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ABSTRACT

Meta-analytic methods were used to summarize the results of Monte Carlo (MC) studies

investigating the robustness of various statistical procedures for testing within-subjects

effects in split-plot repeated measures designs. Through an extensive review of the

literature, a population of accessible MC studies was identified, and the characteristics

(simulation factors) and outcomes (rates of Type I error) of each MC study were coded

for several test procedures (univariate, df-adjusted univariate, multivariate). Weighted

least squares regression procedures were used to model the variation in the rates of Type

I error of the test procedures as a function of the MC study characteristics. Results

indicated that all test procedures were generally robust to violations of the multivariate

normality assumption. The ê F-test was generally insensitive to departures from the

sphericity assumption, with its degree of bias decreasing with increases in the degree of

non-sphericity. For balanced designs, all test procedures were reasonably robust to

moderate degrees of covariance heterogeneity, with Type I error rates becoming only

slightly liberal with increases in the degree of covariance heterogeneity. When the design

was unbalanced, however, all procedures were sensitive to the presence of heterogeneous

covariance matrices, particularly for the within-subjects interaction effect, where the tests

became increasingly conservative or liberal depending on the pairing of unequal

covariance matrices and unequal group sizes. For balanced designs, the use of either a

df-adjusted univariate or multivariate approach is recommended; for unbalanced designs,

Huynh's (1978) GA or IGA procedures are recommended rather than any of the

investigated test procedures.
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THE ANALYSIS OF REPEATED MEASURFMENTS:
A QUANTITATIVE RESEARCH SYNTHESIS

Box (1953) coined the term "robustness" to refer to the insensitivity of a statistical test's

rates of Type I error and power to violations of its derivational assumptions. That is, "A

'robust' statistical test preserves the validity of the probability statements applied to it even

though the assumptions upon which it is based are violated" (Glass, Peckham & Sanders, 1972,

p. 284). According to Box (1953), the robustness of a statistical test is perhaps the most

important criterion to be considered when researchers assess the usefulness of various competing

statistical procedures. Thus, it is not surprising that, since Box's (1953) paper, extensive

literatures have developed regarding the robustness of statistical procedures that are frequently

used by educational and psychological researchers. Some of the studies comprising these

literatures have used exact statistical theory to study the effects of assumption violation;

however, as educational and psychological research data seldom satisfy the assumption(s)

required to use exact statistical theory (i.e., normality) (Micceri, 1989), these literatures are

m..xle up, in large part, of empirical studies which have used computer simulation [or Monte

Carlo (MC) methods] to examine the issue of statistical robustness. Typically, the results of

these MC studies have been analyzed in a descriptive and impressionistic fashion, without the

benefit of an "overarching theory" to guide their interpretation (Harwell, 1992). As a result,

both methodological and applied researchers have arrived at different conclusions about the

robustness of various statistical procedures on the basis of the results of a MC study or a series

of MC studies. For example, on the basis of their review of the statistical robustness literature

regarding the one-way fixed effects analysis of variance (ANOVA) F-test, Glass et al (1972)

concluded that this test statistic was robust to violations of the homogeneity of population
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variances assumption, provided that group sizes were equal. Others, however, have drawn

different conclusions from this literature regarding the robustness of the ANOVA F-test (e.g.,

Blair, 1981) and subsequent research has questioned further the validity of Glass et al's (1972)

conclusions (e.g., Rogan & Keselman, 1 Y77; Tomarkin & Serlin, 1986).

In order to address this situation, Harwell (1992) suggested that meta-analytic methods

(Glass, 1976; Glass, McGaw & Smith, 1981) be used to summarize MC research results. Within

this context, the objective of a meta-analysis is to correctly model the variation in the empirical

Type I/power rates of a given test procedure (the outcome variables) as a function on the

characteristics of the MC studies (the explanatory variables) and, in doing so, to isolate

important relationships between MC study characteristics and Type I error/power rates. For

example, Harwell, Rubenstein, Hayes and Olds (1992) conducted a meta-analysis of MC studies

of the robustness of the fixed effects ANOVA F-test, in which they examined variation in the

rates of Type I error and power of the ANOVA F-test as a function of a number of MC study

characteristics, including population shape (i.e., skewness and kurtosis), number of treatment

groups, total sample size, ratio of largest to smallest group size, ratio of largest to smallest

group variance and pairing of unequal group sizes and unequal group variances.' On the basis

of the results of their meta-analysis combined with the results of exact statistical theory, Harwell

at al (1992) concluded, among other things, that the ANOVA F-test is not robust to variance

heterogeneity when group sizes are equal, a finding contrary to that based on the narrative

review of Glass at al (1972).

Harwell at al (1992) also investigated the Welch and Kruskal-Wallis tests in the
single factor ANOVA model
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According to Harwell (1992), meta-analytic procedures are particularly suitable for

synthesizing MC research results. That is, because of the limited number and the nature of

factors generally investigated in MC studies as well as the control that is exercised over the data

generation process, MC studies do not seem to suffer from the problems that are often inherent

in meta-analyses in other areas of the behavioral sciences, e.g., study selection biases, lack of

comparability across studies in the definition and measurement of explanatory and outcome

variables (for a detailed discussion of issues related to the use of meta-analytic methods to

synthesize MC results, see Harwell, 1992, p.300-306). In addition, conducting a meta-analysis

of MC research results has several advantages. Such an analysis results in the generation of a

"network" of empirical results which provides a framework within which past and future MC

studies can be interpreted (Harwell, 1992). This, in turn, should allow for the development of

more comprehensive and valid guidelines for applied researchers than those currently available

regarding the appropriate use of popular statistical procedures under specific assumption

violation conditions. The integration of MC research results can also suggest avenues for further

empirical work, by highlighting gaps in the extant methodological literature.

One statistical robustness literature that would profit from a quantitative research

synthesis is that concerning the (omnibus) analysis of repeated measures designs. In a typical

repeated measures design, subjects (or sampling units) are selected randomly for each

combination of the between-subjects factors (for designs containing at least one between-subjects

factor) and are exposed to each combination of the within-subjects factors (Winer, 1971). The

data from a repeated measures design can be analyzed using either univariate or multivariate

procedures. The valid use of either approach, however, depends on the data conforming to the

6
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derivational assumptions underlying these procedures. Under normality, the assumptions

underlying the use of a traditional mixed-model univariate approach are: (1) equality or

homogeneity of covariance matrices for each suitably chosen set of orthonormalized variables

at all levels of the between-subjects factors, and (2) sphericity of the common covariance matrix.

Jointly, these conditions have been referred to as multisample sphericity (Huynh, 1978;

Mendoza, 1980). The valid use of a multivariate approach rests on the same assumptions as that

of the mixed-model univariate approach except that it does not depend on the form of the

common covariance matrix, in other words, sphericity of the common covariance matrix is not

required.

Unfortunately, educational and psychological research data seldom satisfy the assumptions

underlying the valid use of these test procedures (Davidson, 1972; Greenwald, 1976).

Consequently, and as a result of the popularity of these designs among educational and

psychological researchers, an extensive literature has developed on the proper analysis strategy

for such designs. In large part, this literature has focused on the effects of violating the seldom-

satisfied assumption of (multisample) sphericity on the operating characteristics of the traditional

mixed-model univariate F-test and on the relative robustness of various suggested alternative

analysis strategies [e.g., df-adjusted univariate tests (Greenhouse & Geisser, 1959; Huynh &

Fe ldt, 1976); multivariate tests (O'Brien & Kaiser, 1985; Timm, 1975) to this assumption

violation. Some of the studies comprising this literature have used exact statistical theory to

examine the robustness of these procedures. The great majority of these studies, however, have

employed MC methods, with each study investigating a variety of data-analytic approaches under

particular sets of simulation conditions and, as a consequence, with studies often providing

7



7

competing recommendations to applied researchers concerning appropriate analysis strategies.

