE) model (Kelderman 1988a;

Westers & Kelderman, 1992) to situations of polytomously scored latent states that may be

explained by a multidimensional latent space. In this generalized SERE model a distinction is

made between some well-defined latent states in which the subject has a certain amount of

knowledge of the answer. The probability that the subject is in a certain state is assumed to be

governed by the multidimensional polytornous latent trait model (MPLT). The relationship

between the latent states and the observed answers is described by conditional probabilities.

Maximum likelihood estimates of the parameters of the GSERE model can be obtained

by the IPF algorithm. However, the results by Westers and Kelderman (1992) indicate that the

(M)SERE model is usable in practice only when the responses to a few items are studied.

25
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However, since the property of collapsibility is also valid for the GSERE model, the DBI-

principle of Westers (1992) can be used for estimating larger sets of parameters in the GSERE

model.

As pointed out in Westers and Kelderman (1992), an item can show DIF in two different

ways. First, an item exhibits DIF if equally able individuals from diffemnt subgroups have

different probabilities of knowing the answer. Second, an item also exhibits DIF if the

attractiveness of the alternatives vary from subgroup to subgroup. Just as in the case of the SERE

model, the GSERE model can be extended with variables defining subgroups to study these two

types of DIF. Therefore, the GSERE model is suitable for the examination of DIF in polytomous

items through a combination of DIF for correct/incorrect responses and DIF in the alternatives.

A
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Appendix A.1

Two Items of the American Society of Clinical Pathologist (ASCP) Microbiology Test

Item 11 Of the following bacteria, the most frequent cause of prosthetic heart valve

infections occurring two to three months after surgery is:

a. Streptococcus pneumoniae

b. Streptococcus pyogenes

c. Staphylococcus aureus

d. Staphylococcus epidermidis

Item 20 A beta-hemolytic gram-positiv coccus was isolated from the cerebrol. inal fluid

of a 2-day-old infant with signs of meningtis. The isoltae grew on sheep blood

agar under aerobic conditions and was resistant to a bacitracin disc. Which of the

following should be performed for the presumptive identification of the

organism?

a. oxidase production

b. catalase formation

c. CAMP test

d. esculin hydrolysis
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Appendix A.2

The Collapsed Generalized Solution-Error

Response-Error Model

In this appendix an instructional proof will be given that the GMSERE model in (7) is

collapsible. The same notation will be used as in the previous sections. From elementary

probability theory, it follows for the GSERE model that

P(y i,y2) = Z E P(y)
Y3 Yk Y3 Yk

= E I P(x) Kylx) = P(x) ... P(y1x)

Y3 Yk )4 Y3 Yk

= P(x) P(y11x1) P(y21x2) E ... I P(y31x3) P(yklxk)
Y3 Yk

with P(x) is the marginal probability of the latent state vector x. From conditional probability

calculus it follows that

P(y1,y2) = P(x) P(yllx1) P(y21x2)

= E E P(y11x1) P(y21x2) E E P(x)
x1 x2 x3 xk

Letting z=(z1,...,zy) with zq = Blq(x 1) + B2q(x2), and using the assumption of local

independence of the latent states xj in the MPCM model and elementary calculus it follows that

28
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... P(x) = E P(x10) dF(0)
x3 xk x3 xk

=SE ... 11 P(xj10) dF(0)
x3 xk j=1

=fP(x Ile) P(x210) dF(0)

Using this last equation, the marginal probability of the observed responses y and y2 can be

written as

with

and

P(y1,y2) = E P(y1 lx 1) P(y21x2).1 P(x110) P(x2I8) dP(0)
xl x2

= E E oXIY1 4)X2Y2 X1 43X2 4712
x1 x2 x1 y1 x2 y2 xj x2 z

oTzl 2 = exp(1 zn4 On) {C(0,8 1) c(0,82) dF(0)
q 4

C(0,6) = exp { I (Og - jci)}
j Z q=1

29
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which is similar to (7) except that here we consider two items and in (7) k items. It may be clear

that the collapsibility of the GSERE model is also valid, if the general MPLT model is used for

describing the dependence of the latent states on the latent traits.

30
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Table 1

Hypothesized Weights of the ASCP Medical Laboratory Test

Items for the Covitive Process "Applying Knowledge%

Item Scoring Weights Correct Answer

A B CD
1 2 1 C
2 1 2 C
3 2 1 1 A
4 2 1 I A

o 4
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Table 2

Likelihood-Ratio Test Statistics. Akaike's Information Criteria and Raftery's_Bayesian

Information Criteria for Four Items from the ASCP Meslical Laboratory Test

Model Number of
Parameters

G2
Value

AIC
V alue

VILICue

A1
A2
A3
A4

35
53
41
29
32

197.557
328.733
190.259
235.102
200.283

173.297
291.996
161.840
215.001
178.102

-86.736
-101.768
-142.770

-0.455
-59.642
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Table 3

Attraction Parameters for the Alternatives of Four Items from the ASCP Medical Laboratory

Test in the case of Model H

Alternatives Alternatives
"Don't know" state "Partial knowledge" state

hem A B C D A

1 .204 .135 ,180 .481 .000* .000: ,676 .324,
2 .027 .276 ,QrA .633 .988 .000- 012 .000:
3 ,622 .163 .000 .215 502 .158 .340 .000:
4 556 .120 .086 .238 jia .110 .063 .000-

Note 1 : The correct alternatives are underlined.

Note 2,: Attraction parameters marked with an asterisk are prespecified.
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Table 4

Attraction Parameters for the Alternatives of Four Items from the ASCP Mel !kill Laboratory

Test in the case of Model A4

Alternatives Alternatives
"Don't know" state "Partial knowledge" state

Item A B C D A B C D

1 .275, .182 ,187 .355 .000* .000* 581 419
2 .000- .286 ,058 .656 1.000 .000* ,QQQ* .000.
3 623 .164 .000- .208 ,597 .124 .279 .000,
4 ,477 .130 .112 .281 919 .081 .000 .000-

&led,: The correct alternatives are underlined.

Note 2.: Attraction parameters marked with an asterisk are prespecified.



Table 5

Egimata_Difkunyhtamaus_affsairjkm5

from the ASCP Medical Laboratory Test for the case

of the Hypothesized Model H

Item Step 1 Step 2

I -2.15232 -0.64080
2 0.18140 -4.02920
3 -1.87987 -0.51876
4 -2.04992 1.20943

Generalized SEIZE Model
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Figure Captions

Figure 1, Scoring Weights for the One- and Two-dimensional Partial Credit Model.

Figure 2. Examples of Specifications of the Attraction Parameters

Figure 3. Specifications of the Attraction Parameters of the Four Items from the

ASCP Medical Laboratory Test for the Hypothesized Model H.

Figure 4. Specifications of th,.: Attraction Parameters of the Four Items from the

ASCP Medical Laboratory Test for the Alternative Models A1, A2, and A3.

ND_ y=A expresses the right alternative.

Note 1. The specifications are for all four items the same.
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