Indeed, Muller and Barton (1989), in summarizing the statistical robustness literature on repeated

measurements, commented on the lack of consensus concerning which analysis strategy to use

in any particular situation.

The purpose of the present study, therefore, was to conduct a meta-analysis of the

statistical robustness literature on the analysis of repeated measures designs. Of particular

interest was the integration of MC research findings concerning the use of univariate, df-adjusted

univariate and multivariate procedures to analyze within-subjects effects in split-plot repeated

measures designs. The results of the meta-analysis are compared and combined with those of

exact statistical theory in order to arrive at a summary of the effects of assumption violations

for the various test procedures. On the basis of this summary, guidelines for researchers

concerning the analysis of repeated measurements under conditions of assumption violation are

presented.

METHOD

Data Collet- ion and Evaluation

A population of accessible MC studies on the use of univariate, df-adjusted univariate

and/or multivariate procedures for the analysis of within-subjects effects in split-plot repeated

measures designs was identified by conducting computerized and/or manual searches of the

following data bases: ERIC (1969-1992); Conference Papers Index (1973 - 1992); Dissertation

Abstracts International (1960-1992); PsychINFO (1967-1992); and MATHSCI (1959-1992). The

following keywords were used to identify relevant studies: repeated measure, omnibus tests, tests

of mean equality, nonsphericity, assumption violations, Type I error, power, Monte Carlo, and
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simulation. In addition, the reference lists of all relevant studies identified through these searches

were reviewed to locate articles that may have been overlooked.

The search procedures resulted in the identification of 32 studies, 17 published journal

articles and 15 unpublished conference presentations, dissertations or manuscripts. Two of the

identified studies did not report empirical Type I error or power rates and, therefore, were

excluded from the meta-analysis. Eighteen of the remaining 30 studies reported data for repeated

measures designs involving a between-subjects grouping factor. Two of these studies were

eliminated from the meta-analysis as they involved a blocking variable on the within-subjects

factor. One study was also eliminated from consideration as the empirical rates reported in this

study represented the average of rates reported in one of the dissertations identified as part of

the search procedures.

In short, the population of accessible MC studies concerning the analysis of split-plot

repeated measures designs was comprised of 15 studies. All of these studies investigated analysis

procedures for the simplest of split-plot repeated measures designs, that is, for designs

containing a single between-subjects factor A with j = 1,...,J levels and n; observations at each

j (En; = N) and a single within-subjects factor B with k = 1,...,K levels. Eight of the studies

reported only Type I error data while the remaining seven studies reported both Type I error and

power data. Eight of the 15 studies were published and seven were unpublished. The seven

unpublished studies consisted of three dissertations, three conference presentations, and one

manuscript. As the population of accessible MC studies was relatively small, it was decided to

use all 15 studies in the meta-analysis (see the appendix for a complete listing of these studies).

Given the relative homogeneity of MC studies (Harwell,1992), the resulting sample of studies,

9
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though potentially a nonrandom sample, was felt to be representative of the population of studies

of interest.

Each of the 15 studies were screened for methodological flaws. In addition, the method

of data generation used in each study and the accuracy of the method, as evidenced by the

pattern of the test procedures' empirical rates under conditions of no assumption violations, was

reviewed. On the basis of this review, all studies were judged to be methodologically sound and,

therefore, all 15 studies were included in the meta-analysis.

Table 1 presents the characteristics of each study (explanatory variables) that were coded

in an attempt to correctly model the variation in the investigated test procedures' empirical rates

of Type I error (outcome variable)2'3. In order to ensure that these study characteristics were

coded accurately, each MC study was reviewed and coded independently by two of the authors

and any differences over the specific characteristics investigated in a given MC study were

resolved jointly. The percent of agreement between the reviewers with respect to the

characteristics investigated in each MC study was nearly 100%.

As seen from Table 1, information about the shape of the population distributions was

captured by coding the specific type of distribution (e.g., normal, chi-square) as well as by

computing values of skewness and kurtosis for these distributions (see Hastings & Peacock,

1975). To capture information about the form of the overall population covariance matrix,

2

3

Only the results of the meta-analysis on Type I error rates (a .05) are
presented in this paper.

The variable representing the number of Monte Carlo samples, NREPS, was
coded in order to compute the weights used in the weighted least squares
regression analysis

1 0



Box's (1954b) correction factor, E, was used where

In equation (1),

(trC'EC)2e
(K-1)tr(C'EC)2

10

(1)

(2)

where ; is the covariance matrix for group j, C is a matrix of coefficients defining a set of K-1

orthonormalized variables associated with the B and AxB within-subjects main and interaction

effects, respectively, and 'tr' is the trace operator. According to Box (1954b), when the

sphericity assumption is satisfied, that is, when E is spherical in form, E = 1.00; with increasing

departures from sphericity, the value of E decreases from 1.00 to a lower bound of E = (K - 1)-'.

Two indices were used to capture information about the pairing of group sizes (n;) and

group covariance matrices (;). Both of these indices are based on Box's (1954a) findings

concerning the effect of variance heterogeneity on the F-test in the one-way independent groups

design. According to Box (1954a), when group sizes are equal, the extent of discrepancy

between the empirical and nominal rates of Type I error of the F-test is a function of the spread

of the distribution of unequal variances, as measured by a coefficient of variation of these

variances. When group sizes are not equal, this discrepancy depends not only on this coefficient

of variation but also on the ratio of the unweighted and weighted means of these variances, as

reflected in Box's (1954a) bias coefficient (p.301). Applying Box's (1954a) fmdings to repeated

measures designs involving a between-subjects grouping factor, the first index used to capture

11
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information about the pairing of nis and ;s was a weighted coefficient of variation of the group

covariance matrices, WCV(GPCOV), where

J

E ni(Aj---Sw)2/J

WCV(GPCOV)- j'1
(3)

It, equation (3), Ai is the difference between the average of the K variances and the average of

the K(K-1)/2 covariances for group j, that is, Ai = Trik2 - Zrikk, (k k') and

(4)

When group covariance matrices are homogeneous (and group sizes are either equal or unequal),

WCV(GPCOV) = 0.0; as group covariance matrices become increasingly heterogeneous, the

value of WCV(GPCOV) increases from zero and is a function of both the degree of covariance

heterogeneity and group size inequality and of the nature of the pairing of unequal covariance

matrices and unequal group sizes. For fixed degrees of covariance heterogeneity and group size

inequality, the value of WCV(GPCOV) is larger for conditions in which the unequal covariance

matrices are inversely paired with unequal group sizes than for conditions involving the direct

pairing of these covariance matrices and group sizes'.

The second index used to capture information about the pairing of no and ;s was a

4 A direct pairing of unequal covariance matrices and group sizes refers to the case
where the covariance matrix of the smallest group has the smallest A; while an
inverse pairing of unequal covariance matrices and group sizes refers to the case
where the covariance matrix of the largest group has the smallest AN.



modified version of the Box's (1954a) bias coefficient, where

where

1
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(5)

(6)

_
and A i, s as previously defined. When group covariance matrices and/or group sizes are equal,

BIAS = 1.00; when both group covariance matrices and group sizes are unequal, the value of

BIAS 1.00 and, for a fixed value of N and J, is a function of the degree of covariance

heterogeneity, the degree of group size inequality and the nature of the pairing of unequal

covariance matrices and unequal group sizes. When Au, < Ac, as is the case for direct pairings

of unequal group covariance matrices and unequal group sizes, the value of BIAS is less than

1.00 and decreases from 1.00 with increases in the degree of covariance heterogeneity and/or

group size inequality. When A. > Aw, as is the case when unequal group covariance matrices

are inversely paired with unequal group sizes, the value of BIAS is greater than 1.00 and

increases from 1.00 with increases in the degree of covariance heterogeneity and/or group size

inequality.

As seen from Table 1, information about group covariance matrices and group sizes

equality/inequality was also captured separately throueh the GPCOV and CV(GPN) explanatory

variables, respectively, where CV(GPN) is a coefficient of variation of the group sizes, that is,

1 3
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(7)

where -n = Ein/J. These two variables were not used as explanatory variables per se but were

used to stratify the MC data in order to perform various sub-analyses. Finally, various features

of the design of MC study were also coded, including the number of levels of the between-

subjects factor (GROUPS), number of levels of the within-subjects factor (TRIALS) and total

sample size (N).

All of the MC data were coded by one of the authors, entered into a code hook and

subsequently transferred into a computer file. Several procedures were used to detect and correct

data entry errors. First, the computer data file was checked twice for coding errors by the author

who originally entered the data. Subsequent to these reviews of the data file, a systematic sample

of the data was checked in terms of the accuracy of the transfer of MC data from the original

studies to the computer data file. For MC studies in which equal group covariance matrices were

investigated, every fourth line of data was checked for accuracy, for those studies which

investigated unequal group covariance matrices, every second line of data was checked'.

Data Analysis

Descriptive statistics were irsed to arrive at summary information about the qualitative

and quantitative variables used in the meta-analysis. In order to characterize the relationships

5 A larger percentage of the data was checked for studies which involved unequal
group covariance matrices as these studies were more complex than those
involving equal group covariance matrices and, correspondingly, the computation
of the associated explanatory variables was more complex.

1 4
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between the MC study characteristics and the rates of Type I error for the various test

procedures, weighted least squares fixed effects regression models were fitted to the empirical

Type I error rates of each test procedure, following methods described in Hedges and Olkin

(1985, pp.168-174)6. The population regression models were of the form:

R.=Poi-xiiiPi+x,21124-.+xupPp+en,
(8)

where Rn is the observed outcome variable (i.e., rate of Type I error), xnp are the coded and

centered' explanatory variables (i.e., the coded MC study characteristics), i30 is a population

intercept, (3p is the population regression coefficient that reflects the relationship between the

'Pth' explanatory variable and the outcome variable, and En is a population error term. In order

to arrive at specific recommendations for both balanced and unbalanced split-plot designs, the

MC data was subdivided into cases where the between-group sizes were either equal or uneqtial

and separate regression analyses were performed on each of these data sets.

Hedges and Olkin's (1985, p.171) QR statistic was used to test for the presence of a

relationship between a set of explanatory variables and the outcome variable. Tests of the

difference between QR statistics (AQR) were used to test "competing" explanatory models

6

7

According to Harwell (1992), ordinary least squares regression analysis is likely
to be inappropriate for the meta-analysis of MC studies as the empirical rates of
Type I error will have different variances when the number of Monte Carlo
samples varies either within or across studies. In this case, weighted least squares
regression analysis, which does not rest on the assumption of homogeneity of
variance, is more appropriate.

As a means of addressing the issue of multicollinearity, the explanatory variables
in the regression models were centred by subtracting the mean value of a given
explanatory variable from each score on that variable. Multicollinearity can be
particularly problematic in regression models which include product terms which
tend to be highly correlated with their 'component' parts (Cronbach, 1987).

1 5
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(Harwell, 1992), designed to assess the role of a specific explanatory variable in accounting for

variation in the outcome variable. Tests of whether a particular explanatory model adequately

explained the variation in the outcome variable, that is, tests of model specification, were

conducted using Hedges and Olkin's (1985, p.172) QR statistic. The squared multiple

correlation, adjusted for the number of explanatory variables (R21) (see Marascuilo & Serlin,

1988, p.661) was used to quantify the predictive power of a given explanatory model and the

difference in the adjusted le14 (AR2aclj) was used to quantify the difference in the predictive

power of various explanatory models. For a detailed discussion of the QR and QE statistics, the

reader is referred to Hedges and Olkin (1985, pp. 168-174); for a more detailed discussion of

the use of these procedures to synthesize Monte Carlo research results, see Harwell (1992, pp.

303-306).

The SAS (SAS Institute, 1990a,b,c) statistical software program was used to perform the

statistical analyses. Only the results pertaining to the following test procedures are reported in

this paper: the F-test, the 6-adjusted F-test (Greenhouse & Geisser, 1959), and Hotel ling's

(1931)1' test (for the within-subjects main effect); and the F-test, the 6-adjusted F-test, and the

Pilai (1955)-Bartlett (1939) trace statistic (for the within-subjects interaction effect).

RESULTS

Table 2 presents the average Type I error rates for each of the investigated test

procedures by within-subjects effect and by study. A summary of the descriptive statistics

computed on the qualitative and quantitative variables used in the meta-analysis for each of the

within-subjects effects is presented in Tables 3 through 6. These statistics provide information

on the nature of the simulation conditions investigated in the MC studies that formed the basis
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of the meta-analysis. For example, as seen from Tables 5 and 6, a large percentage of the

empirical distributions generated to investigate the robustness of the various test procedures were

normal in form (82.6% 93.0%). In addition, the robustness of these test procedures has

typically been investigated for designs in which the number of levels of the between- and within-

subjects factors are 3 (88.6% 99.2%) and 4 (40.0% - 94.3 %), respectively. In general,

the 6 F-test has been investigated over a broader range of designs (with respect to the number

of levels of the between- and within-subjects factors and the total sample size) than either the

F-test or hie multivariate procedures.

A summary of the results of the explanatory models that were fitted to the empirical Type

I error rates is presented in Tables 7, 8, 9 and 108'9. Preliminary analyses indicated that the

SKEW and KURT variables were perfectly correlated and, accordingly, the KURT variable was

dropped from all regression analyses in order to eliminate this linear dependency. For each of

the explanatory models, an examination of the residuals indicated no significant violations of the

normality assumption. In addition, using SAS"RSTUDENT' residuals (see SAS, 1990b) the

data was screened for observations with undue influence for each explanatory model.

As seen from Tables 7 through 10, all of the QR statistics were statistically significant

(a = .05), indicating that there was a significant relationship between the set of explanatory

variables of each model and the Type I error rates of the various test procedures. Similarly, the

8

9

The log-normal data was not used in the regression analyses as (a) there was a
small amount of this data and (b) this data was only available for one of the
within-subjects effects of interest.

Missing data were treated by listwise deletion, resulting in a reduction in the
number of cases used in some of the analyses.

1 7
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tabled results show that, with a few exceptions, all of the QE statistics were also statistically

significant (a = .05), indicating that almost all of the explanatory models that were fitted to the

Type I error rates were misspecified. The size and, therefore, the significance of these statistics,

however, is related to the variation in the weights' used in the regression analyses, which was

quite large for many of the explanatory models. As a result, it was felt that the R21dj statistic, an

index of the explanatory power of a given model, was a more informative statistic on which to

base a discussion of the various models than either QR or QE. In addition, given that the great

majority of AQR statistics were also statistically significant (a = .05), the difference in

competing explanatory models is discussed with reference to the corresponding Alead; values,

similarly, the relative "usefulness" (Darlington, 1968) of a given explanatory variable in

modelling Of predicting the variation in the empirical Type I error rates of a particular test

procedure is interpreted in terms of its associated squared semi-partial correlation (SVp), rather

than in.terms of a statistical test of its associated regression coefficient (k), which typically were

also statistically significant.

Model Comparison #1: Effects of Bilinear Interaction Terms

To investigate the relationship between the bilinear" interactions among the MC study

The weight assigned to each observation is equal to the reciprocal of the varianceio

of the observation. For the Type I error rates, the variance is equal to R.(1
and the reciprocal of the variance is equal to S./R.(1 R,), where S. is the

size of the sample, i.e., the number of simulations associated with R., the rate of
Type I error.

A bilinear interaction between two explanatory variables occurs when the slope
of the relationship between the outcome variable and one of the explanatory
variables changes as a linear function of the scores on the other explanatory
variable. According to Jaccard, Turrisi and Wan (1990), the use of traditional
product terms in regression analysis examine bilinear interactions between

11
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characteristics and the empirical Type I error rates of the various test procedures, the following

models were compared:

Model 1.1: TYPE1 = SKEW + EPSILON + WCV(GPCOV) + [BIAS] + GROUPS
+ TRIALS + TOTALN

Model 1.2: TYPE1 = SKEW + EPSILON + WCV(GPCOV) + [BIAS] + GROUPS
+ TRIALS + TOTALN + 21 two-way product terms12'13'14

As seen from Tables 7 and 9, for the equal group size cases, all of the differences in the QR

statistics were statistically significant , with the exception of the AQR statistic associated with the

F-test of the within-subjects main effect. An examination of the associated AR2,4; values,

however, suggested that the effects of the bilinear interactions among the explanatory variables

on the Type I error rates of the test procedures were negligible to small, with values of AR21,4

ranging from .003 (for the F-test of the main effect) to .078 (for the ê F-test of the main effect).

As with the equal group size cases, all AQR statistics were statistically significant for the unequal

group size cases, except that associated with the F-test of the within-subjects main effect.

Further, with the exception of the e F-test of the within-subjects main effect, the AR21d; values

associated with the Model 1.1 vs. Model 1.2 comparisons were generally similar to those

reported for the equal group size cases and reflected negligible to small relationships between

12

13

variables.

For some of the analyses, linear dependencies prevented some of the product
terms from entering the model (see Tables 7 through 10).

The BIAS explanatory variable is bracketed ([ ]) to indicate that for the models
performed on MC data involving equal group size cases, BIAS = 0 and, hence,
was not included in the model.

14 For the unequal group size cases, the GROUPS w.planatory variable was not
included in the models associated with the T2 statistic as, in this case, there was
no variability in this factor.
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the bilinear interactions among the explanatory variables and the Type I error rates. For the

F-test of the within-subjects main effect, these bilinear interactions had a moderate effect on its

empirical rates, as indicated by an associated Ale"; value equal to .254. An examination of the

standardized regression coefficients and associated squared semi-partial correlation coefficients

for the two-way product terms of Model 1.2 suggested that the bilinear interaction of BIAS and

TRIALS accounted almost exclusively for this Ale"; (13131ASXTRIALS - 6295), SP2BIAsxTRIALS

.205). A subsequent analysis in which the Type I error rates of the ê F-test of the within-subjects

main effect were fitted to a model containing the Model 1.1. 'main effect' explanatory variables

plus the BIASXTRIALS product term confirmed this observation, with the value of AR2i,dj

between this model and that of Model 1.1 equalling .0586 (.6455-.5869). Thus, for the ê F-test

of the within-subjects main effect, the relationship between BIAS and rates of Type I error

varied to a moderate degree as a function of the number of levels of the within-subjects factor.

An examination of the mean rates of Type I error indicated that when the number of levels of

the within-subjects factor was small (B 4), the mean rates of Type I error increased with

increases in the value of BIAS (.0321 .0804). When B > 4, however, this positive relationship

between BIAS and mean rates of Type I error was not evident, with mean rates ranging from

.0342 to .0307 for increasing values of BIAS.

Turning to an examination of the 'main effect' models represented by Model 1.1, the

results indicated that the degree of relationship between the MC study characteristics (assumption

violations and/or design features) and the Type I error rates varied as a function of the type of

test procedure and the within-subjects effect of interest, with the values of R24 ranging from

.3920 to .9726. For the equal group size cases, the Type I error rates of the F-test of both

20



20

within-subjects effects were the most strongly related to the MC study characteristics (Wad; =

.8438 - .8736), followed by the ê F-test (Wadi = .7334 .8253) and the multivariate procedures

(leadj = 4251 .5247). For the conventional F-test, this relationship was slightly stronger for

the interaction tests while for the '6 F-test and multivariate tests, the relationship was stronger

for the within-subjects main effect.

Like the equal group size cases, the Type I error rates of the F-test for the unequal group

size cases were the most strongly related to the set of Model 1.1 explanatory variables (R22di =

.8917 -.9726) and this relationship was stronger for tests of the interaction effect than for tests

of the main effect. Unlike the equal group sizes cases, however, the relationship between Type

I error rates and the set of Model 1.1. explanatory variables was stronger for the multivariate

tests of both within-subjects effects (R2,j = .6401 .8849) than for the F-test of these effects

(leadj = .3920 .8592). Further, for both of these test procedures, the relationship between the

set of Model 1.1 explanatory variables and the Type I error rates was stronger for interaction

tests than for tests of the within-subjects main effect.

In summary, the Model 1.1 results indicated that the degree of relationship between the

MC study characteristics and the Type I error rates of all investigated procedures for testing both

main and interaction effects was moderate to very strong and that the magnitude of this

relationship varied as a function of the type of test procedure and the within-subjects effect of

interest. For both the equal and unequal group size cases, the strongest relationships between

the set of Model 1.1 explanatory variables and rates of Type I error were associated with the

P-test, with this relationship being stronger for tests of interaction effects than for tests of main

tests. For the ê F-test and multivariate procedures, the strength of the relationship between the
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MC study characteristics and rates of Type I error varied as a function of the type of within-

subjects effect and whether the MC data were generated from balanced or unbalanced designs.

An examination of the standardized regression coefficients and the associated squared

semi-partial correlation coefficients associated with the Model 1.1 regression analyses suggested

that the specific MC study characteristics differed in terms of their usefulness in predicting

variation in the Type I error rates of the various test procedures and that this usefulness also

varied as a function of the type of within-subject effect and the nature of the MC study design

(balanced or unbalanced). The remaining model comparisons were designed to tease out the

usefulness of specific MC study characteristics in modelling the variation in the Type I error

rates of the various test procedures.

Model Comparison #2: Effects of Population Shape (Skewness)

To examine the relationship between the shape of the population distribution, as captured

by the SKEW explanatory variable, and rates of Type I error, the following models were

compared:

Model 2.1: TYPEI = EPSILON + WCV(GPCOV) + [BIAS] + GROUPS +

TRIALS + TOTALN

Model 2.1: TYPEI = SKEW + EPSILON + WCV(GPCOV) + [BIAS] + GROUPS

+ TRIALS + TOTALN

As all of the MC data was normal in form for the unequal group size cases, tests of the

relationship of population shape and rates of Type I error were only possible for the equal group

size cases. Moreover, as a large percentage of the MC data was generated from multivariate

normal distributions, the tests of this relationship should be viewed as limited.
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As seen from Tables 7 and 9, for the equal group size cases, all of the Model 2.1 vs.

Model 2.2 AQR statistics reflecting the inclusion of the SKEW explanatory variable in the model

were statistically significant, with the exception of the AQR statistic associated with the F-test

of the interaction effect. An examination of the associated Ale"; values, however, indicated that

with the exception of the multivariate test of the within-subjects main effect (r), the degree of

relationship between the shape of the population distribution and rates of Type I error was

negligible (.000 .018), indicating that the skewness of the population distribution was

not useful in predicting variation in the Type I error rates of these test procedures. The observed

insensitivity of the F-test to the shape of the population distribution is consistent with the large

sample analytical results of Gayen (1949, 1950) and Scheffe (1959) for the independent groups

ANOVA F-test; similarly, the observed robustness of the multivariate test of the within-subjects

interaction effect to population shape conforms to the large sample analytical results reported by

Ito (1969) and Mardia (1971) and to the empirical results of Olson (1974) regarding the Pillai-

Bartlett statistic.

With respect to the multivariate test of the within-subjects effect (T2), the results of the

Model 2.1. vs. Model 2.2 comparison indicated that there was a moderate degree of relationship

between the skewness of the population and its empirical rates (AR.2,d; =.242). An examination

of the Type I error rates for the normal and skewed data cases indicated that these rates were

only slightly inflated (mean = .0668) when companA to their normal data counterparts (mean

= .0558).

In summary, results indicated that all investigated procedures for testing both within-

subjects main and interaction effects were generally insensitive to the shape of the population
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distribution and, accordingly, that the skewness of the population distribution was generally not

a useful predictor of variation in Type I error rates.

Model Comparison #3: Effects of Non-Sphericity

To examine the relationship between departures from the sphericity assumption, as

captured by the EPSILON explanatory variable, and rates of Type I error, the following models

were compared:

Model 3.1: TYPEI = SKEW + WCV(GPCOV) + [BIAS] + GROUPS + TRIALS

+ TOTALN

Model 3.2: TYPEI = SKEW + EPSILON + WCV(GPCOV) + [BIAS] + GROUPS

+ TRIALS + TOTALN

As seen from Tables 7 through 10, with the exception of the multivariate tests of both the main

and interaction effects, all AQR statistics were statistically significant for the Model 3.1 vs.

Model 3.2 comparisons, indicating that the rates of Type I error for both the F- and ê F-tests

varied significantly as a function of the degree of departure from the sphericity assumption. As

the valid use of multivariate tests does not depend on this assumption, the nonsignificant AQR

statistics and corresponding negligible AR2,d; values for the 'V and Pi Ilai-Bartlett statistics for

both the equal and unequal group size cases are consistent with theoretical expectations.

For the equal group size cases, the variation in the Type I error rates of the F-test of both

the main (AR2ad; = .810) and interaction (Aleadj = .764) effects were strongly related to

departures from the sphericity assumption, as captured by the EPSILON explanatory variable.

As the value of EPSILON decreased from 1.00, the Type I error rates for the F-test of the main

and interaction effects increased from the nominal .05 level, with mean values becoming as large
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as .171 and .189, respectively. These results are consistent with the analytical results of Box

(1954b) who reported that the Type I error rates of the F-test increased from the nominal level

of significance as the degree of non-sphericity increased. For the 6 F-test of the within-subjects

main and interaction effects, the degree of relationship between Type I error rates and EPSILON

was much weaker than for the F-test and generally small in size (A1V1i = .120 and .111,

respectively). For the equal group size cases, the mean empirical Type I error rates for the 6 F-

test of the main and interaction effects associated with the largest investigated degree of

nonsphericity were .067 and .058, respectively, suggesting that this procedure was generally

insensitive to departures from the sphericity assumption. Further, the results indicated that these

Type I error rates became less biased (i.e., less deviant from the nominal a) as the value of

EPSILON decreased from 1.00. This finding is consistent with the results of Collier at al (1967)

and Huynh and Fe ldt (1976), who reported that 6 became a less biased estimate of E as E

decreased from 1.00.

For the unequal group size cases, with the exception of the F-test of the within-subjects

main effect, the degree of relationship between the EPSILON explanatory variable and Type I

error rates was negligible (.009 Aleoj s.5_, .047). While the Type I error rates of the F-test of the

within-subjects main effects were strongly related to the degree of non-sphericity (AR.21d; =

.630), this was not the case for the F-test of the within-subjects interaction effect (Alt21d; =

.018). A further examination of the data indicated, however, that the negligible relationship

observed between the degree of non-sphericity and the Type I error rates of the F-test of the

interaction effect appeared to be an artifact of the unequal group size cases. That is, as virtually

all of these data (i.e., 98 %) were generated when the group covariance matrices were
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heterogeneous and because of the very strong degree of relationship between Type I error rates

and departures from the equality of covariance matrices assumption, there was little remaining

variation to\be predicted by the EPSILON explanatory variable. The nature of the unequal group

size cases combined with the observed moderate degree of relationship between the Type I error

rates of the F-test of the within-subjects main effect and the degree of heterogeneity of the

covariance matrices could also explain the reduction in the magnitude of the relationship between

the empirical rates and EPSILON for the F-test ?this effect, when compared to the equal group

size cases. The degree of relationship between the Type I error rates of the ê F-test of both

within-subjects effects was also generally weaker for the unequal group size cases and was

negligible in size (.000 Aleadj 5..047).

In summary, results indicated that for the equal group size cases the F-test of both within-

subjects effects was strongly affected by departures from the sphericity assumption and,

accordingly, that EPSILON was a very useful predictor of variation in t1 Type I error rates of

this procedure. The Type I error rates of the ê F-test of both within-subjects effects were only

minimally affected by the degree of non-sphericity effects, particularly for mall values of E.

EPSILON was \of little Use, therefore, in predicting variation in its empirical rates. Finally, the

degree of non-sphericity was not useful in predicting variation in the Type I error rates of the

multivariate tests as these procedures do not depend on this assumption. For the unequal group

size cases, the relationship between the rates of the Type I error of the F-test of the main and

interaction effect and the degree of non-sphericity appeared to be reduced or masked,

respectively, by the relationship between empirical rates and the degree of covariance

heterogeneity.
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Model Comparison #4: Effects of Covariance Heterogeneity

To investigate the relationship between departures from the homogeneity of covariance

matrices assumption, as captured by WCV(GPCOV) (for equal group size cases) and by both

WCV(GPCOV) and BIAS (for unequal group size cases), the following models were compared:

Model 4.1: TYPEI V + EPSILON + GROUPS + TRIALS + TOTALN

Model 4.2: TYPEI = SICEW + EPSILON + WCV(GPCOV) + [BIAS] + GROUPS

+ TRIALS + TOTALN

As seen from Tables 7 through 10, all of the QR statistics, with the exception of that for the

F-test of the within-subjects interaction effect for the equal group size cases, were statistically

significant, indicating that with the exception noted, the Type I error rates of all tcst procedures

varied significantly as a function of the degree of heterogeneity of the covariance matrices. An

examination of the associated AR24 values, however, indicated that the degree of covariance

matrix heterogeneity had a negligible effect on the Type I error rates of the F- and ê F-tests of

both within-subjects effects for the equal group size cases (.000 5 Aled; .031). These results

are consistent with the analytical work of Box (1954a) and Scheffe (1959) concerning the

independent groups ANOVA F-test who reported that, when group sizes were equal, this test

procedure was generally robust to moderate degrees of variance heterogeneity, as was generally

the case for the MC data used in the present study. For the equal group size cases, when E

1.00, the mean Type I error rates for the F-test of the main and interaction effect ranged from

.052 to .055 and from .048 to .059, respectively, across the range of values of the

WCV(GOCOV) explanatory variable. The corresponding ranges of mean values for the ê F-test

of the main and interaction effects were .033 to .036 and .034 to .040, respectively.
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The Model 4.1 vs. Model 4.2 AR2ad; values for the multivariate tests of both the within-

subjects main (AR21d; = .354) and interaction (Aleadi = .258) effects suggested that, for the

equal group size cases, the Type I error rates of these procedures were moderately affected by

the degree of heterogeneity of the covariance matrices. An examination of the Type I error rates

of the multivariate test procedures indicated, however, that the rates of Type I error were only

slightly inflated when covariance matrices were heterogeneous, with mean empirical values

ranging from .054 to .067 and from .041 to .059 over a similar range of covariance

heterogeneity for the T2 and Pi llai-Bartlett statistic, respectively. These results are consistent

with the theoretical results of Ito and Schull (1964) and with the empirical results of Olson

(1974), who reported that the Type I error rates of the multivariate procedures are only slightly

affected by moderate degree of covariance heterogeneity when group sizes are equal.

For the unequal group size cases, the R2Idj values indicated that the magnitude of the

relationship between the empirical rates and departures from the equality of covariance matrices

assumption was moderate to strong for all tests procedures and varied as a function of the type

of test procedure and the within-subjects effect of interest. For all test procedures, the degree

of relationship was much stronger for the test of the interaction effel (.743 AR2,d; 5...949) than

for the test of the main effect (.274 5 AR2,4i .554), indicating that the effects of departures from

the homogeneity of covariance matrices assumption were stronger for within-subjects interaction

tests that for main effect tests. This fmding is consistent with the theoretical results reported by

Huynh arid Fe ldt (1977) with respect to the mixed model ANOVA F-test, and Belli (1988) with

respect to multivariate tests of repeated measures effects. For the within-subjects main effect,

the strongest relationship between empirical rates and the degree of heterogeneity of the
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covariance matrices was associated with the multivariate 'I' statistic; for the interaction effect,

the F-test was the most affected by departures from this assumption violation.

With the exception of the T2 statistic, the BIAS explanatory variable was much more

useful in predicting variation in Type I error rates that the WCV(GPCOV) variable. The mean

Type I error rates for all test procedures as a function of values of the BIAS explanatory variable

are presented in Table 11. As seen from Table 11, the Type I error rates for all procedures for

testing both main and interaction effects increased with increasing values of BIAS. This

relationship was particularly evident for tests of the within-subjects interaction effect where

empirical rates were as large as .311, .252 and .266 for the F-test, a F-test and Pi llai-Bartlett

statistic, respectively. In general, when the value of BIAS was greater than 1.00, the Type I

error rates of all test procedures exceeded the nominal cy; when the value of BIAS was less than

1.00, these Type I error rates were generally less than the nominal value. As mentioned

previously, values of BIAS less than 1.00 are associated with direct pairings of group covariance

matrices and group sizes while values of BIAS greater than 1.00 are associated with inverse

pairings of group covariance matrices and group sizes. According, the Table 11 results indicated

that for direct pairings of group covariance matrices and group sizes, all test procedures were

generally conservative while for inverse pairings of group covariance matrices and group sizes,

the test procedures were generally liberal. These fmdings are consistent with the results reported

by Box (1954a) and Horsnell (1953) for the independent groups ANOVA F-test, by Gronow

(1951) and Ramsay (1980) for the independent sample t-test, and by Ito and Schull (1964) and

Belli (1988) for the multivariate tests.

In summary, the results indicated that for the equal group size cases, the F- and a F-tests
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of both within-subjects effects were generally insensitive to moderate departures from the

equality of covariance matrices assumption and, accordingly, that the WCV(GPCOV)

explanatory variable was only minimally useful in predicting variation in the Type I error rates

of these procedures over the range of covariance heterogeneity represented by the MC data.

While the multivariate tests of both within-subjects effects appeared to be more sensitive to

violations of this assumption for the equal group size cases, the presence of heterogeneous

covariance matrices resulted in only slightly inflated Type I error rates. For the unequal group

size cases, all procedures were affected by departures from the equality of covariance matrices

assumption, particularly when used for testing the within-subjects interaction effect. In this case,

the BIAS explanatory variable was particularly useful in predicting variation in the Type I error

rates of the three test procedures, which were generally conservative when the value of BIAS

was less than 1.00 and liberal when the value of BIAS was greater than 1.00.

CONCLUSIONS AND RECOMMENDATIONS

The results of the meta-analysis combined with those of exact statistical theory suggest

that the F-test, ê F-test and multivariate tests are generally insensitive to departures from the

multivariate normality assumption, with Type I error rates becoming only slightly inflated when

the population shape was nonnormal. With respect to the sphericity assumption, the results

indicate that, for balanced designs, the ê F-test of either within-subjects effect was generally

insensitive to departures from this assumption, with the degree of bias in this test procedure

decreasing with increases in the degree of non-sphericity. With respect to the equality of

covariance matrices assumption, the effect of heterogenous covariance matrices on the Type I

error rates of all of the test procedures varied as a function of the whether the design was
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balanced or unbalanced and the within-subjects effect of interest. For balanced designs, the F-

and ê F-tests were generally insensitive to moderate degrees of covariance heterogeneity for

testing either within-subjects effect, with Type I error rates becoming only slightly inflated with

increases in the degree of departure. from this assumption. When the design was unbalanced,

however, all procedures were sensitive to the presence of heterogeneous covariance matrices,

particularly when used to test the within-subjects interaction effect, where the tests became

increasingly conservative or liberal depending on the pairing of unequal covariance matrices and

unequal group sizes. For unbalanced designs, a modified version of Box's (1954a) bias

coefficient, BIAS, proved to be very useful in predicting variation in Type I error rates of all

test procedures, particularly when applied to the assessment of the within-subjects interaction

effect.

On the basis of these findings, the following guidelines are recommended to educational

and psychological researchers. For balanced designs, robust tests of within-subjects effects can

generally be achieved by adopting either a df-adjusted univariate (i.e., a ê F-test) or a

multivariate approach. Our preference is for a multivariate approach as it depends on a less

restrictive set of assumptions that a df-adjusted univariate procedure. That is, while the meta-

analytic results suggest that the ê F-test is relatively robust to departures from the sphericity

assumption, it is nonetheless an approximate test, unlike multivariate tests which are exact in the

presence of non-sphericity provided that their own derivational assumptions are met. In this

regard, the results of the present meta-analysis suggest that multivariate tests are generally robust

to departures from the multivariate normality assumption.

For unbalanced designs, none of the investigated procedures can be uniformly
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recommended because of their sensitivity to departures from the equality of covariance matrices

assumption when group sizes are unequal, particularly when used to test the within-subjects

interaction effect. For unbalanced designs, therefore, we recommend adopting Huynh's (1978)

"generalized approximate" (GA) or "improved generalized approximate" (IGA) procedure. These

procedures, which are extensions of the ê F- test and ë F-test (Huynh & Fe ldt, 1976),

respectively, are designed for conditions of heterogeneous covariance matrices and arbitrary

group sizes.

Finally, it should be noted that these conclusions and associated recommendations are

restricted to the range of conditions represented by the MC data used in the present study and

to the particular test procedures investigated.
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APPENDIX

MC Studies Used in Meta-Analysis
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unbalanced designs. Paper presented at the annual inek.gi of the American Educational Research

Association, New Orleans, LA.

2. Boik, R. J. (1975). Interactions in the analysis of variance: A procedure for interpretation and a Monte Carlo
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International, 36, 2908B.

3. Collier, R. 0. J., Baker, F. B., Mandeville, G. K., & Hayes, T. F. (1967). Estimates of test size for several

test procedures based on conventional variance ratios in the repeated measures design. Psychometrika, 32,

339-353.

4. Hearne, E. M., Clark, G. M., & Hatch, J. P. (1983). A test for serial correlation in univariate

repeated-measures analysis. Biometrics, 39, 237-243.
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multivariate tests, or both? Unpublished manuscript.

7. Keselman, J. C., & Keselman, H. J. (1990). Analyzing unbalanced repeated measures design. British Journal

of Mathematical and Statistical Psychology, 43, 265-282.
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Bulletin, 92, 778- 785.

9. Mendoza, J. L., Toothaker, L. E., & Nicewander, W. A. (1974). A monte carlo comparison of the univariate

and multivariate methods for the groups by trials repeated measures designs. Multivariate Behavioral
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10. Noe, M. J. (April, 1976). A Monte Carlo study of several test procedures in the repeated measures designs.
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CA.
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annual meeting of the American Educational Research Association, Chicago, ILL.
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variance-covariance inhomogeneity. British Journal of Mathematical and Statistical Psychology, 42, 91-102.
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TABLE 1

Coded Monte Carlo Study Characteristics: Type I Data (a = .05)

Explanatory Variables:

(1) Distribution (yr = skewness, 72 = kurtosis)

I = Normal ('h = 0, Y2 = 0)
2 = Chi-Square (-yi '72 depend on the parameters used)
3 = Log Normal (yi 0,2 depend on the parameters used)

(2) Skewness (71) (SKEW)

(3) Kurtosis (72) (KURT)

(4) Sphericity (e) (EPSILON)

(5) Pairing of Group Sizes and Covariance Matrices(; s)

a. Weighted Coefficient of Variation of the Eis [WCV(GPCOV)]
b. Modified Bias Coefficient (BIAS)

(6) Inequality of Group Covariance Matrices (Eis)(GPCOV)

1 = equal ;s
2 = at least one ; not equal tc the other ;s

(7) Inequality of Group Sizes [CV(GPN)]

(8) Number of Levels of Between-Subjects Factor (GROUPS)

(9) Number of Levels of Within-Subjects Factor (TRIALS)

(10) Total Sample Size (TOTALN)

Outcome Variable:

(11) Empirical Type I Error Rate (TYPED

Other:

(12) Number of Monte Carlo Samples for Type I data (NREPS)
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TABLE 2

Mean Type I Error Values (cg = .05) for Investigated Test Procedures
by Type of Within-Subjects Effect (B,AxB) and Study

Study B Main
Effect

AxB
Interaction

1 * .100 ( 24)

2 1- * .064 ( 24)

3 .063 ( 45) .070 ( 45)

4 * ! *

5 .034 ( 6) .034 ( 6)

6 .046 (168) .066 (168)

7 .057 ( 96) *

8 .027 ( 15) .027 ( 15)

9 .060 ( 18) .059 ( 12)

10 .069 (192) .118 ( 96)

11 .038 ( 36) .040 ( 36)

12+ .064 ( 31) .065 ( 31)

13 * .055 ( 40)

14 * .033 ( 72)

15+ .058 ( 90) .057 ( 90)

Investigated test procedures were F Test, ê F Test, 1' (for the B main effer..1) and
F Test, ê F Test, Pillai-Bartlett statistics (for the AxB interaction effect);
* = did not examine Type I error and/or power for investigated test procedures;
+ = Ph.D. dissertation; and
values in parentheses refer to the number of cases (n).
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TABLE 3

Descriptive Statistics for Quantitative Variables:
Within-Subjects Main Effect

Variable Mean SD Min Max

F-test (n = 175)

TYPEI .076 .020 .041 .171

SKEW .168 .497 o 1.63

KURT .411 1.219 0 4

EPSILON .694 .197 .168 1

WCV(GPCOV) .267 .241 0 1.106

BIAS 1.043 .215 .661 1.659

TOTALN 23.246 11.659 15 ! 47

CV(GPN) .160 .236 0 .653

NREPS 1737.143 454.281 1000 3000

e F-test (n = 265)

TYPEI .043 .021 .002 .131

SKEW .111 .411 0 1.63

KURT .272 1.008 0 4

EPSILON .713 .233 .168 1

WCV(GPCOV) .228 .247 0 1.106

BIAS 1.013 .149 .565 1.618

TOTALN 33.374 18.409 9 120

CV(GPN) .121 .181 0 .848

NREPS 2494.340 1311.721 1000 5000

r (n = 257)

TYPEI .058 .010 .040 .099

SKEW .114 .417 0 1.63

KURT .280 1.023 0 4

EPSILON .708 .215 .400 1

WCV(GPCOV) .344 .220 0 .649

BIAS 1.043 .229 .661 1.659

TOTALN 28.767 12.105 15 45

CV(GPN) .213 .227 0 .653

NREPS 2529.183 1202.262 1000 5000

Note: see Table 1 for variable definition.
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TABLE 4

Descriptive Statistics for Quantitative Variables:
Within-Subjects Interaction Effect

Variable Mean SD Min Max

F-test (n = 219)

TYPEI .091 .067 .005 .320

SKEW .473 1.448 0 6.18

KURT 6.408 25.250 0 110.94

EPSILON .711 .201 .168 1

WCV(GPCOV) .213 .240 0 1.106

BIAS 1.034 .193 .661 1.659

TOTALN 26.110 16.921 10 ! 80

CV(GPN) .127 .220 0 .653

NREPS 1890.411 508.505 1000 3000

e F-test (n = 285)

TYPE! .048 .039 .001 .346

SKEW .363 1.284 0 6.18

KURT 4.924 22.287 0 110.94

EPSILON .739 .229 168 1

WCV(GPCOV) .136 .212 0 1.106

BIAS 1.009 .124 .665 1.618

TOTALN 32.779 20.653 9 120

CV(GPN) .085 .172 0 .848

NREPS 1947.368 653.298 1000 5000

Pi Hai-Bartlett (n = 155)

TYPEI .067 .069 .001 .369

SKEW .636 1.682 0 6.18

KURT 8.976 29.656 0 110.94

EPSILON .783 .234 .400 1

WCV(GPCOV) .271 .264 0 1.155

BIAS 1.030 .247 .438 2.311

TOTALN 39.684 13.903 10 80

CV(GPN) .171 .213 0 .544

NREPS 2045.161 263.393 1000 2500

Note: see Table 1 for variable definition.
4 3

42



43

TABLE 5

Descriptive Statistics for Qualitative Variables:
Within-Subjects Main Effect

F-test e F-test T2

Variable f % f % f %

Distribution 175 100. 265 100 257 100

Normal 157 89.7 247 93.2 239 93

al-Square 18 10.3 18 6.8 18 7

Groups 175 100 265 100 257 100

2 2 1.1 29 10.9 0 0

3 167 95.4 206 77.7 255 99.2

4 6 3.4 6 2.3 2 0.8

6 0 o 24 9.1 0 0

Thais 175 100 265 100 257 100

3 2 1.1 2 0.8 1 0.4

4 163 93.2 136 51.3 216 84

5 3 1.7 27 10.2 2 0.8

6 3 1.7 3 1.1 1 0.4

7 2 1.1 2 0.8 1 0.4

8 1 0.6 61 23 36 14

9 1 0.6 1 0.4 0 0

13 0 0 33 12.5 o o

CANCOV 175 100 265 100 257 100

equal 61 34.9 115 43.4 51 19.8

unequal
...

114 65.1 150 56.6 206 80.2

Note: see Table 1 for variable definition. f = frequency.
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TABLE 6

Descriptive Statistics for Qualitative Variables:
Within-Subjects Interaction Effect

F-test e F-test Pi Ilai-Bartlett

Variable f % f % f %

Distribution 219 100 285 100 155 100

Normal 189 86.3 255 89.5 128 82.6

Chi-Square 18 8.2 18 6.3 15 9.7

Log-normal 12 5.5 12 4.2 12 7.7

Groups 219 100 285 100 155 100

2 46 21 73 25.6 48 31

3 167 76.3 182 63.9 105 67.7

4 6 2.7 6 2.1 2 1.3

0 0 24 8.4 0 0

Trials 219 100 285 100 155 100

3 2 0.9 2 0.7 1 0.6

4 163 74.4 112 39.3 66 42.6

5 47 21.5 71 24.9 50 32.3

6 3 1.4 3 1.1 1 0.6

7 2 0.9 2 0.7 1 0.6

8 1 0.5 61 21.4 36 23.2

9 1 0.5 1 0.4 0 0

13 0 0 33 11.6 0 0

GPCOV 219 100 285 100 155 100

equal 105 47.9 175 61.4 49 31.6

unequal 114 52.1 110 38.6 106 I 68.4

Note: see Table 1 for variable definition. f = frequency.
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TABLE 7

Results of Explanatory Models for the Within-Subiects Main Effect:
Equal Group Sizes

Model Comparison Test dfR dfE Qa QE R2 ,; Alt2.ti

Bilinear Interactions

1.1 F 6 103 785.34 136.04 .8438 .0031

1.2 18 91 803.29 118.10 .8465

1.1 e 6 158 3907.52 790.50 .8253 .078

1.2 19 145 4295.91 402.12 .9032

1.1 l' 6 108 162.60 133.201 .5247 .076

1.2 16 98 194.25 101.55 .6007

Population Shape (Skewness )

2.1 F 5 104 781.20 140.18 .8405 .003

2.2 6 103 785.34 136.04 .8438

2.1 e 5 159 3898.50 799.52 .8245 .001

2.2 6 158 3907.52 790.50 .8253

2.1 V 5 109 93.09 202.70 .2833 .242

2.2 6 108 162.60 133.20 .5247

Non-Sphericity

3.1 F 5 104 72.41 848.97 .0343 .810

3.2 6 103 785.34 136.04 .8438

3.1 a 5 159 3353.86 1344.17 .7049 .120

3.2 6 158 3907.52 790.50 .8253

3.1 V 5 109 161.97 133.831 .5268 .0021

3.2 6 108 162.60 133.20 .5247

Covariance Heterogeneity

4.1 F 5 104 770.03 151.35 .8278 .016

4.2 6 103 785.34 136.04 .8438

4.1 a 5 159 3892.93 805.10 .8232 .002

4.2 6 158 3907.52 790.50 .8253

4.1 V 5 109 61.40 234.40 .1712 .354

4.2 6 108 162.60 133.20 .5247

Note: I indicates nonsignificant statistics (ce = .05). Marked (I) L1112.4 value indicates corresponding AQ, statistic
was nonsignificant.
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TABLE 8

Results of Explanatory Models for the Within-Subjects Main Effect:
Unequal Group Sizes

Model Comparison Test dfR dfE QR QE R2adj AR2adj

Bilinear Interactions .

1.1 F 6 58 622.27 67.71t .8917 .004t

1.2 11 53 630.19 59.80t .8953

1.1 6 6 93 2986.75 3977.21 .3920 .254

1.2 17 82 4918.89 2045.06 .6455

1.1 `I' 5 136 363.96 193.49 .6401 .094

1.2 15 126 424.77 132.681. .7336

Non-Sphericity

3.1 F 5 59 220.61 469.37 .2621 .630

3.2 6 58 622.27 67.71 .8917

3.1 6 5 94 2635.66 4328.30 .3454 .047

3.2 6 93 2986.75 3977.21 .3920

3.1 T2 4 137 363.36 194.09 .6417 .002t

3.2 5 136 363.96 193.49 .6401

Covariance Heterogeneit

4.1 F 4 60 442.43 247.55 .6173 .274

4.2 6 58 622.27 67.71 .8917

4.1 6 4 95 994.39 5969.57 .1067 .285

4.2 6 93 2986.75 3977.21 .3920

4.1 'I'2 3 138 59.08 498.37 .0865 .554

4.2 5 136 363.96 193.49 .6401

Note: see Table 7 note.
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TABLE 9

Results of Explanatory Models for the Within-Subjects Interaction Effect:
Equal Group Sizes

Model Comparison I Test dfR dfE QR QE R2adj AR2,4

Bilinear Interactions

1.1 F 6 135 1490.26 205.13 .8736 .026

1.2 19 122 1548.61 146.77t .8999

1.1 a 6 198 2907.27 1015.04 .7334 .050

1.2 19 185 3150.94 771.37 .7831

1.1 PB 6 68 95.19 106.59 .4251 .038

1.2 18 56 119.77 82.01 .4629

Population Shape (Skewness) .

2.1 F 5 136 1487.54 207.84 .8729 .001 t

2.2 6 135 1490.26 205.13 .8736

2.1 6 5 199 2902.67 1019.64 .7335 .000

2.2 6 198 2907.27 1015.04 .7334

2.1 PB 5 69 90.21 111.57 .4070 .018

2.2 6 68 95.19 106.59 .4251

Non-Sphericity

3.1 F 5 136 239.73 1455.66 .1098 .764

3.2 6 135 1490.26 205.13 .8736

3.1 a 5 199 2478.48 1443.84 .6226 .111

3.2 6 198 2907.27 1015.04 .7334

3.1 PB 5 69 95.06 106.73 .4328 .000t

-3.2 6 68 95.19 106.59 .4251

Covariance Heterogeneity

4.1 F 5 136 1438.10 257.29 .8427 .031

4.2 6 135 1490.26 205.13 .8736

4.1 6 5 199 2905.79 1016.52 .7343 .000#

4.2 6 198 2907.27 1015.04 .7334

4.1 PB 5 69 45.06 156.73 .1670 .258

4.2 6 68 95.19 106.59 .4251

Note: see Table 7 note.
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TABLE 10

Results of Explanatory Models for the Within-Subjects Interaction Effect:
Unequal Group Sizes

Model Comparison Test dfk dfE QR QE R2adi 1R2adj

Bilinear Interactions

1.1 F 6 58 14292.55 363.77 .9726 .010

1.2 11 53 14443.07 213.24 .9824

1.1 6 6 61 7208.70 1059.82 .8592 .034

1.2 17 50 7609.77 658.74 .8932

1.1 PB 6 61 11945.72 1398.18 .8849 .031

1.2 17 50 12509.37 834.53 .9162

Non-Sphericity

3.1 F 5 59 14049.91 606.40 .9551 .018

3.2 6 58 14292.55 363.77 .9726

3.1 8 5 62 7122.04 1146.48 .8502 .009

3.2 6 61 7208.70 1059.82 .8592

3.1 PB 5 62 11945.58 1398.32 .8868 .000t

3.2 6 61 11945.72 1398.18 .8849

Covariance Heterogeneity

4.1 F 4 60 1240.94 13415.37 .0236 .949

4.2 6 58 14292.55 363.77 .9726

4.1 8 4 63 1399.42 6869.10 .1165 .743

4.2 6 61 7208.70 1059.82 .8592

4.1 PB 4 63 1658.86 11685.04 .0687 .816

4.2 6 61 11945.72 1398.18 .8849

Note: see Table 7 note.
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